
Problem Distributions in a CS1 Course

Anthony Robins1, Patricia Haden2, Sandy Garner1

1 Computer Science Department, The University of Otago, Dunedin, New Zealand

{anthony,sandy}@cs.otago.ac.nz

2 School of Information Technology, Otago Polytechnic, Dunedin, New Zealand

phaden@tekotago.ac.nz

Abstract
In this paper we describe an ongoing study of novice
programmers in an introductory programming course.
Building on previously published results from the study
we explore the distributions of different kinds of language
related (rather than general or design related) problems
over the sequence of laboratory exercises in the course.
Data collected from student cohorts in 2003 and 2004 are
compared, and the consistency of the effects observed
gives us considerably confidence in the reliability and
validity of the mechanisms of the study. While great care
must be taken in the interpretation of the problem
distributions, we suggest that they are useful for
diagnosing aspects of course design and delivery, and that
they may contribute to our general understanding of the
process of teaching and learning a first programming
language.

Keywords: learning novice programming errors CS1

1 Introduction

This paper builds on a previous publication (Garner,
Haden & Robins, 2005) describing a study which has
been running at the University of Otago since 2001. Each
year data has been collected on the kinds of problems that
students encounter while working in the laboratory
sessions of an introductory programming paper (of the
kind often described as “CS1”). The aim of the study is
to explore the process of learning a first programming
language, with the long term goal of increasing our
understanding of this process and creating a more
effective learning environment.

Results arising from the study have already been used to
adjust the amount (and kind) of attention devoted to
various topics in lectures, laboratories and other resource
materials, and to construct targeted help materials.
Further analysis of problems encountered may allow us to
address such topics as focusing demonstrator (teaching
assistant) training on the most common and / or most

Copyright © 2006, Australian Computer Society, Inc. This
paper appeared at the Eighth Australasian Computing Education
Conference (ACE2006), Hobart, Tasmania, Australia, January
2006. Conferences in Research in Practice in Information
Technology, Vol. 52. Denise Tolhurst and Samuel Mann Eds.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

difficult problems, or highlighting areas of particular
difficulty to students to aid their meta-learning and study.
It may be possible to recognise different kinds of “novice
programming style” from the patterns of problems that
students experience. It may even be possible to identify
at risk students early, and provide specifically targeted
help.

Garner, Haden & Robins (2005) presented the tools and
methods employed in the study, in particular presenting
the list of problem definitions which is used to classify
students’ problems. Data collected during 2003 were
presented and discussed. The results described were
consistent with trends noted in the literature, and
highlight the significance of both fundamental design
issues and the procedural aspects of programming.
Different problem distributions were observed for high
and low performing students. We suggested that an
analysis of individual lab sessions was useful for refining
course materials and teaching practice.

The purpose of the current paper is to build on the
foundation of the earlier publication and pursue a more
detailed examination of a specific topic: the distribution
of the occurrence of certain problem types over the
sequence of laboratory sessions. In the process data from
both 2003 and 2004 will be presented. The implications
of the general similarity of the results over the two years
for the reliability and validity of the study will be briefly
discussed.

2 Method
In this section we briefly describe the course on which
our study is based, and summarise the tools and processes
used to collect information about novice programming
problems. Further details can be found in Garner, Haden
& Robins (2005).

2.1 The Programming Labs

Data for the study is collected in the programming
laboratory sessions of our introductory programming
course COMP103 (with a typical enrolment of roughly
220 students). The course teaches Java, and consists of
26 fifty minute lectures, and 25 two hour laboratory
sessions.

Each lab is run over several specific streams with up to
40 students working on the set task for the session. Tasks
are well specified in a workbook. When a student

requests help they are visited by the next available
demonstrator. There are 2 - 5 demonstrators per stream
(drawn from a pool of roughly 15). A demonstrator
works with a student to try to help them solve their
problem, then moves on to the next help call. The aim of
the study is to capture, for every help call, the best
information that we can about the problem(s) that led to
the call.

