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Abstract

A number of industrial software development standards man-
date that safety-critical software components be developed us-
ing formal methods, including formal verification. While for-
mal development is supported by a number of formal devel-
opment environments, verification of correctness properties is
still a major bottleneck. Most formal development environ-
ments provide built-in facilities for discharging these correct-
ness properties (so-called proof obligations). However these
built-in tools are typically less mature and sophisticated than
stand-alone theorem provers. FDEs would benefit from be-
ing able to use a variety of theorem provers to discharge proof
obligations, where different provers can be selected for different
problem domains.

In this paper we describe a generic framework that supports
the many-to-many connection of formal development environ-

ments and theorem provers. Before developing the framework

we completed three case studies in order to reveal the main
translation issues that need to be addressed. These translation

issues were used as input to the requirements for our transla-
tion framework. We describe one of these case studies in detail

in this paper. We then describe the framework and an Interme-

diate Modelling Language (IML), which is used to connect the
FDEs to the theorem provers. The framework is supported by

a collection of translators, both from FDEs (B and CARE) to
the IML, and from the IML to theorem provers (Isabelle/HOL,

Ergo and Otter).

1 Introduction

Developing correct software is important. Faults in
software may lead to financial loss, harm to the en-
vironment, litigation, or even loss of human life. In
cases where there is significant risk, software of high
integrity is required. This can be achieved through
the use of a rigorous development method.

Formal development environments (FDEs)
(Elmstrom, Larsen & Lassen 1994, Craigen, Kro-
modimoeljo, Meisels, Pase & Saaltink 1991, Smith
1990, Lindsay & Hemer 1996, Abrial 1996) provide
a methodology and tool support for producing high
integrity software. Two key phases of the develop-
ment process are: formally specifying the scope and
behaviour of a software system, and “refining” this
specification to an executable program. During both
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of these phases, properties may be generated that
must be proven. These properties, often called proof
obligations, can help demonstrate the correctness
and consistency of a specification or refinement. The
nature of these proof obligations means that it is
unreasonable to expect humans to check them by
hand; instead some mechanical support is required.

While most FDEs provide built-in support for me-
chanically checking proof obligations, this support is
usually far less mature than the support offered by
stand-alone theorem provers. Therefore, in order to
discharge proof obligations, it would be beneficial if
we were able to plug stand-alone theorem provers
into FDEs. Furthermore we would like to be able to
use different provers within the same FDE depend-
ing on the application domain (for example we might
have one prover that is good at inequality reasoning
and another that provides good support for inductive
proofs; we would then select the particular prover de-
pending on the application).

To be able to link multiple FDEs and theorem
provers we first examined the main issues that are
involved in translating between FDE and theorem
prover notations. To do this we first completed
three case studies involving translation of proof obli-
gations from FDEs and into theorem prover nota-
tion. These case studies were a stack data struc-
ture and a square root approximation problem in
B (Abrial 1996) and square root approximation in
CARE (Lindsay & Hemer 1996). We describe the
stack case study in detail in this paper.

For each case study, proof obligations were gener-
ated in the FDE. For the B examples, we attempted to
discharge these proof obligations using the B toolkit’s
theorem provers; several of these proof obligations
could not be proven using the B tools. For the
CARE example, no proof was done prior to trans-
lation because the current version of the CARE tools
does not provide any built-in prover support. The
proof obligations were then translated by hand to
Isabelle/HOL notation and then proven within Is-
abelle/HOL (Nipkow, Paulson & Wenzel 2002). All
proof obligations were proven within Isabelle/HOL.

From the case studies and a review of the litera-
ture (Section 2), we identified a number of transla-
tion issues (Section 4). Our solution to the problem
of translating between FDEs and theorem provers is
a generic framework, based on the many-to-many ar-
chitecture shown in Fig. 1. Our approach is based on
translating via an intermediate language, rather than
translating directly from FDE to theorem prover.

The framework consists of an intermediate mod-
elling language (IML), tables of supported constructs,
and guidelines for developing translators (FDE to
IML and IML to theorem prover). Our solution
to translation is syntax-based, in that the IML and
supported constructs are represented at a syntactic
level, rather than at a semantic level, and transla-



Figure 1: Translation framework

tion is syntax-based. The obvious disadvantage is
that we cannot check the soundness or consistency
of translation. However our syntax-based approach
is lightweight and has the practical advantage that
we have been able to enhance the proof support for B
and provide proof support for CARE. The framework
is supported by a collection of translators. At present
we have implemented prototype support for the B and
CARE FDEs and the Isabelle/HOL, Ergo (Utting,
Robinson & Nickson 2002) and Otter (Kalman 2001)
theorem provers.

The main benefit of this approach is that the
conceptual gap between the FDE and translation
medium is less than the gap between the FDE and
theorem prover; therefore it is easier to add a new
FDE to the system, while maintaining existing links
to theorem provers. Likewise, the conceptual gap be-
tween the translation medium and theorem prover is
less than the gap between FDE and prover; therefore
it is easier to add new theorem provers to the sys-
tem, which can then interface with all FDEs that are
linked to the system.

Section 2 contains an overview of related work.
Section 3 describes the stack case study in the B-
Toolkit, comparing the proof capabilities of the B-
Toolkit against Isabelle/HOL and describing the main
issues that we encountered in translating proof obli-
gations from B notation into Isabelle/HOL notation.
Section 4 describes the translation issues that were re-
vealed during the three case studies and the literature
review. In Section 5 we describe the generic frame-
work. Section 6 contains a discussion of outstanding
translation issues.

2 Related Work

To evaluate the feasibility and requirements of the
framework, we have selected a representative sam-
ple of available formal development environments and
theorem provers. It is not our aim to study all avail-
able development environments and provers, merely
a diverse subset. We also discuss related work in
the translation of logics, because this gives us an in-
sight into the underlying challenges that need to be
addressed in translating between FDEs and theorem

provers.

