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Abstract

High-throughput sequencing technologies make it
possible to rapidly acquire large numbers of indi-
vidual genomes, which, for a given organism, vary
only slightly from one to another. Such repetitive
and large sequence collections are a unique challange
for compression. In previous work we described the
RLZ algorithm, which greedily parses each genome
into factors, represented as position and length pairs,
which identify the corresponding material in a refer-
ence genome. RLZ provides effective compression in
a single pass over the collection, and the final com-
pressed representation allows rapid random access to
arbitrary substrings. In this paper we explore several
improvements to the RLZ algorithm. We find that
simple non-greedy parsings can significantly improve
compression performance and discover a strong cor-
relation between the starting positions of long factors
and their positions in the reference. This property
is computationally inexpensive to detect and can be
exploited to improve compression by nearly 50% com-
pared to the original RLZ encoding, while simultane-
ously providing faster decompression.

Keywords: DNA, Compression, Lempel-Ziv, LZ77,
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1 Introduction

Genetic sequencing of many individuals from the
same species is vital for a better understanding of
variation between individuals and will ultimately lead
to improved medical treatments and evolutionary
understanding. With the recent advent of high-
throughput sequencing technology, large scale acqui-
sition of genomes is becoming a common exercise.
Projects such as the 1000 Genomes project,1, the pro-
posed Genome 10K vertebrate genome project (Haus-
sler et al. 2009), and many other similar activities are
leading to collections of large quantities of highly re-
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dundant DNA sequences, creating challenges for effi-
cient storage and retrieval of these sequences.

In previous work, we proposed RLZ (Kuruppu et al.
2010), an algorithm that compresses a collection of
genomes or sequences from the same species with re-
spect to the reference sequence for that species using
a simple greedy technique, akin to LZ77 parsing (Ziv
& Lempel 1977). RLZ parses a genome into factors, or
substrings, each of which occurs in the reference se-
quence. Having parsed a genome up to position i, the
next factor is the longest match starting at i, which
occurs anywhere in the reference. (We delay a pre-
cise description of RLZ until Section 3.) Compared to
other DNA compression methods, RLZ is fast, and is
able to achieve good compression; only XMcompress
(Cao et al. 2007) proved significantly more effective,
and was orders of magnitude slower.

While the greedy approach of taking the longest
match at each point in the parsing is fast and effec-
tive, in this paper we show that significantly better
compression performance can be obtained by simple
non-greedy techniques, and by a more judicious treat-
ment of the factors produced by the parsing. The
refined approach is also intended to better handle in-
creasing genetic distance between organisms, by more
efficient handling of short factors, which arise in the
presence of numerous mutations. As our results show,
for our application area – compression of the DNA of
related organisms – the size is nearly halved, equalling
or bettering all previous methods.

We first review related work on DNA compression.
Section 3 details relative Lempel-Ziv parsing, and the
basic (greedy) RLZ approach for compressing a col-
lection of related genomes. Then, in Section 4, we
describe the integration of non-greedy parsing with
RLZ, including the encoding of small factors and an
efficient parsing algorithm to keep compression speed
fast. Section 5 explores a phenomenon manifest by
the RLZ algorithm when compressing a pair of re-
lated genomes: a strong correlation between a fac-
tor’s start point and its position of occurrence in the
reference. We show how this phenomenon can be ex-
ploited and combined with non-greedy parsing to si-
multaneously attain handsome improvements in both
compression performance and decompression speed.
Section 6 details the results of experiments with the
new approach, before conclusions and reflections are
offered in Section 7.

2 Compression of DNA

DNA sequence compression was introduced by Grum-
bach and Tahi with the BioCompress algorithm
(Grumbach & Tahi 1993). While BioCompress fol-



lows the principle ideas of LZ77 (Ziv & Lempel 1977),
the algorithm is made DNA-specific by simple modi-
fications such as encoding nucleotides with 2 bits per
base and detecting reverse complement repeats. Bio-
Compress showed that DNA-specific compression al-
gorithms could outperform general-purpose compres-
sion algorithms. Two further variations on the Bio-
Compress theme are Cfact (Rivals et al. 1996) and
Off-line (Apostolico & Lonardi 2000).