The course content, course materials and course delivery
were almost identical in 2003 and 2004, but there was
some change in the pool of demonstrators.

2.2 Problem List Design
The crucial tool of the study is the problem list which is
used by demonstrators to classify the problems that they
observe. The problem list used in 2004 is shown in the
Appendix (and minor differences with the version used in
2003 are noted)1. The process by which the problem list
was originally developed is described in Garner, Haden &
Robins (2005).

The main tradeoff involved in designing such a list is
between richness (implying a large number of problem
types / codes that can support a detailed classification)
and practicality (implying a small number of problem
codes that different demonstrators can become familiar
with and use reliably). Early versions of the list erred in
the direction of far too many problem codes, but the list
has been more or less static in its current form since 2003.
Demonstrators on the whole find it practical, and report
that they are able to classify most problems adequately
(see also the discussion of inter-rater reliability below).

2.3 Data Collection
The major factor constraining the collection of data is that
the process must be practical, and not impact on teaching
and learning in the labs. In particular the intervention
must be easily manageable for the demonstrators – they
are often under a lot of pressure and don’t have time to
“waste” making notes.

The following process was used in both 2003 and 2004.
At the end of a help session with a student, the
demonstrator records on a checklist brief details about the
session, in particular noting the relevant problem codes.
In order to provide some structure for standardising these
decisions, two guidelines were stressed:

At the end of a session with a student record the codes
that best describe the problems about which you gave
advice. The student may be having many problems – do
not try to guess them all! Record only the problems
about which you actually gave advice.

Record up to three codes, corresponding to the three
most important topics that you helped with.

This methodology has the typical advantages and
disadvantages of naturalistic observation – see for

1 Garner, Haden & Robins (2005) present data collected
in 2003, the current paper presents data collected in 2003
and 2004.

example Sheil (1981), Gilmore (1990). It lacks the
formal rigor of an experimental study, but it is higher in
ecological validity. A major issue, however, is inter-rater
reliability. Measures taken to increase reliability
included: using some demonstrators who were already
experienced with the study from previous years; a short
training session on the problem list and the data
collection process; and a Senior Teaching Fellow who
was present in most lab sessions to provide support and
help adjudicate difficult cases.

The degree of inter-rater reliability was also explicitly
monitored as follows. The Senior Teaching Fellow
“shadowed” each of the other demonstrators for at least
one lab session, listening to the discussions with students,
and making her own independent checklist entries. These
entries were then compared with the demonstrator’s
checklist. Most demonstrators had good agreement with
the Senior Teaching Fellow. The less reliable
demonstrators, however, also tended to be those with the
lightest demonstrating commitments, and thus they
contributed a small proportion of the total number of
observations recorded. In short, we are confident that the
data collected are generally reliable. The consistency
between 2003 and 2004 data (discussed below) also helps
to support this assumption.

3 Language Related Problem Distributions

The study to date has generated a rich and interesting data
set. It captures as closely as reasonably possible a count
of every problem experienced by every student in an
introductory programming paper for two large student
cohorts (2003 and 2004). As noted above there are many
specific topics which can be explored with such a data
set, such as for example the frequencies of problem types,
the problems experienced by different types of students
(e.g. based on grades), the problem distributions within
each lab session, the problem distributions recorded by
individual demonstrators, the problem distributions for
individual students, and so on.

In Garner, Haden & Robins (2005) we explored two of
the basic characterisations of the 2003 data set and a
breakdown of the problem counts for selected example
labs. The current 2004 data generally matches the results
presented in the earlier paper well (see further
comparisons of the two cohorts below), confirming the
trends reported.

For the purposes of the current paper, however, we will
briefly consider total counts by problem type, and then
focus on individual problem types and their distribution
(frequency of occurrence over the sequence of laboratory
sessions). In particular we will consider the specific
problem types that represent language related issues (see
S1 to S21 in the Appendix) rather than background and
general problems.

