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Abstract 
 
Stone Mastic Asphalt (SMA) is widely used throughout the world as one of the 

preferred asphalt surfacings. The history of use of this material dates back some 30 

years ago, and like every product stone mastic asphalt needs to be modified and adapted 

to conform modern materials and manufacture, as well as suit the various local 

conditions. This dissertation develops and analyses the variances in all properties of 

SMA within a tropical climate. The aim is to provide background information into the 

history of the product and the current best practice, before moving into the 

specifications and requirements of the North Queensland region. The methodology will 

take the format of the testing of trial sections, analysing data and results, compiling 

details and collating information within the prioritized sections. The aim is to make 

definite correlations between specific criteria and then hypothesis on the possibilities. 

The outcome is the actual design criteria that leads to particular properties and arrive at 

the failure mechanisms of stone mastic asphalt. The applicability of this paper will be a 

document which aligns with the Government Standards for Asphalt design to either 

reinforce or alter current practices. 

 
The impacts of filler and binder components of the mastic are assessed on the 

performance of SMA. The paper develops a design method to ensure that the important 

features of the coarse aggregate stone skeleton are attained, providing a rut resistant 

long life asphalt. Analysis is provides in the combining of criteria on rut resistance and 

fatigue performance to arrive at a mix design shows good strength, texture and stability 

for use in surfacing works with heavy traffic condition. Elastic and fatigue properties 

are assessed by analyzing the affects of fillers, binders and temperature and the 

relationship between stiffness and fatigue. 

 

SMA is an unforgiving mix and requires changes and modifications to the mix design to 

enhance the characteristics of its performance. This is evident through the varying 

specifications across the State, and the North Queensland developments form a major 

topic within the report. Whilst SMA a premium asphalt product it is not a panacea for 

all pavement situations. Its use and specification requires exercising sound engineering 

judgment. This research will provide a rational basis for such judgment. 
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CHAPTER 1 – INTRODUCTION 
 

1.1 Outline of the Study Analysis 
 

The need for research into the problems with Stone Mastic Asphalt North Queensland 

was identified from the continued failure on high profile State and National Highways. 

Most road authorities rely on standard specifications for the manufacture and laying of 

asphalt, mainly due to the contractual aspects. When failures are evident before the 

usable economic and physical life of the asphalt is due, the standards come under 

pressure. The issue becomes complicated when the problems vary depending on the 

area of location throughout the nation. This report will focus firstly within the State of 

Queensland and furthermore within the local area of Cairns in the tropical north. States 

tend to vary with regards to specifications and this creates a wide range of variables. 

Queensland has a state wide specification, although Cairns in the tropical climate 

require modifications which have become necessary due to failures. Whilst still 

complying with contract conditions these changes should be re-enforced with trials, 

testing and analysis. This report will endeavour to perform this requirement. The 

purpose and scope will be detailed in 1.4 – Research Objectives. 

 

 

 

1.2 Introduction 
 

State Government funding is the single main source of projects which require and 

specify the use of Stone Mastic Asphalt. The economic decisions on project allocations 

for location and types rest with the State Road Authority, called the Main Roads 

Department (MRD). Since the introduction of the Main Roads Stone Mastic Asphalt 

(SMA) Specifications in Queensland in 1996 the Cairns Peninsula District has placed a 

significant investment in SMA surfacing. The Cairns District is the third largest user of 

SMA in the state after Gympie and Metropolitan Districts. SMA has become the first 

choice for resurfacing operations and new pavement construction projects in the district. 

The district has recognised the benefits of SMA on their road network by measurable 

improvements in terms of performance when compared against existing dense graded 
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(DGA) and open graded (OGA) asphalt surfacing. It is predicted that SMA will 

outperform both DGA and OGA mixes in the tropical climate in the Peninsula District. 

The problem is that the theory behind this statement is fairly shallow. 

 

In 1997/98 Main Roads approval was given to one of the districts suppliers for a series 

of submitted mix designs on a range of sizes – 10 and 14 mm, followed by a further to 

the only other supplier. These SMA mixes were approved with a range of different 

bitumen (binders) including Class 320 bitumen, Multigrade and A5S Polymer. These 

binder types are basically straight bitumen, graded more refined bitumen and rubber 

impregnated bitumen. These will be further discussed if necessary later in the paper. 

Bitumen is one of the main constituents of making SMA. 

 

Peninsula district began field trials of SMA back in 1997 under the supervision of the 

head of the Assets section and the districts engineers and inspectors. These early SMA 

trials were located throughout the District and will be detailed within Table 1 in   

section 4 of this paper. The district trials were conducted from 1997 to 2002; with a 

variety of different bitumen (binder) types were included in the SMA trial. 

 

Constituents within the mix design have also endured some modifications. Various 

decisions have been made based on researching of overseas experiences with SMA Mix 

designs and other asphalt mixes.  Certain requirements have been written into the 

Peninsula Districts specifications for contracts containing SMA mixes since 1998. 

  

It is the modifications such as these mentioned above that have become an experiment 

with further educated analysis. There are many other modifications currently being 

trialed. 

 

 

 

1.3 The Problems 
 

Despite these local modifications, the asphalt laid in certain areas is sustaining failure 

and is visibly under stress. Due to the increase in traffic volume and loadings, rutting 
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has become a major form of distress on many asphalt pavements. This is a wide-spread 

issue and one of the main reasons why SMA was introduced, with great stone-on-stone 

contact. However, the problem with increasing rut resistance is that fatigue resistance 

may be compromised. 

 

The safety of SMA surfaces on National Highways has come into question following a 

series of accidents and subsequent investigations by road authorities into concerns 

expressed by the police and others regarding dry road skid resistance following a 

number of fatal accidents on new surfacing materials.   Appendix B shows publicity 

surrounding the concerns.  The information derived from the studies, some reported in 

this paper is based on scientific data and provides an objective assessment of the wet 

road skid resistance performance of this material. There is a 30% chance that the new 

stone mastic asphalt surfaces will not meet the investigatory level for wet road skidding 

resistance in the 12 months after laying. 

 

Surrounding the publicity section, reported rainfall intensities in the Gympie area of the 

time of recent fatalities were low. Given normal surface geometry, the depth of water 

film in such light rainfall should not have been sufficient to cause aquaplaning. 

 

However, partial aquaplaning could occur if high speeds and worn tyres coincided with 

such water film thicknesses, Furthermore, surface irregularities (e.g. wheel ruts) can 

increase water film depth and further contribute to partial aquaplaning. These 

irregularities existed and possibly contributed. It can be concluded that the increased 

friction demand as a vehicle proceeds of the horizontal curve with the reduced super-

elevation increased the risk of crashes at lower rainfall intensities. 

