Proc. 21st Australasian Database Conference (ADC 2010), Brisbane, Australia

Privacy-Aware Access Control in XML Databases

Anders H. Landberg

J. Wenny Rahayu

Eric Pardede

Department of Computer Science & Computer Engineering
La Trobe University, Melbourne, Australia
Email: a.landberg@latrobe.edu.au, w.rahayu@latrobe.edu.au, e.pardede@latrobe.edu.au

Abstract

With the growing use of XML for data transfer and
data storage across the web, securing XML docu-
ments has become an important issue. The XML
privacy and data access control issues are especially
significant in XML data repositories because they typ-
ically store large collections of highly sensitive busi-
ness data, health information, etc. Protecting pri-
vacy by only restricting access to individual nodes in
the XML document tree is not sufficient, as combi-
nations of nodes and aggregations thereof can lead to
disclosure of sensitive information. Moreover, a mech-
anism is required to cope with such combined data
privacy levels, as they must be validated on query-
time. Extending from XML access control models,
this paper proposes a privacy-aware access control
model for XML with composite security levels, which
adds a further level of fine-granularity to existing ap-
proaches. In order to enforce these composite secu-
rity levels, we then introduce a methodology based on
path-triggers. Finally, we evaluate the performance of
our new approach using three different implementa-
tion techniques.

1 Introduction

Privacy-aware access control is an important issue
when storing and publishing sensitive information,
such as financial and health data. We define privacy-
aware access control as an access control model, which
aims at securing data from access that may lead
to privacy violation. So far, most existing work in
the area have been focusing on security access level
only. The most influential works have been pro-
posed by Damiani [5][6][7] and Bertino [2], and many
other approaches have been inspired by their work
[4][12][9][13][8]. These works are based on static ac-
cess rule definitions, and are not targeting privacy
issues in connection with access control. The funda-
mental concept of these approaches is to define con-
straints on XML elements, attributes, and links, and
thus enabling only authorised users or user groups
with access to those data. These constraints are spec-
ified as XPath expressions, and are associated with
levels of access. However, while static access control
can secure a database from unauthorised access by
specifying access rules, it does not guarantee it from
privacy violation, which is caused by accessing com-
binations of nodes, and occurs at query time.

Copyright (©2010, Australian Computer Society, Inc. This pa-
per appeared at the Twenty-First Australasian Database Con-
ference (ADC2010), Brisbane, Australia, January 2010. Con-
ferences in Research and Practice in Information Technology
(CRPIT), Vol. 104, Heng Tao Shen and Athman Bouguettaya,
Ed. Reproduction for academic, not-for profit purposes per-
mitted provided this text is included.

Example: Given an XML document instance (see
Figure 1) and a schema definition that describes the
document, we can apply access constraints to each
and every node. Treatments and personal information
should have a higher level of access than the ward.
Personal information should have a higher access level
than treatments, because a composition of its child
nodes 'ZIP’, ’Age’, and 'Gender’, reveal more detailed
information about a patient and can easier lead to
disclosure of the data.

When restricting access to data, it is also impor-
tant to consider how it can be queried and how the
access control mechanism functions. Further, it must
be ensured that after the application of a privacy-
aware access control model, users such as analysts or
researchers are still able to retrieve useful information
from the data. This is an issue because by restricting
access to particular nodes, the query result may be
useless.

While the existing solution is acceptable for single
node access, it fails when restricting access to compo-
sition nodes. The reason for this is because these ac-
cess control policies are defined on design-time. How-
ever, combined node access restrictions cannot be pre-
determined, because they depend on the query. Thus,
these composition node privacy constraints must be
validated on query-time.

1.1 Defects of static(single) privacy con-
straints

In a publicly accessible hospital XML data reposi-
tory, where the specific identifiers (such as name) of
patients have been removed, a combination of two or
more identifier attributes may lead to the disclosure
of a particular patient. For example (see Figure 1), an
adversary knows that Mr. President had treatments
on the 1st of June 2007, but he does not know which
treatments were conducted. The adversary has access
to those parts of the document with a privacy level of
3 or less (see Table 1). After querying the hospital’s
public domain statistics on 'Treatments’ and 'Date’,
he finds that only one male patient received treat-
ment on this date. The treatment being dialysis, the
adversary now identifies Mr. President as the patient
that had dialysis on the 1st of June 2007.