If three assumptions are satisfied, then we would expect
to see a characteristic pattern in all problem type
distributions. The three assumptions are:

(1) the actual problems experienced by students are of
similar difficulty, and

(2) students make progress steadily and similarly for
all topics and their associated problem types, and
(3) after the introduction of the underlying topic the
subsequent lab sessions afford equal opportunities (of
equal difficulty) to experience associated problem
types.

If these assumptions are satisfied then the expected
distribution for each problem type would be an initial
peak in the problem count (when the underlying topic
was introduced) followed by a steady decline in
frequency over later lab sessions (as students made
progress). To the extent that the actual distributions of
problem types vary from this expected pattern, it suggests
that one or more of the assumptions listed above are
invalid.

4 Results

A total of 11240 problem codes were recorded in 2003
(roughly 250 students over 25 labs with a maximum of 3
problem numbers per help session), and 7768 in 2004
(roughly 220 students). The lower count in 2004 is in
part due to a smaller class size, and in part due to a faster
drop-off in the rate of lab attendance in that year.

4.1 Total Counts by Problem Type

The total counts for each problem type / code are shown
in Figure 1 for 2003, and Figure 2 for 2004. There is a
very high degree of similarity in the distributions of the
problem counts for the two cohorts2, and this gives us
further confidence in the reliability of the data collection
methodology.

The implications of this distribution were discussed in
Garner, Haden & Robins (2005). We were very surprised
at the high frequency (Figure 1) of problems relating to
trivial mechanics (G4), and despite emphasising a stricter
definition of this problem type in 2004 it continues to
dominate (Figure 2). Note also the prominence of
problems relating to the understanding of the task and
very general matters of program design (B and G codes).
This supports various claims in the literature (e.g. Spohrer
& Soloway (1989), Winslow (1996)) that issues relating
to basic design can be more significant than issues
relating to specific language constructs. For these
fundamental problem types there was considerable
variation when broken down over individual labs, and
also a clearly increasing trend in the incidence over the
range of student abilities (from A+ to E grades).

In the current context these figures are presented as a
useful reference when considering the following
discussion. Although the patterns of errors are
interesting, it is also important to consider the different
absolute difficulties of the programming principles
involved in each of the specific problem types (S codes).

2 To aid comparson both figures are coded using the 2004
version of the problem list (as shown in the Appendix).
Note that the codes G1 and G2 were – in the 2003 list –
represented by a single problem code which is shown in
Figure 1 as a count for G1 (hence G2 has a count of 0).

Figure 1: Total problem counts by problem type 2003

Figure 2: Total problem counts by problem type 2004

The incidence of such problems will be influenced both
by the inherent difficulty of the problem, and the number
of labs for which the problem type was possible, e.g.
array errors will not (in general!) occur until after arrays
are introduced.

4.2 Problem Distributions

Putting aside the issues of background and general design
related (B and G) problem types, the main focus of this
paper is to explore the distributions of "language related"
problem types S1 to S18 over the sequence of lab
sessions. (S19 to S21 are not considered as they relate to
topics that are only introduced late in the course and
result in too few data points to extract reliable trends).
The trends for each problem type are summarised in
Figure 3, and some example distributions are shown in
Figures 4 to 9.

The summary presented in Figure 3 shows a measure of
the slope of the distribution of each specific problem
type. In each case the slope is measured using a
regression coefficient (RC) computed from first peak to
final lab, and shown in the figure with its associated 95%
confidence interval (CI). The steepest slope, for example,
is for problem type S10 (Arrays) in 2003 with an RC of
–12.2 and a CI of –18.3 to –6.0. At the other end of the
spectrum is problem S16 (Class vs. instance) in 2003 with
a slope / RC of 0.3 and a CI of –0.9 to 1.5.

Note that CIs with upper bound less than 0 indicate a
significant negative slope – i.e. the number of errors
decreased over the sequence of lab sessions. CIs with
upper bounds greater than 0, on the other hand, provide
no evidence of negative slope. Fortunately, there were no
significantly positive slopes!