2.1 Formal Development Environments

Formal development environments, such as
The B-Toolkit (Abrial 1996), IFAD VDM-SL
Toolkit (Elmstrom et al. 1994) and CARE (Lindsay
& Hemer 1996), support the specification, design,
implementation and maintenance of high integrity
software systems. Each tool has its own formal
mathematical logic in which specifications and re-
finements are written. For example, The B-Toolkit’s
specification language is built on the Abstract Ma-
chine Notation, an extension of Dijkstra’s guarded
command language (Dijkstra 1976). Each tool’s logic
can vary enormously with differing type systems,
language richness, and capabilities.

Some formal development environments also have
facilities to verify the correctness of a development.
Proof obligations may be generated from specifica-
tions and refinements that can be discharged to en-
sure correctness.

2.2 Theorem Provers

A theorem prover can be used to prove proof obliga-
tions generated during formal developments. Some
formal development environments (e.g. The B-
Toolkit) incorporate proof tools. Unfortunately these
built-in proof tools are often less mature than stand-
alone proof tools. Interactive theorem provers such
as Isabelle/HOL (Nipkow et al. 2002), Ergo (Utting
et al. 2002), and PVS (Owre, Rushby & Shankar
1992) are more mature, have well-populated theory
bases, and provide powerful tactic support. OT-
TER (Kalman 2001) is the most widely used auto-
mated theorem prover, and has been applied to a
wide variety of problems. This generally makes them
more suitable for discharging complex proof obliga-
tions than proof tools provided with formal develop-
ment environments.

At present we have linked three theorem provers
to the framework (Isabelle/HOL, Ergo and Otter).
For the purpose of brevity we will focus on the Is-
abelle/HOL prover in this paper. Isabelle (Paulson
1989) is an interactive generic theorem prover built
on a higher-order meta logic written in Standard ML.
This meta-logic allows users to instantiate their own
logics for reasoning. A variety of logics are imple-
mented in the Isabelle environment, but we focus on
the embedding of higher-order logic (Isabelle/HOL)
because it is mature, has good tactic support, and is
familiar to the authors. The syntax of Isabelle/HOL
is based on the λ-calculus and functional program-
ming. Object-level types are associated with meta-
level types to take advantage of Isabelle’s built-in
type checker. Isabelle/HOL also identifies object-
level functions with meta-level functions using Is-
abelle’s operations for abstraction and application.
Isabelle offers comprehensive support for automating
proof in the form of tactics and tacticals (functions
that combine tactics).

2.3 Translation issues

There are numerous case studies demonstrating trans-
lations between logics, embeddings of one logic in
another, or incorporating prover support into a tool
(Naumov, Stehr & Meseguer 2001, Agerholm 1996,
Stringer-Calvert, Stepney & Wand 1997, Bodeveix &
Filali 2002, Chartier 1998, Ahrendt, Baar, Beckert,
Giese, Hahnle, Menzel, Mostowski & Schmitt 2002).
Some of the issues raised in these papers are discussed
below.



Naumov et al. (2001) describe problems encoun-
tered building a proof translator from HOL to
NuPRL. HOL inference rules, when taken literally,
are unsound in NuPRL due to the difference in typ-
ing systems. HOL has a built-in type-checking mech-
anism that guarantees a HOL term is well-formed.
NuPRL has a weaker type-system that allows any
syntacticly valid expression as a term, not guarantee-
ing its well-formedness. Well-formedness is enforced
during a NuPRL proof, something that does not oc-
cur in HOL. HOL also has no notion of proof ob-
jects (recordings of proofs) to export into an external
prover. Naumov was forced to add proof-recording
facilities to HOL in order to extract proofs. In some
cases, finding NuPRL equivalents to HOL constants
was difficult so Naumov introduces explicit NuPRL
counterparts.

Agerholm (1996) looks at translating specifica-
tions from VDM-SL (Jones 1990) to PVS. VDM-SL
is represented as a shallow embedding in PVS, i.e.,
the syntax of VDM-SL constructs is not represented
in PVS, instead they work with the “semantics” di-
rectly. Agerholm states that translation is not logi-
cally safe and notes that this is a problem of all shal-
low embeddings (Boulton, Gordon, Gordon, Herbert
& Tassel 1992).

Stringer-Calvert et al. (1997) take Z theorems and
prove them in PVS, but the built-in tactics were not
well-suited to their requirements, so development of
their own tactics was needed. Other challenges are
noted, for example, Z specifications allow partial func-
tions but PVS does not, requiring that partial func-
tions had to be translated to total functions.

The papers discussed above all deal with one-to-
one translations, however we are interested in many-
to-many translations. Two projects, OMRS and
PROSPER, attempt to deal with the problem of
many-to-many translations.

The Open Mechanised Reasoning Systems
(OMRS) project (Giunchiglia, Bertoli & Coglio 1998)
is aimed at providing a framework for specifying,
structuring, and inter-operating provers. The OMRS
project is motivated by the fact that it is difficult
to combine current provers due to their stand-alone
nature and inadequately defined interfaces. For each
prover the framework defines: the logic of the prover;
how theorems are proved; and the interface of the
prover. However OMRS is aimed at the development
of new provers, whereas our aim is to connect
existing provers. Connecting existing provers to the
OMRS would require significant re-engineering of
these provers.

The Proof and Specification Assisted Design Envi-
ronments (PROSPER) toolkit (Dennis, Collins, Nor-
rish, Boulton, Slind, Robinson, Gordon & Melham
2000), is focused on allowing provers (and other veri-
fication tools) to be interfaced with CAD/CASE tools
in a modular way. A goal of the project is to develop
a common theorem-proving infrastructure, based on
HOL98. This proof support will be integrated into
two CAD/CASE platforms, software verification via
VDM-SL and hardware verification via a verification
workbench that supports the CAD languages Verilog
and VHDL. New verification tools (for example, a
prover or model checker) can be incorporated as a
plug-in to the core verification tool by extending an
API that interfaces with HOL98.