One way to overcome this problem using existing
access control models, is to increase the level of ac-
cess for nodes that will lead to disclosure when com-
bined, or to completely restrict access to one of the
nodes. In our example, these nodes are 'Treatments’
and 'Date’. In this way it can be ensured that an ad-
versary will fail to re-identify Mr. President, because
one of the two nodes is not available for querying.
However, this has created a new problem. Let us as-
sume that we previously increased the access level of
the 'Date’ node, so that it was no longer accessible to
the adversary. As a result of this, any other data anal-

85

CRPIT Volume 104 - Database Technologies 2010

Table 1: Access authorization definiti

ons

Node

Level of access

/PatientRecords/PatientRecord /Date/

/PatientRecords/PatientRecord /Treatments/

/PatientRecords/PatientRecord/Ward/

/PatientRecords/PatientRecord /Personal/

/PatientRecords/PatientRecord /PreviousRecords/

= Qo[N N[

PatientRecords

patient

record
PatientRecord

patient
record

Ta treatments

content

!
| treatment tre atménl

"Ulf}’\l\UNQOOF’"

/ conlent

“Dialysis”

content

(a)

PatientRecord
:-"‘ wa
conlent

“€0 U’

“Kidney problem” / _ y
(b) -

patient

record
PatientRecord
1
\

< (Im k‘;\-)

previous

records
Previous Records

Persanal

zip.—-"' age gender

@-

f conlent content content
:

1
1
'
i
i
/
£
L

personal

N

"902_10

4
\

Figure 1: XML Document Instance: Patient Record

ysis queries issued by any user will not have access to
the date node either, hence making the queries nearly
useless (see Table 2). The same dilemma arises if we
choose to restrict access to the 'Treatments’ node, or
some of its child-nodes.

Table 2: Inaccessible data. Access levels too high.

Node Access
Level
/../PatientRecord/Date/ 5
/../PatientRecord/Treatments/ 2
/../PatientRecord/Ward/ 2
/../PatientRecord/Personal/ 3
/../PatientRecord /PreviousRecords/ 1

Table 3: Unnecessarily restricted data.

Node Access
Level
/../PatientRecord/ 7
/../PatientRecord/Date/ (7)
/../PatientRecord/Treatments/ (7)
/../PatientRecord /Ward/ (7)
/../PatientRecord /Personal/ (7)

Another work-around solution to overcome this
problem using existing approaches, is to identify the
parent node of the sensitive nodes 'Date’ and ’Treat-
ments’, and increase its level of access. An example
of this scenario is given in Table 3, where the 'Patien-
tRecord’ node is given a very large access level, hence
restricting access to any of its child nodes that lead
to disclosure.

While this solution achieves sufficient privacy pro-
tection by restricting access to 'Date’ and ’Treat-
ments’ nodes at the same time, it brings the side ef-

86

fect of also restricting access to these nodes individu-
ally and to all other nodes below the "PatientRecord’
node. In other words, a simple query on the "Ward’
node is not possible any longer, although this query
cannot lead to privacy disclosure. Hence, this solu-
tion suffers unnecessarily restricted data and limited
use.

This issue can not be avoided using existing access
control models, as it is subject to the combination of
nodes that is queried on run-time. Such constraints
can not be pre-defined by approaches found in exist-
ing literature because they must be checked and eval-
uated when the query is executed. The reason behind
this is that we cannot foresee which queries the user
will issue, nor do we know the users’ intentions.

Referring back to the access levels that we defined
in Table 1, we can also see that some users (with
access level less than 3) can not access the personal
data such as ’Age’ and ’Gender’, and thus, making
data analysis almost useless (see (b) in Figure 1). As
far as existing works are concerned, we can only at-
tempt to remedy the problem by specifying individual
access levels to each child node of the personal node.
However, this does not solve the problem of restrict-
ing composition node access.

1.2 Contributions

To overcome the defects of previous approaches, we
propose a novel privacy-aware access control model
for XML that captures query-time access control for
combined access to nodes. The goal of security level
composition is to group nodes in the XML data (see
Table 4), which when accessed in combination, may
lead to disclosure of individual patient records, and
further to the re-identification of individual patients.
While the individual access levels for the nodes within
a combined security level can remain unchanged, a
higher level of access will be required when attempt-

Proc. 21st Australasian Database Conference (ADC 2010), Brisbane, Australia

ing to access the nodes together. This means that
the information in the data can be protected much
stronger, yet granting less restrictive access to indi-
vidual nodes, which is crucial when conducting data
analysis by querying.

It is a well-known problem in the area of data pri-
vacy that a combination of attributes can lead to dis-
closure of sensitive information [15]. Determining the
combinations of data that lead to privacy disclosure is
a research field in itself and goes beyond the scope of
this paper. We do not offer a new solution to arrange
the data in a privacy preserving way, but propose
concepts and methods to enforce these principles.