0

200

400

600

800

1000

1200

1400

1600

1800

2000

B
1

B
2

B
3

G
1

G
2

G
3

G
4

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9

S
1
0

S
1
1

S
1
2

S
1
3

S
1
4

S
1
5

S
1
6

S
1
7

S
1
8

S
1
9

S
2
0

S
2
1

Problem code

T
o

ta
l

c
o

u
n

t
0

200

400

600

800

1000

1200

1400

B
1

B
2

B
3

G
1

G
2

G
3

G
4

S
1

S
2

S
3

S
4

S
5

S
6

S
7

S
8

S
9

S
1
0

S
1
1

S
1
2

S
1
3

S
1
4

S
1
5

S
1
6

S
1
7

S
1
8

S
1
9

S
2
0

S
2
1

Problem code

T
o

ta
l

c
o

u
n

t

Figure 3: Slope (regression coefficients) and confidence intervals for problem types S1 to S18

We can divide problem types into those that had
significant negative slopes in both 2003 and 2004, those
with neutral (no significant slopes) in both 2003 and
2004, and those which are inconsistent over the two
years:

Negative slopes (2003 and 2004)
S2 Loops
S4 Booleans and conditions
S6 Method signatures and overloading
S7 Data flow and header mechanics
S10 Arrays
S11 Variables

Neutral slopes (2003 and 2004)
S1 Control flow
S8 Terminal or file I/O
S9 Strings
S12 Visibility and scope
S15 Reference types
S16 Class vs. instance
S17 Accessors and modifiers
S18 Constructors

Inconsistent (2003 vs. 2004)
S3 Selection
S5 Exceptions, throw catch
S13 Expressions and calculations
S14 Data types and casting

Figures 4 to 9 show selected examples of distributions of
problem types over the sequence of laboratory sessions.
The proportions displayed (y axis) are the total count of
problems of that type in that lab divided by the total count
of problems for that year. The selected examples include
four with negative slopes (S2, S4, S10, S11) and two with
neutral slopes (S1, S12).

4.3 Problem Distributions by Grade

The distributions and slopes presented above are all
calculated over the entire student population. It is
interesting to consider whether students of different

ability (as measured by final grade in the course) have
significantly different distributions.

For the purposes of this analysis students were divided
into three groups, "high" (final grade in the A range),
"medium" (B and C range) and "low" (D and E range)3.
Problem distributions were then calculated for each of
these groups separately. Examples are shown for two
problem types (S1 and S10) in Figures 10 and 11. Since
there are different numbers of students in the groups, the
values plotted (y axis) are mean errors per student.

As could be predicted from the analysis described in
Garner, Haden & Robins (2005), the three groups had
robustly different mean problem frequencies. More
problem codes are recorded on average for students in the
medium group than either the high or low groups. The
obvious interpretation, proposed in the earlier paper, is
that medium students dominate because high students in
general require less help, and low students are (for
whatever reason) not asking for it when they need it (or
are simply absent from more lab sessions).

While the three groups are distinguished in terms of mean
numbers of problems, the distributions of those problems
over the sequence of laboratory sessions are remarkably
similar. Consider for example the pattern of the
distributions over labs shown in Figures 10 and 11.
There is no clear distinction between the high, medium
and low groups on the basis of the problem distributions
or their slopes. Considering all problem types this effect
is very consistent – the similarity between the three
groups is remarkably robust. In many cases the
distributions are effectively identical.

3 Data for 2003 and 2004 were simply combined for this
analysis.

-20

-15

-10

-5

0

5

S
1
 C

o
n
tr

o
l
Fl

o
w

S
2
 L

o
o
p
s

S
3
 S

el
ec

ti
o
n

S
4
 B

o
o
le

.
co

n
d
n
s.