The above algorithms and their variants produce
promising compression results for DNA sequences us-
ing exact repeat detection. However, GenCompress
(Chen et al. 2000) showed that by considering approx-
imate repeats, these results can be improved. Due to
SNPs (single nucleotide polymorphisms) and muta-
tions that occur over time, repeated regions between
DNA sequences are not necessarily exact, even for
sequences from the same species. Since GenCom-
press, most DNA compression algorithms, including
CTW+LZ (Matsumoto et al. 2000), DNACompress
(Chen et al. 2002), DNAPack (Behzadi & Fessant
2005), GeNML (Korodi & Tabus 2007), and XMcom-
press (Cao et al. 2007), have been based on efficient
methods of approximate repeat detection.

Early DNA compression algorithms were only able
to compress very small files. The first compressor for
a large genome was the statistical algorithm NML
(Korodi & Tabus 2005) and its successor GeNML
(Korodi & Tabus 2007). These algorithms divide
the input sequences into blocks and compress each
block using a Maximum Likelihood Model. XMcom-
press (Cao et al. 2007) is another statistical compres-
sion algorithm, which uses “experts” to determine the
probability distribution of each symbol, which in turn
is used to encode the symbol. The algorithm is able to
compress a human genome using less resources than
GeNML while producing better compression results,
and is the best single sequence compression algorithm
we are aware of.

Two recent algorithms have focused on compress-
ing large datasets of DNA sequences from the same
species. Christley et al. (2009) uses various encod-
ing techniques to compress variation data (mutations
and indels) of human genomes. The compression is
relative to the human reference sequence and known
variations in a SNP database. While the method pro-
duces excellent compression results for human varia-
tion data, a large amount of overhead is required to
store the reference genome and SNP database. The
method does not support compression of assembled
genomes nor random access into the compressed data.
A similar approach is taken by Brandon et al. (2009).

Mäkinen et al. (2010) proposed algorithms that
not only compress sets of related genomes, but
also support the following retrieval functionality:
display(i,j,k), which returns the substring from posi-
tion j to k in sequence i; count(p), which returns the
number of occurrences of substring p; and locate(p),
which returns the positions where p substring occurs
in the collection. This family of self-indexing tech-
niques achieves good compression results, as well as
good search times and is the inspiration behind the
RLZ algorithm. Our previous work (Kuruppu et al.
2010) shows that RLZ provides better compression and
much faster random access times than the data struc-
tures of Mäkinen et al. As it is the basis for our
present work, we describe RLZ in finer detail in the
next section.

3 The RLZ Algorithm

The input to the RLZ algorithm is a set of sequences,
as follows:

Definition 1. Let C be a collection of r sequences.
Each sequence T k ∈ C has length n, where 1 ≤ k ≤ r
and N =

∑r
k=1 |T k|.

The sequence T 1 is called the reference sequence.
The RLZ algorithm takes each other sequence in the
collection and encodes it as a series of factors (sub-
strings) that occur in the reference sequence. The
manner in which each sequence is broken into factors
is similar to the famous LZ77 parsing (Ziv & Lempel
1977). We now give a precise definition.

Given two strings T and S, the Lempel-Ziv fac-
torisation (or parsing) of T relative to S, denoted
LZ(T |S), is a factorisation T = w0w1w2 . . . wz where
w0 is the empty string and for i > 0 each factor
(string) wi is either:

(a) a letter which does not occur in S; or otherwise

(b) the longest prefix of T [|w0 . . . wi−1|..|T |] which
occurs as a substring of S.

For example, if S = tcttctct and T = ttctgttc then in
LZ(T |S) we have w1 = ttct, w2 = g and w3 = ttc.
For the purposes of compression, factors are specified
not as strings, but as (pi, `i) pairs. Each pi denotes
the starting position in S of an occurrence of factor
wi (or a letter if wi is generated by rule (a)) and `i

denotes the length of the factor (or is zero if wi is
generated by rule (a)). Thus, in our example above,
we have:

LZ(T |S) = (2, 4)(g, 0)(2, 3).

For technical convenience, for the remainder of this
paper we assume that no factors are generated by rule
(a) above; that is, if a symbol c occurs in T then c
also occurs in S. For DNA strings, this is not an
unreasonable assumption, but for other types of data
(even proteins) it may be flawed. However, if S is not
so composed we can simply add the at most σ − 1
missing symbols at the end.