 

All newly laid bituminous surfacings have slightly lower skid resistance levels 

compared with those obtained a few months after re-surfacing due to the binder film 

coating the stone. Initial values should be above the investigatory levels required for the 

roads in question or steps should be taken to warn motorists of the lack of skid 

resistance of the new material. 

 

Throughout the Department of Main Roads Queensland, the perception seem to vary be 

seniority and by geographical area on the value and use of SMA. The “failure 
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mechanisms” are deemed to be a lack of durability due excess porosity of the earlier 

designs. Subsequent trialing to improve the mix has resulted in stiffer and harder to lay 

mixes. 

 

 

 

1.4 Research Objectives 
 

The research comprised of identifying the criteria by which asphalt is measured, and the 

true design elements which are employed. The second part of the Research 

Methodology was to review relevant literature to ascertain the limits of these criteria 

and the possible outcomes in the life span of SMA through changes to the design. This 

will be defined in 2.2. The third element was to research all areas in the Northern 

Districts where SMA has been layed, and collect locations, dates, crash data and 

wet/dry skid resistance. 

 

 

 

1.5 Conclusions: Chapter 1 
 

This dissertation aims to report on linkage between SMA properties, design criteria and 

observed failure mechanisms. The research is expected to result in a series of 

possibilities and these must be related to the differences in North Queensland. A review 

of literature is a fairly large task when dealing with Asphalt in general, as there have 

been many studies and publications. The review will identify where to concentrate the 

testing of the trial sections and how to analyse the data. The outcomes of this study will 

be used for developing future specifications in general and more concisely in the 

Northern region to modify the existing standards. 

 

The research also endeavors to harness the works already completed by various other 

throughout the state, but in particular in the north.  There have been many trials with 

testing being performed on all, but it is the hypothesis of this work and the related 

correlations that back development and formal documentation. 
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When it comes to final outcomes and recommendations, the dissertation will aim to 

firstly provide a complete ‘snapshot’ of the current status of SMA and its usage, before 

leading into a direction for the future.  It will be noted though that the continued 

development should lean toward proving that the correlations derived in the paper do 

perform in service.  This will be achieved by further testing.    
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CHAPTER 2 – CONCLUSIONS FROM 

LITERATURE REVIEW 

 

2.1 Introduction 
 

This chapter will review literature to establish the tools for identifying the problems of 

Stone Mastic Asphalt use in North Queensland. After reviewing large amounts of 

material this chapter will consider the relevant main literature, and also provide extracts 

of the absolute data which will form the basis for the study. 

 

 

 

2.2 SMA Development 
 

SMA usage in Australia began in 1990 when Vic Roads conducted a trial in Victoria on 

the Princess Hwy. A 14mm mixture mixed using a batch plant was used based on 

Rettenmaier design and imported Arbocell fibre; however, the trial was not fully 

successful. A further trial of 14mm SMA was conducted in 1993 on the Hume Hwy and 

Maroondah Hwy that was deemed to be successful. Vic Roads have placed over 15, 000 

tonnes up until 1996 (no tonnage data is available after this date). Later mixtures were 

also conducted using 10mm gradings. The early Vic Roads mixtures used C320 grade 

bitumen with PMB binders being introduced in 1999 for high fatigue applications.  

 

Brisbane City Council (BCC) in Queensland trialed SMA mixes in 1992. The 

Rettenmaier grading was also used as their design principal for their 10mm SMA design 

using multigrade bitumen and manufactured using a drum mix plant. No fibre was used 

in these mixes. Some of the BCC mixes were considered to work satisfactorily while 

others did not due to the drain down of binder and the high percentage of elongated 

particles in the mix, with some flushing of the mix also occurring. 

 

In 1994-1995 fibres were introduced into the BCC mixes, several types of fibres were 

trialed including mineral, cellulous and glass fibres. The cellulose fibres were 
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considered by BCC to give the best results, BCC has continued to use SMA which has 

constituted up to 20% their total annual asphalt production.  

 

The Department of Main Roads (QDMR) in Queensland has placed SMA in 

Queensland since September 1996. The first trial was located in the Metropolitan 

District on a section of Mt Gravatt – Catalina Road; adjoining the Capalaba Bypass 

using a 14mm mix manufactured using a batch plant. The trial was considered 

successful. QDMR has produced over 1.5 million tonnes of SMA to the end of 2002. 

The original QDMR specification was written in 1993 and based on a combination of 

the Rettenmaier design, Brisbane City Council’s SMA design and the QDMR 14mm 

Open Graded mix design. The QDMR SMA Mix design incorporates the use of heavily 

modified SBS binders, typically A15E and A10E grades as specified in AP-T04 [A] 

with additional limited use of multigrade bitumen in the last several years. Locally these 

standards still apply with some added interim specifications being added.  

 

 

 

2.2.1 Review on the use of Stone Mastic Asphalt by Road Authorities 

 

One of the most extensive reports ever commissioned into asphalt in Queensland, and 

certainly ever into SMA was the Troutbeck Kennedy Report of Sept. 2005. The report 

followed a series of accidents on the Bruce highway near Gympie, and questioned the 

use of SMA on Queensland roads. 

 

SMA is characterized by a “stone on stone” structure. SMA uses a high proportion of 

larger stones or aggregate that contacts each other. This skeleton of larger stones resists 

heavy loads by transmitting them to the pavement below. If the underlying pavement is 

sufficiently strong then the SMA will resist the heavier loads effectively. (A surfacing 

cannot compensate for a weak pavement). 

 

Troutbeck states “The bituminous mastic is intended to hold the aggregate in place and 

to inhibit the ingress of moisture into the pavement and to provide durability. The 

mastic consists of bitumen and fine aggregate particles; it may also include a polymer 

modified bitumen and filler material to increase the mastic’s strength. Fibers may also 
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be added to stabilize the bitumen and to prevent the binder segregating from the 

aggregate during transport and placement.” 

 

It is important that the aggregate material consist of only the larger stones (in the 

structure) and fines to provide effective mastic. The intermediate size aggregates are not 

included, as these keep the larger aggregate apart and reduce the strength of the SMA. 

 

If SMA is designed as a mix with too little bitumen, then the percentage of air voids 

increases and water will infiltrate the surface and possibly the underlying areas. This is 

originally how Open Graded mixes were designed so-as to effectively remove excess 

water from the asphalt pavement Water in the asphalt can also break the bond between 

the stones and the bitumen and allow the bitumen to unravel. The specifications, the 

mixing, the transport, the placement and compaction of SMA are critical to achieving 

the desired result. 

