University of Southern Queensland Faculty of Engineering and Surveying

PROPERTY RIGHTS, CADASTRAL BOUNDARIES & COASTAL EROSION IN NEW SOUTH WALES

A dissertation submitted by

Mr. Aaron Millard 0050028561

In fulfilment of the requirements of

Courses ENG4111 and 4112 Research Project

Towards the degree of

Bachelor of Spatial Science (Surveying)

October 2011

Abstract

The aim of this project is to investigate the effects of coastal erosion on coastal boundaries and to determine the rights, obligations and limitations attached to that land with respect to both the private land owner and the general public.

The effects of coastal erosion along urbanised foreshores has seen the loss of land to private property by title as well as physical loss of land to the ocean, while public land is disappearing as erosion forces its natural coastal boundaries landward towards private fixed-line boundaries. As Australia continues to urbanise along its coastline, the value of coastal land near large cities in Australia is continually increasing, further highlighting the importance of resolving issues that surround coastal property boundaries.

These issues have been demonstrated through a literature review. The collection and critical review of current legislation, case law, survey regulations as well as investigation into examples of coastal remedial works (both successful and unsuccessful) was then applied to a primary research study, located at Collaroy-Narrabeen Beach, within the local government area of Warringah, NSW.

A detail survey was conducted of the foreshore and adjoining properties along the described length of Collaroy-Narrabeen Beach, as well as boundary survey to define the cadastral boundaries between the beach reserve and private properties that it adjoins. This study revealed significant deficiencies that continue to see the loss of land along the foreshore, affecting both private land owners and public beach users.

This study has proven that there are serious and concerning issues surrounding coastal erosion, and its effect on coastal property boundaries. As Australia's stunning and iconic coastline continues to urbanise, the importance of collective and responsibly considered actions which successfully manage the delicate balance between protecting privately owned land and public interests from coastal erosion in New South Wales has never been more significant.

ENG4111 & ENG4112 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Engineering and Surveying, and the staff of the University of Southern Queensland, do not accept any responsibility for the truth, accuracy or completeness of material contained within or associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk of the Council of the University of Southern Queensland, its Faculty of Engineering and Surveying or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond this exercise. The sole purpose of the course pair entitled "Research Project" is to contribute to the overall education within the student's chosen degree program. This document, the associated hardware, software, drawings, and other material set out in the associated appendices should not be used for any other purpose: if they are so used, it is entirely at the risk of the user.

Joch Bulle

Professor Frank Bullen Dean Faculty of Engineering and Surveying

Certification

I certify that the ideas, designs and experimental work, results, analyses and conclusions set out in this dissertation are entirely my own effort, except where otherwise indicated and acknowledged.

I further certify that the work is original and has not been previously submitted for assessment in any other course or institution, except where specifically stated.

Student Name Student Number:

Apl

Signature

26 October 2011 Date

Acknowledgements

I would like to acknowledge my Project Supervisor Mr. Shane Simmons for his guidance throughout this project. I would also like to thank Mr. Allan Gordon of NSW Maritime & Mr. Anthony Bennett for their professional advice. I would also like to thank my father, Ron Millard for his help in the field, and my mother Jenny Millard for her love and support.

In particular, I would like to thank my wife Sarah, for pushing me to succeed throughout my entire degree, thank you and I love you.

Table of Contents

Contents	Page
ABSTRACT	i
LIMITATION OF USE	ii
CERTIFICATION	iii
ACKNOWLEDGEMENT	iv
TABLE OF CONTENTS	v
LIT OF FIGURES	viii
LIST OF TABLES	х
LIST OF APPENDICES	xi
NOMENCLATURE	xii
CHAPTER 1 – INTRODUCTION	1
1.0 The Problem	1
1.1 Research Aims	2
1.2 Scope of Research	4
1.3 Area of Investigation	5
1.4 Summary of Chapter 1	8
CHAPTER 2 – BACKGROUND AND LITURATURE	9
2.0 Introduction	9
2.1 Natural Boundaries	9
2.2 The Doctrine of Accretion and Erosion	11
2.3 Tidal Waters	13
2.4 100 feet Reservation	14
2.5 The Littoral Zone	16
2.6 Coastal Protection	17
2.6.1 Government Legislation – Coastal Development	18
2.6.2 Government Legislation – Emergency Coastal	
Protection Works	21

2.6.3 Beach Nourishment	23
2.6.4 Offshore Sand Mining	25
2.6.5 Groynes	25
2.6.6 Artificial Reefs	31
2.6.7 Land Acquisition	33
2.7 Conclusion	33
CHAPTER 3 – RESEARCH METHOD	34
3.0 Introduction	34
3.1 The Site	35
3.2 Searching of Plans	36
3.3 Field Survey	38
3.3.1 Survey Equipment	38
3.3.2 Traverse for Survey Marks and Monuments	39
3.3.3 Detail & Level Survey of the Coast Area	39
3.4 Defining the Boundaries	40
3.5 Survey Report on Location of Boundaries	40
3.6 Gradual & Imperceptible Erosion	41
3.7 Implications of the Crown Beach Reserve	41
3.8 Government Responsibilities to Beach Erosion	41
3.9 Private Landowner Rights & Responsibilities to Beach Erosion	42
3.10 Summary of Chapter 3	42
CHAPTER 4 – RESULTS	43
4.0 Introduction	43
4.1 Boundary Establishment	43
4.2 Detail Survey of Part of Collaroy-Narrabeen Beach	44
4.3 Survey Report	48
4.4 Application of the Doctrine of Accretion & Erosion	48
4.5 Crown Land Conversions & the Status of the Beach Reserve	51
4.6 Government Responsibility to Erosion	52
4.7 Temporary Protection – Past & Present	54
4.7.1 Concrete Tank Traps	54
4.7.2 Rock Protection	54

4.7.3 Sand Bagging	55
4.8 Long Term Protection – Present & Future	55
4.8.1 Rock Protection	55
4.8.2 Sea Wall	56
4.8.3 Prevention of Future Development & Planning	
Procedures	57
4.8.4 Beach Nourishment	57
4.9 Private Landowners Rights	
4.10 Summary	58
CHAPTER 5 – CONCLUSION	59
5.0 Introduction	59
5.1 Achievement of Objectives	
5.2 Problems & Recommendations	60
APPENDICES	63
REFERENCES	100

List of Figures

Figure	Title	Page
1	Photo taken 23 July, 2011 days after a relatively small storm	4
2	Greater Sydney with Collaroy-Narrabeen Beach shown	5
3	S.S. Collaroy run-aground	6
4	Area of investigation	7
5	Littoral Zone	16
6	Wave Impact Zone	20
7	Allowable Area for Placing Sand or Sandbags	22
8	Emergency Coastal Protection Works on Adjacent Private Land	23
9	Nourishment of Precincts 2-3 showing the initial and final	
	shoreline positions and the degree of change - Collaroy	
	Narrabeen Beach	24
10	Accretion & Erosion at Port Geographe due to Groynes – 2003	26
11	Accretion & Erosion at Port Geographe due to Groynes – 2005	26
12	Accretion & Erosion at Port Geographe due to Groynes – 2010	27
13	Kirra Beach in 1910 - Wide Beach with Little Development	28
14	Kirra Beach in 1947 Shortly After a Cyclone Stripped Beach of	
	Sand Exposing the Sea Wall	28
15	Beach - Big Groyne with Little Groyne in Background	29
16	Most Appropriate Re-design for Groyne at Port Geographe	30
17	Nourishment of Precincts 2-3 with a groyne at Devitt Street,	
	Narrabeen showing the initial and final shoreline positions and	
	the degree of change	31
18	Broad-Crested Submerged Breakwater (Artificial Reef)	32
19	'Flight Decks' exposed foundations after 1967 storm	35
20	Cadastral Records	36
21	Reference Plan	37

Figure	Title I	Page
22	Position of Mean High Water Mark as per survey & DP1166942	45
23	Position of sandy beach with offsets to cadastral boundaries	46
24	Photo taken 8am, Friday 15 th October, 2004 looking North	50
25	Photo taken 8am, Saturday 23 rd October, 2004 looking North	50
26	Damage to houses, June 1945, resulting in them being	
	demolished, with the land being resumed by council	53
27	Emergency rock protection in front of 'Shipmates' & 'Flight	
	Deck' c.1972	55
28	Exposed rock walls at Collaroy-Narrabeen Beach, 28 July 2007	56
29	The 'do nothing' scenario showing the initial and final shoreline	
	positions and the degree of change	62

List of Tables

Table	Title	Page
1	Cadastral Information	37
2	Percentage of Physical Land Lost	47
3	Percentage of Physical Land Lost	47
4	Fluctuations in beach width at Collaroy-Narrabeen	49

List of Appendices

Number	Title	Page
А	Project Specifications	63
В	Cadastral Record Enquiry Search	65
С	Reference Map	68
D	Deposited & Strata Plans	70
E	Survey Control Information Management System (SCIMS)	
	Search	89
F	Survey Report	90
G	Boundary Calculation Sheet	92
Н	Neutral Files (Electronic Field Notes)	93

Nomenclature

AHD	Australian Height Datum
CBD	Central Business District
DECCW	Department of Environment, Climate Change and Water
DP	Deposited Plan
GMR	Greater Metropolitan Region
LEP	Local Environment Plan
LPMA	Land & Property Management Authority
MGA	Map Grid of Australia
MHWM	Mean High Water Mark
MLWM	Mean Low Water Mark
NSW	New South Wales
PM	Permanent Mark
RM	
SIX	Spatial Information Exchange
SP	Strata Plan
UNSW	University of New South Wales
WLEP	Warringah Local Environment Plan

CHAPTER 1

Introduction

"...on natural beaches, erosion does not endanger the beach itself. Shorelines eroded for thousands of years, yet beaches remained, because they could change their shape and position. Erosion only becomes a problem when we place stationary buildings, parking lots and roads too close to the beach."

Don Barber, Geology Dept., Bryn Mawr College c.2004

1.0 The Problem

Over tens of thousands of years beaches and coastlines around Australia have undertaken changes due to rises in sea levels, as well as erosion and accretion. Coastal erosion and rises in sea levels has formed a consistent historical pattern over time, however these historical changes have not been highlighted as a concern until recent decades, primarily due to the increase in urbanisation of Australia's coastline.

One of Australia's uniquely defining characteristics is the permanence of our land, and, being the largest island in the world, its isolation. Australia is extremely sparse, and if our population was evenly spread out across the land, supply would be virtually unlimited, and demand would therefore be very low. Yet the majority of our population lives within our cities, most of which are located within proximity to the coast. No other country has this pattern of extreme concentration in a small number of isolated cities. This unique Australian population pattern and lack of portability of land has over time come to be seen as a desirable attribute thus making the land valuable.

The value of coastal land near large cities in Australia is highly desirable, therefore the effect of erosion and accretion on private and public land, as Australia continues to urbanise along our foreshore, is of increasing significance and requires continual evaluation. Major storm activity and climate change has resulted in significant rises to sea levels, thus contributing to fairly sudden and major erosion along many parts of the New South Wales coast line, and in particular, to my home beach of Collaroy-Narrabeen. As the shoreline begins to encroach upon land owners' properties, it signifies that the boundaries formed between the beach reserve and the privately owned land can either change or remain, depending on its status as a natural or right-line boundary.

If the boundary is natural, gradual and imperceptible accretion or erosion can cause the boundary to shift, increasing or decreasing the area of a property by title. Alternatively, if erosion occurs within proximity of a right-line boundary, this study has determined two problems:

- The landward side of the affected area can appear to physically 'lose' land, although it does not lose area by title. The land on title could end up as part of the foreshore (ie. sandy beach) which may not be ideal for the owner. The change in landform could, in extreme circumstances, sweep away the land completely, leaving an unusable land form, such as water.
- As the right line boundary remains despite the movement of the foreshore, and the adjoining coastal reserve is gradually swallowed up into the sea, the foreshore adjacent to the affected area is reduced, and could potentially disable public access completely.

1.1 Research Aims

The aim of this project is to investigate the effects of coastal erosion on coastal boundaries and to determine the rights, obligations and limitations attached to that land with respect to both the private land owner and the general public.

Both current and future legislation, survey regulations, legal precedence and government planning procedures will be assessed to gain a greater understanding of

how coastal erosion may affect both natural coastal boundaries, as well as right-line 'fixed' boundaries and how to minimise the effects of erosion.

This investigation will aim to focus on both secondary research and a primary study to provide a more comprehensive and conclusive report that focuses on coastal land with personal significance. The primary component of study will focus on a section of beach front properties known locally for the effects erosion has on the area. It will identify the type of boundaries those properties have, being either ambulatory (natural) or right line boundaries, and the extent of erosion that has occurred on those properties with regards to those boundaries.

The secondary component of study will examine Local Government planning procedures, as well as State Government legislation. These legislations will be reviewed to understand and determine the rights, obligations and limitations the landward property owner has with respect to erosion, and determine the areas of legislation that do not, in practice, adequately protect the foreshore. These procedures will also be reviewed to discover the role these tiers of government have on the protection of the general publics' interests of the foreshore with respect to access and recreational purposes.

It is the aim of this study to determine what changes to legislation, survey regulations, and planning procedures are required as well as what protective and preventative measures that can be put in place to protect both land owner rights and interests and the public use of the coastal reserve.

Figure 1 - Photo taken 23 July, 2011 days after a relatively small storm (Millard 2011)

1.2 Scope of Research

The scope of this research project is to investigate the rights, obligations and limitations attached to coastal land with respect to both the private land owner and the general public, with regards to coastal erosion.

The literature review in chapter 2 will investigate the legislation in place with regards to land within the coastal area of New South Wales. It will also assess the New South Wales State Government and local government of Warringah Council's guidelines in respect to planning and development within the coastal zone, ie. 100 metres landward of the mean high water mark (Warringah Council 2001). It will also look at emergency procedures during times of large storm activities to assist in the prevention of coastal erosion, as well as long term preventative measure to reduce the effects of erosion caused by these storms.

The research method will be determined in three parts; a detail survey will be carried out on the beach front along Collaroy-Narrabeen Beach to examine the position of the mean high water mark, as well as the position of the grassy bank and sandy beach. Secondly, a boundary survey will be carried out to establish the position of the cadastral boundaries between the beach reserve and the privately owned residential lots. In combining both surveys, a position of the mean high water mark and the grassy bank can be determined in relation to the cadastral boundaries to establish whether any land loss has occurred. The third part of the research study will apply methods of legislation and council regulations to the subject area to understand what deficiencies have occurred.

1.3 Area of Investigation

The area of investigation is located within a portion of coastline in the suburb of Collaroy, New South Wales. Collaroy is part of Sydney's Northern Beaches and is located approximately 17km from the CBD. It is situated within the Local Government Area of Warringah, Parish of Manly Cove, and County of Cumberland (*Figure 2*).

Figure 2 - Greater Sydney with Collaroy-Narrabeen Beach shown (Google Maps 2011)

The area was originally settled by Europeans during the early 1800s, with the whole of the Collaroy-Narrabeen beachfront being almost fully developed by 1941 (Warringah Council 1997). The suburb and beach of Collaroy were named after the paddle steamer *S.S. Collaroy* ran aground and was stranded on the beach in 1881 (NSW Heritage Council 2003) (*Figure 3*). Previous to this, the area was known as part of Narrabeen.

Figure 3 – S.S. Collaroy run-aground (Heritage Council Annual Report 2003)

The beach is known as Collaroy-Narrabeen Beach and stretches approximately 3.5km between the suburbs of Collaroy and Narrabeen. It is regarded by the New South Wales Government as one of the 19 'hot spots' along the coast that suffers from severe coastal erosion (Warringah Council 2011). Collaroy-Narrabeen Beach has suffered many historically large storms, in particular during the years of 1945, 1967 & 1974 (Clarke & Malone 1987). These storms have seen the destruction and loss of many houses along the beach front.

The properties and beachfront under investigation is situated South of Ramsay Street, East of Pittwater Road, North of the Collaroy Beach Carpark (North), and West of the Pacific Ocean. The properties are known as 1102-1124 Pittwater Road, Collaroy (*Figure 4*).

Figure 4 – Area of investigation (Google Maps 2011)

Among these properties stand four free-standing houses, three strata subdivisions, including two large multi storey apartment blocks, and an area of land that has been resumed by Warringah Council and converted to a recreational reserve. This stretch of area was chosen to provide a cross section of property types so that this study will provide a greater understanding of the effects of coastal erosion on cadastral boundaries. The two larger unit blocks, named 'Shipmates' and 'Flight Deck', located within my area of study have been the focus of much media attention throughout the years due to the effects of erosion upon the high-rise 8 and 15 storey properties respectively.

1.4 Summary of Chapter 1

Coastal erosion is a topic widely reported on, not only within New South Wales and Australia, but also throughout the rest of the world. Global warming may contribute to not only rises in sea levels, but may also be an influence on increased storm surges. These factors may contribute towards coastal erosion, and this project will look at contributing factors as well as prevention of such erosion. Property owners' rights and restrictions will be examined with regards to this erosion and government policies and legislation in place to protect private and public space.

CHAPTER 2

Background and Literature

2.0 Introduction

This chapter will serve as a review of past and present literature and will investigate the regulations, legislation and coastal protection methods set in place to protect land with respect to both public use and private ownership.

Survey regulations will be examined to assist in understanding the meaning of natural boundaries, as well as the rights of land owners with respect to these naturally changing boundaries. Local and State Government legislation will be investigated to determine what, if any, protection is offered to beach reserves to prevent or reduce the effects of coastal erosion when properties landward of the natural boundary can claim title to this accretion through the doctrine of accretion and erosion. This legislation will also be examined to determine what regulations are in place to protect the interests of private property owners landward of these coastal reserves. Finally, an investigation of various methods of physical protection from the effects of accretion and erosion will be carried out to determine the most suitable techniques to assist in the reduction of these effects to the coastal area.

2.1 Natural Boundaries

A natural boundary is a line which represents a natural division between areas of differing types, such as land and water. Along a coastline this boundary can be defined by a cliff, bank or by the mean high-water mark (MHWM) along a beach front. As these boundaries are defined by a natural line, as the environment changes

so does the boundary. Accretion and erosion can cause shifts in the shoreline over time, moving the MHWM and therefore shifting the boundary line of a parcel of land, therefore making it ambulatory.

The term 'ambulatory' is defined as '...moving from place to place' or something that is '...capable of being altered.' (Merriam Webster Dictionary 2011), which aptly describes a natural littoral boundary, as the shoreline is constantly moving. This process of the boundary line shift or alteration can only occur if the accretion or erosion takes place gradually over an extended period of time. If the erosion is caused by a sudden storm front, the boundary would remain in the position it was prior to the storm.

Clause 48 (1) of the *New South Wales Surveying and Spatial Information Regulations 2006* states '...if, since the date of a previous survey, there has been a change in the position of the mean high-water mark of tidal waters forming a boundary of land to be surveyed:

- (a) if the change arose from natural, gradual and imperceptible accretion or erosion – the position of the mean high-water mark as it is as the result of the change is to be adopted, or
- (b) if the change arose otherwise than from natural, gradual and imperceptible accretion or erosion – the position of the mean high-water mark as it was before the change is to be adopted.

It is the role of the surveyor to determine the whether the shift in the shoreline warrants a change in the cadastral boundary in line with these current guidelines and regulations.'

This clause is complicated further by the gathering of evidence. Unless records are taken after each unexpected movement of the coastline, then there is no means by which to determine if the change can be classified accurately.

On occasions, it can be difficult to establish whether a boundary is natural or right line, as in *Suntea Investments Pty Ltd v. State of New South Wales* (1995) 7 BPR 14,598; (1998, unreported, NSWCA). The owner of Lot 1 in Deposited Plan 739877, with which was part of a Crown Grant, claimed the benefit of accretion on the

northern boundary in which was bounded by the Myall River. It was found that the northern boundary was not actually bounded by the Myall River, but in fact by a right line boundary. As this was a case involving land that adjoined Crown land and the boundary adjoining the two types of land was discovered to be a right-line boundary, the ruling determined that '...any ambiguities in a grant should be resolved in favour of the Crown'.

2.2 The Doctrine of Accretion and Erosion

The process of erosion and accretion as defined by the doctrine determines that where land which adjoins the sea accumulates deposits acquired from the sea, this acquisition of land becomes part of that title. Conversely, where land which adjoins the sea is eroded away, the deposits of land which have been removed no longer form part of that title. This process must happen in a gradual and consistent manner, imperceptible over the natural course time, with imperceptible meaning day to day, but not over a considerable length of time (Hallmann 2004; *Government of the State of Penang v. Ben Hong Oon* (1972) AC 425). This was reiterated in *Hindson v. Ashby* (1896) 2 Ch 1, whereby the change in a man's natural boundary must not be seen '...day to day, week to week, month to month.' *Rex v. Yarborough* (1824) 130 ER 1023 describes 'imperceptible' as imperceptible in progress and not in result; that is to say, where the increase cannot be observed as actually going on, though a visible increase is observable every year.

Any change in natural boundaries must come about by natural means and not involve the hand of man in any way: *Trafford v. Thrower* (1929) 45 TLR 502 & *A-G and Hutt River Board v. Leighton* (1955) NZLR 750. This was not the case in *A-G v. Chambers* (1854) 43 ER 486 & *A-G of Southern Nigeria v. John Holt & Co. (Liverpool) Ltd* (1915) AC 599 whereby accretion had been caused by the landowners knowing intent. However, if accretion is found to be caused by the landowners unintentionally, the doctrine applies: *Brighton and Hove General Gas Co. v. Hove Bungalows Ltd* (1924) 1 Ch 372; *Verral v. Nott* (1939) 39 SR (NSW) 89. "... The common law doctrine asserts that where there is an acquisition of land from the sea by gradual and imperceptible means, the accretion is held to become part of the adjoining land so as to be included in the title." (Hallmann 2004, p.13-101).

A speech by the Minister on the doctrine of accretion and erosion states 'the doctrine can adversely affect public access to foreshore areas' (Hallmann 2004, p.13-107). Landowners are able to apply by survey to increase the area of their land on title due to gradual accretion, with implications such as public beach access being restricted or disabled completely. Conversely, the Minister comments on when erosion occurs suddenly due to a storm, the doctrine does not apply, and therefore no land is lost by title to the landward property. It is apparent that the doctrine in New South Wales 'favours the private land owner at the expense of the public domain' (Hallmann 2004, p.13-107).

The doctrine also originally asserted '...where land is eroded away or is encroached upon gradually and imperceptibly by the sea, the owner of the adjoining land loses title to that extent.' (Hallmann 1973, p.189).

While this information is relevant and generally widely accepted, it is important to examine this concept in context of additional legislation, which has recognised that more protection is necessary where public land is at risk. In a recent modification to the doctrine of accretion and erosion taken from the *Coastal Protection Act 1979 No 13*, clause 55N section (2b) states that:

"...A court has no jurisdiction to make a declaration concerning a water boundary that would increase the area of land to the landward side of the water boundary if as a consequence of making such a declaration, public access to a beach, headland or waterway will, or is likely to be, restricted or denied."

Further to this, the *Coastal Protection Amendment Act 2002* inserted into Part 1, section 3 of the Coastal Protection Act that the objects of this act are:

- to promote public pedestrian access to the coastal region and recognise the public's right to access, and
- to provide for the acquisition of land in the coastal region to promote the protection, enhancement, maintenance and restoration of the environment of the coastal region

Amendments are now in place to protect land that falls under public interest, while further investigation in this study has found the same does not apply to private property. This falls under the responsibility of the private owner.

As indicated in the Coastal Protection Act and the Coastal Protection Amendment Act, the law provides little protection to the land owner if erosion decreases the size of ones land on title, but if the land is found to have increased in size by title through accretion, and the effects of that change disrupts the existing use of adjoining public land, such as a beach or reserve, the acquired land cannot be granted by a court and therefore the existing boundary will remain.