By introducing the notion of composite security
levels CSL, our model provides a tool to define
privacy-aware access constraints over sets of sensitive
elements on a schema definition, or directly within
the XML data itself, where a security level can be at-
tached to a set of aggregated values or an instance of
XML data. Secondly, we propose a new mechanism
to implement the combined privacy-aware access con-
trol model with the use of XML triggers. We show
that combined privacy-aware access constraints can
be maintained in a cost-efficient manner by using this
new privacy preserving access control mechanism.

The rest of the paper is organised as follows. Sec-
tion 2 summarises related work in the area of access
control for XML, section 3 formalises our methodol-
ogy, section 4 describes how our model is enforced
with the use of XML triggers, and section 5 presents
the analysis of our approach. Finally, section 6 con-
cludes the paper.

2 Related Work

In the area of access control for XML, an early work
is represented by Samarati et al. [14] that proposes
an access control model for HTML documents. This
approach is clearly limited by the semantic deficits of
HTML as opposed to XML and as such, the model by
Samarati et al. is limited in many ways when defining
access policies as well as partitioning a document into
meaningful segments for an access control approach.

Damiani et al. [6] propose a method to define user
groups and access authorisations in XML documents.
User groups can be granted different types of access
(such as read, write) to certain parts of the docu-
ment by defining access authorisations. These access
authorisations are described based on subjects and
objects. Subjects are accessing entities such as users,
and objects are path expressions that identify parts
in an XML document.

Damiani’s paper offers a detailed approach to de-
fine data access control in XML documents. However,
it is based on the existence of a schema (DTD), and
cannot be applied to (schema-less) XML document
instances themselves. The access policies are restric-
tive (either ”+” or ”-” for access or no access), and
there is no differentiation between different levels of
confidentiality of the data. By contrast, our model
allows for both data-level and schema-level definition
of security levels. Also, our concept of combined se-
curity levels is a novel approach in this area.

Bertino et al. [2][3] propose an XML data ac-
cess model by introducing various levels of protec-
tion granularity, such as document/DTD, set of doc-
uments, (sub)elements, attributes, and links. By
applying these protection levels to policies, a fine-
grained and detailed access control is now possible.
The authors also focus on different levels of well-
formedness for XML documents, and make sugges-
tions on which policies to apply in which case.

Our paper can be differentiated from [2] and [3] in
the following areas. First, their access control poli-

cies are defined ’outside’ the document instances. Al-
though the authors claim to define access policies for
document instances, this approach is ultimately still
schema-based. This means that if these definitions
are lost or corrupted, then the data will be unsecured
and vulnerable to misuse. Our model in contrast can
be applied to a schema, as well as defined in the data
itself, yet maintains propagation (inheritance) of secu-
rity levels throughout the document structure. Sec-
ond, there is no mentioning about the existence of
combined security levels or similar phenomena.

Kuper et al. [10] use views over XML data to re-
strict access. It is important to point out the signif-
icant difference between this approach and ours. By
creating (static) views of the XML data, Kuper et.
al. hard-code the security model, instead of (dynam-
ically) validating it on query-time. This means that
after changes in the data, the views possibly need to
be updated for the security model to remain valid. On
the other side, our model is immune to such changes,
and any security levels and composite security levels
still apply even after data modification.

A large number of works in the area of XML ac-
cess control and privacy have been proposed that
are inspired by the works of Damiani and Bertino
[4][12][9][13][8]. The major rationale behind all ap-
proaches, however, is to bind access or privacy poli-
cies with particular nodes and/or attributes, which
we will refer to as single, or static privacy levels. The
reason for this is because the definition of access con-
trol and privacy protection policies and levels takes
place prior to the querying of the data, hence static,
and cannot be dynamically modified on query-time.

The major difference between previous works and
ours is that we focus our privacy model on privacy
control validation of composition nodes that is per-
formed at run-time, rather than a static privacy defi-
nition scheme. Our model can be implemented in the
XML data, and also for schema.

3 Proposed Method

This section formalises the proposed security model
by focusing on the process of expanding and labelling
nodes in an XML document tree. It explains how
the hierarchical structure influences the security con-
straints throughout the document tree, and provides
a methodology on how the security constraints can be
implemented. We use Figure 2 to illustrate the new
concepts and methodology.

3.1 Definitions and Rules

Definition 1. A security level SL is defined as
SL(entity) = wvalue, where entity € {user, system,
node}, and wvalue specifies the security level where
1<wvalue<maz.

Property 1. Unless otherwise defined, the
security level SL along a path P = Ny/Ns/.../Np,
must be incremental or equal, such that SL(N;) <
SL(N;11) where 1<i<m-1.

For the following definitions and examples, we
will use entity instances FI, E2, and User! with
the properties E1 € {user,system}, E2 € {node},
Userl € {user,system}, SL(E1) = 6, SL(E2)=4, and
SL(Userl)=3.