 

SMA and OGA have been developed to provide an effective surface texture. This is a 

prime safety requirement and helps to maintain skid resistance at the higher speeds. The 

texture is also useful in decreasing the water depth on the surface. These qualities make 

for safer roads. Skid resistance is a function of the micro texture (or the roughness of 

the individual pieces of exposed aggregate) and the macro texture (developed from the 

arrangement of the aggregate on the surface). 

 

The Report recommends in Recommendation 2 “If is recommended that the Department 

of Main Roads continue to develop asphalt surfacing with a longer life and better 

durability while maintaining an appropriate surface texture. These surfacing are 

required to support the road transport task and community requirements in the future.” 

 

The performance of SMA is dependant on the grading and material proportions (defined 

by the accepted specification), the mixing process and the plant, and the laying 

compaction process. All aspects must be closely monitored if SMA surfacing is to have 

a long life. Consequently, SMA is a surfacing that requires a high level of detail and 

constant research, fine-tuning and modification. The process of introducing SMA, or 

any other alternative surfacing, should be slow, careful and deliberate and involve state-

wide and possibly nation-wide discussion. 
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2.2.2 Development and Performance of New Stone Mastic Asphalt Specification 

 

Over the years of service of asphalt pavements, and in particular stone mastic asphalt,  

the performance has ranged from exceptionally high performance and requiring no 

maintenance, to poor performance requiring significant maintenance after two years of 

reconstruction. This assessment has been developed by the Cairns QDMR officers of 

the Cairns District and their counter-parts in other areas of Queensland. 

 

 

Patane, Bryant & Vos (2005) state the following causes: 

• Poor pavement type selection has design; 

• Inadequate supervision by the client of the asphalt manufacture of asphalt; 

• Reduced quality control con constituent materials in the manufacture of 

asphalt; 

• Variable and high demand for asphalt pavements creating material 

shortages; 

• Reduced asphalt mix design experience and manufacture supervision; 

• Unreliable and in accurate testing data; 

• Variability in the binder properties; 

• Changes over time in the properties of constituent materials, in particular, 

fillers. 

 

 

In the last three years, Queensland has been ‘adjusting’ its SMA specification to address 

the workability and durability concerns. The first attempt around early 2003 was mostly 

a tightening of requirements to increase density (reduce permeability) but resulted in 

mixes with very poor workability.  Patane, Bryant & Vos (2005) state their observations 

on our Queensland mixes were constructive and they proposed the following: 

 

 

• Density better than 94% 

• Less use of fly ash and hydrated lime; 

• Changed grading to increase VMA; 
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• Test sections before construction 

• Mix approval based on production; 

• Use of less modified PMB’s; 

• Use of VMA as production QA/QC. 

 

 

 

2.2.3 Development of Stone Mastic Asphalt for Queensland 

 

Growing demands of the road transport task in Queensland have lead to investigating 

the benefits of Stone Mastic Asphalt in the early 1990s. Lack of funding seems to 

always retard progress, but the first project was completed in October 1996. SMA has 

quickly become the surfacing of choice in Queensland, and whilst its characteristics as a 

road surfacing have lived up to expectations, permeability and constructability issues 

have caused some concern. Research is continuing within the technology branches of 

State Government to overcome these concerns and perfect Stone Mastic Asphalt as the 

ideal surfacing for Queensland Roads.  

 

Hogan, Patane & Lowe (1999) explain that “In northern Europe it was seen as an 

alternative to dense graded asphalt to resist the damage caused by studded tyres which 

were used in the harsh European winters to cope with snow and ice. As axle loads 

increase in Europe, Stone Mastic Asphalt was seen as a solution to rutting problems 

which occurred if the short summers were hot. With its high binder content it was also 

able to cope with the cold winters by resisting cracking caused by fatigue.” 

 
The report follows to describe that an AAPA study tour of Europe suggested that SMA 

could perhaps provide a solution to some of the problems which has beset the 

Queensland road network, namely: 

 

 

• Rutting 

• Fatigue cracking 

• Bleeding/crushed surfaces 
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• Inadequate texture depth for high speed operation 

• High tyre noise 

Brisbane City Council had been using a Stone Mastic Asphalt mix, of nominal size 

11mm approximately, for some time. The BCC mix produced many successful surfaces 

using a multigrade bitumen binder (without fibers); however on several occasions it 

produced quite severe flushing and bleeding as a result of segregation and/or binder 

drainage. 

 

A few trial mixes of SMA were laid in Melbourne in the early 1990s with high binder 

contents similar to the European mixes. These trials exhibited rutting and bleeding in 

subsequent hot weather and heavy traffic conditions. Also, handwork and paving of 

tapers can be particularly difficult with SMA due to its low workability caused by 

coarse grading, high filler and stiff binder.  

 

To avoid potential flushing and bleeding problems Queensland SMA has been designed 

with slightly higher air voids. This can produce a SMA surfacing which is permeable 

under heavy traffic and rain. To avoid damage to underlying pavements which are 

cracked, the Department now specifies a seal or SAM or SAMI (rubber modified 

sprayed seal) should first be applied prior to placement of the SMA surfacing. 

 

 

Hogan, Patane & Lowe (1999) suggest further research into the following main 

areas: 

• Permeability/air voids/binder content 

• Dilation point/mix volume 

• Optimal binder tyres 

• Wheel tracking 

• Fatigue testing 

• Workability 

 

 

With the ongoing experience gained from projects and the technical knowledge gained 

from the laboratory programs, it should be possible to further improve all aspects of 
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Stone Mastic Asphalt surfacing to make it the ideal road surfacing for Queensland 

roads.  

 

2.2.4 The behavior of Asphalt in Adverse Weather Conditions 

 

A program of laboratory tests has been undertaken to support the development of 

specification clauses and associated advice on laying asphalt in adverse hot weather 

conditions. The laboratory programme assessed the influence of both temperature and 

traffic speed on the deformation resistance of hot rolled asphalt and stone mastic 

asphalt. 

 

Nicholls & Carswell (2001) states “There are various physical actions that can be taken 

when laying hot asphalt in adverse hot weather conditions to minimise the potential 

problems. However, experience shows that more rutting develops when traffic speeds 

are reduced and this should be a factor to consider.” 

 

There is no single solution to the problems of trafficking newly laid asphalt during hot 

weather. Nevertheless, there are ways of reducing the risks to manageable levels by use 

of a procedure such as the proposed risk assessment model. By minimising the risks at 

all stages of the work, from mixture production to traffic control, the amount of damage 

induced should be within acceptable limits. The relationship implies that the permanent 

deformation is proportional to the traffic flow, the wheel-tracking rate at 45°C and the 

logarithm of the age plus one. 