S
5
 E

xc
ep

ti
o
n
s

S
6
 M

et
h
o
d
 s

ig
s.

S
7
 D

at
a

fl
o
w

 h
ea

d
er

S
8
 T

er
m

in
al

 &
 f
ile

 I
/O

S
9
 S

tr
in

g
s

S
1
0
 A

rr
ay

s

S
1
1
 V

ar
ia

b
le

s

S
1
2
 V

is
ib

ili
ty

 s
co

p
e

S
1
3
 E

xp
re

ss
io

n
s

S
1
4
 D

a
ta

 t
yp

es

S
1
5
 R

ef
er

en
ce

 t
yp

es

S
1
6
 C

la
ss

 i
n
st

a
n
ce

S
1
7
 A

cc
es

s.
 m

o
d
if
.

S
1
8
 C

o
n
st

ru
ct

o
rs

Error Type

S
lo

p
e

2003

2004

Figure 4: Distribution for S2 Loops (negative slope)

Figure 5: Distribution for S4 Booleans and conditions
(negative slope)

Figure 6: Distribution for S10 Arrays (negative slope)

Figure 7: Distribution for S11 Variables (negative slope)

Figure 8: Distribution for S1 Control flow (neutral slope)

Figure 9: Distribution for S12 Visibility and scope
(neutral slope)

0.0000

0.0050

0.0100

0.0150

0.0200

0.0250

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Lab

P
ro
p
o
rt
io
n

2003

2004

0.0000

0.0010

0.0020

0.0030

0.0040

0.0050

0.0060

0.0070

0.0080

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Lab

P
ro
p
o
rt
io
n

2003

2004

0.0000

0.0010

0.0020

0.0030

0.0040

0.0050

0.0060

0.0070

0.0080

0.0090

0.0100

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Lab

P
ro
p
o
rt
io
n

2003

2004

0.0000

0.0050

0.0100

0.0150

0.0200

0.0250

0.0300

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Lab

P
ro
p
o
rt
io
n

2003

2004

0.0000

0.0010

0.0020

0.0030

0.0040

0.0050

0.0060

0.0070

0.0080

0.0090

0.0100

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Lab

P
ro
p
o
rt
io
n

2003

2004

0.0000

0.0010

0.0020

0.0030

0.0040

0.0050

0.0060

0.0070

0.0080

0.0090

0.0100

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Lab

P
ro
p
o
rt
io
n

2003

2004

5 Discussion

Individual problem distributions are useful for
"diagnosing" aspects of course design and delivery, but
great care must be taken in their interpretation.

A particular distribution may, for example, be an
indicator of particularly difficult (or perhaps poorly
explained) material in the lab sessions. The distribution
shown in Figure 6 for Arrays (S10), for example, shows a
significant spike at Lab 23. This lab involves an array of
references to objects, which is content well covered in
earlier labs. Hence on this occasion the high error spike
suggests an unanticipated difficulty with the specific task
or its description which warrants further investigation. In
some cases, however, later spikes of problem counts may
have a different interpretation. In Garner, Haden &
Robins (2005) we noted that some topics may appear to
be well learned when introduced because instructions are
very explicit, when in fact the underlying concepts have
been poorly understood and hence are difficult to apply to
(cause problem spikes for) later more open ended tasks.

In some cases important aspects of individual problem
distributions appear to be artefacts of the problem list
design. The bimodal distribution in Figure 9 for
Visibility and scope (S12), for example, is almost
certainly a function of the definition of that problem type.
Matters relating to scope arise early and account for the
spike from Labs 6 to 11, whereas matters relating to
visibility do not arise until later labs and account for the
spike from Labs 17 to 21. Taken individually these
topics may well have had negative slopes, but combined
into one problem type the slope for the distribution as a
whole is neutral.