We now define the RLZ encoding of the collection.

Definition 2 (RLZ). Let T 1 be the reference se-
quence. Each sequence, T i for 2 ≤ i ≤ r is repre-
sented with respect to T 1 as

LZ(T i|T 1) = (p1, `1), (p2, `2), . . . , (pzi , `zi) ,

resulting in z factors in total where z =
∑r

i=2 zi.

Using this representation, the collection C can be
stored in at most n log σ + z log n + z log N

z + O(z)
bits. In this bound, the n log σ term is for the ref-
erence sequence, which is stored uncompressed; the
z log n term is for the pi components of each factor,
which are pointers into the reference; and the z log N

z
term is for (essentially) the Golomb encoding of the
`i components.

As a baseline in this paper we assume that RLZ
encodes each pi component using log n bits and a
Golomb code (M = 64) for each `i. We refer to this
encoding method, combined with greedy parsing, as
standard RLZ. In this paper we concentrate only on
raw compression and not on random access. How-
ever, we make some comments on how random access
can be acheived in the final section.



4 Non-greedy parsing

In the standard relative LZ parsing algorithm de-
scribed above, we take, at each point in the parse,
the factor which has the longest match in the refer-
ence sequence. This is a greedy decision, which does
not account for the possibility that a smaller overall
encoding may be achieved by taking a shorter match
(leading to a different parsing). This section explores
such a non-greedy approach.

For a non-greedy strategy to be effective, the
(pi, `i) factor pairs must be coded with a variable-
length code: it is well known (Ferragina et al. 2009,
Horspool 1995) that if a fixed number of bits is used
to code each pair, then the greedy method does as
well as any other. The particular variability we fo-
cus on is the encoding of short factors, which, given
the small DNA alphabet, can be encoded much more
succinctly as literal strings than as (pi, `i) pairs.

Lookahead by h. The non-greedy method we use
is a generalization of that used in the gzip compres-
sor, as investigated by Horspool (1995). The idea is
as follows. Assume the parsing is up to position i.
If the lookahead limit h = 1 then, instead of encod-
ing the longest match, (p, `), starting at i, the longest
match starting at i + 1, (p′, `′) is also considered. If
`′ > ` then the letter at position i is encoded as a
single literal followed by the factor (p′, `′). This idea
can be generalized so that the lookahead can be ex-
tended up to position i+h, instead of just i+1. Hor-
spool explored this approach on English text, testing
the gains possible by looking ahead up to h = 7 let-
ters. He found that, on English at least, the LZ77
algorithm improved when looking ahead up to 5 to 6
letters, after which no further gains were made.

Longest factor in a region. A slight variation to
the simple lookahead by h algorithm is to continue
the lookahead until the longest factor within a region
is found, and encode the section before the longest
factor as a series of shorter factors followed by the
longest factor. The longest factor within a region is
defined as a factor of position p′ and length l′, starting
from position i′ in the current sequence, where no
other factor in between positions i and i′ has a length
≥ l′, and no ther factor in between positions i′ until
i′ + l′ has a length ≥ l′.

The algorithm operates in a very similar manner
to that of the lookahead by h algorithm. The main
difference is that instead of the lookahead amount
being a constant h, the amount varies depending on
the longest factor found so far. First, the longest
factor at position i is found of position p and length
l. To ensure that this is indeed the longest factor,
we set h = l and lookahead by up to l positions to
see if there is a longer factor. If there is a longer
factor at i′ with position p′ and length l′, then we
now set h = l′ and continue to see if there’s a factor
that has a length above l′. This process continues
until no factor that is longer than the current longest
factor can be found. In the meantime, each longest
factor found so far is kept in an array so that when
the actual longest factor is found, the series of shorter
factors leading up to the actual longest factor can also
be encoded. This algorithm essentially finds the local
maximum in terms of the factor length.

Efficient non-greedy parsing algorithm. We
have described an efficient algorithm for greedy RLZ

parsing which runs in O(N) time using the suffix tree
of T 1 or in O(N log n) time using the (more compact)
suffix array data structure (Kuruppu et al. 2010). It
is possible to implement the non-greedy approaches
in the same time bounds. In fact, it is possible to
compute the factor information for every position in
the input in O(N) time using a suffix tree. We apply
an algorithm for computing so-called matching statis-
tics, due to Chang & Lawler (1994) (see also Gusfield
(1997), Abouelhoda et al. (2004), and Maaß (2006)).
Formally, the matching statistics of string T w.r.t.
string S is a table of pairs (pj , `j), where 0 ≤ j < |T |
such that:

(a) T [j..j + `j ] is the longest prefix of T [j..|T |] which
occurs as a substring of S, and

(b) T [j..j + `j ] = S[pj ..pj + `j ].