 

 

 

2.2.5 Stone Mastic Asphalt – UK Experience 

 

Richardson (1999) states “In very general terms shifting from Porous Asphalt to thin 

wearing course and on to SMA, the air voids content and surface texture are reduced, 

but each material still has a relatively quiet surface compared with that of chipped 

HRA.” 

 

There has been increasing concern in the UK over the lack of resistance to rutting of 
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asphalt wearing courses. This has led to a decrease in binder contents that has in turn 

resulted in a fear of possible loss of durability and of resistance to cracking. A dense 

material has now been made available that imparts to the road surface both high 

resistance to deformation and high durability through the design of a coarse graded 

aggregate structure having the capacity to accommodate a rich bituminous mortar by the 

incorporation of suitable binder carriers. The adoption of thinner layers is similar to the 

development in the Australian, Queensland and Cairns approach. 

 

 

 

2.3 Skid Resistance 

 

2.3.1 A Report from the International Society for Asphalt Pavements  

 (Danish Road Directorate 2002) explains “Particle packing theory has been applied to 

the grading curves of some typical coarse aggregates used for the manufacture of SMA. 

To ensure that dilation of the stone skeleton does not occur, it has been shown that the 

maximum size of particles in the mastic fraction varies with the maximum size and 

grading of the coarse aggregate used. It is suggested that the separation between stone 

skeleton and mastic for a SMA14 is the 2.36mm sieve and for SMA10, it is the 1.18mm 

sieve.” 

 

In Queensland, where thin surfacing layers (<40mm for SMA10) are used, often over 

old, weak pavements with high deflection, fatigue failure of SMA, rather than rutting, 

may be the limiting design factor. Skid resistance measured by the Sideway-force 

Coefficient Routine Investigation Machine (SCRIM) and the Griptester has also 

indicated that a level can be achieved that is commensurate with that which would be 

expected of the aggregate used in those same site conditions for a traditional surfacing 

mixture.  

 

 

 

2.3.2 An Investigation of the Skid Resistance of Stone Mastic 

The SCRIM surveys undertaken in the last 6 years on the principal road network and 
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class roads together with High Speed Road Monitoring Surveys provide important data 

for the performance assessment of new surfacing materials. SMA has been universally 

used in across the World for some years and has been well received particularly in 

urban areas due to the spread of operations and the reduced noise and spray. 

 

Bastow, Webb, Roy & Mitchell (2005) say the results show that: 

• The initial skid resistance of all the SMA’s in the study was similar to 

conventional surfacings. Here was a 30% chance of SMA having skid 

resistance value lower than the investigatory level for the site category in 

the 12 months after surfacing. 

• Skid resistance improved with time and in one year the MSSC values 

had increased approximately 11 % and remained stable for the next two 

years before falling to 6% in the fifth year. The initial increase in skid 

resistance is generated by the surface binder being abraded exposing the 

coarse and fine surface aggregates which contribute to the ultimate skid 

resistance of the material. 

• If aggregates of the specified PSV are used the skid resistance of SMA 

after the binder film wears away should give acceptable values for the 

general road category in Dorset. A SCRIM coefficient of better than 0.45 

would be expected from aggregates with a polished stone value of 60. 

 

 

This study based on factual data from one County Council of Dorset in the UK over a 

five year period indicated that SMA surfaces had a 70% chance of exceeding the 

investigatory level of skid resistance in the first year after laying. All sites showed some 

improvement in skid resistance in the succeeding two years and thereafter stabilized at a 

lower level. In year five 10% of the sites had some values below the recommended 

investigatory levels which emphasise the need to select materials with due regard to the 

site category.  

 

Work is required to investigate the high speed frictional resistance of stone mastic 

asphalt in the initial period before the binder rich mastic mortar has been abraded. 

Measurements are required to determine the thickness and consistency of the binder 

film covering the surface aggregate in relation to other bituminous materials and 
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whether the absorptive filler used in the mix have any impact on the skid resistance of 

the surface material. The research requirements across the nations seem to be similar to 

the Cairns region and QDMR. 

 

2.3.3 Early and Mid Life SMA Skid Resistance 

 

Safety applies to all stages of roadway construction i.e. from initial design, selection of 

materials to use of the surface by the water. Woodward, Woodside & Jellie (2005) 

explain that “In the UK, a range of criteria including noise, negative texture, spray 

generation, layer thickness, availability and cost of higher PSV aggregate, has shown 

the need the need for more sustainable technologies have caused a shift towards thinner, 

and quieter types of asphalt surfacing materials. These typically used modified bitumen 

or have thicker bitumen coatings to hold the aggregate particles together.” 

 

The authors recognised that the early life safety of these materials needed consideration 

given that a bitumen rich surface tends to have poorer wet skid resistance. This paper 

considers the development of skid resistance for a SMA surface using high PSV 

greywacke aggregate and polymer-modified bitumen. The SMA surface was 

periodically measured using a GripTester to determine how skid resistance has 

developed from early life through to mid life. The findings showed how this is different 

from a conventional chip seal or positive textured asphalt surface. 

 

The review of this paper considered the development of early life skid resistance 

measured on-site and in the laboratory. It highlights that there are complicated inter-

relationships between many factors such as type of aggregates, bitumen, and 

composition, and surface texture, time of the year, road geometry and trafficking 

conditions. These are two basic types of asphalt surfacing. Those that are positive 

textured where the aggregate embeds into the type and the aggregate micro-texture is 

either exposed or becomes quickly exposed. Vehicle dynamics are applied to what is 

essentially a series of point loads leading to conventional polishing of the surface 

starting to take place relatively quickly. 

 

The second type has a smoother, negative or porous texture, where the aggregate does 

not embed into the tyre to the same degree for example SMA (porousaAsphalt). 
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Loading is spread over a greater area of thickly coated aggregate/matrix and it takes 

longer to wear away the bitumen and expose the aggregate. “As there is less aggregate 

embedment so the contribution of hysterisis effects on friction may be reduced.” 

 

The research has found that the combination of aggregate and bitumen has a significant 

effect on skid resistance during their early life. Aggregate type is important for 

unmodified bitumen, particularly those with variable composition as the 

weaker/softer/unsound particles will loosen their bitumen coatings faster. Reliance on 

the use of higher PSV (polishing) does not ensure high skid resistance during early life. 

Rather, a lower PSV aggregate which strips quickly may perform similarly, and in some 

cases better, than a much higher PSV aggregate. 