MathWeb (Franke & Kohlhase 1999) is a system
that allows existing, stand-alone theorem provers to
be connected in an integrated, networked proof envi-
ronment. This proof environment gains the services
from integrated modules, and each module gains from
using the features of other, integrated components.
MathWeb provides the functionality to encapsulate
proof assistants as objects providing mathematical

services to a system bus, the system’s communication
mechanism.

Modules are autonomous agents that communi-
cate using an XML-based language, KQML (Finin,
Fritzson, McKay & McEntire 1994), with mathemat-
ics and proofs represented in OpenProof (Franke,
Hess, Jung, Kohlhase & Sorge 1999), an extension of
the OpenMath standard. Semantics are captured in
standard content dictionaries, each mathematical sys-
tem implements transformation procedures, known as
phrase books, that interpret OpenMath representa-
tions into representations of the mathematical sys-
tem. This mechanism forms the mathematical link
between each module and MathWeb.

MathWeb differs from our approach in that they
are concerned only with connecting theorem provers,
whereas we are concerned with connecting theorem
provers to FDEs.

We finish by looking at two papers that discuss
issues relating to translation between logical systems.
Saaltink, Craigen, Kromodimoeljo & Pase (1992) dis-
cuss the problems with the exchange of informa-
tion (libraries and theories) between different theo-
rem provers. They identify three major problems in
achieving a sound translation of libraries:

1. It is difficult to translate material while preserv-
ing its meaning. Even if this exchange is possible
the translated material may appear so unnatural
(in order to preserve its meaning), that it is not
usable.

2. The presentation of a theory is affected by the no-
tation used and the capabilities of the proof tool,
even if two tools have similar semantic bases.
The representation of a rule can affect how easily
it can be used within a proof.

3. Tools differ in the handling of definitions and
some lack facilities for defining or extending li-
braries.

Watson (2001) describes a generic proof checker
that reads and checks the proofs produced by a the-
orem prover. Watson raises a number of translation
issues that were discovered while developing a generic
proof representation. Specific issues include differing
approaches to typing (strongly-typed versus untyped)
and the representation of not-free-in constraints in
rules.

3 Case study

This section outlines the specification and refinement
of a stack data structure using the B method and
toolkit (Schneider 2001). The B method and toolkit
support the refinement of high-level formal specifica-
tions to implementable code. Specifications, refine-
ments and implementations are represented as ab-
stract machines, which are defined using a formal no-
tation. Specifications introduce the state variables
and the operations of the program. Refinements re-
fine these state variables and operations so that they
are closer to an implementable form, whilst maintain-
ing the meaning of the original specification. Imple-
mentations represent the final stage in the refinement
process, providing implementations for all of the op-
erations in terms of an implementable state variable
representation. B generates proof obligations that es-
tablish the correctness of the abstract machines. The
toolkit includes both an automated theorem prover
and an interactive prover that are used to discharge
proof obligations.

Proof obligations that verify the correctness of the
specification and refinement of the stack data struc-



ture were generated by the B toolkit. The proof obli-
gations were translated by hand into Isabelle/HOL
theorems, which were then proven. The aim was to
gain insight into the issues associated with translating
between an FDE and a theorem prover. Two other
case studies (one in CARE and another in B) were
also completed before we compiled the requirements
for the framework. We discuss, in detail, the spec-
ification and refinement machines below with proof
obligations generated from both.

3.1 Specification Machine

The Stack specification machine, shown in Figure 2,
specifies a data structure for representing a stack, to-
gether with operations that manipulate it. The Stack
machine defines a constant max that limits the max-
imum size of the stack, and specifies that max is an
element of the set of natural numbers and that its
value is ten. The state of the stack is stored in the
variable stack . An invariant on the state specifies that
the type of the stack variable is a sequence of natural
numbers and imposes a maximum size on it.

MACHINE Stack
CONSTANTS max
PROPERTIES max ∈ N ∧ max = 10
VARIABLES stack
INVARIANT

size(stack) ≤ max ∧ stack ∈ seq (N)
INITIALISATION

stack := [ ]
OPERATIONS

Push(elm) =̂
PRE

elm ∈ N ∧ size(stack) < max
THEN

stack := stack a [elm]
END ;

out ←− Pop =̂
PRE

stack 6= [ ]
THEN

out := last(stack)
‖ stack := front(stack)

END
END

Figure 2: Stack Abstract Machine Specification

The stack is initialised to the empty sequence
within the initialisation operation. The stack machine
also includes specifications of two operations Push
and Pop. The Push operation appends an element,
elm, to the top of stack. The operation includes a
precondition stating that elm must be member of the
set of natural numbers and the size of stack must be
less than max. Provided the stack is not empty, the
operation Pop performs two substitutions simultane-
ously using parallel substitution, ( ‖ ), removing
the last element of the stack and assigning it to the
output variable out.

After specifying the stack machine, proof obliga-
tions that check the machine’s consistency were gener-
ated by the B toolkit. Specification proof obligations
check for, amongst other things, consistency of the
invariant, consistency of the initialisation and other
operations, and satisfiability of the constraints, prop-
erties and invariant (Schneider 2001). Seven proof

obligations were generated at this stage; all were dis-
charged automatically by the B toolkit’s automated
prover.

3.2 Refinement Machine

The specification machine Stack is refined to the re-
finement machine StackR (which is almost directly
implementable) in Figure 3 with the sequence (stack)
being refined to an array (stackr). The structure of
StackR follows that of the specification except that
we identify the specification machine (Stack) that this
machine refines.

REFINEMENT StackR
REFINES Stack
VARIABLES stackr ,num elmsr
INVARIANT

stackr ∈ 0..max − 1→ N ∧
num elmsr ∈ N ∧
num elmsr ≤ max ∧
num elmsr = size(stack) ∧
∀ xx .(xx ∈ 0..num elmsr − 1
⇒ stackr(xx ) = stack(xx + 1))

INITIALISATION
num elmsr := 0;
ANY ff WHERE

ff ∈ 0..max − 1→ N

THEN
Stackr := ff

END
OPERATIONS

Push =̂
BEGIN

stackr(num elmsr) := elm;
num elmsr := num elmsr + 1

END;
out ←− Pop =̂

BEGIN
num elmsr := num elmsr − 1;
out := stackr(num elmsr)

END
END

Figure 3: Stack Abstract Machine Refinement

The data-refined stack state is represented by the
variable stackr, to store the contents of the stack,
and the variable num elmsr, representing the num-
ber of elements currently in the stack. The first two
lines of the invariant define the types of stackr and
num elmsr . The third line of the invariant states that
the value of num elmsr should not exceed max .