The same concept applies in section (4b) of the Coastal Protection Act: 'The Minister administering the Crown Lands Act 1989 (or a person authorised by that Minister) has no power under Part 7 of the Surveyors (Practice) Regulation 2001 (or any regulation made by way of replacement, or in substitution, for that Regulation) to approve a determination concerning a water boundary that would increase the area of land to the landward side of the water boundary if as a consequence of making such a determination, public access to a beach, headland or waterway will, or is likely to be, restricted or denied.'

2.3 Tidal Waters

The term tidal water refers to the flowing back and forth of the tide as the water reaches the coastline before returning to the sea. Common law (Hallmann 2004) distinguishes between tidal and non-tidal waters and states that where land is bounded by tidal waters the boundary is determined by the Mean High Water Mark (MHWM), which is measured by the average, or mean, of all the high tides including the neap and spring high tides, measured over a sufficiently long period of time (Hallmann, 2004 p.4-2; *A-G v. Chambers* (1854) 43 ER 486). Spring tide refers to the period when the sun and the moon are aligned with the earth and the tide is at its maximum range (Encyclopaedia Britannica 2011), and neap tide refers to the period when the sun and moon are at right angles to each other with respect to the earth with the tides at their minimum range (Encyclopaedia Britannica 2011)

'A period of 19 years is generally considered as constituting a full tidal cycle, for during this time the more important of the tidal variations will have gone through complete cycles. It is therefore customary to regard results derived from 19 years of tide observations as constituting mean values. Hence sea level derived from 19 years of observations may be taken to constitute a primary determination and as giving accurately the datum of mean sea level.' (Broadbent 2011).

This is the standard for tidal measurements in Queensland, although tidal charts acquired through Manly Hydraulics Laboratory (1995), a division of the New South Wales Government, currently measure the Mean High Water Mark using 10 years of data and is accepted as the standard in New South Wales.

Boundaries which are defined by tidal waters are of increasing concern because of the direct affect rising sea levels has on the Mean High Water Mark (MHWM). A government report indicates that the sea level will rise by 40cm by 2050, and as much as 90cm by the year 2100 (DECCW 2009; Cherry 2009). As the Mean Sea Level (MSL) increases, this in turn alters the location of the boundary further towards the land, as well as potentially causing the zone that waves break onto the shore to also proceed inland.

2.4 100 feet Reservation

'Most crown grants of farm lands issued between 1830 and 1844, and many from time to time thereafter, contain reservations of all land within on hundred feet (30.48m) of high water mark, whether the grant had a tidal frontage or not, and even where the land was inland' (Hallmann 2004, p.13-121)

Land with a tidal boundary that has been granted a 100 feet reserve has an adjacent right line boundary approximately parallel to the mean high water line. The right line boundary would not move from the position it was originally placed even if the mean high water mark did fluctuate (*McGrath v. Williams* (1912) 12 SR (NSW) 447).

In the court case of *McGrath v. Williams* (1912) 12 SR (NSW) 447, McGrath claimed that a reserve located along a section of the Shoalhaven River had in part completely eroded away. The Crown claimed the landward boundary of the 100ft reserve should be measured from the current high water mark, however the court held that the '...reservation so-called was really an exception from the grant and that the exception operated at the date of the grant' (Azimuth 2010, p.14).

Therefore the 100ft line must be related to the high water mark at the time of grant, and consequently the landward boundary is considered a defined artificial boundary. Further to this, if erosion continues past this landward boundary, the title holder of the lot landward of that boundary may in fact end up owning land under the water. Clause 55N, section 2b and 4b of the *Coastal Protection Act 1979 No 13* as described above gives protection to the public beach user if land increases in size due to accretion, but doesn't comment on whether a reserve can erode enough for the property of an owner landward of the right line boundary to eventually take ownership of that title which lies within the ocean. This erosion is based on gradual and imperceptible movement of the shore line and not erosion caused by a storm or flood. To date, this study has discovered no court case which has ever ruled on this

scenario, a landowner on the landward side of the right line boundary will still own this land by title.

In an article contained within the publication 'Azimuth' (No.49, Issue 2 March 2010), a comment by Booth suggests that if there is gradual and imperceptible erosion of the mean high water mark, and erosion were to affect land beyond the right line boundary, this boundary line should not move, but rather, the lot in question should reside in part under water. His reasoning is that '...the lot did not have original frontage to the MHWM, and that the right line boundaries defining the landward boundary are not ambulatory.'

Clause 58 of the *Survey Practice Regulation 1990* states that a landward boundary is a defined boundary. As a result, the doctrine of accretion and erosion does not apply as the defined boundary is not ambulatory. If the predicted sea level rises continue then this situation could become more significant as additional cases emerge of land being physically lost to the sea. Currently, no precedence has been set and no legislation has ruled on this issue.

2.5 The Littoral Zone

The littoral zone (*Figure 5*) is widely referred to as a section of sea or lake which is closest to the shore. The extent of the littoral zone can be measured from the mean high water mark to the areas seaward that are permanently submerged.

Figure 5 - Littoral Zone (U.S. Navy 2011)

The zone between the mean high water mark and the mean low water mark, known as the foreshore, as well as the land below the low water mark belong to the Crown as per common law (*Fowley Marine (Emsworth) Ltd v. Gafford* (1967) 2 All ER 472). The littoral zone refers to the shoreline where the sand sits, and is where the waves can affect or disturb the sediment. It is therefore within this zone that littoral drift can occur.

A natural and potentially devastating effect that can occur within the littoral zone is littoral drift. Littoral drift is widely known as the transport of sediments, generally sand, along the shoreline by forces such as waves, wind and backwash. It can play a large role in the shaping and morphing of a coastline and contributes to its evolution over time. Any changes in coastal conditions such as an increase or decrease in sediment supply can affect the behaviour of littoral drift. Littoral drift is a factor that influences both accretion and erosion along a beach front.

2.6 Coastal Protection

Collaroy-Narrabeen Beach will be the subject of a three year project carried out by Warringah Council to monitor and forecast erosion (Cherry 2011). Cherry (2011) reports that '...a research team will use a variety of monitoring equipment including cameras, all-terrain vehicles, jet skis, boats and buoys to measure the height, power and impact of waves along the beach'. The project will be jointly funded by the Federal Government and local Warringah Council. Long term studies are an important process in the collection of data so that solutions can be customised to the individual site, rather then using blanket methods that may not be as effective or successful.

Methods such as sea walls, detached break walls and artificial headlands are some of the techniques used to assist in preventing or reducing littoral drift and erosion. At Collaroy-Narrabeen Beach, the use of a groyne is currently being considered by Warringah Council as it suffers the continued effects of severe long and short term erosion, and is recognised as one the most erosion prone beaches in New South Wales. It is important to recognise that such methods can occasionally have an adverse affect on the natural movement of the coastline. With the installation of groynes and seawalls it can, in some cases, actually intensify the effects of erosion (Short 2011).

2.6.1 Government Legislation – Coastal Development

The *New South Wales Coastal Policy 1997* sets out guidelines, management policies and standards for future development within the coastal zone of NSW, a zone that extends 1 kilometre landward of the open coast high water mark (NSW Government 1997). The policy applies only to future development, and does not impact on the rights of use of current residential and other developments. It also only applies to coastal areas outside the Greater Metropolitan Region (GMR), which includes Sydney, Newcastle, Illawarra and the Central Coast. For these areas, Local Environment Plans (LEP) are produced by local councils due to the conflicts that may occur with the Coastal Policy with regards to sensitive coastal areas within these regions.

The *Coastal Protection Act 1979 No.13*, Section 55M, refers to the granting of development consent with regards to permanent coastal protection works to prevent coastal erosion and accretion. It states that protective works may not be erected if the works may limit the access to the beach reserve by the general public, or are a threat to public safety, and must not cause any ongoing effects of erosion or accretion. Therefore, private owners may erect their own coastal protective works with the approval of the consent authority, this usually being the local government.

Where possible, it is preferable that 'soft engineered' works be carried out for long term coastal protection which may include such processes as beach nourishment or dune rehabilitation (NSW Government 2010). 'Hard engineered' works such as seawalls, groynes and artificial reefs which can protect the immediate properties

from coastal hazard effects can consequently deflect wave energy and cause hazards elsewhere (NSW Government 2010).

Warringah Council sets out development guidelines for coastal development within the Warringah Local Environment Plan 2000 and is aligned with the Collaroy Narrabeen Coastline Management Plan (1997) and the New South Wales Coastal Protection Act 1979 No.13. The aims of these guidelines as stated in schedule 13, clause 2 are to '...preserve and protect the beach as a national asset for public recreation and amenity...', as well as controlling development along the coastal zone to ensure new development takes into account the effects of current and future wave impact and coastal erosion. This illustrates a focus on protection of both public and private assets with regards to future development only.

When development applications are approved for development within the coastal zone, advice is given by the council when development applications are submitted within schedule 13, clause 5 of the Warringah Local Environment Plan, to the developer:

'This property is on land located in an area where there is likely to be a risk of coastal erosion and wave impact during severe storms. The risk to the property may increase with time due to long-term beach recession caused by greenhouse induced sea level rise or natural processes.'

This statement demonstrates Council's acknowledgement of the risks involved with proposed private development, but does not clearly determine where the risk lies. It could be interpreted that by providing this information prior to development of the land it acts as a disclaimer, therefore reducing the level of responsibility of the Council should the land be impacted by natural causes. It must be recognised that land released by the Council for private development must be done so responsibly.

Development occurring near public open space within Warringah must be carried out so access to the open space is maximised for the publics use, buildings are to be constructed in such a manner that they do not appear to privatise the space and must provide a visually appealing transition between the open space and the buildings (Warringah Local Environment Plan 2000 Part 4, Division 3, clause 52). Construction of fences is also to be avoided along boundaries between open space and private properties to assist in this visual transition (Warringah Local Environment Plan 2000 Part 4, Division 3, clause 51).

The wave impact zone is an area set out by Warringah Council along Collaroy-Narrabeen Beach with which it is referred to as a coastal hazard zone. It is a zone along the beach front that stretches from Fishermans Beach, Collaroy to Narrabeen, incorporating the entire beachfront of Collaroy-Narrabeen Beach. The zone is shown in *Figure 6* as the area to the East of the most Eastern red line, and includes most existing development along the beach front. The other two red lines shown in *Figure 6* are the Zone of Slope Adjustment line, and the Zone of Reduced Foundation Capacity line, with which new development eastward of these lines must be '...supported by piles to withstand loads which may be induced in the pile by slumping of the soil face' (Warringah Local Environment Plan 2000 Schedule 13, clause 3(b)).

Figure 6 – Wave Impact Zone (Warringah Council 2011)

This Wave Impact Zone was introduced due to major storm events which have seen the devastation of many properties along this stretch of coastline. The zone consists of planning procedures that limit the type of development allowed, as described in Schedule 13 of the *Warringah Local Environmental Plan 2000*. The guidelines prohibit major new development within the zone, but do not include engineered structures erected by a public authority for the purpose of coastal protection. Minor development such as sheds and landscape works are permitted within this zone through approval from council. All major new development is to be erected landward of this zone line.

2.6.2 Government Legislation – Emergency Coastal Protection Works

The State Government's draft Coastal Protection and Other Legislation Amendment Bill 2010 proposed to '...give beachfront home owners the rights to build temporary seawalls without having to lodge a development application or take into account the effect their seawall will have on the coastal strip' (Morcombe 2010). When the new bill was passed on 21 October 2010, there appeared to be no changes to the previous Act in this regard. Beachfront residents are, as they always were, able to erect emergency coastal protection works which can consist of sand, or fabric bags filled with sand, (other than sand taken from a beach or a sand dune adjacent to a beach), and other objects or material prescribed by the regulations (other than rocks, concrete, construction waste or other debris) as per Part 4C, Division 1 Section 55O of the *Coastal Protection and Other Legislation Amendment Act 2010 No 78*.

The current Guide to the Statutory Requirements for Emergency Coastal Protection Works (2011) produced by the Department of Environment, Climate Change and Water NSW sets out the rights of coastal property owners in regards to erecting emergency coastal works prior to a storm event. These guidelines align with the *Environmental Planning and Assessment Act 1979* and the Coastal Protection and Other Legislation Act.

Emergency coastal works must only consist of sand or geotextile fabric bags filled with sand that has not been taken from a beach or sand dune adjacent to the beach (DECCW, 2011). They may not include materials such as rocks, concrete or construction waste. These works are to be placed against the erosion escarpment on the seaward side as per *Figure 7*.

Figure 7 – Allowable Area for Placing Sand or Sandbags (DECCW 2011)

The erection of such works should not encroach upon public land wherever possible, with the exception of when this land is a reserve on a beach or sand dune, where there is no road through the reserve, or if the land is dedicated Crown land. Works may also be placed on adjacent private land if the distance from the existing building of residence under threat is equal to or within 20 metres of the erosion escarpment (*Figure 8*), with the appropriate safety precautions such as temporary fencing being placed for the protection of the public and those adjoining neighbours.

Figure 8 – Emergency Coastal Protection Works on Adjacent Private Land (DECCW 2011)

All emergency protective works must be placed in such a manner as to not limit the publics' access to the adjoining beach or headland, and must not increase the affects of erosion to the area.

2.6.3 Beach Nourishment

The concept of beach nourishment is widely known as the involvement of the replacement of sediment, usually in the form of sand, which has been lost or moved by the process of littoral drift. Beach nourishment is carried out when erosion affects a shoreline, to replace the sand eroded. It is not a preventative measure, but instead acts as a retardant to beach erosion, by prolonging its effects. Primarily, beach nourishment is carried out along Collaroy-Narrabeen Beach for two reasons (Acworth c. 2009):

- To provide protection from the effects of erosion on beach front properties
- To preserve and improve the recreational use by the public of the beach
The advantages of beach nourishment include the widening of the beach with nourishment, pleasing the users of the beach, as well as protecting properties and the structures located on these properties from the effects of erosion (Barber, D n.d.; Short 2011). Disadvantages may include marine life being disrupted due to different sand types being introduced, wave patterns being altered, also as a result of these different sand types, and increased rates of erosion. It can also be a costly process (Barber, D n.d.; Short 2011).

Sand for beach nourishment can be derived from multiple sources including local building sites, commercial sand supplier, natural nearshore locations (although scarce) and offshore mining (Cameron 2010). Development sites in Collaroy, Narrabeen and nearby Manly have been used where large developments with proposed basement car parks are excavated, and sand, after being tested and approved by Warringah Council, is used to nourish Collaroy-Narrabeen Beach (Cameron 2010).

Figure 9 – Nourishment of Precincts 2-3 showing the initial and final shoreline positions and the degree of change - Collaroy Narrabeen Beach (Acworth c.2009)

2.6.4 Offshore Sand Mining

In an article from the Manly Daily (Morcombe 2010), Warringah Mayor Michael Regan suggests '...a trial of offshore sand mining for beach nourishment to save properties and infrastructure' especially along Narrabeen-Collaroy Beach. This is a costly process, and was ruled to be too expensive for the council to implement. Mayor Regan has since put the responsibility of finance back on the State and Federal Governments.

Offshore sand mining would prevent the need to find sand on shore, but could have damaging effects on marine life. The nourishing of the beach with off-shore sand could also have an affect on the Narrabeen Lagoon entrance which is at the northern end of the beach. Naturally, sand is eroded and transported north via the process of littoral drift. It settles at the mouth of Narrabeen Lagoon, eventually closing the mouth and contributing to the flooding of Narrabeen Lake and its surrounds (Morcombe 2010). The sand from around the mouth of Narrabeen lagoon is dredged every three to four years, while approximately 70,000 tonnes is replenished along Narrabeen-Collaroy from both the lagoon and other locations such as local building sites (Acworth c.2009; Cameron 2010 & Morcombe 2010). It then starts the process all over again.

2.6.5 Groynes

Groynes are artificial structures placed generally at right angles to the shoreline within the littoral zone. They can be constructed of various materials such as timber, stone or sandbags and are generally placed at regular intervals to act as a shield to littoral drift. Current legislation within the Warringah Local Environmental Plan does not permit the use of seawalls or groynes, however this legislation is currently being reviewed (Morcombe 2010).

An example of a groyne is located at Port Geographe, Busselton, Western Australia. As can be seen from aerial photographs taken (*Figures 10-12*), the area South-West of the groyne structures has actually suffered from the effects of erosion due to the

groynes. Groynes can have an affect on the downward side of littoral drift, starving it of sand or sediment, and can therefore increase the effects of erosion if not installed correctly (Short 2011). Conversely, the area to the North-East has actually thrived with the effects of accretion. The photos also show the direction of the swell moving generally in a South-West direction. In the case of Port Geographe, the groynes have been constructed at close to right angles to the coast, but also, almost exactly at right angles to the swell direction. This may be a cause of this erosion and accretion at either ends of the development.

Figure 10 - Accretion & Erosion at Port Geographe due to Groynes - 2003 (Google Earth 2011)

Figure 11 – Accretion & Erosion at Port Geographe due to Groynes – 2005 (Google Earth 2011)

Figure 12 – Accretion & Erosion at Port Geographe due to Groynes – 2010 (Google Earth 2011)

Another example of groyne construction is at Kirra Beach, Queensland. Kirra Beach is a popular surf spot and holiday area, and has suffered the effects of beach erosion over the years ever since its settlement in the late 1800s (NSW Government 2011). Historical photos (*Figures 13 & 14*) show Kirra prior to development, and shortly after a cyclone had struck in 1947. In 1972, the 'Big Groyne' was built, with the 'Little Groyne' following in 1975 (NSW Government 2011). A recent photo of Kirra Beach (*Figure 15*) from the sky shows again how a groyne could potentially plunder sand from one side, while the other replenish. Note the general direction of the swell. The accretion occurs on the upward side of the swell, while the erosion occurs on the downward side.

Figure 13 – Kirra Beach in 1910 - Wide Beach with Little Development (NSW Government 2011)

Figure 14 – Kirra Beach in 1947 Shortly After a Cyclone Stripped Beach of Sand Exposing the Sea Wall (NSW Government)

Figure 15 - Kirra Beach - Big Groyne with Little Groyne in Background (Joli n.d.)

It is important to note that both Port Geographe and Kirra Beach have suffered erosion on the upward side of their groynes during large storms. It appears the construction of a groyne is beneficial to the upward side of the swell direction, but detrimental to the downward side, and even with the construction of a groyne, it does not prevent the effects of erosion during times of large storms (Port Geographe Action Group Inc 2011; Short 2011).

A study recently completed on the effects of the groynes at Port Geographe has conceded there is a problem with the way in which the groynes have been constructed. A new model has been developed by Professor Pattiaratchi of the Faculty of Engineering, Computing and Mathematics in the School of Environmental Systems Engineering at the University of Western Australia in which a reconfiguration of the groyne layout has been proposed to allow a more natural flow of sand and seagrass along the coastline (Pattiaratchi & Wijeratne 2011). The new model places the groyne at a parallel angle to the swell direction (*Figure 16*).

Figure 16 – Most Appropriate Re-design for Groyne at Port Geographe (Pattiaratchi & Wijeratne 2011)

This design was the most successful of 8 models, including the current configuration. It suffered a small amount of erosion to the west of the groyne, but little to no accretion or erosion around the groyne itself. It also experienced considerable accretion to the West of the area (Pattiaratchi & Wijeratne 2011). This model is currently being reviewed by the public and open to discussion.

A trial groyne which is to be constructed of geotechnical bags filled with sand, which can be easily removed by slashing the bags when the trial is complete, has been proposed by Warringah Council (Morcombe 2010). This would give those involved, including the local council and general public, a forum to consider the results and determine the success of the trial before implementing a more permanent plan. The designs of the proposed new groyne at Port Geographe should be considered by Warringah Council when planning for this trial groyne.

The groyne has been proposed and modelled at Devitt Street, Narrabeen, and is a design square to the beach. This may bring about an increase in beach sediment to the south of the groyne, but in contrast cause increased erosion to the north of the wall. This scenario also includes the continuation of beach nourishment (*Figure 17*).

The study of Port Geographe shows there may not be a need for a continuation of beach nourishment if the groyne be constructed at the correct angle.

Figure 17 - Nourishment of Precincts 2-3 with a groyne at Devitt Street, Narrabeen showing the initial and final shoreline positions and the degree of change (Acworth c. 2011)

A groyne could be built not only to protect the mouth of Narrabeen Lagoon, but also to prevent some of the erosion suffered along the shoreline of Narrabeen-Collaroy Beach. It is important to also consider that while using a groyne may help resolve this issue of beach recession, apart from being a potential eyesore within the beauty of the natural landscape, it could potentially disrupt the natural surf patterns and upset local beach users. Narrabeen Beach is an especially popular surf spot, and to risk this aspect of the beach could destroy one of its major assets.

2.6.6 Artificial Reefs

Artificial reefs consist of manmade structures below the surface of the sea acting as a sanctuary for marine life or create a recreational area for divers, fisherman and swimmers. They can also be used to promote or demote wave activity, which in turn can encourage better surf, or reduce the wave impacts on beaches causing coastal erosion. Artificial reefs are widely known to be constructed of numerous materials including disused oil rigs, ships, or even old train carriages.

Artificial reefs can be used as an alternative to beach nourishment, when this method is not suitable or economically viable for the site in question, although beach nourishment is still considered the most effective way of increasing beach stabilisation, artificial reefs have proved to work well together with beach nourishment programs such as those carried out in Florida, USA (Harris 2009).

They act as a submerged breakwater, helping to reduce the wave energy in the region of the shallow water or nearshore zone (Sawaragi, Deguchi & Park 1988). Japan has seen the construction of many artificial reefs over the past decades to help control coastal erosion. The main design used is a broad-crested submerged breakwater (*Figure 18*), although these can be expensive to build (Sawaragi, Deguchi & Park 1988; Pilarczyk 2003).

Figure 18 - Broad-Crested Submerged Breakwater (Artificial Reef) (Pilarczyk 2003)

An artificial reef could serve as an alternative to costly beach nourishment if the correct studies were carried out to model the effects of the reef. Through these studies a combination of beach nourishment and the construction of an artificial reef could be the best solution. After talking to a local surfer at Collaroy-Narrabeen Beach during my field work, he mentioned that an artificial reef could be an ideal solution, as it may not only assist in controlling beach erosion, but also serve as an excellent surf break.

2.6.7 Land Acquisition

The wave impact zone as discussed earlier includes approximately 80 properties (Warringah Council 2006), with Warringah Council having plans to purchase properties within the zone when available through developer funding known as Section 94 Developer Contributions. Currently to date, Warringah Council has '...purchased 3 properties within this zone, with enough funds to purchase another when it becomes available' (Warringah Council 2006, p. 1). The properties purchased are being converted to open space recreational areas such as parks, helping stabilise the zone which can in turn reduce the effects of coastal erosion.

2.7 Conclusion

This chapter has served as a review of past and present literature, including survey regulations, Local and State Government legislation, as well as procedures and safeguards to protect beachfront properties and the beach reserve from the effects of coastal erosion and accretion.

CHAPTER 3

Research Method

3.0 Introduction

This chapter will provide the methodology involved in carrying out the primary research portion of this project. Firstly, it will describe the site chosen for my field survey, and the procedures carried out to search and obtain Deposited Plans to establish the boundary locations. Secondly it will provide the methods involved in carrying out a field survey which will include two components:

- A detail survey of the foreshore and adjoining properties along the described length of Collaroy Narrabeen Beach;
- A boundary survey to define the cadastral boundaries between the beach reserve and private properties that adjoin the beach reserve.

In carrying out these surveys the extent of erosion that has occurred along the beach front of Collaroy-Narrabeen Beach will be determined in relation to the cadastral boundaries.