Example 1. Given an XML schema as shown in
Figure 2, SL(Userl) = 3 defines a security level of
value = 8 for entity Userl. SL(PatientRecords)=1
defines security level of value = 1 for entity Patien-
tRecords, which in this case is the PatientRecords

87

CRPIT Volume 104 - Database Technologies 2010

Table 4: Privacy protected. Data accessible.

Node Single SL | Composite SL
/PatientRecords/PatientRecord /Date/ 1 5
/PatientRecords/PatientRecord/Treatments/ 2
/PatientRecords/PatientRecord /Ward/ 2
/PatientRecords/PatientRecord /Personal/ 3
/PatientRecords/PatientRecord /Personal /ZIP / (3)
/PatientRecords/PatientRecord /Personal/Age/ (3) 7
/PatientRecords/PatientRecord /Personal /Gender/ (3)
/PatientRecords/PatientRecord /PreviousRecords/ 1

SL=1

patient

record

treatments

SL=2

treatment diagnosis

PatientRecord

ward

previous

records SL=1

SL=3

Personal

personal

zip age gender,

L1

Figure 2: Privacy model applied on XML schema

node.

Rule 1.1 If a node does not specify SL, then
its SL is inherited from its nearest ancestor that
specifies SL.

Rule 1.2 Security level grouping: if SL is equal
for all child nodes of a parent node, then this SL
applies to the parent node.

Definition 2. Two entities EI and E2 are
defined as matching, when SL(E1) > SL(E2), where
E1 € {user, system}, and E2 € {node}.

Example 2. Given an XML schema as shown
in Figure 2, and given SL(User!) = 3, and given
SL(Personal)=3, SL(Userl) and SL(Personal)
are said to be matching because SL(Useri) >
SL(Personal), and Userl € {user, system}, and
Personal € {node}.

Definition 3. A composite security level CSL is
defined as a tuple (CN,SL), where CN is a set of
composite nodes and a SL is a security level.

CSL = {CN,SL(entity)VN € CN : SL(N) <
SL(entity)}.
Example 3. The SL of a CSL applies to all

nodes in CN if all nodes in CN are accessed together.

Definition 4. Given a CSL(CN, SL(entity)), and
given an entity E1, F1 and CSL (CN, SL) are defined
as matching, when ¥ N € CN : SL(E1) > SL(N),
and SL(E1) > SL(entity), where E1 € {user,system}.

Example 4. Given an XML schema as shown
in Figure 2, and given a CSL (CN, SL(entity))

88

where CN={"ZIP’, ’Age’, ’Gender’, ’Diagl’}, and
SL(entity)="7, and given EI where SL(E1)=7, E1
is said to be matching with CSL(CN,SL) because
SL(E1) > SL(entity) andV N € CN : SL(E1)>SL(N).

The ancestor nodes of nodes that participate in a
CSL are not affected by an increased level of privacy.
This means that the SL of any ancestor nodes relative
to the CSL participants remains unchanged if a CSL
applies during validation. As for the descendant
nodes of CSL participants, the following rule applies.

Rule 2. If a node N participates in a CSL, and if
this CSL applies during a data access operation, then
all descendants of this node N inherit the security
level of the CSL. Exception: If a descendant node D
of node N has a security level that is greater or equal
to the security level of the CSL, then the security
level of node D remains unchanged, and is treated
according to Definition 2.

The above definitions and rules have described our
privacy model. In the following section, Algorithm 1
represents the access control mechanism. It is used
to detect security levels in the XML data, and to
match these against the accessing entity’s security
level.

Algorithm. The algorithm first validates basic
SL’s (security levels), and in the same process, identi-
fies and validates composite security levels. The CSL
validation is divided into three parts: (i) identifica-
tion of CSLid’s (CSL tags), (ii) identification of par-
ticipating nodes for these CSL id’s, and (iii) the ac-
tual matching of the CSL’s security level (if the CSL
applies) against the accessing entity’s security level.

Function query_node_instances(D, path_expr) re-

Proc. 21st Australasian Database Conference (ADC 2010), Brisbane, Australia

Algorithm 1: Matching Algorithm

Data:

D : XML document

selected nodes: Set of selected node types as

path expressions

SL(accessing_entity): accessing entity’s security

level

Result: b: returns true if access is granted,
false otherwise

begin
foreach path_ezpr in SN do
node_list «— query_node_instances(D,
path_expr)
foreach node in node_list do
if node.SL > SL(accessing_entity)
then

| return false
else

L continue

if has_attribute(node, "CSLid”) and
not node.CSLid € csl_list then
part_nodes <+—
query_dct_node_typ(D, all_paths,
”CSLid”)
if selected_nodes C part_nodes
and node.CSL >
SL(accessing_entity) then

| return false
else

L continue

else
| add(csllist, node.CSLid)

return true
end

turns a set of node instances from document D as
specified by path expression path_ezpr. Function has_
attribute (node, ”CSLid”) returns true if node has
attribute "CSLid”, false otherwise. Function query-
det_node_typ(D, all_paths, ”CSLid”) returns a set of
all distinct node types from document D that have at-
tribute ”CSLid”. Function add(csl list, node.CSLid)
adds attribute value node. CSLid to list csl_list.