The final two lines of the invariant define a re-
lationship between the specification and refinement
data structures (often referred to as a coupling in-
variant). The fourth line states that the value of
num elmsr should equal the size of the stack. The
specification data structure, stack , and the refinement
data structure, stackr , are linked by a relationship
stating that all the elements of stack occur in the
same order in stackr (although stack is indexed from
1 and stackr is indexed from 0).

The operations from the Stack machine are refined
by specifying them in terms of the concrete repre-
sentation with the refined operations using sequential
composition, (; ), in place of parallel substitution.
Any preconditions from specification operations are
assumed for the corresponding refinement operation.



The initialisation operation sets num elmsr to zero
and non-deterministically assigns stackr to a value of
type 0..max−1→ N. The Push operation adds an el-
ement at the position num elmsr in stackr and then
increments num elmsr . The Pop operation decre-
ments num elmsr and returns the element at the new
position of num elmsr .

Proof obligations are generated for the StackR re-
finement machine that check the machine’s consis-
tency and prove that StackR is a refinement of its
specification, Stack. For example, proof obligations
showing that the execution of the refined Push op-
eration satisfies the invariant are generated for each
predicate of the coupling invariant. One such proof
obligation, Push5, is presented below.

max ∈ N ∧ max = 10 ∧ stackr ∈ 0 . .max − 1→ N ∧
num elmsr ∈ N ∧
num elmsr ≤ max ∧ num elmsr = size(stack) ∧
∀ xx • (xx ∈ (0..num elmsr − 1)
⇒ stackr(xx ) = stack(xx + 1)) ∧ elm ∈ N ∧
size(stack) < max
⇒ xx ∈ (0..num elmsr + 1− 1)
⇒ (stackr ⊕ {num elmsr 7→ elm})(xx )

= (stack a [elm])(xx + 1)

It states that after the execution of Push, the
properties and invariant clauses of the refinement ma-
chine and the precondition of Push imply that (with
the new element added) each element of stackr corre-
sponds to an element of stack .

The proof obligation Pop4 for the Pop operation
states that the final line of the invariant for stackr
is maintained after the Pop operation is performed.
The proof obligation assumes that the invariant holds
before the operation and that the precondition of Pop
holds.

max ∈ N ∧ max = 10 ∧ stackr ∈ 0 . .max − 1→ N ∧
num elmsr ∈ N ∧
num elmsr ≤ max ∧ num elmsr = size(stack) ∧
∀ xx • (xx ∈ (0..num elmsr − 1)
⇒ stackr(xx ) = stack(xx + 1)) ∧ stack 6= [ ]
⇒ xx ∈ (0..num elmsr − 1− 1)
⇒ stackr(xx ) = front(stack)(xx + 1)

In total fourteen proof obligations associated with
the correctness of the refinement machine were gen-
erated. Of these, twelve were discharged using the
B proof support tools (B Autoprover and B-Tool
prover). The remaining two proof obligations (Push5
and Pop4 ) could not be proven due to limitations
in the theory base of the B provers. While new
rules can be introduced in the B-Tool prover, they
can only be introduced as axioms. The soundness of
these rules is not checked, nor are there any checks
done to determine whether the consistency of the the-
ory base is maintained. Clutterbuck, Bicarregui &
Matthews (1996) try to solve this problem by propos-
ing a method of representing derived rules as proof
steps in B. Unfortunately even they admit that their
process results in rules that are cumbersome to use.

3.3 Translation to Isabelle/HOL

All of the proof obligations associated with the
stack case study in B were hand-translated to Is-
abelle/HOL theorems. The seven proof obliga-
tions associated with the specification machine were
discharged automatically within Isabelle/HOL. All
remaining proof obligations were interactively dis-
charged in Isabelle/HOL. Several theory extensions
were required in Isabelle/HOL, however these exten-
sions were represented as lemmas that were subse-

quently proven, thus maintaining the soundness and
consistency of the theory base.

Various challenges arose during the translation of
B proof obligations to Isabelle/HOL. These issues are
illustrated below. In Section 4 we discuss the transla-
tion issues more generally in the context of our frame-
work.

The first challenge was representing B type con-
straints in Isabelle/HOL. In B the type constraints
are represented explicitly in proof obligations as set
memberships; for example, the condition max ∈ N
in the proof obligation Push5. Since Isabelle/HOL is
strongly typed and type checking is handled by the
built-in type checker prior to proof, such set mem-
bership conditions can usually be avoided. However,
for generality, we translate set membership conditions
in B to the corresponding condition in Isabelle/HOL;
for example, the condition max ∈ N is translated to
(max is renamed to bmax to avoid name clashes):

bmax ∈ {n :: N • True}
where “::” is the Isabelle typing operator, which is
different to the set membership operator ∈.

While in this case it is not strictly necessary to in-
clude the type constraint, True, it is necessary when
there is no direct correlation between the B type and
the Isabelle type. For example, if the constraint was
max ∈ {n : N | n > 5} instead, then it would be
necessary to include the translated constraint (i.e.
max ∈ {n :: N • 5 < n}).