This chapter will also look at the methods involved in determining whether the affects of accretion or erosion are of gradual and imperceptible means, or due to the sudden effects of such events as storms. Finally, it will look at the responsibilities of both the private owners of beachfront properties, and the relative governments with respect to these effects of coastal accretion or erosion.

3.1 The Site

The site chosen for my field survey is a portion of Collaroy-Narrabeen Beach and adjoining beachfront properties situated South of Ramsay Street, East of Pittwater Road, North of the Collaroy Beach Carpark (North), and West of the Pacific Ocean. As described in chapter 1, the two large apartment blocks, 'Shipmates' & 'Flight Deck', have been of much focus in the media due to the effects of severe erosion occurring directly adjacent to both sites.

Both unit blocks were built in the 1960's and were constructed despite the council's plan to resume the land following the 1945 storms. Due to poor planning, council has not only allowed initial development within a hazardous coastal zone, but also allowed massive overdevelopment within the zone (Short 2011).

The storms of 1967 undermined the 'Flight Deck' apartment block, exposing its concrete foundations (*Figure 19*).

Figure 19 – 'Flight Decks' exposed foundations after 1967 storm (Worley Parsons 2011)

3.2 Searching of Plans

Cadastral records obtained from the Land & Property Management Authority (LPMA) website via the Spatial Information Exchange (SIX) viewer are shown in *Figure 20*. It identifies each parcel of land with a unique lot and plan number. Lot 7351 in Deposited Plan 1166942 is dedicated as a Crown Reserve which forms the Collaroy-Narrabeen Beach foreshore. A search of the local reference map showed the previous plan over the beach reserve being plan MS 16009 Sy (*Figure 21*), also known as CP16009-3000. An initial electronic search of the LPMA showed this plan was not available online. Further investigation found this plan was not held at the LPMA, and the records show that it was never lodged. *Table 1* lists the properties Lot, DP information and their address.

Figure 20 - Cadastral Records (LPMA 2011)

Figure 21 – Reference Plan (LPMA 2011)

Address	Certificate of Title Identifier	Type of Occupancy	
1098-1102 Pittwater Road, Collaroy	4-5/9/2534, B/404802	Council Reserve (Resumed Land)	
1104 Pittwater Road, Collaroy	A/404802	Private Residence	
1106 Pittwater Road, Collaroy	8/9/2534	Private Residence	
1 Frazer Street, Collaroy	1/306168	Private Residence	
1110 Pittwater Road, Collaroy	SP61846	2 Strata Units	
1112 Pittwater Road, Collaroy	2/306168	Private Residence	
1114 Pittwater Road, Collaroy	SP1977	36 Strata Units	
1122 Pittwater Road, Collaroy	SP677	27 Strata Units	

Table 1 - Cadastral Information (LPMA 2011)

Once lot and Deposited Plan numbers are obtained, the plans are ordered from the LPMA through the appropriate online searching company. Some of the plans ordered are compilation plans which generally provide no survey information other than boundary distances and lot areas. These types of plans have been compiled from previous plans which may be either another compiled plan or a survey plan. Deposited Plans 220059 and 1009032 as well as Strata Plans 677, 1977 and 61846 contain enough survey information to carry out a boundary definition of the area to be surveyed.

3.3 Field Survey

3.3.1 Survey Equipment

The survey equipment to be used for the primary research study includes:

- A Leica TCRP 1205+ Total Station with robotic capabilities. This instrument uses Electronic Distance Measurement (EDM), a system that utilises laser technology to measure distances to an accuracy of 1mm + 1.5ppm to a single prism, up to 3 kilometres, and 2mm +- 2ppm with its reflectorless function up to a distance of 300 metres, and measures vertical and horizontal angles to an accuracy of 5 seconds (Leica Geosystems 2009). The instrument was checked and adjusted less than 6 months prior to the field survey, as well as base-lined within this time to assure its accuracy.

- A Leica RX1200 remote control unit will be used along with a Leica 360° reflector prism atop a Leica Smart Pole to carry out the detail survey portion of the field survey.

- Computer aided drafting programs are required to process the data into a readable format so it can be understood and examined. The data will be downloaded from the total station in a neutral file format and processed in Civilcad 5.7. The Civilcad file will then be converted to a DWG file format to be opened in AutoCAD 2008. This program will be used to produce the final drafts of survey plans.

3.3.2 Traverse for Survey Marks and Monuments

To define the cadastral boundaries of the subject lots, a survey traverse was carried out to locate reference marks and permanent marks. These marks are shown on deposited plans with connections to boundaries through bearings and distances.

DP1009032 is a reasonably recent plan registered in 1999, and contains most marks required to get an initial orientation fix. Two permanent marks (PM3986 & PM3988) will be located from this plan to fix an azimuth, as well as reference marks and occupations to complete to boundary fix.

DP220059 was registered in 1964 and, despite the date of registration, reference marks were also found from this plan. It consisted of the original subdivision for the two unit blocks 'Shipmates' and 'Flight Deck' which also showed the partially built 'Shipmates' with an offset to boundary. This will also be located to assist in the boundary definition. The Strata Plans that were produced with the subdivision plan DP220059 also show offsets from walls to boundaries of the two unit blocks.

As well as marks and monuments found that are shown on registered plans, boundary marks were also discovered. A peg at the North Western corner of lot B in DP5234 will be located, as well as drill holes and nails at the boundary corners of SP677 and SP1977. The marks found and located will be enough to carry out a boundary definition of the subject lots.

3.3.3 Detail & Level Survey of the Coast Area

A height will initially be transferred from Permanent Mark 3986 which has an AHD value of 4.061m (LPMA 2011). A bench mark consisting of a nail in concrete will be placed to transfer the height from PM3986 through to a survey station near the beach front. Levels will be taken and an arbitrary value placed on the station for the initial detail survey. Heights will be calculated and transferred to AHD in post processing.

The detail survey of the subject area will be carried out in two parts. Initially a grid of spot levels will be taken across the sandy beach to determine the position of MHWM through contouring. From previous survey work, Pittwater Road has a generally known AHD value of approximately 4m. The beach had not been affected by a large storm surge recently, due to observations of the gentle gradient of the sand, so this method was deemed satisfactory to locate the MHWM initially. This decision was confirmed with Mr. Allan Gordon of NSW Maritime, who advised that this method would be satisfactory for the purpose of the survey, although if defining a MHWM boundary, real-time levelling would need to be carried out.

The second part of the detail survey, carried out on a separate day, will be used to locate the grassy bank, where erosion has also occurred. This grassy bank bounds the vegetation area and properties to the west, and the sandy beach to the east. The top and bottom of bank will be located to show the steep grade in parts of the bank.

3.4 Defining the Boundaries

From marks and monuments found, the boundaries of the subject lots can be defined. Azimuth will be taken using PM3986 and PM3988. These marks are shown on DP1009032 and form a basis for connecting marks to boundary corners. From there the boundaries will be established using the accepted hierarchy of evidence for the reinstatement of boundaries.

3.5 Survey Report on Location of Boundaries

A survey report will be produced to comment on the position of the eroded bank. As with identification surveys carried out on property boundaries in New South Wales, a survey report accompanies the survey plan to assist in the explanation of the findings of the boundary survey. This report can be found in the appendices section.

3.6 Gradual & Imperceptible Erosion

The Water Research Laboratory of the School of Civil and Environmental Engineering (UNSW) has placed 5 monitoring cameras on top of the 'Flight Deck' apartment block. These images are used to '...quantify and map shoreline variation along the embayment, and to quantify sediment movement within the embayment' (WRL 2011). Images are archived and available online for the public to view. A study of these images will assist in determining whether changes to the shoreline are gradual and imperceptible, and therefore whether the doctrine of accretion and erosion may apply.

3.7 Implications of the Crown Beach Reserve

Lot 7351 DP1166942 is dedicated as a beach reserve over Collaroy-Narrabeen Beach. As mentioned earlier in this study, the previous plan over this area was unable to be located. A study of the legislation and survey regulations will determine whether the doctrine of accretion & erosion applies over this land, and will be examined in the results of Chapter 4.

3.8 Government Responsibilities to Beach Erosion

A review of legislation and local government guidelines conducted in Chapter 2 will assist in determining what responsibilities the local and state government has in reducing and preventing the effects of beach erosion. This will apply to both emergency coastal works after a recent storm, as well long term planning for protection of the foreshore and adjacent properties. In doing so, this study can then determine what, if any, changes are required to current legislation and guidelines to protect both the adjacent landowners rights, as well as public interests in regards to beach access and utilisation of the beach reserve.

3.9 Private Landowner Rights & Responsibilities to Beach Erosion

As with Section 3.8 in this study, legislation and government guidelines will also be examined to determine the rights and obligations of the private landowner in relation to both emergency coastal works after a storm, and long term protection of their beachfront properties.

3.10 Summary of Chapter 3

This chapter has outlined the methods used to determine the position of cadastral boundaries with respect to the extent of coastal erosion upon these boundaries, government legislation and guidelines on coastal protection in regards to both public rights and interests of the beach reserve and the private landowners' rights and obligations towards the protection of their own land.

CHAPTER 4

Results

4.0 Introduction

Chapter 4 will outline the results of primary field data and secondary research data. It will aim to look at the effects erosion has on the cadastral boundaries of properties along Collaroy-Narrabeen Beach as well as the implications the Crown Beach Reserve has with regards to the doctrine of accretion and erosion.

This chapter will also summarise the methods of protection that can be put in place prior to and during a large storm event to prevent or reduce the effects of erosion, as well as the long term plans by Governments to prevent erosion to the coast.

4.1 Boundary Establishment

From marks and monuments found, the boundaries of the subject lots have been defined. Azimuth was taken using PM3986 and PM3988. In comparing a connection between these two marks via survey and MGA ground, a difference of 0.002m (2mm) over 284.052m. this produces an accuracy of 1:142000, and is well within the accepted accuracy for this type of survey. These marks are shown on DP1009032 and form a basis for connecting marks to boundary corners. From there the boundaries have been established using the accepted hierarchy of evidence for the reinstatement of boundaries.

All boundaries fit to marks from survey to original survey plans, although the offset from the North Western corner of the garage wall of the 'Shipmates' building on SP677 was found to be different from original survey by 0.060m. This was proved by checking an adjacent offset from the same building to boundary, which agreed as per original survey plans. This discrepancy has been disregarded and is shown, along with all other connections used to define the boundaries on the calculation sheet contained within Appendix G.

4.2 Detail Survey of Part of Collaroy-Narrabeen Beach

A detail survey of part of Collaroy-Narrabeen Beach front was conducted on 31st July, 2011. The survey took place between numbers 1098-1124 Pittwater Road, and 1 Frazer Street, Collaroy and included the sandy beach and location of the grassy bank that runs along the property boundaries of the beach reserve and the landward properties bounding the reserve. The purpose of the survey was originally to determine the position of the mean high water mark in comparison to the cadastral boundaries of privately owned land along the strip. In carrying out the detail survey, it became apparent that the mean high water mark was not a concern for the cadastral boundaries (Figure 22) as it was found to be a minimum of 33.9 metres from the fixed line boundaries at the time of survey. It was apparent from the detail survey that no major storm activity had recently occurred due to observations of the gentle gradient of the beach, hence the mean high water mark being so far away from the private cadastral boundaries. Further evidence is shown when comparing the position of the surveyed MHWM line to the MHWM line shown on DP1166942 (Figure 22). The concern was the amount of erosion that had occurred between the private land and the beach.

Figure 22 – Position of Mean High Water Mark as per survey & DP1166942 (background image – nearmap 2011)

It was revealed from the detail survey that the sandy beach had encroached upon the private land by up to 10.94 metres measured along the adjacent boundary lines to the sand line (*Figure 23*). This poses an increasing problem of privately owned land becoming part of the sandy beach, confusing beachgoers who may trespass on private land.

Figure 23 – Position of sandy beach with offsets to cadastral boundaries (background image – nearmap 2011)

AutoCAD was used to compute the amount of physical land lost from the landward side properties to the beach caused by erosion along these fixed-line cadastral boundaries. As table 1 and graph 1 shows, up to 20.94% has been lost in the case of No.1 Frazer Street, Collaroy. This could cause some concern for beachfront land owners.

Address	Total Land Size (By Survey)	Total Land Lost to Erosion	Percentage of Physical Land Lost
1098-1102 Pittwater Road, Collaroy	2176.8	417.0	19.15%
1104 Pittwater Road, Collaroy	710.7	81.9	11.52%
1106 Pittwater Road, Collaroy	788.6	108.6	13.77%
1 Frazer Street, Collaroy	980.6	205.3	20.94%
1110 Pittwater Road, Collaroy	383.4	0.0	0.00%
1112 Pittwater Road, Collaroy	472.0	27.4	5.80%
1114 Pittwater Road, Collaroy	2884.5	423.5	14.68%
1122 Pittwater Road, Collaroy	2662.6	278.7	10.47%

Table 2 - Percentage of Physical Land Lost

Table 3 - Percentage of Physical Land Lost

4.3 Survey Report

The purpose of the survey report is to assess any issues arising from the erosion caused along the coastal area surveyed. At the time of survey, the Mean High Water Mark had receded towards the ocean due to no large and substantial storm activity prior to the survey. It is clear from the position of the grassy bank however, that erosion is a problem along this coastal area, and after a large storm the sandy beach can be eroded up to this grassy bank, hence the mean high water mark possibly encroaching upon the private 'right line' cadastral boundary. A copy of the survey report is included within Appendix F.

4.4 Application of the Doctrine of Accretion & Erosion

The analysis of beach width data and photographic evidence has aided in determining whether the doctrine of accretion and erosion applies along the beach front of Collaroy-Narrabeen. Certain criteria must be examined to assess whether this is the case. As seen in *Table 4*, beach movement has been quite irregular in the years 2004 to 2008. The dark blue line which represents the part of the beach directly adjacent to Jenkins Street and very close to where the primary research survey was partaken. It illustrates a beach width that fluctuates in a very irregular way, from as little as 17 metres in December 2004 to as much as 51 metres wide in June 2006. As can be seen, it is evident that erosion and accretion has not been gradual and imperceptible at all, but rather hugely irregular, due mostly to large storms impacting on the beach.

Table 4 – Fluctuations in beach width at Collaroy-Narrabeen (Water Research Laboratory – School Of Civil And Environmental Engineering 2011)

It should be noted that the beach width is not measured to the landward side cadastral boundaries of the beach reserve, but instead from water line to landward sand/vegetation line. Due to this, the actual beach width at the extreme would measure just 6 metres wide from water line to the fixed-line cadastral boundary in December 2004.

As photographic evidence from the monitoring cameras atop of 'Flight Deck' suggests (*Figure 24 & 25*), erosion of the beach and adjacent private land is not occurring gradually, day to day, week to week, month to month; instead it is happening almost instantaneously, during and immediately after a large storm. *Figure 24 & 25* are photos taken at the same time of day, just a week apart. As can be seen, a large storm that has occurred during the week has exposed rock protection works in front of beachfront properties. The erosion has also exposed the foundations of a set of steps used to access the beach, making them a hazard to the publics' use. These results, both measured and photographic, therefore illustrate that the primary study area within Collaroy-Narrabeen does not comply with the doctrine of accretion and erosion.

Figure 24 – Photo taken 8am, Friday 15th October, 2004 looking North (Water Research Laboratory – School Of Civil And Environmental Engineering 2011)

Figure 25 – Photo taken 8am, Saturday 23rd October, 2004 looking North (Water Research Laboratory – School Of Civil And Environmental Engineering 2011)

For the doctrine to apply, it states that erosion cannot be caused by the intentional hand of man. Previous to rock stabilisation protection, erosion was not caused by any man made structures, or by any deliberate act of man, therefore the doctrine of accretion and erosion may apply. Since the erection of the rock stabilisation protection, it could be said that the process of erosion may have been accelerated due to these man made structures. In this case the doctrine would not apply. The doctrine of accretion and erosion may also apply, as it could be said the processes are natural, as in they are caused by storms.

Looking at all these factors concerning the processes of accretion and erosion, it is apparent that the doctrine does not apply, as the erosion cannot be considered gradual and imperceptible.

4.5 Crown Land Conversions & the Status of the Beach Reserve

In January 2008, a Crown Lands Conversion, Valuation and Asset Data Management Program commenced, funded by the New South Wales Treasury. The aim of the project is to convert a large proportion of Crown land parcels that were formally held under the old system of titling, to the new system of Torrens Title. This allows these properties to be searched electronically online, the same as normal freehold titles can be. In doing so, this process allows the management and valuation of these Crown owned properties by Government agencies, as well as the general public having more readily available access to research these properties (LPMA 2011). These conversions are taking place across the eastern division of New South Wales, and include such parcels as beach reserves and mangrove areas.

A recently lodged plan has identified the beach reserve of Collaroy-Narrabeen between the ocean and right-line cadastral boundaries on the East and West of the foreshore respectively, and Malcolm Street, Narrabeen in the North to Birdwood Avenue, Collaroy in the South. The beach reserve is now known as Lot 7351 in Deposited Plan 1166942. The plan was prepared solely to identify the land described above, and the boundaries were not investigated by the Registrar General. Hence, it defines no cadastral boundaries, other than that the beach reserve extends to the mean low water mark to the east.

Investigation into previous plans of this Reserve found that the previous plan was number MS 16009 Sy, also known as CP16009-3000. Investigations at the Land and Property Management Authority found they had no record of the previous plan. Further investigation at the LPMA found that they had never received a copy of this Crown Plan.

The plan shows the reserve having a boundary to the east defined by the mean low water mark. Modification of the doctrine of erosion and accretion as stated in Section 55N of the *Coastal Protection Act 1979 No. 13* states that the doctrine applies to a water boundary which is defined or otherwise determined by reference to a mean high water mark. As the eastern boundary is bounded by MLWM, this coastal Crown Reserve is not affected by the doctrine of erosion and accretion and cannot lose or gain land by title. The Crown Reserve will therefore always remain as a piece of legal land, although may not continue to remain as a piece of physical land due to the effects of erosion and sea level rise perhaps eventually putting it completely under water.

4.6 Government Responsibility to Erosion

Storms in 1945 hit Collaroy-Narrabeen Beach and destroyed many properties (Worley Parsons 2011), some of those which now form the northern end of the Collaroy Beach car park (*Figure 26*). These buildings in this area were removed, and the properties resumed by council, allowing no more development on the properties.

Figure 26 – Damage to houses, June 1945, resulting in them being demolished, with the land being resumed by council (Cameron 2010)

1967 saw another large storm strike the beach eroding sand to a depth of 5m along the portion of beach in front of the 'Flight Deck' unit block (Worley Parsons 2011), the area in which the primary study of this project was carried out. The erosion exposed the buildings foundations and caused serious concern for the stability of the multi storey building and its neighbouring high-rise 'Shipmates'.

In 1974, further large storms devastated the beach front, washing away dunes at North Narrabeen, and destroying part of Ocean Street, as well as washing away part of the central-northern area of the beach, threatening more homes, as well as another multi storey unit block at Narrabeen 'Marquesas' (Worley Parsons 2011).

The state and local governments have a responsibility to '...preserve and protect the Collaroy/Narrabeen Beach as a national asset for public recreation and amenity...' (Warringah Local Environment Plan 2000 schedule 13, clause 2).

These storm events show the responsibilities that must be extended by local & state governments to protect the existing private properties as well as the publics' assets. It has been through poor management and planning practices throughout the past, that has allowed the development (and in some cases, overdevelopment) of these coastal areas. Remedial works of these areas have previously been carried out by the Government in the way of rock protection and sea walls, as well as ongoing sand nourishment of Collaroy-Narrabeen Beach. Future methods of remedial work must be studied and carried out to not only protect the private property owners interests, but also the interests of the public as a whole with regards to the continual use of the beach foreshore.

4.7 Temporary Protection – Past & Present

4.7.1 Concrete Tank Traps

After the storms of 1945, huge concrete tank traps were placed in front of the Arlington Amusement Hall as emergency protection (Worley Parsons 2011). Concrete tank traps are large concrete structures, usually of square or pyramid shape, that are used in war time to prevent tanks from passing through an area (Wisegeek n.d.). These large structures helped break up the wave surges hitting the building. Although they are a very effective way of breaking up wave surges, they could only be put in place as a temporary measure as they are quite obtrusive and do not please the landscape aesthetically.

4.7.2 Rock Protection

As an emergency measure large boulders and rocks were placed along the eroded beach area (*Figure 27*) after historically large storms in 1967 to help not only break up the path of wave surges, but also to stabilise the already weakened banks and sand (Worley Parsons 2011). Much like the tank traps mentioned above, these rocks are an effective way of reducing wave surges.

Figure 27 – Emergency rock protection in front of 'Shipmates' & 'Flight Deck' c.1972 (Worley Parsons 2011)

4.7.3 Sand Bagging

As per government legislation, temporary emergency coastal works are permitted to be installed by private land owners to protect their properties. These works should be erected prior to or after a storm has commenced and can consist only of sand or geotextile bags filled with sand. The sand must be imported from elsewhere and may not originate from the beach with which they are being laid. No other temporary emergency protection materials are permitted by law.

4.8 Long Term Protection – Present & Future

4.8.1 Rock Protection

As a result of large storms, council partook in the dumping of large sandstone rocks and rubble. After the storm of 1967, rocks and rubble were placed along the beachfront (*Figure 27*), particularly in front of 'Flight Deck' to increase beach stability (Worley Parsons 2011). These rocks were placed initially as an emergency

measure, but have become a long-term protection method for the beachfront properties, although do not prevent beach erosion as can be seen in *Figure 28*. This photo was taken after large storms in 2007, and as can be seen, the beach has been heavily eroded. They do, however, prevent erosion occurring past (landward from) the rock protection, therefore protecting beachfront residences and their foundations.

Figure 28 – Exposed rock walls at Collaroy-Narrabeen Beach, 28 July 2007 (Worley Parsons 2011)

4.8.2 Sea Wall

The southern end of Collaroy-Narrabeen Beach is now occupied by a seawall of stone gravity construction (Worley Parsons, 2011). The southern end of the beach is the popular position for beach-goers, and is where the flags are often placed for safe swimming. This southern end appears at most times to be plentiful of sand, and generally has quite a wide sandy beach area, although during large storms can suffer from heavy erosion which can expose rocks and also the foundations of the sea wall. It has proven over the years however, that it has been a successful in protecting the foundations of the 'Arlington Arcade' building as well as the Collaroy Beach

Reserve, which includes the 'Collaroy Beach Surf Life Saving Club', located immediately to the south of this 'Arlington Arcade'.

4.8.3 Prevention of Future Development & Planning Procedures

As stated earlier, Warringah Council is in the process of purchasing beachfront properties in order to restore the land to its more natural state by turning it into a vegetated reserve. In doing so, this will prevent any future development of the land, stabilising the area and reducing the effects of erosion and accretion on the land. Two properties have been purchased to date with Section 94 Developer Contribution funds, with enough money to purchase another when it becomes available (Warringah Council 2006).

Dune rehabilitation is an effective 'soft engineered' approach to combating the effects of erosion. With this form of protection it can also increase the number of ecological communities within the area, helping to maintain these dune systems (Department of Planning NSW 2010).

Along with land acquisitions, Warringah council has guidelines in place to restrict and monitor future development. Restrictions such as the Wave Impact Zone, Zone of Slope Adjustment and the Zone of Reduced Foundation Capacity lines (*Figure 6*) allow Council to restrict or even completely prohibit major development within these zones, assisting the natural process of accretion and erosion to continue as it has for thousands of years.

4.8.4 Beach Nourishment

Beach nourishment is a popular method used by Warringah Council to replenish sand lost to storm surges. Although a reactive solution rather then a preventative one, it is an immediate solution that allows the continued use of the beach reserve by the public, as well as reinstating the physical land lost to erosion on private properties, at least until the next storm removes the replaced sand. This solution does not offer any long term or permanent resolutions.