There may be more than one such pj , and it does
not matter which is chosen. Continuing our earlier
example, for strings S = tcttctct and T = ttctgttc
the matching statistics of T w.r.t. S are given in the
following table:

j 0 1 2 3 4 5 6 7
(pj , `j) (2,4) (0,3) (1,2) (0,1) (0,0) (2,3) (0,2) (1,1)

At position j = 0 in T , the longest prefix of
T [0..|T |] matching a substring in S is the substring
S[2..6] = ttct of length 4 so it is encoded as (2, 4).
At position j = 1 in T , the longest prefix of T [1..|T |]
matching a substring S is the substring S[0..3] = tct
of length 3 which is encoded as (0, 3). A special case
occurs at position 4 where no prefix of T [4..|T |] = gttc
occurs in S. Therefore, we encode it using the start
position 0 and a length of 0 to indicate that there was
no match.

Clearly any LZ parsing (greedy or non-greedy) of
T relative to S can be derived from a subsequence of
the matching statistics of T w.r.t. S. To our knowl-
edge, the link between relative Lempel-Ziv parsing
and matching statistics computation has never been
made in the literature — the two methods appear to
have been studied in quite different contexts (clas-
sification and approximate pattern matching respec-
tively).

Short factor encoding. The non-greedy parsing
algorithm described above is likely to create short fac-
tors which can be encoded in a more efficient manner
than as position and length pairs. For example, if a
factor represents a single nucleotide, then it is cheaper
to encode it using 2 bits per nucleotide (spelling out
the literal A, C, G or T symbol) rather than using the
standard RLZ encoding of log n+` mod M +log M +1
bits, where M is the divisor of the Golomb code. With
this in mind, we define a short factor as any factor
which has a literal encoding smaller than its position
and length pair encoding.

To encode short factors, first we use a 0 bit to
indicate that a short factor is about to be encoded
followed by the Golomb encoded length of the short
factor (in bases). Then we simply encode each nu-
cleotide from the standard DNA alphabet as 2 bits
per base. Any non-short factor is prefixed with a 1
bit to indicate to the decompressor to decode it as
position and length pair. We use M = 8 for Golomb
encoding simply because the datasets used for our
experiments show that most short factors have an av-
erage length of 12. However, this can be adjusted
depending on dataset properties. Finally, we remark



that the utility of an efficient short-factor encoding is
not limited to non-greedy parsing: short factors are
also produced during greedy parsing.

5 Reducing space for position values

One unfortunate aspect of RLZ is the large size of the
position components. Because matches are allowed
anywhere in the reference sequence, each pi value can
range between 0 and n−1 and so log n bits of storage
for each seem to be necessary. That is, although RLZ
was developed as a method for coding one sequence
relative to another similar sequence, in practice we
allowed each factor to come from any location in the
reference, so the ordering of factors was not lever-
aged at encoding time. We now describe a way to
reduce the space of the pi values, exploiting a prop-
erty particular to the problem of compressing related
genomes.

While inspecting the RLZ factors we noticed the
factor sequence consisted, with few exceptions, of al-
ternating short and long factors. Moreover, the p
component of the ith long factor always seemed to
be less than the p component of the (i + 1)th long
factor, forming a long subsequence of increasing p
components in the factor sequence. An example of
this behaviour for the S. cerevisiae genome 273614N
is as follows:

...
10030697 10

* 16287 23
10086342 13
8689589 13

* 16336 48
3831041 11

* 16395 28
9166835 12
11588317 13

* 16448 84
787019 13
...

In this table, the left-hand values are the position in
the reference sequence and the right-hand values are
the factor length. The factors marked with * are long
factors (relative to the remaining shorter factors) and
their position (left-hand) values form an increasing
subsequence. On closer inspection, we found that the
longest increasing subsequence (LISS) was comprised
of roughly half the factors, and these factors tended
to be long, as Figure 1 illustrates this distribution.
These factors can be identified in O(z log z) time using
the algorithm by Schensted (1961). From here on
we identify the factors participating in the LISS as
LISS factors and the remaining factors as interleaving
factors.