A second problem arose when representing the
type of stackr (stackr ∈ 0 . . max − 1 → N) in Is-
abelle/HOL. We cannot represent the type 0 . .max −
1 → N directly in Isabelle/HOL as total functions
must have basic types for their domain and range.
We can however represent the type as a partial func-
tion, N 7→ N, with an extra constraint that defines
the domain:

stackr ∈ {t :: (N 7→ N) • dom t = {i • 0 ≤ i < bmax}}

Partial functions are modelled in Isabelle/HOL as
total functions that map an element x to the value
Some y , when the function is defined at x and where
y is the value of the function at x , or to the con-
stant None when the function is not defined at x .
While this representation of partial functions is gen-
erally adequate, it does introduce some extra trans-
lation overheads. In particular, when assigning val-
ues to a partial function the Some and None labels
must be included. Similarly, when accessing values
from the partial function these same labels must be
stripped off using the the operator. For example, the
term stackr(xx ), which accesses the element at index
xx of stackr , is translated to the (stackr(xx )).

The third translation problem was representing se-
quences in Isabelle/HOL. Isabelle/HOL does not pro-
vide support for a sequence data type, but does sup-
port a list data type. For our purposes these data
structures are similar enough so that we can use lists
instead of sequences. However, a difference between
the two data structures is that lists in Isabelle/HOL
are indexed from zero whereas sequences in B are in-
dexed from one, therefore adjustments to the indices
need to be made when dereferencing the list.

The final translation problem was avoiding name
clashes with reserved words in Isabelle/HOL. For the
stack proof obligations the variable max is renamed
to bmax to avoid a name clash with the max reserved
word in Isabelle/HOL.

4 Translation issues

In this section we summarise the main translation is-
sues that were discovered during the case studies and



the literature review. These translation issues were
used as inputs into the statement of the requirements
for our generic framework.

Type representation: We have seen two different
ways of representing type information: at the meta-
level using built-in types, or at the object-level using
set notations. While it is possible to translate be-
tween the two representations, we must be aware of
the consequences. At the meta-level, type checking
can be handled by built-in tools prior to proof, while
at the object-level, type checking becomes part of
the proof. Consequently, after translating from meta-
level to object-level representations, proofs typically
become more difficult. Type representation is much
richer at the object-level than at the meta-level, so in
the worst case we may lose expressiveness by trans-
lating from object-level type representations to meta-
level representations; in the best case the translation
leads to more cumbersome type representations.

Higher-order constructs: As well as wanting to
discharge proof obligations associated with a partic-
ular program development, we may also want to dis-
charge proof obligations associated with the correct-
ness of reusable library components. Such compo-
nents are often specified using higher-order logics in
order to ensure that they are generic and are appli-
cable in a variety of situations. Therefore to prove
properties about such generic components we need to
be able to represent higher-order constructs.

Fortunately there are a number of theorem provers
that offer support for higher-order logics, and such
provers would be obvious candidates. However, while
higher-order logics are more expressive, they are also
more complex. Indeed in most cases we may wish to
stay within first-order logic. To do this we want some
mechanism that allows us to switch to higher-order
logic constructs only when required.

Construct support: In translating between an
FDE and a theorem prover we need to determine
counterparts for representing constructs in the FDE
and theorem prover. As we have seen in the case
study, direct counterparts are not always available;
however there may be constructs that are similar and
can be used if adapted in some manner. To use these
similar constructs we must be able to determine the
differences and how they can be adapted. This will
be very difficult to do in general, but there are certain
constructs that can be easily adapted. For example
lists/sequences can be adapted by changing indices.
Orderings can be adapted by reversing the arguments.

As Saaltink et al. (1992) point out, using adapted
constructs can result in proof obligations that are
more difficult to read and reason about.

Theory extensions: A number of FDEs, CARE
being one example, let the user write domain-specific
theories that include type and function definitions.
In translating these theory extensions into the tar-
get theorem prover representation, we must ensure
that these extensions maintain the consistency and
soundness of the theory base. Many theorem provers
provide facilities for making conservative extensions
to theories; such extensions must adhere to a strict
form. It is therefore important that the framework
provides support for representing conservative exten-
sions, rather than having to represent any extensions
as axioms (as is done in B).

Another related issue is the representation of lem-
mas (or any other construct that has an associated
proof), such as those that are used to prove a proof

obligation. Being able to export these lemmas is use-
ful if we want to discharge proof obligations in an-
other theorem prover. However sharing lemmas is
more difficult than sharing definitional extensions, be-
cause lemmas also have an associated proof. We can
address this issue in a number of ways including:

1. Representing the lemma as an axiom and trust-
ing the proof in the other theorem prover. How-
ever this may affect the soundness of the logic.

2. Representing the lemma as a lemma in the new
theorem prover and redoing the proof in the new
prover. This means that the soundness of the
prover’s logic is maintained, but we have the
added burden of redoing the proof.

3. Representing the lemma as a lemma in the
new theorem prover and importing the origi-
nal proof using a generic proof representation
(Watson 2001).

Undefinedness: A number of commonly used
specification constructs are undefined for certain in-
put values. One example is natural number division,
which is undefined when the divisor is zero. Another
example is the function head for accessing the head
of a sequence, which is undefined when the sequence
is empty.

Treatment of undefinedness varies across different
FDEs and theorem provers. In some cases the issue
of undefinedness is largely ignored, with constructs
only defined for values in the domain. For example,
in Isabelle/HOL, head is defined as a total function
on lists, but is only defined for non-empty lists. The
expression head([ ]) is well-formed in Isabelle/HOL,
but cannot be simplified any further.

Other FDEs (e.g. VDM-SL) and provers (e.g.
Ergo) represent undefinedness explicitly. Ergo in-
cludes an undefined value (⊥), enabling the user to
check whether or not an expression is defined. In this
case the expression head([ ]) would simplify to ⊥, in-
dicating that a function has been used incorrectly.

In translating from a logic that supports unde-
finedness to one that does not, there will be a loss
of information. In contrast, it may be possible to
translate from a logic with no support for undefined-
ness to one with support and actually gain the ability
to check for undefinedness.

Partial functions: The use of partial functions
in abstract specifications is quite common, however
not all theorem provers provide support for partial
functions, while others offer a work-around solution.
Weakly-typed set-theory based logics provide the best
support for modelling and reasoning about partial
functions. In this case, the domain of the partial
function can be modelled precisely using sets, and it
is possible to reason about whether or not particular
values are in the domain of the function. On the other
hand, strongly-typed logics cannot accurately model
partial functions. Some of these logics provide no
support at all; total functions must be used instead.
Others, such as Isabelle/HOL, base partial functions
on total functions, but map values outside of the func-
tion domain to an arbitrary undefined value. Because
provers offer different solutions to this problem we
cannot deal with the problem in a systematic way,
but we must be able to recognise partial functions.