4.9 Private Landowners Rights

As discussed in chapter 2, private landowners have the rights prior to and during storm activity to erect temporary coastal protection to prevent erosion occurring to their properties. The only temporary protection permitted is geotextile bags filled with sand, with which the sand must not be taken from the adjacent beach. Land owners are expected to be aware of any approaching storms, and should be ready with appropriate protection.

With regards to long term protection of land owner's properties, planning procedures are in place to allow the construction of protective structures, such as sea walls, through development applications and approval from the consent authority. There are strict conditions that must be adhered to for the approval of these structures, but if all conditions are met, a landowner has the rights to construct coastal protection within their property boundaries.

4.10 Summary

This chapter has outlined the results of primary field data and secondary research. It has examined the effects erosion has on the cadastral boundaries of properties along Collaroy-Narrabeen Beach as well as the implications the Crown Beach Reserve has with regards to the doctrine of accretion and erosion.

This chapter has also reviewed the methods of protection available prior to and during a large storm event to prevent or reduce the effects of erosion, as well as the long term plans by Governments to prevent erosion to the coast.

CHAPTER 5

Conclusion

'Man cannot fight Mother Nature but educated man can assist her to restore balance.'

Michele, Manly Daily, 2009

5.0 Introduction

This study has collected and reviewed both secondary research combined with a primary study to offer a cohesive report that critically reviews current legislation, case law, survey regulations and remedial coastal works, to recognise deficiencies and recommend considered solutions to the case study of Collaroy-Narrabeen Beach.

5.1 Achievement of Objectives

It was the aim of this project to investigate the effects of coastal erosion on coastal boundaries and to determine the rights, obligations and limitations attached to that land with respect to both the private land owner and the general public. This study comprehensively reviewed the above through a combination of secondary and primary research methods. The collection and critical review of current legislation, case law, survey regulations as well as investigation into examples of coastal remedial works (both successful and unsuccessful) was applied to a primary research study. This final chapter will suggest what recommendations are believed to be most effective in protecting the foreshore of Collaroy-Narrabeen.
5.2 Problems & Recommendations

Natural boundaries will continue to be more difficult to review in context, simply because they are continually moving. There can be advantages for both the landward side property owner (private) and the seaward side property owner (the Crown) whose properties includes a natural boundary, in that if accretion occurs, title is gained by the private owner, and if erosion occurs the Crown would gain land by title. This however, has changed with the modification of the doctrine of accretion and erosion through the Coastal Protection Act, which currently states that land cannot be granted to the landward owner if it restricts or denies access to the adjoining beach reserve. This modification indicates a fairer and more balanced approach to legislation with the protection of public assets, without loss to the landward owner.

To be protected under this law, conditions must comply with the doctrine of accretion and erosion, which states that such change must do so gradually and imperceptibly. When erosion occurs suddenly however, such as during a storm, although no land is lost by title, land is lost physically. Landowners have the right to place temporary protective works to protect their properties from these effects, although these works may only be placed immediately before or during a storm. If a property owner is not prepared for such storms, property damage and physical land loss can occur. Permanent protective works may be applied through a development application through local Council, although approval is not guaranteed. Permanent protective works such as sea walls may actually increase the effects of coastal erosion, and could in some cases accelerate the erosion of an entire beach width.

Although 100 foot reserves have been successful in protecting properties with rightline boundaries within the coastal zone to date, the solution has only been a temporary measure, as the natural boundaries will eventually meet the right-line boundary. Any erosion that occurs beyond the right-line boundary suffers a loss of physical land, though not by title, and the 100ft reserve becomes non-existent.

As temporary solutions such as the 100ft reserve lose their effectiveness, more time and dedication needs to be committed to the research and testing of remedial protective works to prevent further coastal erosion. Groynes can be a successful way of reducing the effects of littoral drift if placed correctly. As discussed in chapter 2, the groynes built at Kirra Beach have been quite successful, as can be seen in *Figure 15*. These groynes have successfully allowed for the beaches upward of the littoral drift to thrive, and with strategic planning the placement of a groyne (or groynes) at Collaroy-Narrabeen Beach could be an effective way of increasing the beach width, protecting both private landowners assets, as well as the publics' use of the beach reserve. Initial testing with sandbags will be particularly useful in determining what the actual effects will be prior to committing to such a significant development. As Collaroy-Narrabeen is a popular surf spot, this testing will be instrumental in determining the effects on surf breaks also.

Along with groynes, artificial reefs could also be implemented to reduce the wave impact on the shoreline, effectively reducing coastal erosion during large storms. Artificial reefs have many benefits, along with the assistance in the reduction of coastal erosion, they can serve as a recreational diving area, a surf break, as well as a new habitat for marine life.

The wave impact zone line along Collaroy-Narrabeen Beach was implemented by Warringah Council to restrict and prohibit major development eastward of the line, and has proven to been an effective way of regenerating natural dunes along the coast. This solution, along with land acquisitions, will see continued natural dune rejuvenation, returning the coast to its natural state and in doing so the possibility of a decrease in sudden erosion due to dune stability. The wave impact zone position should be continually reviewed to determine the best setback positions for new development. This could be done with the introduction of surveys annually or biannually of the beachfront, similar to the survey conducted in this primary study, to determine the exact movement of the sand and grassy bank from year to year.

The importance of collective and responsibly considered action which successfully manages the delicate balance between protecting privately owned land and public use is demonstrated below in *Figure 29*, which forecasts a 'doing nothing' scenario, the results of which show the area of primary study (shown at chainage 2600) having

a shoreline change of -32m, and in doing so push the Mean High Water Mark Westward towards the right-line boundaries of the private properties.

Figure 29 – The 'do nothing' scenario showing the initial and final shoreline positions and the degree of change (Acworth c. 2011)

This study has proven that there are serious and concerning issues surrounding coastal erosion, and its effect on coastal property boundaries. As Australia's stunning and iconic coastline continues to urbanise, the importance of collective and responsibly considered actions which successfully manage the delicate balance between protecting privately owned land and public interests from coastal erosion in New South Wales has never been more significant, which has been demonstrated through a primary research study complimented with secondary literature review.

APPENDIX A - PROJECT SPECIFICATIONS

University of Southern Queensland

FACULTY OF ENGINEERING AND SURVEYING

ENG411/4112 Research Project PROJECT SPECIFICATION

FOR:	Aaron Millard
TOPIC:	Property Rights on Ambulatory Boundaries in NSW
SUPERVISOR:	Shane Simmons
PROJECT AIM:	To examine the rights, obligations and restrictions that attach to land with an ambulatory boundary, and the affects of rising sea levels, erosion and accretion on these boundaries in New South Wales.

PROGRAMME: Issue A, 5 April 2011)

- 1. Research and summarise the relevant New South Wales legislation which relates to land with ambulatory boundaries.
- 2. Research any guidelines the local coastal governments of Sydney have in place, in particular Warringah Council.
- **3.** Identify parcels of land with varying topographical characteristics in regards to ambulatory boundaries
- Identify the rights, obligations and restrictions that attach to those parcels
- Conduct field surveys of those parcels and surrounding beach area, defining the limits of various tide heights and current boundaries and identify any areas of concern.
- 6. Analyse the current legislation and guidelines in regards to case studies, and identify any deficiencies and offer solutions

AGREED (Supervisor) Date: / /2011

(Student)_____ Date / /2011

Co-examiner:

	USQStudyDesk > ENG4111_2011_1 > Assignments > Submit Your "Project Specifications" Here	
	Friday, 8 April 201	1, 10:46 AM
	Please save file as " StudentNumber_StudentName_Specs_version1 (or version2, etc.)_SupervisorFamilyName", e.g. " 0123456_ArmandoApan_Specs_Version1_Bullen ".	
	* The document is submitted when you click "Upload this file" button. (No confirmation stage needed.).	
Available fro Due da	om: Friday, 18 March 2011, 03:40 PM ate: Tuesday, 22 March 2011, 03:40 PM	
	Submission feedback	
	Shane Simmons Monday. 11 April 2011, 10:10 AM	
	Aaron, Spec's okay, although there is a typo. error in the title - you forgot the Y in property. Kind regards, Shane	
	Submission draft	
005002	28561_Aaron_MillardSpecs_Version1_Simmons.doc 🗙	
	Upload a file (Max size: 5MB) Choose File No file chosen Upload this file	
	Notes	
No entry		

Send for marking

You are logged in as Aaron Millard (Logout)

ENG4111_2011_1

APPENDIX B - CADASTRAL RECORD ENQUIRY SEARCH

Land & Property	Cadastral Records Enguiry Report : surv:epln-lamli Aaron Research Project							
Land & Property Information	Requested Parcel : L	ot 2 DP 306168 Identi	fied Parcel : Lot 2 DP 306168					
Locality : COLLAROY	LGA : WARRINGAH	Parish : MANLY COVE	County : CUMBERLAND					
	Status	Surv/Comp	Purpose					
DP1137583 Lot(s): 3								
CA111654 - LOT 3 IN	DP1137583							
SP61846	LICTODICAL	SU DVEY						
DP306168	HISTORICAL	SURVEY	DEDEEINITION					
E DP1009032	REGISTERED	SURVEY	REDEFINITION					
SP69308	LISTORICAL	SUBVEY						
E DP3322	HISTORICAL	SURVET	DEDEEINITION					
DP1047281	REGISTERED	SURVEY	REDEFINITION					
5P73759	HISTORICAL	SUDVEV						
DF 12045	HISTORICAL	COMPLIATION						
DP320031	HISTORICAL	COMPLATION	DEDADIMENTAL					
DP/96461	HISTORICAL	COMPILATION	DEPARTMENTAL					
DP10/4816	REGISTERED	SURVET	CONSOLIDATION					
5P75139	HISTORICAL	SUBVEY						
DF0300	PECISTERED	SURVEY						
DF 1003900	REGISTERED	SURVET	CONSOLIDATION					
DP850468	HISTORICAL	SURVEY	SUBDIVISION					
DP1073384	REGISTERED	SURVEY	CONSOLIDATION					
SP81185	REGISTERED	SORVET	CONSOLIDATION					
DP511749	HISTORICAL	SURVEY	SUBDIVISION					
DP818833	HISTORICAL	SURVEY	SUBDIVISION					
DP842111	HISTORICAL	SURVEY	SUBDIVISION					
DP1130528	REGISTERED	SURVEY	CONSOLIDATION					
SP84915	REGISTERED	GORVET	CONCEDATION					
DP313410	HISTORICAL	COMPILATION	UNRESEARCHED					
DP1160989	REGISTERED	SURVEY	REDEFINITION					
E 01 1 100303	ILCIOI LILLD	0011121	NEDER IN TOT					

Caution: For all ACTIVITY PRIOR to SEPT 2002 you must refer to the RGs Charting and Reference Maps. Report Generated 9:36:26 PM, 17 May, 2011

Page 2 of 3

Land & Property	Cadastral Recor	al Records Enquiry Report : surv:epIn-lamli Aaron Research					
Land & Property Information	Requested Parcel : Lot 2 DP	306168 Identified Pa	<u>rcel</u> : Lot 2 DP 306168				
Locality : COLLAROY	LGA : WARRINGAH	Parish : MANLY COVE	County : CUMBERLAND				
Plan	Surv/Comp	Purpose					
DP5234	SURVEY	UNRESEARCHE	D				
DP8388	SURVEY	UNRESEARCHE	D				
DP162496	SURVEY	UNRESEARCHE	D				
DP167490	COMPILATION	UNRESEARCHE	D				
DP170202	COMPILATION	UNRESEARCHE	D				
DP306168	SURVEY	UNRESEARCHE	D				
DP404802	COMPILATION	UNRESEARCHE	D				
DP730362	SURVEY	SUBDIVISION					
DP779445	COMPLIATION	DEPARTMENTAL					
DP846342	SURVEY	SUBDIVISION					
DP949342	COMPLIATION	UNRESEARCHE	D				
DP950309	COMPLIATION	UNRESEARCHE	D				
DP998163	COMPILATION	DEPARTMENTAL					
DP1137583	COMPLIATION	LIMITED FOLIO					
SP450	COMPLIATION	STRATA PLAN	OREAHON				
SP480	COMPLIATION	STRATA PLAN					
SP601	COMPLIATION	STRATA PLAN					
SP677	COMPLIATION	STRATA PLAN					
SP1535	COMPLIATION	STRATA PLAN					
SP1612	COMPLIATION	STRATA PLAN					
SP1638	COMPLIATION	STRATA PLAN					
SP1977	COMPLIATION	STRATA PLAN					
SP2663	COMPLIATION	STRATA PLAN					
SP3626	COMPLIATION	STRATA PLAN					
SP4465	COMPILATION	STRATA PLAN					
SP6014	COMPILATION	STRATA PLAN					
SP6370	COMPILATION	STRATA PLAN					
SP6714	COMPILATION	STRATA PLAN					
SP6939	COMPILATION	STRATA PLAN					
SP7099	COMPILATION	STRATA PLAN					
SP7177	COMPILATION	STRATA PLAN					
SP7416	COMPILATION	STRATA PLAN					
SP7650	COMPILATION	STRATA PLAN					
SP8072	COMPILATION	STRATA PLAN					
SP8075	COMPILATION	STRATA PLAN					
SP12714	COMPILATION	STRATA PLAN					
SP15345	COMPILATION	STRATA PLAN					
SP15698	COMPILATION	STRATA PLAN					
SP16513	COMPILATION	STRATA PLAN					
SP18203	COMPILATION	STRATA PLAN					
SP36122	COMPILATION	STRATA PLAN					
SP49566	COMPILATION	STRATA PLAN					
SP61846	COMPILATION	STRATA PLAN					
SP69308	COMPILATION	STRATA PLAN					
SP73759	COMPILATION	STRATA PLAN					
SP75139	COMPILATION	STRATA PLAN					
SP75173	COMPILATION	STRATA PLAN					
SP81185	COMPILATION	STRATA PLAN					
SP84915	COMPILATION	STRATA PLAN					

Report Generated 9:36:26 PM, 17 May, 2011

Page 3 of 3

APPENDIX C – REFERENCE MAP

APPENDIX D - DEPOSITED & STRATA PLANS /Prt:23-Jul-2011 16:12 /Pgs:ALL /Seq:1 of 4

Req:R508202 /Doc:DP 0005234 Ref:AARON THESIS /Src:B -1997 /Sts:OK.OK

Req:R508156 /Doc:DP 0111254 P /Rev:25-Jan-1994 /Sts:OK.OK /Prt:23-Jul-2011 14:52 /Pgs:ALL /Seq:2 of 4 Ref:4060 /Src:B

;OUTH

Req:R508156 /Doc:DP 0111254 P /Rev:25-Jan-1994 /Sts:OK.OK /Prt:23-Jul-2011 14:52 /Pgs:ALL /Seq:3 of 4 Ref:4060 /Src:B

F.P. 111254

PACIFIC

Req:R508156 /Doc:DP 0111254 P /Rev:25-Jan-1994 /Sts:OK.OK /Prt:23-Jul-2011 14:52 /Pgs:ALL /Seq:4 of 4 Ref:4060 /Src:B

Req:R606374 /Doc:DP 1074816 P /Rev:26-Oct-2004 /Sts:SC.OK /Prt:13-Aug-2011 15:45 /Pgs:ALL /Seq:1 of 1 Ref:AARON THESIS /Src:B

Req:R508198 /Doo Ref:AARON THESI	STRATA PLAN	2011 16:12 /Pgs:ALL /Seq:1 of 10
10 10	Shire of Warringah (E)	STRATA PLAN 677
	Reference to Title C.T. Vol: 9616 F: 138.	Registered_ @_ 13-3-1964
	Parcel comprises whole of Lot 1, D.P. 220059	(1. 33/64 of 11-3-1964
	13	Ref. Map. Warringah_Sh.42_
1	Parish Manly Love County Cumberland	Last Man. D.P.220059
۵,	The Address for The Proprietors, Strata Pl: service of potices on the body corporate is:- } 1120/1122 Pittwater Rd, Col	an Nº677 Laroy
1	South Paci	fic Ocean g
	Sandy Per Ave	Beach B
		rto .
-		a Pol
20 10		2 tfc
1 • ••		a (id
3	1912	
1	Gran of Gerral	
	8 Livela Fiel Building	Aller U
	S The TStory Reflect TE Black	LITON" OI
	A A A A A A A A A A A A A A A A A A A	Pt. 4
	(m. farage	18 k 01.15
		4 8 9 9
÷ .		Aug
. /	PITTWATER RD	214
· ·		App
	Schedule of Unit Entitlement	1, Richard Stephen Lovegrove
		of 43 Prince Charles Rd, Frenchs Forest a surveyor repistered under the Surveyors Act, 1929, as amended benchu certific that:
		the huilding erected on the parcel described above is within the external boundaries of the parcel.
-		
•.	(See Sheet 2	
/	1	Pated 12. 3.64
		Signature Norther purposes of the
		Conveyancing (Strata Titles) Act, 1961. Pate 1. 3. 1964
	5	Jubdivision No. 23/64
		towncil (ler)
	MPD	

e) State if whole or Parcel comprises	whole of lot 2,	D.P. 220059	STRATA PLAN 1977
b) Refer to number of Lot, Allotmest, or Portion and to the Deposited Plan, Reference to Tit	le Vol. 9616 Fol. 1	39	
Mun./Shire/City	Warringah		Registered:
Locality CO 1	laroy		C.A.: 149/65 of 27.1.1966
Parish Manl	y Cove Count	y Cumberland	Ref Map: Warringah Sh.42
Scale: 40 fee	t to an inch.		Last Plan: D.P. 220059
Approx.1458	*34160 Pt.410a.(Por.1) Vol.9616	217Ph)gtd.to John ?? Fol. 139 God onested by Tip 67994 Peorey Level sidential Protect flat Building Building	nisay on 21 ² August 1818 g/ MiM. () offeding part. () Offeding par
nee in space		Nº 1114	Dordon Ared
Itional lots in space in Schedule - inservice.	of Unit Entitlement ⁽⁴⁾	OFFICE USE ONLY Current C's of T.	I.Richard Stephen Lovegrove of 43 Prince Charles Rd Frenchs Forest
Védicional lots hould be shown in a sinsaure. Lot No.	of Unit Entitlement ^(c)	OFFICE USE ONLY Current C's of T. Vol. Fol.	I, Richard Stephen Lovegrove. of 43 Prince Charles Rd Frenchs Borest. o surveyor registed where he surveyors Act. emended. hereby certify that: (1) the building erected on the parcel describe
difficient loss out be shown in stree if sporoprists.	of Unit Entitlement ⁽²⁾ Unit Entitlement	OFFICE USE ONLY Current C's of T. Vol. Fol.	I. Richard Stephen Lovegrove of 43 Prince Charles Rd Frenchs Forest o survey resisted under the surveyors Act, emended, heety carlify that: (1) the building erected on the parcel describe is within the externol boundaries of the project science of the indigent science (2) of this carlificates
Additional lots hold be shown in a sanswirk. Schedule - Lot No.	of Unit Entitlement ⁽⁴⁾	OFFICE USE ONLY Current C's of T.	I.Richard Stephen Lovegrove of 43 Prince Charles Rd Frenchs Forest of the building erected on the parcel describe is within the external boundaries of the involves or guittered on the parcel describe is within the external boundaries of the involves or guittering of the building Project such external boundaries and on any cost of such and the services and an any cost of the services of an boundaries of the serves of guittering of the building Project such external boundaries and on any cost of the services and an any cost of the services and an any cost of the serves of guittering of the building Project such external boundaries and an any cost of the services and an any cost of the services of the services of any any cost of the services of the services of any any cost of the services of the services of any any cost of the services of the services of any any cost of the services of the services of any cost of the services of the services of the services of the services of the services of the services of the services of the services of the services of the services of the services of the services of the services of the services of the services of th
divisional fost state in reacts divisional fost state are in the statem inter are in the statem lave if in the statem Lot No.	of Unit Entitlement ^(c)	OFFICE USE ONLY Current C's of T. Vol. Fol.	I. Richard Stephen Lovegrove of 43 Primce Charles Rd Frenchs Forest unnegot registered under the Surveyors Act, entropy registered under the Surveyors Act, is within the external boundaries of the is precised from the formation of the precised from the second of the is precised from the second of the is p
dijiosi lots dijiosi lots uki be shara in tangarite.	of Unit Entitlement ⁽²⁾ Unit Entitlement	OFFICE USE ONLY Current C's of T. Vol. Fol.	I, Richard Stephen Lovegrove. of 43 Primce Charles Rd Frenchs Errss Rd a survey registered where is within the esterato bundary project is within the sterior bundary project such esternal bundary for the such esternal bundary for the Dated 17. 1. GG.
Iticaul loss Iticaul loss It	of Unit Entitlement ^(a) Unit Entitlement	OFFICE USE ONLY Current C's of T. Vol. Fol.	I. Richard Stephen Lovegrove of 43 Primoe Charles Rd Fronch Storest o surveyor registered under the Surveyors Act, omended, hereby certify that: (1) the building receted on the parcel describe is within the external boundaries of the j under the store of of this curliform, (4)(2) eves or guitering of the building project such external boundaries and an app concent of been granted as on apputer in parcel by registered Transfer Hy. Dated 17-1-66. Signature Approved by the Council for the building for form
dizional fors vidi best fors vidi best born in Innervire. Iace II Iace III Iace II Iace III Iace IIII Iace III Iace III Iace III Iace IIII Iace IIIII Iace IIII Iace IIIII Iace IIII Iace IIIIIII Iace IIIII Iace IIIIIIII Iace IIIIIIIIIIIII Iace IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	of Unit Entitlement ⁽²⁾ Unit Entitlement	OFFICE USE ONLY Current C's of T. Vol. Fol.	I. Richard Stephen Lovegrove of 43 Prince Charles Rd Frenchs Forest o survey resistered under the surveyors Act, amended, heety certify that: (1) the building erected on the parcel describe is within the externol boundaries of the f indicate stores I of the cultificate (4)(2) coves or guitering of the building Project such externol boundaries of an opputer of parcel by registered aron opputer for parcel by registered Transfer Her. Dated 17. 1. 66. Signature Approved by the Council for the purposes of the Conv (Strata Titles) Act. 1961.
dditional fota and a space outdo be shown in annowire.	of Unit Entitlement ⁽⁴⁾ Unit Entitlement	OFFICE USE ONLY Current C's of T. Vol. Fol.	I. Richard Stephen Lovegrove. of 43 Prime Charles Rd Frenchs Forest (1) Building rected on the parcel describe is within the external boundaries of the p recipient discussion of the building project such external boundaries of the conflictus. (4) Covers or guttering of the building project such external boundaries of an appresent the parcel by registered Transfer Har. Dated 17. 1. 66. Signature Approved by the Council for the purposes of the Conv (Stata Titlet) Act. 1961. Date 27. 1. 1966
figura i pace figura	of Unit Entitlement ⁽²⁾ Unit Entitlement	OFFICE USE ONLY Current C's of T. Vol. Fol.	I. Richard Stephen Lovegrove of 43 Primce Charles Rd Friends Forest of unread the surveyors Act, I of the building erected on the parel describe is within the external boundaries of the p model the building erected on the parel describe is within the external boundaries of the p model the strend grant of the building Project (9(2) cores or guitering of the building Project is within the external boundaries of the p essengut Am Deen granted as an oppurten the parel by registered Transfer Ha. Dated 17-1-GC. Signature Approved by the Council for the purposes of the Corr (Strata Titles) Act. 1961. Date 27.1-1966 Subdivision No. 1119/165-