In regards to Rule 2, this algorithm is applied re-
cursively to all descendant nodes of a given context
node, which is being validated during data access.

4 XML Triggers for Privacy-Aware Access
Control

Single and composite security level validation as pro-
posed in the matching algorithm, can efficiently and
effectively be realised using XML triggers. We have
introduced the notion of XML triggers as a mecha-
nism to maintain XML data consistency after a se-
quence of updates [11]. In this section, we adopt a
triggering mechanism to activate a certain access pol-
icy each time a query that may violate privacy rules
is executed. We believe that this is an effective and
unique way of dynamically firing an access control in
the database layer.

4.1 Single security level validation trigger
(SSLVT)

A single security level is either hard coded into the
document as an attribute ’SL’ (document scope), or
the security level is defined outside the document with
an XPath expression. In the latter case, the security
level applies to the particular element in all docu-

ments that are associated with that schema (schema
scope).

To create a mechanism for validation of this single
security level, we first create a new path-trigger, and
apply it to the node (expressed by t¢p) that is to be
validated upon access. It requires the trigger’s event
to be ’access’, so whenever there is an access to this
node, then the trigger is fired. The event ’access’ is
not available in [11], therefore we must modify the
trigger’s event options accordingly.

The target path tp of a SSLVT is the XPath ex-
pression that specifies the node to be protected by
the single security level, and has the form {<XPath
expr>}.

The next step is to adjust the trigger’s action-
body appropriately. The attribute that stores the
security level must now be compared to the access-
ing entity’s security level. The latter must be ei-
ther hard-coded into the trigger, or retrieved/passed
dynamically to the trigger on run-time. Function

Trigger definition: SSLVT := {e, ¢, a}

e := {access tp}

¢ := {SL(entity) < $con/@SL} ; for document scope
¢ := {SL(entity) < node_SL($con)} ; for schema scope
a := {RETURN $con/*[@SL <= SL(entity)]}

node_SL(path_expr) takes as input an XPath expres-
sion and returns the security level for it. SL(entity)
specifies the security level of the accessing entity.

Although we only consider read-operations (read-
only queries) for our privacy model, it can be clearly
seen that the path-trigger mechanism is capable
of supporting other operations such as ’insert’,
"delete’, and 'update’ as well. Compared with other
approaches [6][2], these operations would be similar
to 'write’, 'remove’; and 'replace’ respectively.

Example. As an example trigger implementation,
we first declare a security level for target node
tp = /../PatientRecord/Ward, and set its SL = 1.
This implies that when we declare the trigger, the
event will be e = accesstp. We must explictly specify
which implementation type we use, so that the correct
condition is chosen. In this case we chose schema
type. Thus, the condition of the trigger will be ¢ :=
{SL(entity) < node_SL($con)}, where $con is the
XPath expression specifying the context node that is
being evaluated by the trigger.

4.2 Composite security levels validation trig-
ger (CSLVT)

If two or more elements participate in a composite
security level, then these elements specify two ad-
ditional attributes, namely the id of the CSL, and
the security level of the CSL. These values can ei-
ther be directly hard-coded into XML data (docu-
ment scope), or specified in an XML schema definition
(schema scope). Alternatively, a CSL can be defined
as a set of XPath expressions that specify the par-
ticipating nodes in the CSL, and a security level (a
number) that applies for the CSL.

The strategy for implementing a path-trigger that
validates a composite security level is similar to the
above described one. The differences are that to val-
idate a CSL, we must first identify the closest com-
mon ancestor node (this will be the context node for
the trigger [11]), and then implement the trigger’s
action-body in such a way that all participating nodes
are retrieved, and their security level for the CSL is
matched against the accessing entity’s security level.

The target path ¢p of a CSLVT is the path that
specifies the closest common ancestor node, relative

89

CRPIT Volume 104 - Database Technologies 2010

to all the participating nodes in CN, and has the form
{<XPath expr>}.

The reason why we need to find the closest com-
mon ancestor node of all participating nodes, is be-
cause from this point in the XML document structure,
the number of node traversals to each of the partic-
ipating nodes, is minimised. Also, the path-trigger
will automatically traverse all context paths relative
to the context node, and in this way allow direct ac-
cess to possible participants of CSLs.