Such long LISSs are present in the RLZ factors
because of the close genetic relationship of the se-
quence being compressed to the reference sequence.
The dataset contains sequences that are evolutionar-
ily related to the reference sequence but with muta-
tions, insertions, deltions and rearrangements scat-
tered across the sequence. When a sequence is fac-
torised relative to the reference, similarity is cap-
tured by very long factors that form an alignment
between the two sequences. The shorter factors in
between correspond to areas of genetic mutation and
rearrangment, which characterize the difference be-
tween individuals of the same species. Indeed, one of
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Figure 1: The factor length distribution for S. cerevisiae when
the standard factorisation algorithm is used.

the most common mutations is replacement of a sin-
gle nucleotide, thus converting, for example, one long
factor into two shorter factors separated by a single
base.

The presence of such LISS in the RLZ factors sug-
gests position components (of factors that participate
in the LISS) can be encoded more efficiently than
log n bits each, by encoding differences, rather than
absolute positions. More precisely, we store a bit vec-
tor of z bits total, where the ith bit is set to 1 if and
only if the factor is an LISS factor and is 0 other-
wise. Each interleaving factor is encoded in the stan-
dard manner. The first LISS factor is also encoded
in the standard way, using log n bits per position and
Golomb encoding the length. The remaining LISS
factor positions are encoded by Golomb encoding the
difference between the current position and the previ-
ous LISS factor position, and the lengths are Golomb
encoded.

We found encoding differences between LISS fac-
tor positions as above led to a significant boost in
compression performance. However, a futher sav-
ing is possible. Let factor (pi, `i) be a LISS factor,
(pi+1, `i+1) be an interleaving factor, and (pi+2, `i+2)
be another LISS factor. Then, given the likelihood
that the interleaving factors encode mutations, factor
i + 2 will begin at or close to pi + li + li+1. In other
words, after encoding a mutation, the algorithm will
go back to detecting factors from the position where
the reference and current sequence align. This po-
sition can be predicted from the last position where
the two sequences aligned and the length of the mu-
tation. Using this observation, it is unnecessary to
encode differences since the positions can be well pre-
dicted from the cumulative length of the last LISS
factor and the lengths of the interleaving factors.

With this in mind, we use the following technique
to encode the positions for LISS factors. The first
LISS factor is still encoded in the same manner as an
interleaving factor. Any subsequent LISS factor posi-
tion is encoded by first checking if the factor position
is exactly at the predicted position using the previous
LISS factor position and the cumulative length since
the previous LISS factor position. If this condition is
satisfied then a 0 bit is output. Otherwise, a 1 bit is
output and a further 0 or 1 bit is output depending
on if the actual position is to the left or to the right
of the predicted position, respectively. Then the dif-
ference between the actual and expected position is
Golomb encoded.



6 Results

We use three datasets to analyse the compression
performance of the new techniques. The first two
datasets are two different species of yeast; S. cere-
visiae with 39 genomes and S. paradoxus with 36
genomes.2 The third dataset is 33 strains of E. coli
sequences.3

Tests were conducted on a 2.6 GHz Dual-Core
AMD Opteron CPU with 32Gb RAM and 512K cache
running Ubuntu 8.04 OS. The compiler was GCC
v4.2.4 with the -O9 option.

First, we discuss the compression performance for
the various combinations of factorisation and encod-
ing algorithm. There are four main combinations:

• Lookahead factorisation (lookahead)

• Lookahead factorisation with short-factor encod-
ing (lookahead+shortfac)

• Lookahead factorisation with LISS encoding
(lookahead+liss)

• Lookahead factorisation with LISS
encoding and short-factor encoding
(lookahead+liss+shortfac)

For the lookahead factorisation algorithm, we ex-
periment with lookahead limits ranging from 0 to 30
followed by the longest factorisation algorithm, de-
scribed in Section 4. A lookahead limit of zero equates
to the standard greedy factorisation algorithm.