APPENDIX E -SURVEY CONTROL INFORMATION MANAGEMENT SYSTEM (SCIMS) SEARCH

MAND STATUS COORDINATES AND HEIGHTS CLASS, DTDSA EU COONT REFERE Source PM 3986 MGA 342525.393 6266507.815 56 B 2 n/a 0.999901 22892 GDA94 -33° 43' 47.19902* 151° 18' 00.81597* -0° 56' 38.54* AHD71 4.061 LB L2 n/a 0.999901 22892 GDA94 -33° 43' 33.36000* 151° 17' 57.67925* -0° 56' 40.06* -0° 56' 40.06* AHD71 5.085 LB L2 n/a 0.999901 22892 GDA94 -33° 43' 38.36000* 151° 17' 57.67925* -0° 56' 40.06* -0° 56' 40.06* AHD71 5.085 LB L2 n/a 0.999901 22892 GDA94 -33° 43' 32.944536* 151° 17' 56.06389* -0° 56' 40.74* -0° 56' 40.74* PM 3969 MGA 342394.069 6267052.670 56 B 2 n/a 23.199 2013* FM 3969 MGA 342394.059 6267052.670 56 B </th <th>Your Re</th> <th>ference:</th> <th>4060</th> <th></th> <th></th> <th></th> <th>Sea</th> <th>rch Nu</th> <th>mber:</th> <th>9441</th> <th></th>	Your Re	ference:	4060				Sea	rch Nu	mber:	9441	
PM 3986 MGA 342525.393 6266507.815 56 B 2 n/a 0.999901 22892 GDA94 -33° 43' 47.19902" 151° 18' 00.81597" -0° 56' 38.54" AHD71 4.061 LB L2 n/a 23.177 20134 PM 3988 MGA 342440.173 6266778.755 56 B 2 n/a 0.999901 22892 GDA94 -33° 43' 38.36000" 151° 17' 57.67925" -0° 56' 40.06" -0° 56' 40.06" AHD71 5.085 LB L2 n/a 0.999901 22892 PM 3989 MGA 342394.069 6267052.670 56 B 2 n/a 0.999901 22892 GDA94 -33° 43' 29.44536" 151° 17' 56.06389" -0° 56' 40.74" -0° 56' 40.74" AHD71 6.082 LB L2 n/a 23.199 20134 M3989 MGA 342394.069 6267052.670 56 B 2 n/a 2.999901 22892 GDA94 -33° 43' 29.44536" 151° 17' 56.06389" -0° 56' 40.74" -0° 56' 40.74"	MARK NAME STATUS	COORL	INATES AND	HEIGHT	S		CLASS	ORDER	ΡU	CSF CONVERGENCE AUSGEOID09	SOURC
GDA94 -0° 56' 38.54* AHD71 4.061 LB L2 n/a 23.177 20134 PM 3988 MGA 342440.173 6266778.755 56 B 2 n/a 0.999901 22892 GDA94 -33° 43' 38.36000° 151° 17' 57.67925" -0° 56' 40.06" AHD71 5.085 LB L2 n/a 0.999901 22892 GDA94 -33° 43' 38.36000° 151° 17' 57.67925" -0° 56' 40.06" -0° 56' 40.74" AHD71 5.085 LB L2 n/a 0.999901 22892 GDA94 -33° 43' 29.44536" 151° 17' 56.06389" -0° 56' 40.74" AHD71 6.082 LB L2 n/a 23.199 20134 Therefore Statement Statem	PM 3986	MGA	342525.393	6266	6507.815	56	В	2	n/a	0.999901	22892
AHD71 4.061 LB L2 n/a 23.177 20134 PM 3988 MGA 342440.173 6266778.755 56 B 2 n/a 0.999901 22892 GDA94 -33° 43° 38.36000° 151° 17° 57.67925° -0° 56' 40.06° AHD71 5.085 LB L2 n/a 23.188 20134 PM 3989 MGA 342394.069 6267052.670 56 B 2 n/a 0.999901 22892 GDA94 -33° 43' 29.44536° 151° 17' 56.06389° -0° 56' 40.74° A AHD71 6.082 LB L2 n/a 23.199 20134 MGA 542200 -0° 56' 40.74° A -0° 56' 40.74° A -0° 56' 40.74° -0° 56' 40.74° AHD71 6.082 LB L2 n/a 23.199 20134 Markary Strategy -		GDA94	-33° 43' 47.1	9902*	151°	18' 00.8	1597"			-0° 56' 38.54"	
PM 3988 MGA 342440.173 6266778.755 56 B 2 n/a 0.999901 22892 GDA94 -33° 43' 38.36000° 151° 17' 57.67925° -0° 56' 40.06° AHD71 5.085 LB L2 n/a 23.188 20134 PM 3989 MGA 342394.069 6267052.670 56 B 2 n/a 0.999901 22892 GDA94 -33° 43' 29.44536° 151° 17' 56.06389° -0° 56' 40.74° AHD71 6.082 LB L2 n/a 23.199 20134 AHD71 6.082 LB L2 n/a 23.199 20134		AHD71	4.061				LB	L2	n/a	23.177	20134
GDA94 - 33° 43° 38.36000° 151° 17' 57.67925° -0° 56' 40.06° AHD71 5.085 LB L2 n/a 23.188 20134 PM 3989 MGA 342394.069 6267052.670 56 B 2 n/a 0.999901 22892 GDA94 - 33° 43' 29.44536° 151° 17' 56.06389° -0° 56' 40.74° AHD71 6.082 LB L2 n/a 0.999901 22892 GDA94 - 33° 43' 29.44536° 151° 17' 56.06389° -0° 56' 40.74° AHD71 6.082 LB L2 n/a 23.199 20134 AHD71 6.082 LB L2 n/a 23.199 20134 ACCICIN STREET S8 88077 S8 88077 S8 88077 S8 88077 S8 88077 MSN STRAET STREET S8 88077 S8 88077 S8 88077 S8 88077 S8 88077 S8 88077 MSN STRAET STREET S8 88077 S8 88077 S8 88077 S8 88077 S8 88077 S8 88077 MSN S7 2189 DH S8 88077 S8 88077 S8 88077 S8 88077 S8 88077 S8 88077 S8 8 8077 S8 8077	PM 3988	MGA	342440.173	6266	6778.755	56	в	2	n/a	0.999901	22892
AHD71 5.085 LB L2 n/a 23.188 20134 PM 3989 MGA 342394.069 6267052.670 56 B 2 n/a 0.999901 22892 GDA94 -33° 43' 29.44536* 151° 17' 56.06389* -0° 56' 40.74* AHD71 6.082 LB L2 n/a 23.199 20134 AHD71 6.082 FRAZER STREET FRAZER STREET FRAZER STREET State Frain State Frain State Frain AM 3989 State State State State State Frain State		GDA94	-33° 43' 38.3	6000"	151°	17' 57.6	7925"			-0° 56' 40.06"	
PM 3989 MGA 342394.069 6267052.670 56 B 2 n/a 0.999901 22892 GDA94 -33* 43'29.44538* 151* 17'56.06389* -0° 56' 40.74* AHD71 6.082 LB L2 n/a 23.199 2013- AHD71 6.082 State of the server STUART STREET STREET SS 85977 FRACER SS 85977 FRACER SS 85977 FRACER SS 859		AHD71	5.085				LB	L2	n/a	23.188	20134
GDA94 - 33° 43' 29.44536" 151° 17' 56.06389" -0° 56' 40.74" AHD71 6.082 LB L2 n/a 23.199 20134 To star toology AHD71 6.082 STUART STREET PM 53 STUART STREET PM 53 Starter STUART STREET STARTER STREET PM 53 STUART STREET STUART STREET STARTER STREET PM 53 STUART STREET STUART STREET STARTER STREET S	PM 3989	MGA	342394.069	6267	7052.670	56	в	2	n/a	0.999901	22892
AHD71 6.082 LB L2 n/a 23.199 2013-		GDA94	-33° 43' 29.4	4536*	1519	17' 56.0	6389*			-0° 56' 40.74"	
ACACCA STREET WAS STREET SS 850777 HILL RAVERY STREET HILL RAV		AHD71	6.082				LB	L2	n/a	23.199	20134
FIFI Du	OULEVARD PM 3998		55 2165 D	HE AVENUE	JENKINS STI	ET THURSDAY	T ON OF		Se	Taanso Saa adi Pardi, Direen	
	SCIMS M	lark Types	(Colour cod	es refe	r to the	assigne	ed accu	iracy "C	class")	Mark St	
SCIMS Mark Types (Colour codes refer to the assigned accuracy "Class") Mark Status *	SS PI			CD							atus *
SCIMS Mark Types (Colour codes refer to the assigned accuracy "Class") Mark Status * SS PM TS CR MM CP GB F Found Intact Image: Colour codes refer to the assigned accuracy "Class") F Found Intact Image: Colour codes refer to the assigned accuracy "Class") F Found Intact Image: Colour codes refer to the assigned accuracy "Class") F Found Intact Image: Colour codes refer to the assigned accuracy "Class") F Found Intact Image: Colour codes refer to the assigned accuracy "Class") F Found Intact Image: Colour codes refer to the assigned accuracy "Class") F Found Intact Image: Colour codes refer to the assigned accuracy "Class") F Found Intact Image: Colour codes refer to the assigned accuracy "Class") F Found Intact Image: Colour codes refer to the assigned accuracy "Class") F Found Intact Image: Colour codes refer to the assigned accuracy "Class") F Found Intact Image: Colour codes refer to the assigned accuracy (Class Refe	e	M TS	CR MM	0	GB	tablicho	dGDA	& Accura		F Found N Not Fo	t atus * Intact bund
SCIMS Mark Types (Colour codes refer to the assigned accuracy "Class") Mark Status * SS PM TS CR MM CP GB F Found Intact • • •	•	M TS D A N A	CR MM	0	GB * E	stablishe	d GDA 8 d GDA 0	& Accura	te AHD	F Found N Not Fo D Destro S Subsid	tatus * Intact bund byed dence Are
SCIMS Mark Types (Colour codes refer to the assigned accuracy "Class") Mark Status * SS PM TS CR MM CP GB F Found Intact Image: State of the stabilished GDA & Accurate AHD N Not Found Image: State of the stabilished GDA & Accurate AHD D Destroyed Image: State of the stabilished GDA Only S Subsidence Are Image: State of the state of the stabilished GDA only U Uncertain	•	м тs] .]	CR MM	0	GB * E: * E:	stablishe stablishe	d GDA 8 d GDA 0	& Accura Only	ite AHD	F Found N Not Fo D Destro S Subsid U Uncer	tatus * Intact bund byed dence Are tain

SCIMS SURVEY MARK REPORT AS AT: 29-JUN-2011

Wednesday 29 June 2011 15:18:00

Established GDA coordinates are assigned accuracy class 2A, A, B or C

Accurate AHD heights are assigned accuracy class L2A, LA, LB, LC, LD, 2A, A or B

 \bigcirc

NSW Land & Property Management Authority

Page 1 of 2

Mark Number in the

map

APPENDIX F – SURVEY REPORT

SURVEY REPORT

Date: 1 August 2011

Our Ref: 0050028561

Page 1 of 2

PROPERTIES - 1098-1122 PITTWATER ROAD & 1 FRAZER STREET, COLLAROY RE:

LAND at Collaroy in the Local Government Area of Warringah, Parish of Manly Cove, County of Cumberland having frontages to the Pacific Ocean, Pittwater Road, Ramsay Street and Frazer Street being:

- Strata Plan 677
- Strata Plan 1977 Lot 1 & 2 in Deposited Plan 306168
- Strata Plan 61846
- Lots 4, 5 & 8, Section 9 in Deposited Plan 5234 2 Lots A & B in Deposited Plan 404802

Red edging delineates the boundaries of the subject land on the accompanying sketch.

FOLLOWING your instruction we have surveyed the above described land for identification purposes of the grassy bank and sandy beach only, noting that if any additional structure is to be erected on the subject land the boundaries should be marked for that purpose.

IT HAS BEEN FOUND the sandy beach to have encroached upon the landward properties by up to 10.94 metres within the property known as Strata Plan 677. The Mean High Water Mark line was also investigated, and at the time of survey was found to be a minimum distance of 33.9 metres East of the property boundaries under investigation. The position of the Mean High Water Mark is shown on the accompanying sketch.

IN MY OPINION the position of the Mean High Water Mark has the potential to proceed Westward of the most Easterly boundaries of the subject properties during a period of large storm activity due to the position of the grassy bank with respect to the subject properties Eastern boundaries. For any changes to title dimensions to apply however, this process of erosion must occur gradually and imperceptibly as the doctrine of accretion and erosion states within the Coastal Protection Act 1979 No 13.

FURTHER DETAILS are shown on the accompanying sketch, including sufficient information to identify the properties.

Yours faithfully

Aaron Millard Surveyor USQ Student Number: 0050028561

APPENDIX H – NEUTRAL FILES (ELECTRONIC FIELD NOTES)

	THESIS
#VERSION-:	. O NEUTRAL FILE
NOTE	TRANSLATOR LEICA TPS1200 v2 10 JUNE 2005
UNIT	UL=M, UA=S
AMODE	HM=B, VM=Z
EDMTYPE	ET=0, EO=0.0000, EP=0.000,ES=1.000000
NOTE	JOB: THESIS
NOTE	OPERATOR: AM
NOTE	DATE: 31-07-2011 TIME: 12:31
INST	TCRP1205 S/N 222032
SCALE	1.000000
STN	ID=9000, HI=0.000, CO=STN, SET AZIMUTH
XYZ	ID=9000, E=500.000, N=1000.000, H=200.000
NOTE BKB	ID=9999, AZ=0.00000, HA=0.00000
SS	ID=9999, HA= 0.00000, VA= 87.48491, SD= , HT=0.000, CO=RO, EDM=NO EDM Type, 0.004
SS	ID=9001, HA= 43.22495, VA= 90.40431, SD= 70.9146, HT=0.000, CO=STN, EDM=Infrared Dist, 0.034
SS	ID=1000, HA=161.42288, VA= 93.00531, SD= 29.1442, HT=0.000, CO=STN, EDM=Infrared Dist, 0.034
SS	ID=1001, HA= 49.56282, VA= 94.37524, SD= 19.0240, HT=0.000, CO=RM, EDM=Infrared Dist, 0.034
SS	ID=1002, HA= 5.35405, VA= 89.24281, SD= 32.8191, HT=0.000, CO=BLD, EDM=Infrared Dist, 0.034
SS	ID=1003, HA= 0.08573, VA= 87.30174, SD= 40.0264, HT=0.000, CO=BLD, EDM=Infrared Dist, 0.034
SS	ID=1004, HA= 0.08099, VA= 88.16064, SD= 40.0193, HT=0.000, CO=BLD, EDM=Infrared Dist, 0.034
SS	ID=1005, HA=359.59600, VA= 87.52527, SD= , HT=0.000, CO=CHK*RO, EDM=No EDM Type, 0.034
STN	ID=9001, HI=0.000, CO=STN, KNOWN BACKSIGHT
XYZ	ID=9001, E=548.703, N=1051.538, H=199.160
NOTE BKB	ID=9000, AZ=223.22495, HA=223.22495
NOTE XYZ	E=0, N=0, H=0
NOTE	DELTA HZ=-27.16263, HD=0.000 , HT DIFF=0.838
SS	ID=9000, HA=223.22495, VA= 89.19220, SD= 70.9139, HT=0.000, CO=CHK*CHK, EDM=Infrared Dist, 0.034
SS	ID=1006, HA=163.23537, VA= 82.27321, SD= , HT=0.000, CO=RO, EDM=NO EDM Type, 0.034
SS	ID=9002, HA= 37.21109, VA= 90.35124, SD= 77.5108, HT=0.000, CO=STN, EDM=Infrared Dist, 0.034
SS	ID=1007, HA=314.43325, VA= 88.09130, SD= 34.3675, HT=0.000, CO=BLD, EDM=Infrared Dist, 0.034
SS	ID=1008, HA=318.58185, VA= 88.16211, SD= 46.4603, HT=0.000, CO=BLD, EDM=Infrared Dist, 0.034
SS	ID=1009, HA=326.50324, VA= 85.00567, SD= 23.4228, HT=0.000, CO=BLD, EDM=Infrared Dist, 0.034
SS	ID=1010, HA= 21.11053, VA= 96.10235, SD= 10.3423, HT=0.000, CO=DH, EDM=Infrared Dist, 0.034
SS	ID=1011, HA= 2.35498, VA=102.24480, SD= 5.2187, HT=0.000, CO=NAIL, EDM=Infrared Dist, 0.034
SS	ID=1012, HA=321.39081, VA=110.15005, SD= 3.2232, HT=0.000, CO=DH, EDM=Infrared Dist, 0.034
SS	ID=1013, HA= 33.49390, VA= 90.57170, SD= 41.5555, HT=0.000, CO=F, EDM=Infrared Dist, 0.034
SS	ID=1014, HA= 69.38134, VA= 92.04177, SD= 45.2461, HT=0.000, CO=STN, EDM=Infrared Dist, 0.034
SS	ID=1015, HA=163.23534, VA= 82.26272, SD= , HT=0.000, CO=CHK*RO, EDM=NO EDM Type, 0.034
STN	ID=9002, HI=0.000, CO=STN, KNOWN BACKSIGHT
XYZ	ID=9002, E=595.729, N=1113.149, H=198.367
NOTE BKB	ID=9001_ AZ=217.21108, HA=217.21108
NOTE XYZ	E=3, N=7, H=0
NOTE	DELTA HZ=159.36580, HD=0.000 , HT DIFF=0.789
SS	ID=9001, HA=217.21109, VA= 89.24594, SD= 77.5101, HT=0.000, CO=CHK*CHK, EDM=Infrared Dist, 0.034
SS	ID=1016, HA=171.40592, VA= 80.42369, SD= , HT=0.000, CO=RO, EDM=NO_EDM Type, 0.034
SS	ID=1017, HA= 42.21414, VA= 90.22478, SD= 144.6632, HT=0.250, CO=PM, EDM=Infrared Dist, 0.034
SS	ID=9003, HA=333.15478, VA= 88.51553, SD= 47.6347, HT=0.000, CO=STN, EDM=Infrared Dist, 0.034
	Page 1

THESTS TD=1018, HA=37, 13117, VA= 90, 31369, SD= 116, 6455, 1D=1018, HA=282, 11311, VA=191, 732725, SD= 2, 7837, TD=1019, HA=282, 37233, VA= 90, 44287, SD= 2, 7837, TD=1019, HA=282, 37233, VA= 90, 44287, SD= 23, 1346, TD=1021, HA=99, 10007, VA=90, 58122, SD= 31, 5800, TD=1022, HA=98, 264481, VA=93, 54521, SD= 14, 8408, TD=1024, HA=28, 38441, VA=93, 31409, SD= 15, 2044, TD=1027, HA=28, 38441, VA=93, 31409, SD= 30, 8514, TD=1027, HA=33, 50367, VA=91, 35484, SD= 30, 8514, TD=1027, HA=335, 05367, VA=91, 35484, SD= 10, 51, 5684, TD=1027, HA=335, 05367, VA=91, 35484, SD= 10, 51, 5684, TD=1027, HA=353, 05367, VA=91, 35484, SD= 10, 51, 5684, TD=1029, HA=373, 1302, VA=155, 682, H=199, 310 TD=003, HA=355, 15477, HA=133, 15477, TD=1030, HA=155, 15477, VA=91, 35484, SD= 47, 5324, TD=1030, HA=155, 15477, VA=91, 35484, SD= 47, 53484, TD=1030, HA=155, 15477, VA=91, 05024, SD= 47, 6344, TD=1030, HA=155, 15477, VA=91, 05103, SD= 47, 6348, TD=1034, HA=38, 4209, VA=91, 15467, SD= 92, 2140, TD=1034, HA=38, 57527, VA=91, 05103, SD= 41, 5971, TD=1035, HA=306, 45588, VA=10, 53530, SD= 44, 4872, TD=1036, HA=306, 45588, VA=10, 53530, SD= 44, 4872, TD=1037, HA=308, 54209, VA=91, 515467, SD= 2, 2176, TD=1038, HA=322, 12590, VA=91, 51205, SD= 61, 2247, TD=1037, HA=308, 54208, VA=113, 15477, TD=1038, HA=322, 12590, VA=91, 5130, SD= 4, 1257, TD=1038, HA=322, 12590, VA=90, 57426, SD= 31, 5283, TD=1040, HA=32, 34046, VA=80, 54520, SD= 107, 7026, TD=1040, HA=32, 34046, VA=80, 54520, SD= 107, 7026, TD=1040, HA=33, 20466, VA=90, 00044, SD= 108, 3877, TD=1047, HA=30, 54500, VA=90, 31252, SD= 108, 3887, TD=1048, HA=33, 20466, VA=90, 00044, SD= 108, 3887, TD=1049, HA=32, 5369, VA=90, 31252, SD= 108, 3887, TD=1049, HA=32, 54617, VA=90, 00044, SD= 108, 3887, TD=1049, HA=32, 54617, VA=90, 00044, SD= 108, 3887, TD=1049, HA=32, 54660, VA=90, 038125, SD= 108, CO=STN, EDM=Infrared Dist, 0.034 CO=WALL, EDM=Infrared Dist, 0.034 CO=WALL, EDM=Infrared Dist, 0.034 CO=BOLT, EDM=Infrared Dist, 0.034 CO=WALL, EDM=Infrared Dist, 0.034 $\begin{array}{l} HT{=}0.000,\\ HT{=}0.250,\\ HT{=}0.000,\\ HT{=}0.250,\\ HT{=}0.000,\\ \end{array}$ HT=0.000, CO=CHK*CHK, EDM=Infrared Dist, 0.034
 HT=0.250, CO=BM, EDM=Infrared Dist, 0.034
 HT=0.250, CO=F, EDM=Infrared Dist, 0.034
 HT=0.000, CO=F, EDM=Infrared Dist, 0.023
 HT=1.300, CO=SH, EDM=Infrared Dist, 0.023