Trigger definition: CSLVT := {e, ¢, a}

e := {access tp}

c = true

a := { IF $path IN S(CN) THEN mark($path) END IF;
IF getMarked(CSL id) EQUALS S(CN) THEN

IF SL(entity) < SL(CSL id) THEN

THROW EXCEPTION

END IF;

END IF; }

Function mark(path_expr) marks a path as belong-
ing to the CSL that is to be validated. Function get-
Marked(CSL id) returns the set of marked nodes for
the CSL with CSL id.

The most time consuming task in this process
is to determine whether a CSL applies or not, e.g.
whether all or a subset of the retrieved nodes by a
query are all participating in one and the same CSL.
To do this, we must first retrieve the set of nodes
that participate in the CSL with the respective id
that is to be validated. Then, this set of nodes must
be compared against the set of participating nodes
that are actually retrieved during the query. If the
sets match, then the CSL applies, and the security
level of CSL and accessing entity can be matched
against each other.

Example. Referring to Figure 2 and Table 5, this
example shall demonstrate a practical application of
the CSLTV mechanism. Table 5 lists a number of
sample queries that are issued by accessing entities.
Each of the entities have an associated security level
that is used to determine whether they have access to
the XML contents specified by the query.

The 'Public’ user profile can access nodes that
have an SL below their own (query 1), but when
attempting to access nodes on which a CSL applies
(query 2), then access will be denied. In this case the
selection in the query is made based upon the QSL
attribute.

5 Analysis

For a more realistic and fair comparison of our
method, we conducted the tests in three different
modes. These modes are (i) ’Cold-run’, (ii) "View’,
and (iii) 'Trigger’ respectively. In 'Cold-run’ mode,
security levels and composite security levels are val-
idated on query-time, and are implemented as pre-
conditions of the respective queries. In "View’ mode,
only composite security levels are validated on run
time, single security levels are implemented using
views of the XML data. In 'Trigger’ mode, XML
triggers are used to implement the privacy model. It
is obvious that a system without access control will
perform better, as access control mechanisms add per-
formance overhead.

5.1 Experimental Environment

The tests described in this section were conducted us-
ing the above described implementation using XML
triggers on a machine equipped with a 2.0GHz Intel

90

Pentium M 760 processor and 1GB DDR2 memory,
running Windows XP professional as operating sys-
tem. We used the Sigmod-Record in XML format ! to
build the XML repository, with the main document
holding a total of 23047 nodes. The XPath queries
were conducted in such a way that the CSLs were
activated and executed.

We define a computational cost unit as the cost of
traversing a node in the XML document tree.

5.2 Performance Results

The results of our tests in respect to composite se-
curity levels can be summarised as follows. Both the
cold-run (CR) mode and the view (VW) mode showed
a linear increase by 5 cost units per additional CSL
that had to be validated. The trigger (TR) mode per-
formed at a linear increase by 3 cost units, and there-
fore 60% better than the former traditional modes.

As we expected, the computational cost of validat-
ing an incremental number of CSLs increases linearly.
Maintaining a privacy preservation model will always
incur an overhead, but the results show us that the
mechanism we use helps to significantly reduce the
cost. We can clearly see that the trigger mode out-
performs both other modes, since pre-processing of
single security levels is performed when the trigger is
created, and context paths can be pre-cached by the
path-trigger to save computation time on query-time.

Traditional approaches rely on the ’Cold-Run’
mode, where all access validation is performed at
query-time. Some more recent approaches that use
views [10][1] rely on what we call "View’ mode, where
a set of access control and privacy constraints are
"hard-coded’ into the database or repository as a view.
While the latter of these two modes performs slightly
better than the cold-run, it still suffers the deficit of
being incapable of supporting the composite security
levels to a satisfactory degree.

The tests in path-trigger mode achieve much bet-
ter results, because the trigger creates a dynamic
compilation of the participating node paths when it
is created. This has the effect that query-time as-
sembly of participating nodes is reduced, and hence
computation time can be kept to a minimum. Further
computational cost is saved when composite security
levels overlap, which will be discussed in the next sec-
tion. This scenario of overlapping nodes for CSLs is
common, because generally a set of quasi-identifying
nodes in combination are the reason for privacy dis-
closure of sensitive nodes. Therefore, CSLs will most
likely apply to these sets of quasi-identifiers with one
or more additional sensitive nodes.