Figure 2 shows the compression performance (in
Mbytes) for the various algorithmic combinations.
The baseline standard algorithm is indicated with
a horizontal dashed line. Unsurprisingly, for all
datasets, using lookahead with the standard (p, `)
factor encoding leads to worse compression. Us-
ing the lookahead+shortfac combination encodes
short factors efficiently and improves compression.
The lookahead+liss combination also reduces the
compressed size for the yeast datasets but not for
the E. coli dataset. While LISS encoding is some-
times able to reduce compressed size, it does not
encode shorter factors efficiently. For all three
datasets, the combination of lookahead factorisation
along with LISS encoding and short-factor encoding
lookahead+liss+shortfac, provides clearly superior
compression to the other methods.

To further analyse the LISS encoding, we use the
factor length distribution for the S. cerevisiae dataset.
Figure 1 shows the length distribution of factors when
the standard factorisation algorithm is used. Each
bar shows the split between LISS and non-LISS fac-
tors for a given factor length. Most short factors have
a length ranging from 10–15 while the majority of
LISS factors have length at least 31. This is why,
even when using the standard greedy factorisation, it
is beneficial to use specialized short-factor encoding.

Figure 3 shows the length distribution of fac-
tors when the longest factorisation algorithm is used.
There is a remarkable difference between this distri-
bution and that in Figure 1 (produced by the greedy
parsing). When a lookahead factorisation algorithm
is used, a large proportion of the interleaving (non-
LISS) factors end up having a length of one. An ex-
ample of this behaviour for the S. cerevisiae genome
2736147N is as follows:

2ftp://ftp.sanger.ac.uk/pub/dmc/yeast/latest
3ftp://ftp.ensemblgenomes.org/pub/bacteria/release-5/fasta/
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Figure 3: The factor length distribution for S. cerevisiae when
the longest factorisation algorithm is used.

...
* 25359 203
2927486 1
* 25563 58
2533639 1
* 25622 97
4585768 1
* 25720 156
11302741 1
* 25877 230
...

A LISS factors is frequently followed by a non-
LISS factor of length one. We hypothesise that these
single-symbol factors are single nucleotide polymor-
phisms (SNPs), or point mutations. When the longest
factor at a given position is found and it is an align-
ment to the reference sequence, then the alignment
stops when a nucleotide is reached that is not shared
between the sequence and its reference. Without the
lookahead algorithm, a relatively short factor is found
from the next position to be encoded and then the
aligning continues. With the lookahead algorithm,
by looking ahead by just one position, a single point
mutation is skipped and the alignment to the refer-
ence can continue just by encoding the mutation as a
factor of length one. We plan to more closely analyse
this SNP hypothesis in the future.

Figure 4 and Figure 5 show, respectively, compres-
sion and decompression4 times for a range of looka-
head limits. Both LISS encoding and short-factor en-
coding was enabled for this experiment. In general,
compression is faster when lookahead is used. This
is explained by the use of the efficient parsing algo-
rithm described in Section 4. The longest factor can
be found in O(N) time (or O(N log n) time using a
suffix array) on average, and a longer region of the
sequence is covered each time a longer factor is found
by looking ahead. However, when the longest factori-
sation algorithm is used, the compression is slower. In
order to find the longest factor within a region, a lot
more comparisons are required as the lookahead may
happen up to hundreds to thousands of positions.

Decompression time is more variable but always
4The compression time only includes the time to generate and

encode the factors and does not include the time required to gen-
erate the suffix array and its other associated data structures, nor
the time to compress the reference sequence. These times are in-
cluded in the results presented later in Table 1. Similarly, the de-
compression time only includes the time to decode the factors and
does not include the time taken to decode the reference sequence.
These times are also included in Table 1.



Figure 2: The variation in Compressed size (in Mbytes) of the S. cerevisiae, S. paradoxus, and E. coli datasets for changes in the
lookahead limit, using the four combinations of encoding techniques.
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Figure 4: The variation in the time taken to compress the data
(in seconds) when the lookahead limit is varied for S. cerevisiae,
S. paradoxus and E. coli datasets. The time only includes the
time taken to discover the factors and encode them.