Page 2

					THESIS				
SS	ID=1105.	HA= 12.03564.	VA= 91.48268.	SD=	86.0595.	HT=1.300,	CO=SH.	EDM=Infrared Dist, 0.023	
SS	ID=1106,	HA= 10.07487,	VA= 92.11398,	SD=	87.1195.	HT=1.300,	CO=SH,	EDM=Infrared Dist, 0.023	
55	ID=1107.	HA= 7.50478,	VA= 92.34375.	SD=	88.3626.	HT=1.300,	CO=SH,	EDM=Infrared Dist, 0.023	
SS	ID=1108,	HA= 5.22284,	VA= 92.54328.	SD=	89.7016.	HT=1.300,	CO=SH.	EDM=Infrared Dist, 0.023	
SS	ID=1109.	HA= 2.36220,	VA= 93.13035.	SD=	91.4167.	HT=1.300,	CO=SH.	EDM=Infrared Dist, 0.023	
SS	ID=1110.	HA=357.54036.	VA= 93.40101.	SD=	78.7165.	HT=1.300.	CO=SH.	EDM=Infrared Dist, 0.023	
SS	ID=1111.	HA= 1,43097.	VA= 93.12127.	SD=	74.4385.	HT=1.300.	CO=SH.	EDM=Infrared Dist, 0.023	
SS	ID=1112.	HA= 5,23534.	VA= 92.38196.	SD=	71.4885.	HT=1.300.	CO=SH.	EDM=Infrared Dist, 0.023	
SS	ID=1113.	HA= 8,30333.	VA= 92.13190.	SD=	69.6014.	HT=1.300.	CO=SH.	EDM=Infrared Dist, 0.023	
SS	TD=1114	HA= 10,49379.	VA= 92.14038.	SD=	68,2285.	HT=1.300.	CO=SH.	EDM=Infrared Dist, 0.023	
SS	TD=1115.	HA= 12,23307.	VA= 92.11044.	SD=	67.3734.	HT=1.300.	CO=SH.	EDM=Infrared Dist, 0.023	
SS	TD=1116	HA= 14.47245	VA= 91 46482	SD=	66.0575	HT=1.300	CO=SH	EDM=Infrared Dist 0.023	
SS	TD=1117	HA= 17,54219	VA= 91.45168	SD=	64.5464	HT=1.300.	CO=SH	EDM=Infrared Dist, 0.023	
SS	TD=1118	HA= 21.57582	VA= 91.31307	SD=	63. 3304	HT=1.300	CO=SH	EDM=Infrared Dist, 0.023	
SS	TD-1119	HA- 26 20536	VA- 91 19016	SD-	62 0694	HT-1 300	CO-SH	EDM-Infrared Dist 0.023	
SS	TD-1120	HA- 29 04091	VA- 90 48123	SD-	61 7064	HT-1 300	CO-SH	EDM-Infrared Dist 0.023	
SS	TD-1121	HA- 31 04499	VA- 90 19161	SD-	61 2014	HT-1 300	CO-SH	EDM-Infrared Dist 0.023	
55	TD-1122	HA- 33 10185	VA- 90 04599	SD-	60 8334	HT-1 300	CO-SH	EDM-Infrared Dist 0.023	
55	TD-1122,	HA- 36 28060	VA- 89 57401	SD-	60 4094	HT-1 300	CO-SH	EDM-Infrared Dist, 0.023	
SS	TD-1124	HA- 40 05007	VA- 80 45036	50-	50 7524	HT-1 300	CO-SH,	EDM-Infrared Dist, 0.023	
SS	TD-1125	HA- 41 08462	VA- 80 35080	SD-	59 5693	HT-1 300	CO-SH	EDM-Infrared Dist, 0.023	
55	TD=1126	HA- 44 41467	VA= 89 49274	SD-	59 1254	HT-1 300	CO-SH	EDM-Infrared Dist 0.023	
22	TD=1127	HA- 44 47434	VA= 89 38190	SD-	41 2023	HT-1 300	CO-SH	EDM-Infrared Dist 0.023	
SS	TD=1128	HA= 39 08445	VA = 89 34027	SD=	41 7703	HT=1 300	CO=SH	EDM=Infrared Dist 0.023	
SS	TD=1129	HA= 36 31109	VA= 89 35267	SD=	41 6113	HT=1 300	CO=SH	EDM=Infrared Dist 0.023	
55	10-1129,	HA- 20 50521	VA= 00.02402	50-	41 7092	HT-1 200	CO-SH,	EDM-Infrared Dist, 0.023	
SS	TD-1121	HA- 25 16522	VA- 01 12105	ED-	42 4801	HT-1 200	CO-SH,	EDM-Infrared Dist, 0.023	
CC .	TD-1122	HA- 21 24261	VA- 01 57560	50-	42 0442	HT-1 200	CO-SH,	EDM-Infrared Dist, 0.023	
33	TD-1132,	HA- 14 15282	VA- 02 10580	50-	42. 3443,	HT-1 300,	CO-SH,	EDM-Infrared Dist, 0.023	
55	TD-1134	HA= 14.13302,	VA= 92.10369,	SD-	47 0200	HT-1 300,	CO-SH	EDM-Infrared Dist, 0.023	
55	TD-1134,	HA= 7.333333,	VA= 02 51337	SD-	48 6588	HT-1 300,	CO-SH,	EDM-Infrared Dist, 0.023	
55	TD=1135,	HA-358 48403	VA= 92.91337,	SD-	51 0130	HT-1 300,	CO-SH,	EDM-Infrared Dist, 0.023	
55	TD-1137	HA-353 37207	VA= 93.34090	SD=	54 2074	HT-1 300,	CO-SH,	EDM-Infrared Dist, 0.023	
SS	TD-1138	HA-349 20431	VA= 94 08067	SD-	57 8834	HT-1 300	CO-SH	EDM-Infrared Dist, 0.023	
55	TD-1130,	HA-345 59502	VA- 94 33190	SD-	61 2174	HT-1 300,	CO-SH,	EDM-Infrared Dist, 0.023	
55	TD-1140	HA-334 02105	VA- 05 04220	50-	52 2021	HT-1 300,	CO-SH,	EDM-Infrared Dist, 0.023	
55	TD-1140,	HA-776 08001	VA- 04 27022	50-	46 0202	HT-1 200	CO-CH	EDM-Infrared Dist, 0.023	
55	TD-1141,	HA-227 50029	VA= 94.37022,	50= 60-	40.9302,	HT-1 200,	CO-5H,	EDM-Infrared Dist, 0.023	
33	TD-1142,	HA-337.30030,	VA- 02 50468	50-	41 0643	HT-1 300,	CO-SH,	EDM-Infrared Dist, 0.023	
55	TD-1143,	HA-341 53555	VA- 93.33400,	50-	28 7636	HT-1 300,	CO-5H,	EDM-Infrared Dist, 0.023	
55	10-1144,	HA-244 34214	VA- 04 31123	50-	26 0116	HT-1.300,	co-cu	EDM-Infrared Dist, 0.023	
55	10=1145,	HA=344.24314,	VA= 94.21152,	50=	24 2162	HT=1.300,	CO-SH,	EDM-Infrared Dist, 0.023	
SS	TD-1140,	HA-346 40470	VA- 04 08040	SD-	33 4725	HT-1 300,	CO-SH	EDM-Infrared Dist, 0.023	
55	10-1149	UA-247 20200	VA- 04 14111	SD-	22 0102	HT-1 200,	co-cu	FOW Infrared Dist, 0.023	
33	10-1140	HA-247 56207	VA= 94.14111,	50=	32.9103,	HT-1 200,	CO-CU	EDM-Infrared Dist, 0.023	
33	10=1149,	HA=347.30397,	VA= 94.03174,	50=	20 7261	HT-1 300,	CO-CH	EDM-Infrared Dist, 0.023	
55	10=1150,	HA-351.393/3,	VA= 94.10223,	50=	29.7201,	HT=1.300,	CO-CII	FDW Infraned Dist, 0.023	
22	10=1151,	HA=330.29105,	VA= 94.01235,	20=	20.0095,	HI=1.300,	CU=SH,	EDM=Intrared Disc, 0.023	

Page 4

THESIS 119.3698, 120.3506, 121.2397, 107.4475, 107.4475, 105.44556, 103.0296, 103.0296, 103.0296, 102.0086, 99.9806, 99.9806, 99.9806, 99.9806, 99.9806, 99.9806, 99.8456, 97.4926, 97.4526, 97.4526, 97.4526, 97.4526, 97.4526, 97.4526, 97.4526, 97.4526, 95.8266, 95.8266, 95.8266, 95.8266, 95.8356, 89.13465, 79.6875, 79.6875, 79.8875, 79.9865, 79.9865, 79.9865, 79.9865, 79.9865, 79.9865, 79.9865, 79.9865, 79.9865, 79.9865, 79.9865, 79.9865, 79.9865, 79.9865, 79.9865, 79.9865, 79.9865, 79.9865, 79.9865, 79.9455, 80.2685, 80.4955, 81.1915, 82.2184, 82.9455, 83.5295, 84.4275, 84.4275, 85.3755,

Page 3

 $\begin{array}{c} \mathrm{HT}_{-1,300}, \ \mathrm{Co}_{-SH}, \\ \mathrm{HT}_{-1,300}, \ \mathrm{Co}_{-$

EDM-Infrared Dist, EDM-Infrared

 $\begin{array}{c} 0, 023\\ 0, 00\\ 0, 0, 03\\ 0, 0, 0, 03\\ 0$

ID=1152, HA= 2,25012, ID=1152, HA= 10,01468, ID=1155, HA= 10,01468, ID=1155, HA= 20,21575, ID=1156, HA= 28,11535, ID=1157, HA= 29,27576, ID=1158, HA= 44,0495, ID=1160, HA= 42,22440, ID=1160, HA= 42,22440, ID=1161, HA= 53,53311, ID=1166, HA= 348,56440, ID=1166, HA=348,56440, ID=1166, HA=348,56440, ID=1166, HA=348,56440, ID=1166, HA=348,56440, ID=1170, HA=325,3451, ID=1166, HA=348,56440, ID=1170, HA=316,09422, ID=1171, HA=310,00470, ID=1172, HA=316,00472, ID=1174, HA=21,38439, ID=1175, HA=316,02154, ID=1175, HA=316,02154, ID=1176, HA=292,0218,2594, ID=1178, HA=292,0218,2594, ID=1178, HA=292,0218,21414, ID=1182, HA=292,0218,21414, ID=1182, HA=292,0218,21414, ID=1184, HA=292,31414, ID=1184, HA=292,31414, ID=1184, HA=292,31414, ID=1184, HA=229,21414, ID=1184, HA=229,21414, ID=1184, HA=229,21414, ID=1184, HA=229,21414, ID=1184, HA=229,21414, ID=1184, HA=229,21414, ID=1184, HA=229,21414, ID=1184, HA=229,21414, ID=1184, HA=229,21414, ID=1184, HA=229,2144, ID=1184, HA=224,214,214, ID=1184, HA=224,214,214, ID=1184, HA=224,214,214, ID=1184, HA=224,214,214, ID=1184, HA=224,214,214, ID=1184, HA=224,214,214, ID=1184, HA=224,214,214, ID=1184, HA=224,214,214,214, ID=1184, HA=224,214,214,214,214,214,214,214,214,214,	 VA= 94, 08260, SD= VA= 92, 48337, SD= VA= 92, 108014, SD= VA= 90, 10713, SD= VA= 89, 23366, SD= VA= 90, 10218, SD= VA= 99, 23274, SD= VA= 99, 23374, SD= VA= 99, 24437, SD= VA= 99, 24437, SD= VA= 99, 244437, SD= VA= 99, 244437, SD= VA= 99, 244437, SD= VA= 99, 244437, SD= VA= 99, 22344, SD= VA= 99, 22344, SD= VA= 95, 10216, SD= VA= 95, 10216, SD= VA= 95, 10456, SD= VA= 95, 10456, SD= VA= 95, 104574, SD= VA= 95, 104574, SD= VA= 95, 10458, SD= VA= 94, 57444, SD= VA= 94, 16153, SD= VA= 94, 45067, SD= VA= 96, 00422, SD= VA= 91, 33126, SD= VA= 94, 10500, SD= VA= 91, 33126, SD= VA= 91, 33126, SD= VA= 91, 10442, SD= VA= 91, 100442, SD= VA= 92, 43537, SD= 	THESIS 24.4592, HT=1.300, 22.9496, HT=1.300, 22.9496, HT=1.300, 20.9526, HT=1.300, 20.9522, HT=1.300, 20.9522, HT=1.300, 20.9522, HT=1.300, 7.6916, HT=1.300, 7.6916, HT=1.300, 7.6916, HT=1.300, 16.2642, HT=1.300, 16.2642, HT=1.300, 16.2642, HT=1.300, 16.331, HT=1.300, 17.6916, HT=1.300, 17.7848, HT=1.300, 11.6926, HT=1.300, 11.6927, HT=1.300, 11.6102, H	C0=SH, EDM C0=SH, EDM	Infrared Dist. 0.023 Infrared Dist. 0.023
$\begin{array}{c} \text{ID}=1199, \ \text{HA}=247, \ 37119, \\ \text{ID}=1200, \ \text{HA}=255, \ 43166, \\ \text{ID}=1201, \ \text{HA}=262, \ 30550, \\ \text{ID}=1202, \ \text{HA}=263, \ 30550, \\ \text{ID}=1203, \ \text{HA}=272, \ 23946, \\ \text{ID}=1204, \ \text{HA}=275, \ 49004, \\ \text{ID}=1205, \ \text{HA}=278, \ 32435, \\ \text{ID}=1207, \ \text{HA}=282, \ 0039, \\ \text{ID}=1208, \ \text{HA}=284, \ 01347, \\ \text{ID}=1209, \ \text{HA}=286, \ 01554, \\ \text{ID}=1201, \ \text{HA}=274, \ 49558, \\ \text{ID}=1210, \ \text{HA}=284, \ 01354, \\ \text{ID}=1211, \ \text{HA}=274, \ 49558, \\ \text{ID}=1212, \ \text{HA}=263, \ 20127, \\ \text{ID}=1213, \ \text{HA}=265, \ 20127, \\ \text{ID}=1214, \ \text{HA}=264, \ 43362, \\ \text{ID}=1214, \ \text{HA}=264, \ 43268, \\ \text{ID}=1222, \ \text{HA}=235, \ 2214, \\ \text{ID}=1216, \ \text{HA}=266, \ 31551, \\ \text{ID}=1221, \ \text{HA}=236, \ 43558, \\ \text{ID}=1222, \ \text{HA}=233, \ 52220, \\ \text{ID}=1222, \ \text{HA}=233, \ 52220, \\ \text{ID}=1222, \ \text{HA}=233, \ 5220, \\ \text{ID}=1224, \ \text{HA}=232, \ 43558, \\ \text{ID}=1222, \ \text{HA}=232, \ 43558, \\ \text{ID}=1222, \ \text{HA}=232, \ 43558, \\ \text{ID}=1223, \ \text{HA}=226, \ 433402, \\ \text{ID}=1223, \ \text{HA}=226, \ 433402, \\ \text{ID}=1223, \ \text{HA}=226, \ 433402, \\ \text{ID}=1223, \ \text{HA}=223, \ 431315, \\ \text{ID}=1224, \ \text{HA}=231, \ 4267, \\ \text{ID}=1234, \ \text{HA}=235, \ 43568, \\ \text{ID}=1234, \ \text{HA}=235, \ 23154, \\ \text{ID}=1244, \ \text{HA}=235, \ 23154, \\ \text{ID}=1244, \ \text{HA}=257, \ 23436, \\ \text{ID}=1244, \ \text{HA}=257, \ 23436, \\ \text{ID}=1244, \ \text{HA}=254, \ 34560, \\ \text{ID}=1244, \ \text{HA}=255, \ 23456, \\ \text{ID}=1244, \ \text{HA}=255, \ 23456, \\ \ \text{ID}=1244, \ \text{HA}=254, \ 34560, \\ \ \text$	 VA= 93, 45554, SD= VA= 93, 45566, SD= VA= 93, 45566, SD= VA= 93, 25368, SD= VA= 92, 58259, SD= VA= 92, 54259, SD= VA= 93, 20197, SD= VA= 94, 16017, SD= VA= 94, 16017, SD= VA= 94, 1613, SD= VA= 94, 1614, SD= VA= 94, 1614, SD= VA= 94, 1614, SD= VA= 94, 1614, SD= VA= 94, 25363, SD= VA= 94, 2530, SD= VA= 94, 21043, SD= VA= 94, 21044, SD= VA= 92, 12061, SD= VA= 92, 12061, SD= VA= 92, 12061, SD= VA= 92, 12064, SD= VA= 92, 12064, SD= VA= 90, 53149, SD= VA= 80, 54556, SD= VA= 80, 21465, SD= VA= 90, 23814, SD= VA= 90, 23846, SD= VA= 90, 12150, SD= VA= 91, 12150, SD= VA= 91, 12150, SD= VA= 91, 12150, SD= VA= 91, 13150, SD= VA= 92, 13125, SD= VA= 92, 13125, SD= VA= 92, 13135, SD= 	THES15 THES15 24.1802, HT=1.300, 26.6502, HT=1.300, 38.9381, HT=1.300, 34.6904, HT=1.300, 34.6904, HT=1.300, 40.4759, HT=1.300, 40.4759, HT=1.300, 45.8823, HT=1.300, 53.3429, HT=1.300, 56.9384, HT=1.300, 56.9384, HT=1.300, 56.9384, HT=1.300, 56.9384, HT=1.300, 56.9384, HT=1.300, 56.9384, HT=1.300, 56.9384, HT=1.300, 51.8204, HT=1.300, 51.8204, HT=1.300, 51.9204, HT=1.300, 51.9374, HT=1.300, 51.9374, HT=1.300, 51.9374, HT=1.300, 51.9374, HT=1.300, 51.9374, HT=1.300, 51.9374, HT=1.600, 39.8353, HT=1.600, 39.9353, HT=1.600, 39.24534, HT=1.600, 51.8444, HT=2.150, 55.8584, HT=2.150, 55.8584, HT=2.150, 55.8584, HT=2.150, 55.8584, HT=2.150, 55.87244, HT=2.150, 55.2544, HT=2.150, 57.2784, HT=2.150, 57.2784, HT=2.150, 57.2645,	C0=SH, EDM C0=SH, EDM	Infrared Dist. 0.023 Infrared Dist. 0.023

Page 6
	THESTS
SS	TD-1246 HA-250 09409 VA- 91 48404 SD- 90 1657 HT-2 150 CO-SH EDM-TDFrared Dist 0 023
CC	10-127 $10-247$ $10-247$ 1230 $10-1245$ $10-50$ $10-100$ $10-100$ $10-50$
55	10-1249, $10-246$, 10220 , $10-2167$, $30-$, $60-$, 77522 , $11-2-150$, $10-$ 50 = 10 = 10 = 10 = 10 = 10 = 10 = 10 =
55	ID=1248, HA=246, 19339, VA= 91.07250, SD= 87.5335, H1=2.150, CO=SH, EDM=INTFARED DIST, 0.023
55	ID=1249, HA=243.20135, VA= 90.59429, SD= 85.3315, HT=2.150, CO=SH, EDM=Infrared Dist, 0.023
SS	ID=1250, HA=240.47524, VA= 90.55025, SD= 83.8015, HT=2.150, CO=SH, EDM=Infrared Dist, 0.023
SS	ID=1251. HA=236.31284. VA= 90.57167. SD= 81.9505. HT=2.150. CO=SH. EDM=Infrared Dist. 0.023
SS	ID=1252, HA=232,56132, VA= 90,53565, SD= 80,6185, HT=2,150, CO=SH, EDM=Infrared Dist. 0.023
SS	TD=1253, HA=230, 47270, VA= 90, 46418, SD= 79, 9165, HT=2, 150, CO=SH, EDM=Infrared Dist. 0,023
SS	TD=1254 Ha=228 24269 VA= 90 36169 SD= 79 3675 HT=2 150 CO=SH EDM=TDfrared Dist 0.023
55	TD-1255 HA-227 03555 VA- 90 32529 SD- 78 8395 HT-2 150 CO-SH EDM-Thfrared Dist 0 023
55	TO 1256 UN 227 00251, WA 90 22104 CD 70 2445 UT 2 150 CO 50 CD TO TO 100 CO 51 0 0025
55	ID=1230, HA=223.20304, VA= 09.37494, SD= 78.3443, H1=2.130, CO=SH, EDM=INTFAFED DISC, 0.023
55	ID=1257, HA=153.15383, VA= 91.08051, SD= 47.6348, HT=0.000, CO=CHK, EDM=NO EDM Type, 0.034
STN	ID=9004, HI=0.000, CO=STN, KNOWN BACKSIGHT
XYZ	ID=9004, E=666,282, N=1206,032, H=197,295
NOTE BKB	ID=9002, AZ=217.13116, HA=217.13116
NOTE XYZ	E=8, N=8, H=7
NOTE	DELTA HZ=119,41358, HD=0.001, HT DIFF=-0.208
SS	TD=9002, HA=217, 13117, VA= 90,06097, SD= 116,6394, HT=0,000, CO=STN, EDM=Infrared Dist, 0.034
SS	TD-1258 HA-111 54230 VA- 90 51071 SD- 32 0821 HT-0 000 CO-PM EDM-Tofrared Dist 0 034
CC.	TD-1250 HA-217 12007 VA- 00 06065 SD- 116 6207 HT-0.000, CO-CH, EDM-ITTERED DISC, 0.024
55	10=1233, HA=217.13037, WA= 30.00003, SD= 110.0397, HI=0.000, CO=CHK, EDM=INITATED DISC, 0.034

Page 7

	THESISI
#VERSION-]	LO NEUTRAL FILE
NOTE	TRANSLATOR LEICA TPS1200 v2 10 JUNE 2005
UNIT	UL=M, UA=S
AMODE	HM=B, VM=Z
EDMTYPE	ET=0, E0=0.0000, EP=0.000,ES=1.000000
NOTE	JOB: THESIS1
NOTE	OPERATOR:
NOTE	DATE: 13-08-2011 TIME: 13:18
INST	TCRP1205 S/N 223005
SCALE	1.000000
STN	ID=1038, HI=1,505, CO=STN, KNOWN BACKSIGHT
XYZ	TD=1038, E=615,293, N=842,281, H=4,546
NOTE BKB	TD=1031, AZ=267,09501, HA=267,09501
NOTE XYZ	F=8 N=5 H=9
NOTE	DELTA HZ=-24, 23432, HD=0,001, HT DTEE=-0,145
SS	TD-1031 HA-267 09502 VA- 92 33264 SD- 36 3131 HT-0 030 CO-CHK*CHK EDM-Therard Dist 0 034
SS	TD-9100 Ha- 24 10443 VA- 91 54143 SD- 49 9543 HT-1 560 CO-STN EDM-Infrared Dist 0.034
SS	$TD = 1031$ $\mu A = 267$ 00532 $\nu A = 92$ 33252 $SD = 36$ 3133 $\mu T = 0.030$ $CD = CH + CH + TD + T$
STN	TD-010 UT-1 560 CO-511 KNOW BACKSTOT
XV7	$T_{0} = 0.00$, $T_{1} = 0.50$, $C_{0} = 0.7$, $C_{0} = 0.21$
NOTE DED	TD-1028 47-204 10442 UA-204 10442
NOTE DAD	E_3 N=0 U=6
NOTE ALL	E-3, N=0, H=0
NOTE	DELIA RE=171.15372, RD=-0.000, RI DIFF=1.715 TD-1028 UA-204 10442 VA - 98 05422 CD- 40 0552 UT-1 505 CD-CURRCUR FOM-Thermad Dict 0.024
33	10=1036, HA=204,10443, VA= 86.03432, SD= 49.3352, HI=1.303, CO=CHK*CHK, EU=INITATED DISt, 0.034
22	10-2000, RA=176.45200, VA= 69.14070, 50= 144.9147, R1=1.300, CO=015ARD, EDM=1117aFed Disc, 0.025
55	1D=2001, HA=1/6.35390, VA= 89.15063, SD= 143.5697, H1=1.300, CO=01SAND, EDM=INTRAPED DIST, 0.023
55	1D=2002, HA=1/6.34026, VA= 89.10317, SU= 142.3000, HI=1.300, CO=0ISAND, EDM=INTRAPED DISC, 0.023
55	ID=2003, HA=176.42265, VA= 89.17439, SD= 138.6776, HI=1.300, CO=0ISAND, EDM=INTFARED DIST, 0.023
SS	ID=2004, HA=177.12040, VA= 89.17228, SD= 132.2785, HT=1.300, CO=0ISAND, EDM=INTRAFED DIST, 0.023
55	1D=2005, HA=1/7, 31037, VA= 89,1/593, SD= 130,3/35, H1=1.300, CO=01SAND, EDM=1nTrared Dist, 0.023
55	ID=2006, HA=177.40533, VA= 89.17195, SD= 129.9345, HT=1.300, CO=0ISAND, EDM=Intrared Dist, 0.023
55	ID=2007, HA=178.14317, VA= 89.16581, SD= 129.3755, HT=1.300, CO=0ISAND, EDM=Intrared Dist, 0.023
SS	ID=2008, HA=178.31372, VA= 89.18062, SD= 127.6755, HT=1.300, CO=0ISAND, EDM=Intrared Dist, 0.023
55	ID=2009, HA=1/8.39008, VA= 89.18138, SD= 126.9595, HT=1.300, CO=0ISAND, EDM=INTRAFED DIST, 0.023
55	ID=2010, HA=1/9.03195, VA= 89.19563, SD= 126.0425, HT=1.300, CO=01SAND, EDM=Intrared Dist, 0.023
55	ID=2011, HA=1/9.26490, VA= 89.20052, SD= 125.8195, HT=1.300, CO=0ISAND, EDM=INTRAFED DIST, 0.023
55	ID=2012, HA=179.33265, VA= 89.20163, SD= 124.9075, HT=1.300, CO=01SAND, EDM=Intrared Dist, 0.023
55	ID=2013, HA=180.12481, VA= 89.21415, SD= 123.7234, HT=1.300, CO=01SAND, EDM=Infrared Dist, 0.023
55	ID=2014, HA=180.38225, VA= 89.20488, SD= 121.9604, HT=1.300, CO=01SAND, EDM=Infrared Dist, 0.023
55	ID=2015, HA=181.47325, VA= 89.22400, SD= 120.3614, HT=1.300, CO=01SAND, EDM=Infrared Dist, 0.023
SS	ID=2016, HA=182.25512, VA= 89.19042, SD= 118.2654, HT=1.300, CO=01SAND, EDM=Intrared Dist, 0.023
SS	ID=2017, HA=183.16540, VA= 89.20246, SD= 117.7564, HT=1.300, CO=01SAND, EDM=Infrared Dist, 0.023
55	ID=2018, HA=183.22114, VA= 89.18084, SD= 116.8533, HT=1.300, CO=0ISAND, EDM=Infrared Dist, 0.023
SS	ID=2019, HA=183.52194, VA= 89.15395, SD= 115.9684, HT=1.300, CO=01SAND, EDM=Infrared Dist, 0.023
SS	ID=2020, HA=183.55320, VA= 89.15433, SD= 115.0733, HT=1.300, CO=01SAND, EDM=Infrared Dist, 0.023
SS	ID=2021, HA=183.45354, VA= 89.11533, SD= 113.6533, HT=1.300, CO=01SAND, EDM=Infrared Dist, 0.023
SS	ID=2022, HA=183.54228, VA= 89.04431, SD= 111.2053, HT=1.300, CO=01SAND, EDM=Infrared Dist, 0.023