 

These conclusions seem to contradict all other properties required of a surfacing mix, 

i.e. the development of good aggregate/bitumen bond to resist moisture induced loss of 

stiffness, cohesion and surface raveling. Therefore, in terms of ensuring early life skid 

resistance, there is a balance between safety and durability which needs to be 

considered. The expectation of highway materials to perform is high.  

 

 

 

2.3.4 The German Origin of SMA 

 

Skid resistance is an essential element of traffic safety in wet surface conditions. The 

skid resistance of asphalt wearing courses is generally unsatisfactory right after laying, 

because the binder on the material aggregate has not been worn off by traffic yet. 

Druschner (2005) states “In order to improve the skid resistance in this stage, it is 

mandatory in Germany to grit the wearing course.” 

 

Once the binder film has been worn off, the macro-texture and micro-texture are the 

decisive parameters for skid resistance. The macro-texture is mainly responsible for the 

skid resistance at higher speeds. As of approximately 80 km/h, the tyre profiles can no 

longer take up and/or safely carry off the water. Then the macro-texture of the wearing 

course has to take over this task to prevent aquaplaning. With SMA and other wearing 

course types, the macro-texture depends on the composition along with the paving and 
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compacting temperature. A composition, which is rich in mortar and results in a dense 

surface without pronounced texture. Likewise, high paving and compaction 

temperatures also result in dense surfaces. Therefore, the use of pneumatic rollers 

should be avoided for wearing courses, especially for SMA. This will be reinforced in 

later sections of this research paper. 

 

In many countries, including Europe, there is a tendency to produce SMA with a very 

large particle size. In Germany however, this tendency is reversed. Instead of the SMA 

0/11 mainly used so far the paper explains they now frequently use SMA 0/8. SMA 0/8 

has a better skid resistance, as it has a larger number of contact points to the tire than 

SMA 0/11 (0 to 11 mm). 
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CHAPTER 3 - METHODOLOGY 
 

 

 

3.1 Aim of this Thesis 

 

The aim of this thesis is to determine the important mix design, manufacturing and 

application requirements for Stone Mastic Asphalt (SMA) and how these areas 

influence the performance of the mix.  This will be achieved by: 

 

• Developing a design method to ensure that the important features of the 

aggregate stone skeleton are attained. 

• Investigating the impacts of all components of the mastic on the performance of 

SMA mixtures as well as production and laying by comparing a generic SMA 

specification with the northern interim specifications. 

• Quantifying the implications on performance of the modifications to the mix 

design of SMA. 

• Developing a failure mechanism with derived limits. 

 

 

 

3.2 Format of this Thesis 
 

To achieve the aims of this thesis, an extensive literature review has been undertaken 

focusing on the areas of failure mechanisms, trial data, asphalt materials and mixture 

design methods, test methods, SMA specifications and previous SMA research projects. 

The summary of the literature review is contained in Chapter 2. 

 

Based on the outcomes of this literature review, a program of experimental work was 

proposed to validate mix design procedures, assess the adherence to the specifications 

of manufacture and to quantify the effects of the changes necessary to achieve 

performance of SMA in a tropical climate. This discussion forms the basis of Chapters 
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4 and 5.  International research and development with specifications is discussed in 

Chapter 6. 

 

 The experimental work is discussed in Chapters 7, 8, 9 and 10. Chapter 7 deals with the 

investigations into methods to ensure that the stone on stone contact of the stone 

skeleton is maintained. The Chapter includes the interim specification for the local 

district of North Queensland and concludes by outlining modification to the MRD / 

MRS document (2004b) Smart Surfacing. This will be followed in more detail within 

Chapters 9 and 11.  

 

Chapters 8, 9 and 10 investigate the mastic fraction of the SMA and the effects of two 

components of the mastic; binder and filler; on the properties of the completed mix. 

Chapter 9 discusses the stiffness or elastic properties of the mix. The implications for 

fatigue life and hot weather considerations are addressed in Chapter 8. Chapter 10 

considers the effect on deformation resistance by using conventional wheel track tests; 

and investigates a new fundamental test method Vacuum Confined Dynamic Creep for 

deformation resistance. 

 

By applying the derived material performance properties (elasticity and fatigue life) to 

typical design examples, the implications of the choice of mastic components of SMA 

on pavement life and performance has been evaluated in Chapter 11, as well as the 

modifications to suit North Queensland conditions. 

 

A summary of the most significant findings and recommendations for further research 

are presented in Chapter 12. 

 

 

 

3.3 Specific Points 
 

The development of this paper will depend partially on prior trial data from the research 

projects and the trial data which is performed during the course of testing. The basic 

flow though will be at a step-by-step process in comparing history with actual trial data, 
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as follows: 

 

• Literature review on world's best practice and general knowledge of concepts, 

specifications and procedures. 

• Review and summaries background information. 

• Start with all SMA sites in Northern Region and prioritize on the basis of: 

- is there available detail 

- crash Data 

- Traffic volumes 

- Extent of site 

- grouped into highways 

Then compare: 

- type of asphalt 

- which company/inspector 

- distinctive variables 

• Reprioritize to minimize the source data, and testing  

• Test these sites and categories into where areas are showing stress – visual and 

quick testing. 

• Design a list of criteria for comparisons of  the sites: 

- voids 

- Surface texture, Macro/ micro textures  

- grading 

- Bitumen content 

- PAFV of aggregate 

- Source material details 

• Testing of the priority sites based on deformation to arrive at a table of 

comparative data between original and actual. 

• Extend the correlations and make-reference to the future life of the asphalt – 

balance of extending bitumen content compared to pavement life. 
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CHAPTER 4 – ASPHALT MATERIALS, 

MATERIAL PROPERTIES AND ASPHALT MIX 

DESIGN 

 

 

4.1 Introduction 
 

Throughout history, the origins of the various mix designs are generally centred within 

Europe.  SMA began in Germany, and the German practice in the mixing of asphalt is 

covered in accordance with the “Additional technical contractual conditions and 

directives for the construction of roadway surfaces from asphalt” and the associated 

“Code of Practice for qualification tests on asphalt”, which is an issues paper produced 

in 1998 through AAPA. In Australia, we adopt the theories from these papers and 

qualify changes throughout the various States, where each has its own specifications.  

There are certain procedures which remain fairly consistent by all codes. 

 

The material flow into the mixing hopper must take place in the sequence given below 

in order to achieve adequate dispersal of both the filler and the fiber throughout the 

mixed material and to obtain a fully coated mixture. The mixing times are slightly 

longer than for conventional asphalts because of the inclusion of the additives, mainly 

fibers which act to strengthen the mix.  The order of mixing, together with approximate 

timings are: 

 

 

• Coarse and fine aggregates introduced and mixed over a 15 second period. 