Figure 5: The variation in the time taken to decompress the
data (in seconds) when the lookahead limit is varied for S. cere-
visiae, S. paradoxus and E. coli datasets. The time only includes
the time taken to decode the factors.

faster when some amount of lookahead is performed.
The main reason for this is reduced cache misses. The
most expensive operation during decompression is the
access to the reference sequence that is required to
copy the symbols for (that is, decode) each factor.
With lookahead, we increase the chance that a factor
will be considered short, and encoded as a literal —
decoding literals requires no access to the reference.
Moreover, lookahead produces longer non-short fac-
tors, which increase the number of symbols decoded
per access to the reference, and also reduces cache
misses.

Figure 6 illustrates the tradeoff between space
and throughput achieved by the variants. The
lookahead+liss+shortfac combination provides
the best results across all datasets tested.

Finally, we directly compare the results of the
standard RLZ algorithm (RLZ-std) to the re-
sults of the optimized RLZ algorithm (RLZ-opt)
(lookahead+liss+shortfac) in Table 1. For this,

we used the two yeast datasets and a dataset of four
human genomes, consisting of the reference human
genome5 , the Craig Venter genome6, the Korean
genome7 and the Chinese genome8. We also com-
pare the optimized RLZ algorithm to three other
DNA compression algorithms. Comrad (Kuruppu
et al. 2009) is a dictionary compression algorithm
that is also suitable for compressing datasets of
DNA sequences from the same or similar species.
RLCSA (Mäkinen et al. 2010) is one of the self-index
implementations that supports queries such as dis-
play(), count() and locate() (we turned off support
for count() and locate() for this experiment to make
the algorithms comparable). Finally, XM (Cao et al.
2007) is a statistical DNA compressor that is also able
to compress DNA sequences with respect to a refer-
ence sequence and is the DNA compression algorithm
with the best compression results that we known of.

For the S. cerevisiae dataset, prior to RLZ-opt,
Comrad had the best compression results. How-
ever, RLZ-opt was able to compress the dataset to
a lower size of 0.15 bpb and this is almost half of
the compressed size achieved by RLZ-std. For the
S. paradoxus results, XM had the best results com-
pared to RLZ-std, but RLZ-opt was able to achieve
an equivalent result to XM. For the H. sapien results,
the non-RLZ algorithms were not able to compress
the dataset very well. RLZ-opt was also unable to
achieve a much better result compared to RLZ-std.
However, most of the 753.90 Mbytes with RLZ-std
(or the 707.15 Mbytes with RLZ-opt) consists of the
compressed reference sequence, which has a size of
645.34 Mbytes. The compressed size of the three
other genomes was 111.56 Mbytes (0.10 bpb) using
RLZ-std and 64.81 Mbytes (0.06 bpb) using RLZ-opt,
almost a halving of the compressed size. The over-
all compressed result would also improve when more
genomes are available to be added to the dataset.
The compression and decompression times for RLZ
are much lower compared to the other algorithms.
RLZ-opt takes slightly longer to compress compared
to RLZ-std but RLZ-opt is faster to decompress as
was discussed previously.

As a note on memory usage, in order to support
the lookahead functionality, memory usage is three
times that of the usage when standard factorisation
is used, but this is still a small proportion of over-
all collection size. When standard factorisation is

5ftp://ftp.ncbi.nih.gov/genomes/H sapiens/Assembled

chromosomes/hs ref GRC37 chr*.fa.gz
6ftp://ftp.ncbi.nih.gov/genomes/H sapiens/Assembled

chromosomes/hs alt HuRef chr*.fa.gz
7ftp://ftp.kobic.kr/pub/KOBIC-KoreanGenome/fasta/

chromosome *.fa.gz
8ftp://public.genomics.org.cn/BGI/yanhuang/fa/chr*.fa.gz



Figure 6: Space-decompression time tradeoff for the RLZ variants.

Dataset S. cerevisiae S. paradoxus H. sapien
Size Ent. Comp. Dec. Size Ent. Comp. Dec. Size Ent. Comp. Dec.