Page 1

					THEFTEL					
TO 2022	114 184 07207		00 00000		100 0622	UT 1 200	CO. 01CAND	TOU Infrand	niet.	0 033
10=2023,	HA=184.0/30/,	VA=	89.02030,	SD=	109.9033,	HI=1.300,	CO=DISAND,	EDM=Infrared I	Dist,	0.023
10=2024,	HA=183.35339,	VA=	88.57070,	SD=	108.8223,	HI=1.300,	CO=UISAND,	EDM=Infrared I	Dist,	0.023
10=2025,	HA=183.34430,	VA=	88.57020,	SD=	107.8953,	HI=1.300,	CO=UISAND,	EDM=Infrared I	Dist,	0.023
ID=2026,	HA=183.53301,	VA=	88.533327,	SD=	105.5223,	HI=1.300,	CO=UISAND,	EDM=Infrared I	Dist,	0.023
10=2027,	HA=104.22004,	VA=	88.50009,	SU=	105.0072,	HT=1.300,	CO=DISAND,	EDM=Infrared I	Dist,	0.023
10=2028,	HA=104.100004	VA=	88.50050,	SD=	105.2823,	HT=1.300,	CO=UISAND,	EDM=Infrared I	Dist,	0.023
10=2029,	HA=104.00524,	VA=	00.00027,	SU	103.0012,	HT=1.300,	CO=DISAND,	EDM=Infrared I	Dist,	0.023
10=2030,	HA=103.32301,	VA=	00.51200,	50=	104.4955,	HT=1.300,	CO=OISAND,	EDM=Intrared I	Dist,	0.023
10=2031,	HA=183.58548,	VA=	88.50100,	SD=	104.0952,	HI=1.300,	CO=UISAND,	EDM=Infrared I	Dist,	0.023
10=2032,	HA=184.1/125,	VA=	88.40590,	SD=	103.5/43,	HT=1.300,	CO=DISAND,	EDM=Infrared I	Dist,	0.023
ID=2033,	HA=184.03558,	VA=	88.4/5/8,	SD=	103.2452,	HT=1.300,	CO=UISAND,	EDM=Infrared I	Dist,	0.023
10=2034,	HA=184.02090,	VA=	88.48045,	SD=	101.8492,	HT=1.300,	CO=UISAND,	EDM=Intrared I	Dist,	0.023
10=2035,	HA=184.24318,	VA=	88.44140,	SD=	99.8292,	HI=1.300,	CO=UISAND,	EDM=Infrared I	Dist,	0.023
ID=2036,	HA=184.29506,	VA=	88.43275,	SD=	98.8562,	HT=1.300,	CO=UISAND,	EDM=Infrared I	Dist,	0.023
10=2037,	HA=184.30444,	VA=	88.43213,	SD=	98.2402,	HT=1.300,	CO=UISAND,	EDM=Infrared I	Dist,	0.023
1D=2038,	HA=185.08505,	VA=	88.37369,	SD=	97.2532,	HT=1.300,	CO=UISAND,	EDM=Infrared I	Dist,	0.023
1D=2039,	HA=184.56082,	VA=	88.40034,	SD=	95.8031,	HT=1.300,	CO=UISAND,	EDM=Intrared I	Dist,	0.023
10=2040,	HA=185.10004,	VA=	88.3/345,	SD=	94.7611,	H1=1.300,	CO=UISAND,	EDM=Infrared I	Dist,	0.023
10=2041,	HA=185.21065,	VA=	88.34320,	SD=	93.4931,	HI=1.300,	CO=UISAND,	EDM=Infrared I	Dist,	0.023
10=2042,	HA=184.540/3,	VA=	88.38196,	SD=	93.2/31,	HI=1.300,	CO=UISAND,	EDM=Infrared I	Dist,	0.023
10=2043,	HA=184.49485,	VA=	88.39280,	SD=	93.0021,	HI=1.300,	CO=UISAND,	EDM=Infrared I	Dist,	0.023
1D=2044,	HA=184.52489,	VA=	88.39588,	SD=	91.9391,	HT=1.300,	CO=01SAND,	EDM=Intrared I	Dist,	0.023
1D=2045,	HA=185.08457,	VA=	88.38590,	SDm	91.5541,	HT=1.300,	CO=01SAND,	EDM=Infrared I	Dist,	0.023
1D=2046,	HA=186.1/034,	VA=	88.30522,	SD=	91.6/51,	HI=1.300,	CO=UISAND,	EDM=Infrared I	Dist,	0.023
ID=2047,	HA=186.11440,	VA=	88.32360,	SD=	90.6521,	HT=1.300,	CO=01SAND,	EDM=Infrared I	Dist,	0.023
ID=2048,	HA=185.59034,	VA=	88.34311,	SD=	90.3811,	HT=1.300,	CO=01SAND,	EDM=Infrared	Dist,	0.023
ID=2049,	HA=185.39006,	VA=	88.37181,	SD=	89.1561,	HT=1.300,	CO=01SAND,	EDM=Intrared I	Dist,	0.023
ID=2050,	HA=185.50379,	VA=	88.36214,	SD=	88.2631,	HT=1.300,	CO=01SAND,	EDM=Infrared	Dist,	0.023
ID=2051,	HA=186.07532,	VA=	88.36175,	SD=	86.1000,	HT=1.300,	CO=01SAND,	EDM=Infrared	Dist,	0.023
ID=2052,	HA=186.18354,	VA=	88.34530,	SD=	83.9600,	HT=1.300,	CO=01SAND,	EDM=Infrared	Dist,	0.023
ID=2053,	HA=186.21366,	VA=	88.34365,	SD=	82.7020,	HT=1.300,	CO=01SAND,	EDM=Infrared I	Dist,	0.023
ID=2054,	HA=187.16100,	VA=	88.30421,	SD=	79.5730,	HT=1.300,	CO=01SAND,	EDM=Infrared I	Dist,	0.023
ID=2055,	HA=187.25404,	VA=	88.30189,	SD=	78.3219,	HT=1.300,	CO=01SAND,	EDM=Infrared I	Dist,	0.023
ID=2056,	HA=188.25303,	VA=	88.28430,	SD=	74.7419,	HT=1.300,	CO=01SAND,	EDM=Infrared I	Dist,	0.023
ID=2057,	HA=189.22010,	VA=	88.24056,	SD=	72.4529,	HT=1.300,	CO=01SAND,	EDM=Infrared I	Dist,	0.023
ID=2058,	HA=189.42169,	VA=	88.24041,	SD=	70.8869,	HT=1.300,	CO=01SAND,	EDM=Infrared I	Dist,	0.023
ID=2059,	HA=190.14517,	VA=	88.21315,	SD=	69.7649,	HT=1.300,	CO=01SAND,	EDM=Infrared I	Dist,	0.023
ID=2060,	HA=190.32467,	VA=	88.22360,	SD=	68.1928,	HT=1.300,	CO=01SAND,	EDM=Infrared	Dist,	0.023
ID=2061,	HA=190.34518,	VA=	88.23225,	SD=	68.1008,	HT=1.300,	CO=01SAND,	EDM=Infrared I	Dist,	0.023
ID=2062,	HA=191.04557,	VA=	88.24254,	SD=	66.8938,	HT=1.300,	CO=01SAND,	EDM=Infrared	Dist,	0.023
ID=2063,	HA=191.37333,	VA=	88.25410,	SD=	65.8038,	HT=1.300,	CO=UISAND,	EDM=Infrared	Dist,	0.023
ID=2064,	HA=191.46269,	VA=	88.35171,	SD=	64.3708,	HT=1.300,	CO=01SAND,	EDM=Infrared I	Dist,	0.023
ID=2065,	HA=192.55502,	VA=	88.45052,	SD=	62.3728,	HT=1.300,	CO=01SAND,	EDM=Infrared I	Dist,	0.023
ID=2066,	HA=193.59158,	VA=	88.54281,	SD=	61.0628,	HT=1.300,	CO=01SAND,	EDM=Infrared	Dist,	0.023
ID=2067,	HA=194.58337,	VA=	88.55009,	SD=	60.6078,	HT=1.300,	CO=01SAND,	EDM=Infrared I	Dist,	0.023
ID=2068,	HA=195.07161,	VA=	88.55143,	SD=	60.2088,	HT=1.300,	CO=01SAND,	EDM=Infrared	Dist,	0.023
ID=2069,	HA=194.54030,	VA=	89.00366,	SD=	59.7227,	HT=1.300,	CO=01SAND,	EDM=Infrared	Dist,	0.023

Page 2

TD=2070, HA=195.25290, VA= 89.11543, SD= 58.907, HT=1.300, C0=015AND, EDM=Infrared Dist, 0.023 ID=2072, HA=196.03148, VA= 89.11545, SD= 58.8007, HT=1.300, C0=015AND, EDM=Infrared Dist, 0.023 ID=2073, HA=196.0217, VA= 89.1521, SD= 58.2987, HT=1.300, C0=015AND, EDM=Infrared Dist, 0.023 ID=2074, HA=196.4821, VA= 89.24286, SD= 57.8277, HT=1.300, C0=015AND, EDM=Infrared Dist, 0.023 ID=2075, HA=198.55210, VA= 89.26268, SD= 55.197, HT=1.300, C0=015AND, EDM=Infrared Dist, 0.023 ID=2077, HA=199.59143, VA= 89.26268, SD= 55.197, HT=1.300, C0=015AND, EDM=Infrared Dist, 0.023 ID=2077, HA=199.59143, VA= 89.26268, SD= 55.1907, HT=1.300, C0=015AND, EDM=Infrared Dist, 0.023 ID=2079, HA=200.05392, VA= 89.32533, SD= 54.3707, HT=1.300, C0=015AND, EDM=Infrared Dist, 0.023 ID=2079, HA=200.05392, VA= 89.3263, SD= 51.4047, HT=1.300, C0=015AND, EDM=Infrared Dist, 0.023 ID=2081, HA=202.20248, VA= 89.32421, SD= 44.7456, HT=1.300, C0=015AND, EDM=Infrared Dist, 0.023 ID=2081, HA=202.20248, VA= 89.32421, SD= 44.7456, HT=1.300, C0=015AND, EDM=Infrared Dist, 0.023 ID=2083, HA=202.46189, VA= 89.32431, SD= 44.7456, HT=1.300, C0=015AND, EDM=Infrared Dist, 0.023 ID=2084, HA=204.2000, VA= 88.3007, SD= 44.5106, HT=1.300, C0=015AND, EDM=Infrared Dist, 0.023 ID=2086, HA=204.2000, VA= 88.3007, SD= 44.5106, HT=1.300, C0=015AND, EDM=Infrared Dist, 0.023 ID=2086, HA=204.2007, VA= 88.3008, SD= 40.6215, HT=1.300, C0=015AND, EDM=Infrared Dist, 0.023 ID=2086, HA=204.20162, VA= 87.25155, SD= 35.4885, HT=1.300, C0=015AND, EDM=Infrared Dist, 0.023 ID=2088, HA=213.45363, VA= 87.25255, SD= 35.4885, HT=1.300, C0=015AND, EDM=Infrared Dist, 0.023 ID=2088, HA=223.12446, VA= 87.20133, SD= 31.6014, HT=1.300, C0=015AND, EDM=Infrared Dist, 0.023 ID=2089, HA=223.12446, VA= 87.20133, SD= 31.6014, HT=1.300, C0=015AND, EDM=Infrared Dist, 0.023 ID=2089, HA=223.12446, VA= 87.20133, SD= 31.6014, HT=1.300, C0=015AND, EDM=Infrared Dist, 0.023 ID=2089, HA=223.12446, VA= 87.20133, SD= 31.6014, HT=1.300, C0=015AND, EDM=Infrared Dist, 0.023 ID=2089, HA=223.12446,

Page 3

				THESIS1					
ID=2117.	HA=281.10004.	VA= 85.55444.	SD=	30.3114.	HT=2.150,	CO=01SAND	, EDM=Infrared	Dist.	0.023
ID=2118.	HA=283.54113,	VA= 86.30525,	SD=	30.8724.	HT=2.150,	CO=01SAND	, EDM=Infrared	Dist,	0.023
ID=2119,	HA=285.42025,	VA= 86.21470,	SD=	32.1774.	HT=2.150,	CO=01SAND	. EDM=Infrared	Dist,	0.023
ID=2120,	HA=286.28366,	VA= 86.31487,	SD=	31.9354,	HT=2.150,	CO=01SAND	, EDM=Infrared	Dist,	0.023
ID=2121,	HA=287.36356,	VA= 87.01471,	SD=	31.0354,	HT=2.150,	CO=01SAND	, EDM=Infrared	Dist,	0.023
ID=2122,	HA=290.30434,	VA= 87.38291,	SD=	30.9894,	HT=2.150,	CO=01SAND	, EDM=Infrared	Dist,	0.023
ID=2123,	HA=295.13242,	VA= 87.56077,	SD=	33.1785,	HT=2.150,	CO=01SAND	, EDM=Infrared	Dist,	0.023
ID=2124,	HA=298.11584,	VA= 87.59320,	SD=	35.5105,	HT=2.150,	CO=01SAND	, EDM=Infrared	Dist,	0.023
ID=2125,	HA=298.59577,	VA= 87.44170,	SD=	37.2335,	HT=2.150,	CO=01SAND	, EDM=Infrared	Dist,	0.023
ID=2126,	HA=299.14349,	VA= 87.23586,	SD=	38.7665,	HT=2.150,	CO=01SAND	, EDM=Infrared	Dist,	0.023
ID=2127,	HA=301.51157,	VA= 87.52392,	SD=	40.7095,	HT=2.150,	CO=01SAND	, EDM=Infrared	Dist,	0.023
ID=2128,	HA=303.25572,	VA= 87.53431,	SD=	42.6916,	HT=2.150,	CO=01SAND	, EDM=Infrared	Dist,	0.023
ID=2129,	HA=307.16468,	VA= 88.22037,	SD=	41.4865,	HT=2.150,	CO=01SAND	, EDM=Infrared	Dist,	0.023
ID=2130,	HA=309.31075,	VA= 88.19074,	SD=	42.4066,	HT=2.150,	CO=01SAND	, EDM=Infrared	Dist,	0.023
ID=2131,	HA=310.58042,	VA= 88.19059,	SD=	45.4166,	HT=2.150,	CO=01SAND	, EDM=Infrared	Dist,	0.023
ID=2132,	HA=312.31011,	VA= 88.31028,	SD=	45.8786,	HT=2.150,	CO=01SAND	, EDM=Infrared	Dist,	0.023
ID=2133,	HA=313.22150,	VA= 88.35445,	SD=	46.4506,	HT=2.150,	CO=01SAND	, EDM=Infrared	Dist,	0.023
ID=2134,	HA=314.18084,	VA= 88.38120,	SD=	48.1456,	HT=2.150,	CO=01SAND	, EDM=Infrared	Dist,	0.023
ID=2135,	HA=314.35084,	VA= 88.41247,	SD=	49.7756,	HT=2.150,	CO=01SAND	, EDM=Infrared	Dist,	0.023
ID=2136,	HA=316.08441,	VA= 88.48426,	SD=	52.4467,	HT=2.150,	CO=01SAND	, EDM=Infrared	Dist,	0.023
ID=2137,	HA=318.22060,	VA= 88.58467,	SD=	56.6717,	HT=2.150,	CO=01SAND	, EDM=Infrared	Dist,	0.023
ID=2138,	HA=319.38570,	VA= 88.57337,	SD=	59.1097,	HT=2.150,	CO=01SAND	, EDM=Infrared	Dist,	0.023
ID=2139,	HA=321.23393,	VA= 89.06437,	SD=	65.4648,	HT=2.150,	CO=01SAND	, EDM=Infrared	Dist,	0.023
ID=2140,	HA=322.41312,	VA= 89.13351,	SD=	67.5808,	HT=2.150,	CO=01SAND	, EDM=Infrared	Dist,	0.023
ID=2141,	HA=323.45502,	VA= 89.14380,	SD=	72.0069,	HT=2.150,	CO=01SAND	, EDM=Infrared	Dist,	0.023
ID=2142,	HA=324.12175,	VA= 89.10490,	SD=	73.5359,	HT=2.150,	CO=01SAND	, EDM=Infrared	Dist,	0.023
ID=2143,	HA=325.04571,	VA= 89.11330,	SD=	76.7539,	HT=2.150,	CO=01SAND	, EDM=Infrared	Dist,	0.023
ID=2144,	HA=326.18562,	VA= 89.13117,	SD=	80.4360,	HT=2.150,	CO=01SAND	, EDM=Infrared	Dist,	0.023
ID=2145,	HA=327.20170,	VA= 89.17106,	SD=	84.7040,	HT=2.150,	CO=01SAND	, EDM=Infrared	Dist,	0.023
ID=2146,	HA=327.45270,	VA= 89.19530,	SD=	86.7661,	HT=2.150,	CO=01SAND	, EDM=Infrared	Dist,	0.023
ID=2147,	HA=328.17477,	VA= 89.22010,	SD=	89.8911,	HT=2.150,	CO=01SAND	, EDM=Infrared	Dist,	0.023
ID=2148,	HA=328.12245,	VA= 89.17330,	SD=	94.6611,	HT=2.150,	CO=01SAND	, EDM=Infrared	Dist,	0.023
ID=2149,	HA=328.32593,	VA= 89.21138,	SD=	99.0992,	HT=2.150,	CO=01SAND	, EDM=Infrared	Dist,	0.023
ID=2150,	HA=328.47098,	VA= 89.19423,	SD=	101.8/12,	HT=2.150,	CO=01SAND	, EDM=Infrared	Dist,	0.023
ID=2151,	HA=329.16281,	VA= 89.23492,	SD=	104.7592,	HT=2.150,	CO=01SAND	, EDM=Infrared	Dist,	0.023
ID=2152,	HA=329.50330,	VA= 89.45333,	SD=	107.0713,	HT=2.150,	CO=01SAND	, EDM=Infrared	Dist,	0.023
ID=2153,	HA=329.35137,	VA= 89.26269,	SD=	110.8323,	HT=2.150,	CO=01SAND	, EDM=Infrared	Dist,	0.023
ID=2154,	HA=329.48216,	VA= 89.25109,	SD=	113.6223,	HT=2.150,	CO=01SAND	, EDM=Intrared	Dist,	0.023
1D=2155,	HA=328.43141,	VA= 88.30076,	SD=	111.7643,	HT=2.150,	CO=021B,	EDM=Infrared Di	st, 0.	.023
1D=2156,	HA=328.16136,	VA= 88.16587,	SD=	108.8973,	HT=2.150,	CO=021B,	EDM=Infrared Di	ST, U.	.023
10=2157,	HA=327.41571,	VA= 88.06116,	SD=	105.8302,	H1=2.150,	CO=021B,	EDM=Intrared Di	st, 0.	023
10=2158,	HA=327.43064,	VA= 88.0/286,	SD=	101. 7802.	HI=2.150,	CO=021B,	EDM=Intrared Di	SE, 0.	023
10=2159,	HA=327.38325,	VA= 88.20597,	SD=	101.5812,	HI=2.150,	CO=021B,	EDM=Intrared Di	SE, 0.	023
10=2160,	HA=327.38453,	VA= 88.3/511,	SD=	99.3422,	HT=2.150,	CO=021B,	EDM=Intrared Di	st, 0.	023
10=2161,	MA=327.43302,	VA= 88.35443,	SD=	98.0332,	HT=2.150,	CO=021B,	EDM=Intrared Di	st, 0.	023
10=2102,	HA=327.204/4,	VA= 00.30312,	SD=	95.0411,	HT=2.150,	CO=021B,	com=intrared Di	SE, 0.	023
10=2103,	HA=327.39399,	VA= 88.40408,	5D=	94.3831,	n1=2.150,	CO=0218,	EDM=Intrared Di	st, 0.	023