• Filler introduced and mixed over a 20 second period beginning at the same time 

as for the coarse and fine aggregates. 

• The fibers are also introduced during this dry mixing time, the exact timing 

being dependant on the fiber type but early enough during the cycle to ensure 

full dispersion but not so long as to break down the fiber. After the dry mixing 

time of 20 seconds, the binder is introduced and mixed with the ‘dry’ 

components over a 15 second period. 
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• There then follows a further 10 seconds mixing cycle followed by an 8 seconds 

discharge time. 

 

 

Most SMA is produced in batch mixing plants with pug mill mixers, although 

continuous (drum) mixing plants can be used. In the latter case, palletized fibers should 

be used and extreme care is required to ensure an even distribution of the various 

components throughout the mixing process. Quality production control is an essential 

requirement to ensure the volumetric proportions are maintained. Due to the gap-graded 

(i.e. certain sieve sizes missing in the grading of the aggregates) structure of SMA it is 

necessary to establish an adequate quality control system for the incoming aggregates 

and to maintain the stock piles properly. The use of automatically controlled feed 

systems for the additives and fibers are recommended. Modern material handling 

systems provide sufficient flexibility to add different types of palletized additives to the 

mix e.g. via top® (cellulous fibers used to stop binder drain down in a mix and hold the 

product in suspension during transport), pigments, binders, polymers. 

 

There are only two plants for manufacture in North Queensland, one batch and one 

drum. This report will concentrate on the batch plant, as this is how SMA is meant to be 

manufactured. A copy of the plant layout at the Boral Depot is attached in the Appendix 

F. 

 

As stated, SMA can be manufactured in conventional batch and drum mix asphalt plants 

although some modification may be required in order to effectively handle fibers and 

the amount of added filler. Generally, reclaimed asphalt pavement is not suitable for 

inclusion in SMA unless screened and separated into the grading fractions required for 

the SMA mixture. 

 

The performance of SMA is based on a strong gap graded aggregate composition. 

Variations in the relative proportion of structural aggregate and the fine aggregate 

filling the void spaces in that aggregate skeleton will have an almost linear effect on the 

voids on the mixture. Particular care must be exercised to avoid variations in the 

proportions of aggregate passing the critical 2.36 to 6.7mm sieve sizes (depending on 

nominal size of mixture). SMA is sensitive to overfilling of the aggregate structure with 
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mastic. If that occurs, the mastic bears the loading. As unmodified mastic has almost no 

deformation resistance, premature rutting is likely to follow. 

 

SMA manufacture requires good grading control and accurate proportioning of 

aggregates. Filler, fibers and bitumen requires careful calibration of all feed equipment, 

as well as ensuring that equipment is capable of operating at the feed rates required. 

Mixing procedures must provide uniform, consistent mixing of materials. 

 

Both batch plants and drum mixing plants are used to manufacture SMA. SMA requires 

an increase in mixing time to ensure the fiber and fines are adequately dispersed in the 

mix uniformly, and that there is no balling up of the fiber and fines in the mix.  This 

may not be possible with some of the drum mixing plants, as mixing time can not be 

increased or prolonged. The Australian practice of using drum mixing plants may result 

in fibers coming into direct contact with the heating flame and being burnt. Fiber 

distribution within the SMA should be monitored to ensure that even distribution of the 

fiber is achieved. The production of SMA should be closely monitored to ensure that all 

aspects of the production process are met and satisfied. Drum plants also have problems 

with the exact location of fiber, filler and bitumen entries to achieve the correct mixing. 

 

 

 

4.2 Asphalt Materials 
 

Asphalt is a mixture of aggregate and bituminous binder, with or without added mineral 

filler or fibres, produced in a mixing plant. Each of the component materials need to be 

carefully selected and controlled to ensure that they are of a quality suitable for the 

asphalt and the expected performance. The purpose of a mix design is to determine the 

best proportions of the available aggregates, binder, filler and fibres to give a product 

that is durable, workable, has adequate resistance to deformation and adequate 

flexibility to withstand cracking and fatigue. In the case of the wearing course, it is also 

necessary to provide surface texture and skid resistance appropriate to the speed 

environment in which the pavement is located. Provision of some of these 

characteristics is often mutually exclusive. 
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The specifications have maximum and minimum values and envelopes of limits to 

remain within. The mix design is also specific to the source materials in the local 

regions of manufacture. There has been considerable research into the appropriate tests 

and specification limits for the various components of an asphalt mix. This paper 

focuses on the performance of complete mix and how the combined grading and 

material types impact on this performance. Component materials were selected to 

comply with current specifications; typically those published by Queensland 

Department of Main Roads and Standards Australia.  

 

To minimise the effects of raw material variability, comparative testing was performed 

using raw materials from the same source stockpile or manufactured batch. Variances 

can then be highlighted by separating out the material source issues, whilst maintaining 

whether this could be an issue. 

 

 

 

4.2.1 Bitumen Binders 

 

Much of Europe including the United Kingdom use penetration grading systems (EAPA 

1998, BS 3690-1:1989) however available bitumen grades do not correspond between 

countries (Loveday and Bellin 1998). New Zealand also uses a penetration grading 

system (AUSTROADS 2000a). In the United State of America, the penetration grading 

system was replaced by two viscosity grading systems (Roberts et al 1996) that are now 

being superseded by the SUPERPAVE™ system. This introduced a performance based 

binder specification intended to perform equally well for both modified and unmodified 

bitumen (Browen et al 1996). Doubts have been expressed as to whether the 

specification is applicable to both plain and polymer modified binders (Oliver 1996, 

1997). The Georgia Department of Transport have added a phase angle requirement to 

their SUPERPAVE™ PG76-22 binder specification to ensure that polymer 

modification is used to meet the binder grade requirements (Watson et al 1998). 

SUPERPAVE™ also introduced new testing equipment for physical tests that are 

related to pavement performance parameters being partly influenced by the binder 

(Brown et al 1996). 
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In Australia, bitumen is classified on the basis of the mid-point of its viscosity range at 

60°C measured in Pascal seconds (Pa.s.). The range of viscosities is imposed at 60°C 

and 135°C to confine bitumen to an acceptable range of temperature susceptibility. To 

exclude bitumen with high temperature susceptibility, which may be too brittle at low 

temperatures, a minimum limit is placed on the penetration at 25°C. These controls on 

consistency at the top, middle and near the bottom of the practical temperature zone are 

considered to adequately specify the rheological properties of bitumen and also focus 

attention on the bitumen consistency at temperatures that are relevant to possible 

performance problems (AS2008-1997). 