Variable representation: Proof assistants and
formal development environments differ in the kinds
of variables that can be represented in their logics.
Examples of variables include: first-order (object)



variables; higher-order (function) variables; and meta
(term or predicate) variables. In translating between
FDEs and theorem provers, we need to ensure that
we are translating to the right kind of variable. So we
need to recognise what kinds of variables we are us-
ing in the FDE and properly distinguish between the
different kinds of variables; then we need to match
these kinds of variables with variables in the target
theorem prover where possible.

Name spaces: It is easy to introduce name clashes
between variables and predefined constructs when
translating. Therefore we need a systematic solution
to naming of constructs to avoid name clashes. In
renaming variables we need to be aware of any vari-
able naming conventions associated with the target
representation language.

5 Generic framework

The framework encompasses an intermediate mod-
elling language (IML) and automated translators that
connect formal development environments and theo-
rem provers to the IML. Proof obligations from for-
mal development environments can be translated into
IML syntax and then translated to an appropriate
theorem prover. Fig. 1 presents the general structure
of the framework.

5.1 Intermediate modelling language

The framework uses an intermediate modelling lan-
guage (IML) that allows the modelling of theorems
from a wide variety of formal development environ-
ments and theorem provers. The IML is designed to
be supported by automated translation support with
a syntax that can be easily parsed. The syntax of the
IML, specified in Z (Spivey 1992), is shown in Fig. 4.

IML specifications are modelled as a theory (THE-
ORY ). A theory consists of a sequence of the-
ory components (THEORYCOMPONENT ), repre-
senting theorems, definitional extensions and axioms.
Proof obligations are represented as theorems, con-
sisting of a name (NAME), a sequence of variable dec-
larations (VARDECL), identifying any free variables
in the theorem, and a formula representing the the-
orem itself (FMLA). Variable declarations associate
a variable with a set (representing the set of values
that the variable can take), and a sort. Axioms have
the same structure as theorems; we distinguish be-
tween the two since we want to ensure that they can
be treated differently by the prover.

To support conservative theory extensions, the
IML supports two kinds of definitional extensions:
functional definitions and relational definitions. A
functional definition consists of: a function name; a
sequence of free variables appearing in the definition;
a signature for the function, modelled as a set; and
the body of the definition, modelled as an expression.
A relational extension is defined in a similar manner.

Related theory components can be grouped to-
gether in a collection. A defcollect allows related
theory components to be grouped as collections. It
consists of a label (NAME) and a sequence of the-
ory components that are related. For example, one
can group a collection of definitions that constitute a
primitive recursive definitional extension.

The IML models standard logical formulae includ-
ing: the constants true and false; negation; the bi-
nary connectives conjunction, disjunction, implica-
tion and equivalence; and universal, existential and
unique existential quantifiers. Also included is a con-
struct for representing relation applications that take
a sequence of arguments and evaluate to a boolean

NAME SORT Description
= X ×X → B Expression Equivalence
∈ X ×X → B Set membership
< N× N→ B Less Than
≤ N× N→ B Less Than Or Equal To

Table 1: Relation constructs

NAME SORT Description
Natural Numbers
plus N× N→ N Addition
minus N× N→ N Subtraction
mult N× N→ N Multiplication
divide N× N→ N Division
Sets
size FX → N Cardinality
union FX × FX → FX Union
diff FX × FX → FX Difference
intersect FX × FX → FX Intersection
Sequences
seqref seq X × N→ X Dereference
front seq X → seq X Front
append seq X × seq X → seq X Append
length seq X → N Length
last seq X → X Last
Functions
fover (X 7→ Y )× (X 7→ Y ) Function

→ (X 7→ Y ) Override

Table 2: Function constructs

value. A relation is represented by giving its name, a
sort, and a sequence of arguments.

The table of relation constructs (Table 1) presents
a partial listing of available relations. This is only an
initial list that will be extended as the tools are de-
veloped further. The table provides a NAME and
SORT for each relation and a description of the rela-
tion’s behaviour. Use of the rel construct involves the
selection of a relation from the table and inserting its
NAME and SORT in the appropriate place.

IML expressions (EXPR) are partitioned into first-
order (FOEXPR) and higher-order (HOEXPR) ex-
pressions.

First-order expressions can be either function ap-
plications, variables, collections, or ordered pairs.
Function applications are similar to relation applica-
tions, consisting of a function name, a sort, and a
sequence of arguments. Table 2 gives a partial list
of supported functions. Each function in the table
is given a name, a sort and a description. We ex-
plain how this table is used to develop translators in
Section 5.2.

Higher-order expressions are represented by the
HOEXPR construct. Higher-order function applica-
tion is represented by the hofunapp consisting of a
HOAPPLIC node, either a higher-order functor or
an expression, and a sequence of EXPR parameters.
The lambda construct defines an anonymous function
and hopair defines a pair of possibly higher-order vari-
ables. Higher-order variables are represented by the
hovar construct with a NAME and SORT.

Although it is not necessary to provide a sort for
each variable it makes the development of transla-
tors easier and provides a mechanism for redundancy
checking. Sorts attached to variables can be com-
pared to the sort of the construct of which it is an
argument or compared to the sort specified at its dec-
laration (a VARDECL construct). The hovar and var
constructs are different to variable declarations be-
cause they refer to the use of a variable rather than
its declaration.