Page 4

					THESIS1					
ID=2164,	HA=327.16490,	VA=	88.34071,	SD=	93.0811,	HT=2.150,	CO=02TB,	EDM=Infrared	Dist,	0.023
ID=2165,	HA=327.34405,	VA=	88.25346,	SD=	90.8611,	HT=2.150,	CO=02TB,	EDM=Infrared	Dist,	0.023
ID=2166,	HA=327.01451,	VA=	88.19353,	SD=	88.4960,	HT=2.150,	CO=02TB,	EDM=Infrared	Dist,	0.023
ID=2167,	HA=325.54524,	VA=	88.07580,	SD=	85.2350,	HT=2.150,	CO=02TB,	EDM=Infrared	Dist,	0.023
ID=2168,	HA=325.07521,	VA=	88.04181,	SD=	81.2110,	HT=2.150,	CO=02TB,	EDM=Infrared	Dist,	0.023
ID=2169,	HA=324.06304,	VA=	88.04462,	SD=	76.8519,	HT=2.150,	CO=02TB,	EDM=Infrared	Dist,	0.023
ID=2170,	HA=323.06256,	VA=	87.59042,	SD=	74.8549,	HT=2.150,	CO=02TB,	EDM=Infrared	Dist,	0.023
ID=2171,	HA=323.05319,	VA=	87.59289,	SD=	74.0069,	HT=2.150,	CO=02TB,	EDM=Infrared	Dist,	0.023
ID=2172,	HA=322.08596,	VA=	87.53522,	SD=	71.5109.	HT=2.150,	CO=02TB,	EDM=Infrared	Dist,	0.023
ID=2173,	HA=320.58370,	VA=	87.43099,	SD=	68.7028,	HT=2.150,	CO=02TB,	EDM=Infrared	Dist,	0.023
ID=2174.	HA=319.09089,	VA=	87.33347.	SD=	64.7998.	HT=2.150,	CO=02TB,	EDM=Infrared	Dist.	0.023
ID=2175,	HA=319.18450,	VA=	87.34518,	SD=	64.3908.	HT=2.150,	CO=02TB,	EDM=Infrared	Dist,	0.023
ID=2176.	HA=318.40023.	VA=	87.36163.	SD=	63.3649.	HT=2.150,	CO=02TB,	EDM=Infrared	Dist.	0.023
ID=2177.	HA=317.54199.	VA=	87.26585.	SD=	63.6248.	HT=2.150.	CO=02TB.	EDM=Infrared	Dist.	0.023
ID=2178.	HA=317.54165.	VA=	87.38489.	SD=	61.2068.	HT=2.150.	CO=02TB.	EDM=Infrared	Dist.	0.023
ID=2179.	HA=314.27260.	VA=	87.23566.	SD=	52.3977.	HT=2.150.	CO=02TB.	EDM=Infrared	Dist.	0.023
ID=2180.	HA=307.10304.	VA=	86.34567.	SD=	43.5184.	HT=2.150.	CO=02TB.	EDM=Infrared	Dist.	0.023
ID=2182.	HA=306.14562.	VA=	86.32097.	SD=	43.0363.	HT=2.150.	CO=02TB.	EDM=Infrared	Dist.	0.023
ID=2183.	HA=304.53197.	VA=	86.30172.	SD=	43.2902.	HT=2.150.	CO=02TB.	EDM=Infrared	Dist.	0.023
ID=2184.	HA=302.14097.	VA=	88.11265.	SD=	42.0724.	HT=2.150.	CO=02TB.	EDM=Infrared	Dist.	0.023
ID=2185.	HA=298.55449.	VA=	88.04396.	SD=	38.8790.	HT=1.300.	CO=02TB.	EDM=Infrared	Dist.	0.023
ID=2186.	HA=296, 10320.	VA=	88.02562.	SD=	35,2245.	HT=1.300.	CO=02TB.	EDM=Infrared	Dist.	0.023
ID=2187.	HA=292.31006.	VA=	87.49035.	SDm	33, 1025.	HT=1.300.	CO=02TB.	EDM=Infrared	Dist.	0.023
ID=2188.	HA=290.08537.	VA=	87.42002.	SD=	32.5144.	HT=1.300.	CO=02TB.	EDM=Infrared	Dist.	0.023
TD=2189	HA=286.28156	VAm	87.22102.	SD=	32, 5394	HT=1.300.	CO=02TB	EDM=Infrared	Dist.	0.023
TD=2190	HA=284 54193	VA=	87 20133	SD=	32 0264	HT=1 300	CO=02TB	EDM=Infrared	Dist	0 023
TD=2191	HA=283 17031	VA=	87.13227	SD=	31.0734	HT=1.300	CO=02TB	EDM=Infrared	Dist	0.023
TD=2192	HA=280, 30263	VA=	86 54271	SD=	30 4074	HT=1 300	CO=02TB	EDM=Infrared	Dist	0.023
TD=2193	HA=280 24142	VA-	87 03035	SD-	20 3844	HT-1 300	CO=02TB	EDM-Infrared	Dist	0.023
TD=2194	HA=278 11556	VA-	86 49393	SD=	28 7774	HT=1 300	CO=02TB	EDM=Infrared	Dist.	0.023
TD=2195	HA=274 24195	VA-	87 04113	SD=	27 6034	HT=1 300	CO=02TB	EDM=Infrared	Dist	0 023
TD-2106	HA-271 07209	VA-	86 47553	SD-	27 3856	HT-1 300	CO-02TR	EDM-Infrared	Diet	0.023
TD=2190,	HA=268 58400	VA-	86 30287	SD-	27 9284	HT-1 300	CO=02TB,	EDM=Infrared	Diet.	0.023
TD-2108	HA-266 32300	VA-	86 28038	SD-	27 8534	HT-1 300,	CO=02TB	EDM-Infrared	Diet.	0.023
TD-2190,	HA-266 21142	VA-	86 31188	SD-	26 7444	HT-1 300,	CO-02TB,	EDM-Infrared	Diet.	0.023
TD-2200	HA-265 04101	VA-	86 47111	50-	26 1200	HT-1 300,	CO-02TB,	EDM-Infrared	Diet.	0.023
10=2200,	HA=263.04101,	VA=	86 52469	50=	25 6907	HT-1 200,	CO=02TB,	EDM=Infrared	Diet.	0.023
TD-2201,	HA-259 40120	VA-	87 00006	5D-	25.0907,	HT-1 200	CO=02TB,	EDM-Infrared	Dict.	0.023
10-2202,	HA-255 40155	VA-	86 57426	50-	25 8014	HT-1 300,	CO-02TB,	EDM-Infrared	Diet.	0.023
10=2203,	HA=255.49150,	VA=	96 44217	50=	25.0014,	HT=1.300,	CO=02TB,	EDM=Infrared	Dist,	0.023
10=2204,	HA=233.19271,	VA=	00.44517,	SU=	20.0094,	HT=1.300,	CO=021B,	EDM=Intrared	Dist,	0.023
10=2205,	HA=250.31432,	VA=	86.4/10/,	SD=	20.0523,	HT=1.300,	CO=021B,	EDM=Infrared	Dist,	0.023
10-2200,	HA-246.01087,	VA=	86 26442	50=	20.4234,	HT-1 200	CO-02TB,	COM-Infrared	Dict.	0.023
10=2207,	HA=240.0/534,	VA=	00.20443,	50=	27.6440,	HI=1.300,	CO=021B,	EDM=Infrared	Dist,	0.023
10=2208,	HA=244.5858/,	VA=	86 125/5	50=	29.0/04,	HI=1.300,	CO=021B,	EDM=Infrared	Dist,	0.023
10=2209,	MA=242.30298,	VA=	00.12545,	SD=	29.0059,	HT=1.300,	CO=021B,	EDM=Intrared	UIST,	0.023
10=2210,	HA=241.25268,	VA=	80.12481,	SD=	28.0940,	HI=1.300,	CO=02TB,	EDM=Infrared	Dist,	0.023
10=2211,	MA=238.42108,	VA=	00.12502,	5D=	28.1800,	m1=1.300,	CO=021B,	EDM=TULLaLed	DISC,	0.023

Page 5

98

 $\begin{array}{l} \textbf{D}=2212,\\ \textbf{D}=2212,\\ \textbf{D}=2214,\\ \textbf{D}=2214,\\ \textbf{D}=2216,\\ \textbf{D}=2216,\\ \textbf{D}=2216,\\ \textbf{D}=2216,\\ \textbf{D}=2221,\\ \textbf{D}=2224,\\ \textbf{D}=2220,\\ \textbf{D}=2222,\\ \textbf{D}=2222,\\ \textbf{D}=2222,\\ \textbf{D}=2222,\\ \textbf{D}=2224,\\ \textbf{D}=224,\\ \textbf{D}=225,\\ \textbf{D}=22$

HA=232.03427, VA= 86.29516, HA=231.52019, VA= 86.7125, HA=228.0228,0288, VA= 86.02106, HA=228.0228,0288, VA= 86.02106, HA=224.55485, VA= 86.04150, HA=224.55485, VA= 86.04150, HA=221.41396, VA= 86.04150, HA=214.1396, VA= 86.14186, HA=211.25300, VA= 86.14180, HA=214.17085, VA= 86.14285, HA=214.12085, VA= 86.14285, HA=214.12748, VA= 86.14285, HA=212,54478, VA= 86.14285, HA=210,548, VA= 86.14285, HA=210,548, VA= 86.14285, HA=200,5555, VA= 87.02524, HA=200,55555, VA= 87.02524, HA=205,118, VA= 87.285144, HA=205,5457, VA= 87.285434, HA=205,118, VA= 87.88543, HA=205,12487, VA= 87.845434, HA=205,12487, VA= 87.845434, HA=205,12487, VA= 87.845434, HA=205,12487, VA= 87.5513, HA=205,12437, VA= 87.5513, HA=205,12437, VA= 87.5513, HA=206,23544, VA= 87.5513, HA=205,12423, VA= 88.18560, HA=201,03166, VA= 88.18560, HA=201,03166, VA= 88.13527, HA=200,10569, VA= 88.1257, HA=200,10569, VA= 88.17466, HA=201,03166, VA= 88.47406, HA=201,03166, VA= 88.47406, HA=201,03166, VA= 88.47406, HA=201,03166, VA= 88.47436, HA=200,10569, VA= 88.47436, HA=201,03166, VA= 88.47366, HA=201,03166, VA= 88.47376, HA=201,03166, VA= 88.47376, HA=201,03166, VA= 88.47376, HA=201

ID=2259, HA=196.43318, VA= 88.48208, SD= 58.1637, HT=1.300. CO=02TB, EDM=Infrared Dist. 0.023
ID=2260, HA=196.4277, VA= 88.41074, SD= 58.1437, HT=1.300. CO=02TB, EDM=Infrared Dist. 0.023
ID=2262, HA=196.4277, VA= 88.3104, SD= 59.1485, HT=1.300. CO=02TB, EDM=Infrared Dist. 0.023
ID=2262, HA=195.5125, VA= 88.34190, SD= 59.1457, HT=1.300. CO=02TB, EDM=Infrared Dist. 0.023
ID=2263, HA=195.5125, VA= 88.45473, SD= 59.1637, HT=1.300. CO=02TB, EDM=Infrared Dist. 0.023
ID=2264, HA=195.02324, VA= 88.45473, SD= 59.1657, HT=1.300. CO=02TB, EDM=Infrared Dist. 0.023
ID=2266, HA=195.00592, VA= 88.32609, SD= 60.2968, HT=1.300. CO=02TB, EDM=Infrared Dist. 0.023
ID=2266, HA=195.00592, VA= 88.25461, SD= 60.2968, HT=1.300. CO=02TB, EDM=Infrared Dist. 0.023
ID=2266, HA=194.07321, VA= 88.26461, SD= 60.9964, HT=1.300. CO=02TB, EDM=Infrared Dist. 0.023
ID=2269, HA=194.1285, VA= 88.19425, SD= 60.2964, HT=1.300, CO=02TB, EDM=Infrared Dist. 0.023
ID=2269, HA=194.2566, VA= 88.14048, SD= 64.5278, HT=1.300, CO=02TB, EDM=Infrared Dist. 0.023
ID=2270, HA=192.04282, VA= 88.14048, SD= 64.5278, HT=1.300, CO=02TB, EDM=Infrared Dist. 0.023
ID=2272, HA=191.49206, VA= 88.14048, SD= 64.5278, HT=1.300, CO=02TB, EDM=Infrared Dist. 0.023
ID=2272, HA=191.49206, VA= 88.14048, SD= 64.5368, HT=1.300, CO=02TB, EDM=Infrared Dist. 0.023
ID=2272, HA=191.49206, VA= 88.14048, SD= 64.5678, HT=1.300, CO=02TB, EDM=Infrared Dist. 0.023
ID=2272, HA=191.49206, VA= 88.14048, SD= 66.57308, HT=1.300, CO=02TB, EDM=Infrared Dist. 0.023
ID=2272, HA=191.494206, VA= 88.14549, SD= 66.57308, HT=1.300, CO=02TB, EDM=Infrared Dist. 0.023
ID=2273, HA=191.494206, VA= 88.14549, SD= 66.57308, HT=1.300, CO=02TB, EDM=Infrared Dist. 0.023
ID=2273, HA=191.494206, VA= 88.14549, SD= 66.57308, HT=1.300, CO=20TB, EDM=Infrared Dist. 0.023
<li

Page 6

 $\begin{array}{l} \text{THE SIS1}\\ \text{28, 7318}\\ \text{29, 6224,}\\ \text{30, 4532,}\\ \text{30, 4522,}\\ \text{31, 6339,}\\ \text{31, 6339,}\\ \text{31, 6339,}\\ \text{31, 6339,}\\ \text{31, 6339,}\\ \text{31, 6339,}\\ \text{31, 6351,}\\ \text{33, 1394,}\\ \text{34, 2704,}\\ \text{35, 5695,}\\ \text{35, 6655,}\\ \text{35, 6655,}\\ \text{37, 6754,}\\ \text{36, 6855,}\\ \text{37, 6754,}\\ \text{38, 3925,}\\ \text{37, 66754,}\\ \text{38, 3925,}\\ \text{37, 66754,}\\ \text{38, 3925,}\\ \text{37, 66754,}\\ \text{38, 3925,}\\ \text{37, 66754,}\\ \text{36, 60754,}\\ \text{34, 42, 1476,}\\ \text{42, 7865,}\\ \text{43, 0096,}\\ \text{44, 43, 006,}\\ \text{44, 44, 3006,}\\ \text{44, 44, 3006,}\\ \text{44, 44, 3066,}\\ \text{44, 6306,}\\ \text{44, 6306,}\\ \text{45, 2007,}\\ \text{55, 2126,}\\ \text{56, 0227,}\\ \text{56, 3977, 2155,}\\ \text{52, 2126,}\\ \text{56, 3977, 2155,}\\ \text{57, 2277,}\\ \text{57, 2717,}\\ \text{57, 2257,}\\ \text{57, 257,}\\ \text{57,$

 $\begin{array}{c} \text{HT}=1.300, \quad \text{CO}=02\text{TB},\\ \text{HT}=1.300, \quad \text{CO}=02\text$

EDM-INFrared EDM-I

Dist, 0.23 Dist, 0.23

Page 7

List of References

Acworth, CA c. 2009, *GENESIS Modelling of Sand Nourishment Options at Collaroy-Narrabeen Beach, Sydney*, Coastal Unit, Queensland Climate Change Centre of Excellence, Department of Environment and Resource Management, Brisbane, Queensland.

Barber, D n.d., *Beach Nourishment Basics*, Bryn Mawr College, viewed 28 July 2011, http://www.brynmawr.edu/geology/geomorph/beachnourishmentinfo.html>.

Broadbent, GJ 2011, *Tidal Reference Frame For Queensland*, Intergovernmental Committee On Surveying & Mapping, viewed 14 August 2011, http://www.icsm.gov.au/icsm/SP9/links/msq_tidalreferenceframe.html.

Cameron, D 2010, 'Every grain counts' Beach Nourishment at Collaroy-Narrabeen, Natural Environment Unit, Warringah Council, Dee Why, New South Wales.

Cherry, B 2009, 'Rising sea level guidelines', *The Manly Daily*, 5 November, viewed 22 May 2011, http://manly-daily.whereilive.com.au/news/story/rising-sea-level-guidelines/.

Cherry, B 2011, 'Research team watching our shifting sands', *The Manly Daily*, 16 May, viewed 22 May 2011, < http://manly-daily.whereilive.com.au/news/story/research-team-watching-our-shifting-sands/>.

Clarke, MN & Malone, JD 1987, *Collaroy/Narrabeen Beaches Coastal Process Hazard Definition Study*, report no.87040, NSW Public Works Department N.S.W., Sydney, New South Wales.

Department of Environment, Climate Change and Water NSW 2009, *NSW Sea Level Rise Policy Statement*, DECCW 2009/708, NSW Government, Sydney South, New South Wales.

Department of Environment, Climate Change and Water NSW 2011, *Guide to the Statutory Requirements for Emergency Coastal Protection Works*, DECCW 2010/1017, NSW Government, Sydney, New South Wales.

Department of Planning NSW 2010, *NSW Coastal Planning Guideline: Adapting To Sea Level Rise*, DOP 10_022, NSW Government, Sydney, New South Wales.

Encyclopaedia Britannica 2011, *neap tide (physics) definition*, Encyclopedia – Britannica Online Encyclopedia, viewed 13 August 2011, http://www.britannica.com/EBchecked/topic/407430/neap-tide.

Encyclopaedia Britannica 2011, spring *tide (physics) definition*, Encyclopedia – Britannica Online Encyclopedia, viewed 13 August 2011, http://www.britannica.com/EBchecked/topic/561355/spring-tide>.

Google 2011, *Google Maps*, Google, viewed 29 September 2011, ">http://maps.google.com.au/>.

Gordon, MT 2010, *Mean High Water Mark: Gradual and Imperceptible Erosion*, Azimuth, no. 49 Issue 2, p. 14.

Hallmann, F 1973, *Legal aspects of Boundary* Surveying *as they apply in New South Wales*, 1st edn, Institution of Surveyors, Australia.

Hallmann, F & Ticehurst, F 2004, *Legal aspects of Boundary* Surveying *As Apply In New South Wales*, 2nd edn, Release 5, Institution of Surveyors, Australia.

Harris, LE 2009, 'Artificial Reefs for Ecosystem Restoration and Coastal Erosion Protection with Aquaculture and Recreational Amenities', *Reef Journal*, vol. 1, no. 1, pp. 235-46.

Land and Property Management Authority 2011, *Crown Land Conversions*, New South Wales Government, viewed 4 September 2011, http://www.lpma.nsw.gov.au/land_titles/historical_records_online/crown_land_conversion>.

Land and Property Management Authority 2011, *Survey Control Information Management System (SCIMS) Online*, New South Wales Government, viewed 29 June 2011,

<https://six.nsw.gov.au/wps/myportal/!ut/p/b1/04_Sj7QwNjUyszQwM9WP0I_KSyz LTE8syczPS8wB8aPM4oOdnEJNHQ3NDA3MnV0MPA3N_EycQw29TFyN9COB CsxxKjA20Q_Xj8SvIMrTIicvHmS7gYGpmX54YjLIbv3cKI_KckdFRQC3_TGs/?r eset=true>.

Leica Geosystems 2009, *Leica TPS1200+ Series High performance Total Station*, Leica Geosystems, Heerbrugg, Switzerland

Manly Hydraulic Laboratory 1995, Tidal Data Compilation, prepared by Manly Hydraulic Laboratory for Department of Land and Water Conservation, Report MHL937.

Merriam Webster Dictionary 2011, *ambulatory definition*, Dictionary and Thesaurus – Merriam Webster Online, viewed 22 May 2011, http://www.merriam-webster.com/dictionary/ambulatory>.

Morcombe, J 2010, 'Mine sand says Regan', *The Manly Daily*, 14 January, viewed 22 May 2011, < http://manly-daily.whereilive.com.au/news/story/mine-sand-says-regan/>.

Morcombe, J 2010, 'Call for beach break wall', *The Manly Daily*, 21 January, viewed 22 May 2011, < http://manly-daily.whereilive.com.au/news/story/call-for-beach-break-wall/>.

Morcombe, J 2010, 'Focus on coastal erosion', *The Manly Daily*, 11 August, viewed 22 May 2011, < http://manly-daily.whereilive.com.au/news/story/focus-on-coastal-erosion/>.

Nearmap 2011, *PhotoMaps by Nearmap*, Nearmap, viewed 29 September 2011, https://www.nearmap.com/welcome-new>.

NSW Government 1997, *NSW Coastal Policy* 1997 – A Sustainable Future for the *New South Wales Coast*, 97/73, NSW Government, Sydney, New South Wales.

NSW Government 2010, *NSW Coastal Planning Guideline: Adapting To Sea Level Rise*, DOP 10_022, State of New South Wales through the Department of Planning, Sydney, New South Wales.

NSW Government 2011, *Kirra Beach from Kirra Hill – Tweed River Entrance Sand Bypassing Project*, viewed 28 August 2011, http://www.tweedeendburges.new.gov.gov/bistoric, photographs///irra_beach_from

<http://www.tweedsandbypass.nsw.gov.au/historic_photographs/kirra_beach_from_kirra_hill>.

NSW Heritage Council 2003, *Heritage Office Annual Report 2002-2003*, NSW Heritage Office, Parramatta, New South Wales.

Pattiaratchi, C & Wijeratne, S 2011, *Port Geographe Sand and Seagrass Wrack Modelling Study, Western Australia*, The University Of Western Australia, Crawley, Western Australia.

Pilarczyk, KW 2003, 'Design of low-crested (submerged) structures – an overview', *Proceedings of the International Conference on Coastal and Port Engineering in Developing Countries*, Colombo, Sri Lanka, pp. 1-19.

Port Geographe Action Group Inc 2011, *Beach Photos*, viewed 28 August 2011, http://www.portgeographe.com/Beach%20Photos.htm.

Sawaragi, T, Deguchi, I & Park, S-K 1988, 'Reduction Of Wave Overtopping Rate By The Use Of Artificial Reefs', *Proceedings of the International Conference on Coastal Engineering*, Torremolinos, Spain, pp. 335-49.

Short, A 2011, *Impact of coastal erosion in Australia*, Coastalwatch, viewed 15 July 2011,

<http://www.coastalwatch.com/news/article.aspx?articleId=4524&cateId=3&title=I mpact%20of%20coastal%20erosion%20in%20Australia>.

Short, A 2011, *Sand Nourishment Of Australia's Iconic Surfing Beaches*, Coastalwatch, viewed 26 August 2011,

<http://www.coastalwatch.com/news/article.aspx?articleId=5411&cateId=3&title=S and%20Nourishment%20Of%20Australia's%20Iconic%20Surfing%20Beaches>.

United States Navy 2006, *The United States Navy divides littoral regions into several zones*, viewed 2 August 2011, United States Government, < https://ile-lmsadp.nko.navy.mil/cnet/customcontent/content/primary_pro_mil_education/PPME_J O/Primary_PME_R4_V08/Primary_PME_V44_THINKS/Naval_Warfare/C2_Naval _Forces/CWC_Conc>.

Warringah Council 1997, *Collaroy Narrabeen Coastline Management Plan – A Coastline Hazards Policy – Plan of Management*, Warringah Council, Dee Why, New South Wales.

Warringah Council 2006, *All About Land Acquisitions & The Wave Impact Zone*, Warringah Council, Dee Why, New South Wales.

Warringah Council 2011, *Coastline Management*, Warringah Council, viewed 24 July 2011, http://www.warringah.nsw.gov.au/environment/coastline.aspx>.

Warringah Council Natural Environment Unit 2001, *Guideline for Preparing Coastal Assessment Report*, Warringah Council, Dee Why, New South Wales.

Water Research Laboratory – School Of Civil And Environmental Engineering 2011, *Coastal Imaging at WRL – UNSW*, University of New South Wales, viewed 19 July 2011, < http://ci.wrl.unsw.edu.au/public/narrabn/>.

Wisegeek n.d., *What are Tank Traps?*, viewed 28 July 2011, < http://www.wisegeek.com/what-are-tank-traps.htm>.

Worley Parsons 2011, *Draft Coastal Erosion Emergency Action Plan for Beaches in Warringah*, Warringah Council, Dee Why, New South Wales.

Legislation

Coastal Protection Act 1979 No 13 (NSW)

Coastal Protection Amendment Act 2002 (NSW)

Coastal Protection and Other Legislation Amendment Act 2010 No 78 (NSW)

Coastal Protection and Other Legislation Amendment Bill 2010 (NSW Senate & House of Representatives)

Environmental Planning and Assessment Act 1979

Surveying and Spatial Information Regulation 2006 (NSW)

Warringah Local Environment Plan 2000 (NSW)

Case Law

A-G and Hutt River Board v. Leighton (1955) NZLR 750

A-G of Southern Nigeria v. John Holt & Co. (Liverpool) Ltd (1915) AC 599

A-G v. Chambers (1854) 43 ER 486

Brighton and Hove General Gas Co. v. Hove Bungalows Ltd (1924) 1 Ch 372

Fowley Marine (Emsworth) Ltd v. Gafford (1967) 2 All ER 472

Government of the State of Penang v. Ben Hong Oon (1972) AC 425

Hindson v. Ashby (1896) 2 Ch 1

McGrath v. Williams (1912) 12 SR (NSW) 447

Rex v. Yarborough (1824) 130 ER 1023

Suntea Investments Pty Ltd v. State of New South Wales (1995) 7 BPR 14,598; (1998, unreported, NSWCA)

Trafford v. Thrower (1929) 45 TLR 502

Verral v. Nott (1939) 39 SR (NSW) 89