The problem types with robustly negative slopes can
generally be considered to indicate successful learning.
Arguably in these cases the three assumptions outlined in
Section 3 hold (at least approximately), and students
make progress with the underlying topics. Considering
the list of negative slopes outline in Section 4.2, however,
nothing obvious characterises or distinguishes this group.
The inclusion of some topics, such as arrays and loops, is
surprising given that they are typically regarded as very
difficult concepts in introductory programming (Robins,
Rountree & Rountree, 2003). The pattern observed here
may in this case be a result of the extra attention paid to
these topics in COMP1034. But in other cases no obvious
factor accounts for the negative slopes.

It would be tempting to suggest that, conversely, the
problem types with neutral slopes indicate that the
underlying topics have not been learned as quickly. Once
again, nothing obvious characterises this group of topics.
Note that in some cases the difference between negative
(e.g. Figure 7) and neutral (e.g. Figure 8) slopes is not
obvious to casual inspection, hence in these cases the
difference (while statistically reliable) is not strong.

4 Preliminary results in this ongoing study were used to
motivate a restructuring of the course in 2002 to spend
more time addressing these topics.

Figure 10: Distribution for S1 Control flow, high medium
and low groups

Figure 11: Distribution for S10 Arrays, high medium and
low groups

What, for each group, might be an alternative explanation
for observed negative or neutral slopes? An alternative
explanation for the cases of negative slopes would be if
the exercises relating to the underlying topics got steadily
easier over the sequence of lab sessions. There is no
reason to suppose that this is the case, however, and this
explanation risks becoming trivial (if any improvement is
automatically attributed to easier exercises). An
alternative explanation for cases of neutral slopes would
be if the third assumption outlined in Section 3 was false,
i.e. material in later labs was inherently harder (or
unevenly distributed), causing more errors, and thus
balancing improvements due to learning. This seems
entirely plausible, as the lab exercises are designed to
build on and extend earlier topics. In this case neutral
slopes may be seen as indications of areas where the lab
exercises and course content need closer examination.
Are exercises relating to these topics too difficult, or
developing too quickly? Should more attention be paid to
these topics in other course materials? Are there any
systematic regularities in the kinds of topics which appear
(when other factors have been taken into account) to be
genuinely more difficult, and if so, what are the
pedagogical implications? In future work we hope to
explore some of these questions in more detail.

0

0.05

0.1

0.15

0.2

0.25

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Lab

M
e
a
n

 e
rr

o
rs

 p
e
r

st
u

d
e
n

t

High

Medium

Low

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Lab

M
e
a
n

 e
rr

o
rs

 p
e
r

st
u

d
e
n

t

High

Medium

Low

One further observation suggests a caveat on the
interpretation of negative slopes. If these are indeed
measures of learning it would be reasonable to expect that
more able students learned more quickly, i.e. had steeper
slopes, but as noted in Section 4.3 this is not the case.
More able students (the "high" group) are characterised
by a lower mean number of problems (cf. the "medium"
group), but the distributions of the problem counts are
very similar. It may be that the small number of labs over
which the decline occurs precludes any delicate
discriminations between the grade groups (a type of floor
effect). But it is interesting to note that at present it
appears that more able students are characterised by
having fewer problems, but not by having significantly
different distributions of problems.

6 Conclusions

Analysis and interpretation of the individual problem
distributions presented in this paper is not straight-
forward. Care must be taken to consider the reliability
and validity of the data collection process, artefacts of the
problem list design, the clarity and difficulty of the
laboratory exercises, and the predispositions of the
different kinds of students engaging in the course.
Bearing in mind these constraints, however, we suggest
that this kind of analysis is useful in a practical sense for
diagnosing aspects of course design and delivery. It may
also be useful conceptually. If pedagogically interesting
distinctions between different kinds of material or
different kinds of learning effects can be observed, these
should contribute to our understanding of the issues
involved in teaching and learning a first programming
language.

Acknowledgments

This work has been supported by University of Otago
Research into Teaching grants. Thanks to Janet
Rountree, Nathan Rountree, the demonstrators and
students of COMP103, and the colleagues who have
commented on earlier versions of the problem list or
other aspects of the study.