Table 6: CSL Overlap, n=10

k [max CSL [ovlp [ovlp/CSL (%)
2 45 9 20%
3 120 36 30%
4 210 84 40%
b) 252 126 50%
6 210 126 60%
7 120 84 70%
8 45 36 80%
9 10 9 90%
10 1 1 100%

5.3 Scalability

The maximum number of composite security levels
with a cardinality k£ that can be applied to an XML

! Available for download at http://www.sigmod.org/record /xml

Proc. 21st Australasian Database Conference (ADC 2010), Brisbane, Australia

Table 5: Sample XPath queries

Query Accessing Entity | Access
/PatientRecords/PatientRecord /*[@SL=1] Public (SL=4) yes
/PatientRecords/PatientRecord /*[@SL<=3] Public (SL=4) no
/PatientRecords/PatientRecord /*[position()<3] | Researcher (SL=6) yes
/PatientRecords/PatientRecord /*[position()>1] | Researcher (SL=6) no
/PatientRecords/PatientRecord/ Admin (SLZlO) yes
/PatientRecords/PatientRecord/ Web-Service (SL=4) no
Computational Cost Units Ferformance Gain
450 300
400 4 i disjoint, ovip=0% 250 —o_k=3, oWIp=BE.ET% -

350 A
300
250
200 A
150 4
100 4
50 A

—o— k=3, ovlp=68.67%
—a— k=5, ovlp=B0%
—x— k=10, ovlp=80%

1 2 2 4 5 6 7 g 9 10
Mumber of Composite Security Levels {(CSL) (x10)

Figure 3: Validating CSLs

structure containing n leaf nodes is specified by the
binomial coefficient C% = (}) = k:'(+lk)" which is also
known as the choose function. We apply this function
to our method to measure how many CSLs will pos-
sibly be generated based on a given XML structure.
Table 6 presents the maximum number of CSLs
that can be generated with a given cardinality k, the
number of nodes that overlap for the CSLs, and the
percentage of overlapping nodes per CSL. From these
results we derive a cost model that represents the per-
centage of overlap per CSL: C'S Loy, = % with pa-
rameter n that denotes tree cardinality. We calculate
the number of overlapping nodes with the formula

_ k=1 _ (n—-1y _ (n=1)!
Novip = Cp 71 = (k—l) = Bn—k)!"

The performance gain is dependent on the cardi-
nality of the grain of the XML document, to which
the CSLs are being applied. As an example, if we
have a document structure as illustrated in Figure 2,
then the grain of the document is a ’PatientRecord’
node, and the cardinality n thereof is 7, given that
there is only one 'Treat1’ and 'Diagl’ node below the
"Treatments’ node. The performance gain that can be
achieved in this document yields ovip = @ = 14.3%.

The maximum CSL overlap percentage
MAX(CSLyyp) is dependent on the cardinality
of the CSLs, and is calculated using the following
formula. CSLgy, = 100 * (1 — %) An increasing
possible overlap of CSLs occurs with increasing
variable k and constant n. For example, given two
CSLs with k=2 each, then the overlap can be at
most 50%, and given three CSLs with k=3 each,
then MAX(CSLyyp) = 66.67%.

A low number of CSLs indicates a likelihood of
the CSLs to be disjoint. With increasing number
of CSLs, the likelihood of overlapping among these
CSLs increases, and hence brings performance gain
(see Figure 3). The first (upper, 0% overlap) graph
show performance for the worst-case when there is no
overlap (all CSLs disjoint), in which case the perfor-
mance is a linear graph with a constant increase in
computational cost for each additional CSL.

The next three graphs represent performance for
CSL cardinalities k=3, k=5, and k=10 respectively.

—— k=5, ovlp=80%
—x— k=10, ovlp=50%

200 4
160 4
100 4
50

1 2 3 4 5 6 7 B 9 10
Mumber of Composite Security Lewvels (CSL) (x10)

Figure 4: Performance gain

It can be seen that with increasing overlap percent-
age, the performance stabilises and will become con-
stant once there is a 100% overlap of CSLs.

Figure 4 shows that with moderate CSL cardinal-
ities, a substantial performance gain can be achieved.

Summary

The performance evaluation revealed that the new
proposed concept of composite security levels does not
add any substantial overhead to the access control
mechanism. This is particularly visible in the com-
parison of cold-run and view modes against trigger
mode. Whereas the first modes only slightly vary in
cost, the trigger mode clearly outperforms both other
modes. So we can say that with increasing number
of CSLs of variable depths, participating nodes, and
levels of distribution, the performance remains stable.
This means that an implementation of our method
does not add much more cost than already existing
access constraint models, but provides a range of ad-
ditional new functionalities.

Moreover, the scalability analysis showed that
there exists an upper limit of CSLs that can be ap-
plied to XML documents, and that there is a potential
performance gain of up to 50% for the validation of
overlapping CSLs. Our derived cost model can be
used to forecast performance gain, and consequently
the expected computation time can be calculated.