[NAME ]

THEORY == seq THEORYCOMPONENT

THEORYCOMPONENT ::= theorem〈〈NAME × seq VARDECL× FMLA〉〉
| axiom〈〈NAME × seq VARDECL× FMLA〉〉
| edef 〈〈NAME × seq VARDECL× SET × EXPR〉〉
| pdef 〈〈NAME × seq VARDECL× SET × FMLA〉〉
| defcollect〈〈NAME × seq THEORYCOMPONENT 〉〉

VARDECL == NAME × SET × SORT
FMLA ::= true

| false
| not〈〈FMLA〉〉
| and〈〈FMLA× FMLA〉〉
| or〈〈FMLA× FMLA〉〉
| implies〈〈FMLA× FMLA〉〉
| iff 〈〈FMLA× FMLA〉〉
| quant〈〈QUANT ×VARDECL× FMLA〉〉
| rel〈〈NAME × SORT × seq EXPR〉〉

QUANT ::= forall | exists | uexists
EXPR ::= foexpr〈〈FOEXPR〉〉

| hoexpr〈〈HOEXPR〉〉
FOEXPR ::= funapp〈〈NAME × SORT × seq FOEXPR〉〉

| var〈〈NAME × SORT 〉〉
| pair〈〈FOEXPR × FOEXPR〉〉

HOEXPR ::= hofunapp〈〈HOAPPLIC × seq EXPR〉〉
| lambda〈〈VARDECL× EXPR〉〉
| hopair〈〈EXPR × EXPR〉〉
| hovar〈〈NAME × SORT 〉〉

HOAPPLIC ::= hofunctor〈〈NAME × SORT 〉〉
| expr〈〈EXPR〉〉

SET ::= nat
| bool
| int
| tfun〈〈SET × SET 〉〉
| pfun〈〈SET × SET 〉〉
| setcomp〈〈VARDECL× FMLA〉〉
| pow〈〈SET 〉〉
| setenum〈〈seq EXPR〉〉
| union〈〈SET × SET 〉〉
| intersect〈〈SET × SET 〉〉
| diff 〈〈SET × SET 〉〉
| interval〈〈EXPR × EXPR〉〉
| cross〈〈SET × SET 〉〉
| seq〈〈SET 〉〉
| setvar〈〈NAME × SORT 〉〉

SORT ::= natSort
| intSort
| boolSort
| seqSort〈〈SORT 〉〉
| setSort〈〈SORT 〉〉
| tfunSort〈〈SORT × SORT 〉〉
| pfunSort〈〈SORT × SORT 〉〉
| pairSort〈〈SORT × SORT 〉〉
| sortvar〈〈NAME 〉〉

Figure 4: Generic Framework Syntax Description

In the IML, types are modelled using sets, with
each variable assigned a set of values that it can take
when it is declared. Defining types using sets means
that there is no loss of information when we are trans-
lating from an FDE with a weakly-typed logic. How-
ever several predefined sets (naturals, booleans and
integers) and set constructors (total functions, partial
functions, power sets, cross product and sequences)
are defined so that strongly-typed logics can be easily
translated. A number of set operations are included
for constructing specialised or more complex sets, in-
cluding: set comprehension; union; intersection; and
set difference. In cases where no type information can
be derived, or where type parameters are required, a
set variable can be used.

Sorts (SORT) are used for a kind of weak typing,
used internally by translators to handle pathological
cases and to deal with operator overloading. Sorts can
be assigned to variables, functions and relations. We
use sorts instead of sets for this internal processing
because they are easier to calculate and provide suf-
ficient information for internal processing. Sorts are
not directly translated as part of a theorem. A num-
ber of sorts are defined, including: natural numbers;
integers; booleans; sequences; sets; total functions;
partial functions; and ordered pairs. Sort variables
are also available for representing generic or unknown
sorts.

5.2 Writing translators

Developing translators from an FDE to the IML and
from the IML to a theorem prover is largely depen-
dent on the particular FDE or theorem prover. How-
ever the framework is designed to support system-
atic development of translators, by: providing tables
of supported constructs to make it easier to match
FDE/theorem prover constructs with IML constructs;
identifying standard construct adaptation techniques
for matching FDE/theorem prover constructs against
similar IML constructs; and using sorts to help iden-
tify and deal with pathological translation cases.

FDE to IML translators

FDE to IML translators are extended parsers that
map FDE constructs into IML syntax. As well as
performing standard parsing, a translator also needs
to perform the following steps:

1. Extract sort information for each variable and
functor.

2. Extract typing information for any variable dec-
larations.

3. For each FDE construct find a corresponding
construct in the support table, using sort infor-
mation to solve any ambiguities.



4. If there is no direct corresponding construct,
determine whether the FDE construct can be
adapted to match an IML construct. Possible
adaptations include:

(a) modifying the index for list/sequence deref-
erencing,

(b) reversing the order of arguments for binary
ordering relations.

5. Rename variables to ensure there are no name
clashes.

IML to theorem prover translators

An IML to theorem prover translator maps IML con-
structs to constructs that can be manipulated by the
target theorem prover. IML to theorem prover trans-
lators are extended pretty printers, with the following
steps:

1. Map each construct in IML tables to a construct
in the theorem prover.

2. For unsupported constructs attempt to adapt
the IML construct to match an existing theorem
prover construct.

3. Translate type information for variables using
the set information given in the variable decla-
ration.

4. Use sort information to deal with any pathologi-
cal cases particular to the target prover, e.g., the
treatment of partial functions in Isabelle/HOL.

5.3 Tool support

Prototype tool support has been developed for the
framework, written mostly in Prolog. To date the tool
includes translators for the B and CARE FDEs, and
the theorem provers Ergo, Isabelle/HOL and Otter
(the latter being an automated prover). The proto-
type tool has been applied to two complete case stud-
ies in B (the stack data structure given earlier and
a square root approximation program) and one com-
plete case study in CARE (square root approxima-
tion) to generate proof obligations in Isabelle/HOL.
These proof obligations were compared to those orig-
inally translated by hand to Isabelle/HOL. The proof
obligations generated by the tool are equivalent to
those translated by hand. The IML to Ergo transla-
tor has also been applied to these examples to gen-
erate proof obligation in Ergo, however we have not
proven these proof obligations in Ergo yet.