References

Garner, S., Haden, P. and Robins, A. (2005): My program
is correct but it doesn't run: a preliminary investigation
of novice programmers' problems. Proceedings of the
Seventh Australasian Computing Education
Conference (ACE2005) CRPIT 42. Newcastle,
Australia: ACS , 173-180

Gilmore D. J. (1990): Methodological issues in the study
of programming. In Hoc J. M., Green T. R. G.,
Samurçay R. and Gillmore D. J. (Eds.): Psychology of
Programming. London, Academic Press, 83-98

Robins, A., Rountree, J. and Rountree, N. (2003):
Learning and teaching programming: A review and
discussion. Computer Science Education 13(2): 137-
172.

Sheil B. A. (1981): The psychological study of
programming. Computing Surveys 13:101-120.

Spohrer J. C. and Soloway E. (1989): Novice mistakes:
Are the folk wisdoms correct? In Soloway E. and
Spohrer J. C. (Eds.): Studying the Novice Programmer.
Hillsdale NJ, Lawrence Erlbaum, 401-416.

Winslow L. E. (1996): Programming pedagogy -- A
psychological overview. SIGCSE Bulletin 28(3):17-22.

Appendix

The descriptions of each problem type / code used in the
study were as set out below. This list (used in 2004) is
essentially the same as the old one (2003), except that:

mnemonic problem codes such as "B1" have replaced
the old problem numbers such as "1",
problems have been explicitly divided into background
problems (B1 to B3) general problems (G1 to G4) and
specific problems (S1 to S21),
problems G1 and G2 have expanded on and replaced
the old problem 4, and
the definition of G4 (old problem 6) has been refined.

B – Background Problems

B1 Tools

Problems with the Mac, OS X, directories (lost files),
jEdit, Applet runner, or other basic tools. Includes being
unable to find the resources described in the lab book, but
not other kinds of general lab book / text book issues (do
not record these). Does not include Java / file naming
conventions (Problem G4).

B2 Understanding the task

Problems understanding the lab exercise / task or its
“solution”. In other words, whatever other problems they
may be having, in this case they don’t actually know what
it is that the program is supposed to be doing. (Does not
include minor clarifications of some detail, which do not
need to be recorded).

B3 Stuck on program design

They understand the task / solution (its not Problem B2)
but can’t turn that understanding into an algorithm, or
can’t turn the algorithm into a program. Cases such as “I
don’t know how to get started” or “what classes should I
have?” or “what should the classes do?”.

G – General Problems

G1 Problems with basic structure

They have a general design and classes (its not Problem
B3), but are getting basic structural details wrong. E.g.
code outside methods, data fields outside the class, data
fields inside a method / confused with local variables.
Meant to capture problems at the class / major structural
level – problems specifically with data fields or about or
within methods (e.g. mixing up loops) will be some other
problem code.

G2 Problems with basic object concepts

Covers very basic problems with creating and using
instance objects, e.g. how many, what they are for (but
not more specific problems e.g. with class vs instance
Problem S16, or constructors Problem S18).

G3 Problem naming things

They have problems choosing names for things.
Especially where this seems to suggest that they don’t
understand the function of the thing that they are trying to
name.

G4 Trivial mechanics

Trivial problems with little mechanical details (where
these are not better described by some other problem).
Braces, brackets, semi–colons. Typos and spelling. Java
and file naming conventions. Import statements (when
forgotten, when misunderstood see Problem S12).
Formatting output. Tidiness, indenting, comments.

This category only covers trivial problems (e.g.
accidentally mismatched {}). When the underlying issue
is actually a conceptual one (e.g. they don’t understand
the strucutre that the {} describe) use the best matching
Specific Problem.

S – Specific Problems

S1 Control flow

Problem with basic sequential flow of control, the role of
the main or init method. Especially problems with the
idea of flow of control in method call and return (e.g.
writing methods and not calling them, expecting methods
to get called in the order they are written). (For issues
with parameter passing and returned results see Problem
S7). Does not include event driven model, Problem S21.