 

 

 

4.2.1.1 Temperature Effects on Rheology of Bitumen and Asphalt 

 

Rheology is the study of the deformation and flow properties of materials (AS39982-

1991). Bitumen is a thermoplastic material whose strength and physical behavioral 

properties are directly related to temperature. At ordinary temperatures (10°C to 30°C), 

most bitumen is too stiff and hard to handle. For it to be sprayed, pumped and mixed or 

compacted in an asphalt mixture, its viscosity must be greatly reduced. Typical 

viscosity ranges and the approximate corresponding temperatures for typical Class 320 

bitumen are given in Table 4.1 (Armour 1988, AAPA 1998b). The viscosity of bitumen 

can also be altered by fluxing or cutting where volatile fractions such as diesel and 

kerosene are added. This method is typical used for spray sealing surfacing work 

(NAASRA1984a). 

 

It has been well established that the rheological properties of the bitumen binder affect 

the asphalt pavement performance. The properties of the binder affect the properties 

(e.g. resilient modulus and deformation resistance) of the asphalt for a given set of 

conditions of temperature and loading. Therefore, the sensitivity of the binder to 

temperature affects the properties of the asphalt (Austroads 1992a, Roberts et al 1996). 

Some typical relationships, between binder and asphalt properties for a range of 

temperature are given in Dickinson (1984). 
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Application Viscosity Range Temperature 

Spraying Operations 0.05 to 0.1 Pas >180°C 

Pumping 0.5 to 1.0 Pas 130°C to 140°C 

Multi-tyre rolling 2 to 100 Pas 70°C to 115°C 

Steel wheel rolling 0.5 to 10 Pas 90°C to 145°C 

Mixing <0.2 Pas >150°C 

Table 4.1 - Typical Viscosity and Temperature Ranges for Class 320 

Bitumen (After Armour 1988, AAPA, 1998a) 

 

 

The higher temperature (40°C to 60°C) rheological properties are related to the rutting 

performance of pavements. The rheology at intermediate temperatures impacts on the 

fatigue cracking of pavements. The low temperature properties of the binder are related 

to the low-temperature thermal cracking of the pavement. Reduced rutting, improved 

fatigue life, and lower low-temperature stiffness values have been measured in asphalt 

mixtures made with binders with improved rheological properties (Bahia and Kamel 

1994). 

 

Temperature is the one of most important factors in determining the modulus of asphalt, 

fatigue life and permanent deformation of asphalt layers (AUSTROADS 1992a). Shell 

(1978) introduced the procedure for design purposes to determine “weighted” mean 

annual air temperature (w-MAAT) from mean monthly air temperatures (MMAT) from 

a given location. By using a relationship between air temperature and pavement 

temperature, “weighted” mean annual pavement temperature (WMAPT) can be 

determined (AUSTROADS 1992a). By using the WMAPT, the effects on design of 

daily and monthly variations in the pavement temperature are taken into account. The 

WMAPT gives the “effective” asphalt temperature and thus “effective” asphalt 

performance properties.  

 

Rutting in asphalt occurs due to the plastic flow of the material. Plastic flow is an 

irreversible process caused by high stresses applied by vehicles, sustained elevated 

temperatures on a hot day or a combination of both (APRG 1992). Therefore, for 
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assessing rut resistance, the Maximum Pavement Temperatures (Tmax) is used (APRG 

1997b). 

Because of the effect of temperature on the rheology of the binder and the 

corresponding effect on the asphalt mix, laboratory temperature test conditions are 

chosen to reflect the expected in-service temperatures approximate to the critical 

performance conditions for the type of test being conducted. 

 

 

 

4.2.1.2 Loading Rate Effects on Rheology of Bitumen and Asphalt 

 

Because of the visco-elastic nature of bitumen, the properties of asphalt are dependent 

on the rate at which it is loaded. For example, a faster loading rate will give a greater 

modulus (as shown in Figure 4.1), increased deformation resistance and increased 

fatigue life in the controlled stress mode of loading. The effects can be very significant, 

especially in pavement areas such as intersections, bus stops and car parks. 

 

To determine the properties for a given traffic speed, regardless of the method used, the 

loading time in seconds can be derived from a simple inverse relationship 

(AUSTROADS 1992a). Debate continues as to whether this relationship is appropriate. 

Vic Roads (1993) suggests that the relationship between loading time and traffic speed 

depends on the method used to estimate modulus. Guidance is given in selecting 

MATTA rise times and time of loading for the Shell monographs (AUSTROADS 

1992a) for estimating asphalt modulus for various pavement design speeds. 
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Figure 4.1 - Effect of rate of loading (Hz) on stiffness modules as a 

function of test temperature (After di Benedetto an de la Roche 1988) 

4.2.2 Polymer Modified Binders 

 

4.2.2.1 Types of Polymer Modified Binders 

 

Whilst there are a large number of polymer products, only a few are suitable for 

modifying bitumen (Isacsson and Lu 1995). Polymers are commonly divided into three 

broad categories: plastics, elastomers and rubbers. Plastics can in turn be subdivided 

into thermoplastics and thermosets (or thermosetting resins) and elastomers into natural 

and synthetic rubber. Thermoplastics soften and flow when heated but reharden on 

cooling. The process can be repeated a large number of times. Thermoset materials are 

produced by the direct formation of network polymers from monomers, or by cross-

linking linear prepolymers. Heating causes irreversible transformation as a result of 

chemical reactions. Elastomers are characterized in their elasticity, which allows them 

to totally or partially recover their initial dimension after being subjected to stress or an 

increase in temperature.  

 

The most commonly examined thermoplastics for modifying bitumen include 

polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polystyrene (PS) and 

ethylene vinyl acetate (EVA) (Lu 1997). EVA, a random copolymer of ethylene and 

vinyl acetate, was used for modifying bitumen (APRG 1997A) but it is being replaced 

by EMA. EVA may improve high temperature properties without altering low 

temperature flexibility of the base bitumen which leads to improved deformation 

resistance of asphalt containing EVA modified bitumen (Maccarrone et al 1997a). 
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Whilst EMA and EVA modified bitumen's have increased fuel resistance, the 

plastomeric types should not be used where a high degree of flexibility is required 

(AAPA 1998a). 