(Mbytes) (bpb) (sec) (sec) (Mbytes) (bpb) (sec) (sec) (Mbytes) (bpb) (sec) (sec)
Original 485.87 2.18 — — 429.27 2.12 — — 11831.71 2.18 — —
RLCSA 41.39 0.57 781 312 47.35 0.88 740 295 3834.82 2.54 34525 14538
Comrad 15.29 0.25 1070 45 18.33 0.34 1068 50 2176.00 1.44 28442 1666
XM 74.53 1.26 18990 17926 13.17 0.25 30580 28920 — — — —
RLZ-std 17.89 0.29 143 9 23.38 0.44 182 6 753.90 0.51 15451 573
RLZ-opt 9.33 0.15 233 8 13.44 0.25 241 6 707.15 0.48 17861 526

Table 1: Compression results for two repetitive yeast collections and a set of four human genomes. The first row
is the original size for all datasets (size in megabases), the remaining rows are the compression performance of
RLCSA, Comrad and XM algorithms followed by the standard RLZ algorithm and the improved RLZ algorithm
using lookahead+liss+shortfac algorithms. The four columns per dataset show the size in Mbytes, the 0-
order entropy (in bits per base), time taken to compress (in seconds) and time taken to decompress (in seconds),
respectively. The time taken to compress includes the time taken to generate the suffix arrays and other
associated data structures, and the time to compress the reference sequence. The time taken to decompress
includes the time taken to decompress the reference sequence.

used, the memory usage for S. cerevisiae, S. para-
doxus and E. coli are 45.78 Mbyte, 43.58 Mbyte and
17.22 Mbyte, respectively. With lookahead factorisa-
tion, 118.75 Mbyte, 113.0 Mbyte and 43.89 Mbyte, re-
spectively. This is due to the increased space (2n log n
bits) required to store the inverse suffix array SA−1

(satisfying the property SA−1[SA[i]] = i) and longest
common prefix (LCP) array SALCP (SALCP [i] con-
tains the length of the longest common prefix between
SA[i−1] and SA[i]) to implement a variation of the ef-
ficient non-greedy parsing algorithm described in Sec-
tion 4.

7 Concluding Remarks

As described in our previous work (Kuruppu et al.
2010) RLZ allows fast access to arbitrary parts of the
collection with a very slight space overhead. For the
non-greedy parsings we have considered in this pa-
per, fast access can be achieved by applying the same
data structures. For the approach which separates
long and short factors (using the LISS), more care
is required to acheive random access as the position
components of the long factors are differentially en-
coded. The key idea to enabling random access is
to store absolute position values periodically in the
sequence of differences.

Our next aim is to augment the RLZ representa-
tion with succinct data structures that allow fast in-
dexed search over the compressed collection. We be-
lieve this functionality can be added to our approach,
using yet unpublished techniques, not dissimilar to
earlier work (Navarro 2004, 2008).

Finally, while we were able to drastically improve
compression via the presence of a LISS in the factors,

the best way to exploit this phenomenon remains un-
clear and warrants further analysis. Use of the LISS
turns RLZ from a one pass to a two pass algorithm. An
online LISS finding algorithm, such as that of Liben-
Nowell et al. (2006), may be effective in our setting
as the LISS is long (roughly half the sequence) and
tends to manifest early in the factor set.

With the cost of acquiring a single human genome
falling below $10,000, the volume of genomic data will
grow dramatically; with our methods, collections of
related genomes can be stored with great efficiency.
Approaches such as ours are key to management of
the volumes of biological data now being produced.
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(2010), ‘Storage and retrieval of highly repetitive
sequence collections’, Journal of Computational Bi-
ology 17(3), 281–308.

Matsumoto, T., Sadakane, K. & Imai, H. (2000), ‘Bi-
ological sequence compression algorithms’, Genome
Informatics 11, 43–52.

Navarro, G. (2004), ‘Indexing text using the Lempel-
Ziv trie’, Journal of Discrete Algorithms 2(1), 87–
114.

Navarro, G. (2008), ‘Indexing LZ77: the next step
in self-indexing’, Keynote talk at 3rd Workshop
on Compression, Text and Algorithms. Slides:
http://spire2008.csse.unimelb.edu.au/talks/gn08-
wcta.pdf.

Rivals, E., Delahaye, J., Dauchet, M. & Delgrange,
O. (1996), A guaranteed compression scheme for
repetitive DNA sequences, in ‘DCC ’96: Pro-
ceedings of the Conference on Data Compression’,
p. 453.

Schensted, C. (1961), ‘Longest increasing and de-
creasing subsequences’, Canad. J. Math (13).

Ziv, J. & Lempel, A. (1977), ‘A universal algorithm
for sequential data compression’, IEEE Transac-
tions on Information Theory 23(3), 337–343.