S2 Loops

Conceptual and practical problems relating to repetition,
loops (including for loop headers, loop bodies as
{blocks}).

S3 Selection

Conceptual and practical problems relating to selection, if
else, switch (including the use of {blocks}).

S4 Booleans and conditions

Problems with booleans, truth values, boolean
expressions (except boolean operator precedence, see
Problem S13). Problems with loop or selection headers /
conditions will have to be judged carefully – is this a
problem formulating the boolean expression (Problem
S4) or understanding how the expression / result is
relevant to the loop or selection (Problems S2, S3)?

S5 Exceptions, throw catch

Problems with exceptions, throw catch.

S6 Method signatures and overloading

Problems related to overloading. Failure to understand
how method signatures work / which version of a method
gets called. (Includes problems with constructors that are
really about the signatures of constructors – c.f. Problem
S18).

S7 Data flow and method header mechanics

Especially conceptual problems with arguments /
parameters and return types / values. Includes problems
with method header mechanics (incorrect or mismatching
parameter specifications, incorrect return types or use of
void). Includes any other problems with “data flow” that
are not better described by Problem S8.

S8 Terminal or file IO

Problems with terminal or file IO / data flow (not
including exception handling Problem S5, or output
formatting Problem G4).

S9 Strings

Strings and string functions. Does not include formatting
output (Problem G4) or problems relating specifically to
strings as reference types (Problem S15).

S10 Arrays

Problems relating to arrays as a data structure, including
array subscripts, array contents, array declaration and
initialisation (cf Problem S11). Does not include failing
to understand that an array as a whole is itself a reference
type or may contain references (Problem S15).

S11 Variables

Problems with the concept of or use of variables.
Includes problems with initialisation and assignment.
(Missing the distinction between a data field and a local /
method variable is Problem G1). Does not include cases
more accurately described as problems with reference
types (Problem S15) or arrays (Problem S10) rather than
the concept of a variable.

S12 Visibility & scope

Problems with data field visibility, local variable scope
(e.g. defining a variable in one block and trying to use it
in another, problems arising from unintended reuse of
identifiers), and namespace / imported package problems
(but not including forgotten “import” statement, Problem
G4). Includes cases confusing data fields and variables of
the same name, but not where this is better described as a
failure to understand “this” (Problem S15).

S13 Expressions & calculations

Problems with arithmetic expressions, calculations,
notation such as “++”, and all forms of precedence
(including boolean operator precedence, c.f. Problem S4).

S14 Data types & casting
Problems caused by failing to understand different data
types and casting for primitive types (reference types are
Problem S15).

S15 Reference types

Problems arising from a failure to understand the concept
or use of reference types (references / pointers, “this”,
different references to the same object, etc), or that
reference types behave differently from primitive types
(when assigned, compared etc).

S16 Class versus instance

Problems understanding the class object vs. instance
object distinction, including problems with class and
instance data fields (and use of “static”).

S17 Accessors / Modifiers

Specific problems (c.f. for example Problem S7) with the
concepts of / purpose of an accessor or a modifier
method.

S18 Constructors
Specific problems (c.f. for example Problems S6, S7,
S16) with the concept of / purpose of a constructor.

S19 Hierarchies

Problems relating to hierarchical structure, inheritance
(extends, overriding, shadowing, super), and issues
relating to the use of abstract methods or interfaces.

S20 GUI mechanics
Problems with GUIs and the use of AWT, Swing etc.
Includes problems with specific required methods such as
actionPerfomed(), run(), implements actionListener and
so on (but some issues might general problems with the
concept of interfaces, Problem S19). Does not include
the underlying concepts of event driven programming.

S21 Event driven programming

Problems with the underlying concepts of event driven
programming, and general “flow of control” type issues
that arise in the transition from application to applet.