Figure 5 contains a fragment of the IML output
for the Pop4 proof obligation in B, generated by the
B to IML translator. This IML fragment corresponds
to the condition:

stackr ∈ 0 . .max − 1→ N

This condition is represented by a application of
the relation mem to the variable stackr and the set
0 . .max − 1→ N. Lines 1-2 begin the relation appli-
cation, defining the name of the construct to be ap-
plied. Lines 3-11 define the sort of the mem relation.
Lines 12-29 define the two arguments of the relation
application. Line 12 defines the first argument as the
variable stackr. Note that stackr has been renamed
by prepending iml to avoid name clashes. Lines 13-29
construct the set defined as the second argument. It
uses the function tfun to construct a set of functions,
interval to construct a set of natural number inter-
vals, and nat to construct the set of natural numbers.

The interval is constructed in lines 21-28 using the
constants 0 and 1, the variable max (renamed) and
the function minus.

The tool has been tested on fragments of other
case studies to test whether other specific transla-
tion issues have been dealt with sufficiently. To test
whether higher-order proof obligations could be suc-
cessfully translated within the framework, we trans-
lated several proof obligations used to establish the
correctness of a generic accumulator module in CARE
(Hemer & Lindsay 2004). These proof obligations,
which included higher-order parameters, were trans-
lated to Isabelle/HOL.

Another simple case study in CARE, which in-
cluded domain specific theory extensions, was used
to test the frameworks support for definitional exten-
sions. In this case the framework was able to trans-
late to suitable constructs in Isabelle/HOL for making
conservative extensions.

A simple example, modelling a switch in B, was
translated using the IML to Otter translator. All
proof obligations were automatically discharged by
Otter.

6 Discussion

In this section we discuss enhancements that could be
made to the generic framework. The first enhance-
ment is to develop a more systematic approach to
developing translators. Currently translators are de-
veloped in an ad-hoc manner, with each translator
having been developed from scratch. However much
of the translator is more or less the same regardless of
the FDE or theorem prover. We propose developing
two generic translators (for FDE to IML and IML to
theorem prover). These generic translators can then
be instantiated by setting certain variables or rules.
The idea is similar to the way in which Proof General
(Aspinall 2000) enables script-based theorem prover
interfaces to be easily developed by setting certain
variables and functions.

Another area that we wish to investigate is the
number of constructs given in the supported con-
structs tables. In the current version of the framework
these tables are minimal. For example rather than
providing two list-like structures indexed from zero
and one, we only provide one. To translate from or
to the other list structure we must provide an adapta-
tion. In some cases we might have to provide an adap-
tation when translating from the FDE to the IML and
when translating from the IML to the theorem prover,
when in fact the FDE and theorem prover constructs
are equivalent. This unnecessary adaptation could re-
sult in proof obligations that are harder to read and
reason about. An alternative to the current approach
is to include many more constructs in the tables. In
translating from the FDE to the IML we would need
some way of representing alternate solutions. When
translating from the IML to the theorem prover we
would choose the alternative that maps most natu-
rally to a theorem prover construct.

The intermediate language used by our framework
has no formal semantics. All translations via the
framework are purely syntactic transformations. It
may be the case that an IML with a fully formal se-
mantics could be incorporated into the framework.
This would allow us to ensure the soundness of trans-
lations. While development of an IML with a fully
formal semantics may be possible (perhaps similar to
the meta language of Isabelle), writing translators to
and from such a formal language would be impracti-
cal, thus removing any of the advantages of using the
framework.

Several translation issues are still unresolved in



1 rel(
2 mem,
3 tfunsort(
4 pairsort(
5 tfunsort(natsort,natsort),
6 tfunsort(
7 pairsort(
8 tfunsort(pairsort(natsort,natsort),setsort(natsort)),
9 setsort(natsort)),

10 tfunsort(tfunsort(pairsort(natsort,natsort),setsort(natsort)),setsort(natsort)))),
11 boolsort),
12 [var(iml_stackr,tfunsort(natsort,natsort)),
13 funapp(
14 tfun,
15 tfunsort(
16 pairsort(
17 tfunsort(pairsort(natsort,natsort),setsort(natsort)),
18 setsort(natsort)),
19 tfunsort(tfunsort(pairsort(natsort,natsort),setsort(natsort)),setsort(natsort))),
20 [funapp(
21 interval,
22 tfunsort(pairsort(natsort,natsort),setsort(natsort)),
23 [funapp(0,natsort,[]),
24 funapp(
25 minus,
26 tfunsort(pairsort(natsort,natsort),natsort),
27 [var(iml_max,natsort),
28 funapp(1,natsort,[])])]),
29 funapp(nat,setsort(natsort),[])]))

Figure 5: IML representation for Pop4 proof obligation fragment

the current version of the framework. One of these
is the area of non-definitional theory extensions, i.e.,
constructs that have an associated proof. For this
work we would need a generic proof representation
(Watson 2001), but it is not clear that this would
be possible without formalising the semantics of the
IML. Another issue that is still open is the treat-
ment of undefinedness. While we are able to translate
to theorem provers that provide explicit support for
modelling undefinedness (e.g., Ergo), we cannot rep-
resent proof obligations that make explicit use of the
undefined construct. Again it is not clear that such
an extension could be made to the framework without
formalising the semantics of the IML, in this case by
introducing a three-valued logic.

7 Conclusions

In this paper we described a generic framework
for connecting multiple formal development environ-
ments to multiple theorem provers. The require-
ments for this framework were influenced by three
case studies that revealed a number of translation is-
sues. These three case studies also provided concrete
evidence that standalone prover support was better
than the prover support provided as part of the FDE.
The collection of translation issues, as described in
this paper, was expanded further by completing a lit-
erature survey.

The generic framework, in which proof obliga-
tions are translated via an intermediate modelling
language, is currently supported by translators for
two FDEs (CARE and B) and three theorem provers
(Isabelle/HOL, Ergo, and Otter). This tool support
provides improved prover support for B. Moreover it
is a valuable addition to the current version of the
CARE toolset, which previously did not provide any
prover support.
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