6 Conclusion and Future Work

This paper has proposed (i) instance/schema level
data access control for XML documents, (ii) compos-
ite security levels, and (iii) levels of access, offering a
more rigorous concept for XML access control. The
definitions and methodologies that are introduced in
this paper were used to incorporate privacy-aware
data access control into an existing XML data repos-
itory using XML triggers. Hence, XML data access
control has been extended, so that XML document
nodes can be assigned individual security levels, and
combinations of nodes can also be given an additional
(higher) level of security. A case study and analysis
were used to demonstrate and quantify performance
of the proposed concepts. Hereby, the new access
control method was compared for three different test
modes. Our scalability analysis showed that CSLs
can be implemented in a cost-effective manner.

91

CRPIT Volume 104 - Database Technologies 2010

There are several avenues for future work. First,
we want to show how the CSL approach can be in-
tegrated into query processing algorithms of (native)
XML databases. In this way we wish to prove the
applicability of the CSL mechanism. Second, we plan
to conduct extensive experiments and case studies us-
ing more complex XML data in order to further prove
scalability and robustness.

The conclusion of this paper is, that the proposed
concepts of data access control have proven to be
a beneficial extension to existing access models and
XML, and that these new concepts also can be imple-
mented and are scalable.

References

[1] P. Ayyagari, P. Mitra, D. Lee, P. Liu, and W.-
C. Lee. Incremental adaptation of xpath access
control views. In ASIACCS ’07: Proceedings of
the 2nd ACM symposium on Information, com-

puter and communications security, pages 105—
116, 2007.

[2] E. Bertino, S. Castano, E. Ferrari, and M. Mesiti.
Specifying and enforcing access control policies

for xml document sources. World Wide Web,
3(3):139-151, 2000.

[3] E. Bertino and E. Ferrari. Secure and selective
dissemination of xml documents. ACM Trans.
Inf. Syst. Secur., 5(3):290-331, 2002.

[4] J. Crampton. Applying hierarchical and role-
based access control to xml documents. In SWS
04, pages 37-46. ACM, 2004.

[5] E.Damiani, S. D. C. di Vimercati, S. Paraboschi,
and P. Samarati. Securing xml documents. In
C. Zaniolo, P. C. Lockemann, M. H. Scholl, and
T. Grust, editors, EDBT, volume 1777 of Lec-
ture Notes in Computer Science, pages 121-135.
Springer, 2000.

[6] E. Damiani, S. D. C. di Vimercati, S. Paraboschi,
and P. Samarati. A fine-grained access control
system for xml documents. ACM Trans. Inf.
Syst. Secur., 5(2):169-202, 2002.

[7] E. Damiani, M. Fansi, and A. G. an Stefa-
nia Marrara. A general approach to securely
querying xml. In Computer Standards & Inter-
faces, pages 379-389, 2008.

[8] W. Fan, C.-Y. Chan, and M. Garofalakis. Secure
xml querying with security views. In SIGMOD
’04: Proceedings of the 2004 ACM SIGMOD in-
ternational conference on Management of data,
pages 587-598. ACM, 2004.

[9] S.K. Goel, C. Clifton, and A. Rosenthal. Derived
access control specification for xml. In XMLSEC
’03: Proceedings of the 2003 ACM workshop on
XML security, pages 1-14. ACM, 2003.

[10] G. Kuper, F. Massacci, and N. Rassadko. Gen-
eralized xml security views. In SACMAT °05:
Proceedings of the tenth ACM symposium on Ac-
cess control models and technologies, pages 77—
84, New York, NY, USA, 2005. ACM Press.

[11] A. H. Landberg, J. W. Rahayu, and E. Pardede.
Extending xml triggers with path-granularity. In
WISE, pages 410-422, 2007.

[12] B. Luo, D. Lee, W.-C. Lee, and P. Liu. Qfilter:
fine-grained run-time xml access control via nfa-
based query rewriting. In CIKM ’04, pages 543—
552. ACM, 2004.

92

[13] P. Roder, O. Tafreschi, and C. Eckert. History-
based access control for xml documents. In ASI-
ACCS ’07: Proceedings of the 2nd ACM sympo-
sium on Information, computer and communica-
tions security, pages 386-388. ACM, 2007.

[14] P. Samarati, E. Bertino, and S. Jajodia. An
authorization model for a distributed hyper-
text system. IFEE Trans. Knowl. Data Eng.,
8(4):555-562, 1996.

[15] X. Xiao and Y. Tao. Anatomy: Simple and effec-
tive privacy preservation. In VLDB, pages 139-
150, 2006.