 

Important thermosetting polymers include alkyds, amino and phenolic resins, epoxies, 

unsaturated polyesters and polyurethanes. These polymers can increase the strength of 

the bitumen by reacting chemically to form a strong three-dimensional network 

structure that cannot be returned to a fluid condition by heating. Two-component epoxy 

resins blended with bitumen display the properties of modified thermosetting resins 

rather that those of bitumen. They give outstanding performance as road binders in 

cohesion, adhesion, oil/fuel resistance and durability. In recent decades, various 

thermoset-bitumen systems have been developed, but due to their cost are only applied 

to a limited number of critical pavement surfacing conditions (e.g. specific types of 

bridge decks and airfields) (Roberts et al 1996). 

 

Elastomers (rubbers) such as natural rubber (NR), polybutadiene (BR), polyisoprene 

(IR), isobutene-isoprene copolymer (IIR), polychloroprene (CR), Styrene-butadiene 

copolymer (SBR) and wtyrene-butaduence-styrene block copolymer (SBS) have been 

used in experiments to modify bitumen (Isacsson and Lu, 1995, Roberts et al 1996). 

The polymers may be added to the bitumen in different forms such as crumbs, powders, 

lattices and solutions in liquid hydrocarbons. Of the elastomers, SBS copolymers have 

attracted the most attention for bitumen modification (Isacsson and Lu 1995). The 

polymers consist of styrene-butadiene-styrene triblock chains and are a two-phase 

system formed by polystyrene blocks (PS) within a matrix of polybutadiene (BR). 

Above the glass transition temperature of polystyrene (i.e. +100°C), the effectiveness of 

the polymer cross-links rapidly diminishes. When cooled, the polystyrene domains 

reform and the strength and elasticity are restored. The thermoplastic nature of SBS 

polymers at elevated temperatures and their ability to provide a continuous network on 

cooling are the reasons for their attractiveness as bitumen modifiers (Lu 1997). 

 

The SBS modified binder is relatively insensitive to temperature and rate of loading and 

confers similar properties to the asphalt mix. Due to higher amounts of energy required 

to deform the PMB/SBS, it increases the resistance to deformation (rut) and reflective 

cracking of the asphalt (Srivastava et al 1992). Asphalt containing PMB/SBS has been 
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shown to have lower flexural stiffness compared to the same mixes with C320 bitumen 

however the affect of changing the rage of loading was less significant for the 

PMB/SBS mixes (Maccarrone et al 1997a). 

 

 
Figure 4.2 – Temperature dependency of complex shear modules and phase angle 

for Class 320 and polymer modified binders (After Maccarrone et al 1996 and 

1997a) 

 

 

The type of PMB most commonly used with SMA is SBS which is an elastomeric 

polymer type. Brown et al (1997a) reported that SMA incorporating an SBS PMB 

produced mixes that were more rut resistant than SMA with unmodified binder. The 

improved rut resistant properties of mixes manufactured with both SBS and EVA 

polymer modified binders were demonstrated in the Beerburrum (Queensland) 

Accelerated Loading Facility (ALF) trials (APRG 1996). 

 

Superior fatigue lives are also reported as a consequence of using an SMA/SBS system. 

The properties of PMB are illustrated in Figure 4.2 (Maccarrone et al 1996 and 1997a), 

where SBS and EVA modified bitumen's are compared with unmodified Class 320 

bitumen. The reduced phase angles dependency on temperature of SBS and EVA shows 

lower viscous flow and higher elasticity of the polymer modified binders. This 

translates to greater rut resistance and lower stiffness of the asphalt over a greater range 
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of typical pavement temperatures. SBS demonstrates the best overall performance with 

respect to viscous resistance and elasticity.  

 

 

 

4.2.2.2 Temperature Effects 

 

Improvements in the low-temperature properties of bitumen due to polymer 

modifications were indicated by decreases in creep stiffness, Fraass breaking point and 

glass transition and limiting stiffness temperatures (Isacsson and Lu, 1995). The relative 

improvement varies with the base bitumen, polymer type and polymer content. 

Compared with thermoplastics (EVA and EBA). The elastomers (SBS and SEBS) 

appeared more effective in improving bitumen low-temperature parameters (except for 

the limiting stiffness temperature). For a given polymer, the relative reduction in creep 

stiffness depends on the bitumen grade (Lu and Isacsson 1997a). The influences of 

polymer modification may also vary with testing conditions (temperature and loading 

time) (Claxton et al 1996). 

 

Polymer modification also significantly improves the temperature susceptibility of 

bitumen's. Temperature susceptibility is not a single-valued parameter but depends on 

temperature range being considered, loading time as well as the property being 

measured (Lu and Isacsson 1998). The service temperature range of bitumen's can be 

extended by the addition of SBS polymers depending on the concentration of the 

modifier and the nature of the base bitumen. The maximum achievable extension is in 

the order of 25°C for high temperature performance (rutting resistance) and up to 20°C 

for low temperature performance (thermal cracking) (Vonk and Valkering 1996). The 

effects of polymer modification can be unfavorable at low temperatures (Bahia 1994). 

 

 

 

4.2.2.3 Measuring Effects of Polymer Modification 

 

Statistically significant relationships exist between the parameters of dynamic 

mechanical analysis, creep tests and conventional methods (Lu 1997). Conventional test 
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parameters such as penetration and softening point were not considered sufficiently 

adequate for characterizing polymer modified binders (Vonk and Valkering 1996). The 

degree of polymer modification reflected by difference measurements varies 

considerably and predicts significant benefits from polymer modification in practice, 

appropriate and fundamental parameters should be used (Lu and Isacsson 1997b). For 

example, whilst there is strong evidence that the rutting resistance of asphalt is 

dependent upon the visco-elastic properties of bitumen's and PMB’s, debate continues 

over what is the most important parameter of the binders to be measured (Murray et al 

1998). 

 

Overseas research had reported an excellent correlation between rutting resistance and 

the Strategic Highway Research Program rutting parameter (G*/sinδ) Claxton et al 

1996, Murray et al 1998). Doubts about the reliability of SHRP rutting parameter when 

applied to SBS modified binders have been reported in Europe (Oliver 1996). The 

Australian study recommended that consistency, as measured on the ARRB TR 

Elastometer, be used to characterize PMBs n specifications for rut resistance and that 

softening point may be suitable for control of manufacture of the binders (Oliver 1997). 

These parameters are now included in Australian specifications (AP-T04, 2001). 

 

An ongoing study has found that whilst the consistency property, measured using the 

ARRB TR Elastometer, changes with hot storage time for most polymer modified 

binders, the other properties do not change significantly. Research is continuing to 

determine whether there is any change in the laboratory performance (Resilient 

Modulus, Dynamic Creep, Wheel-Tracking Rate, Beam Fatigue) of asphalt mixes 

manufactured from PMB stored at high temperatures (Remtulla et al 2001). 

 

 

 

4.2.2.4 Australian PMB Classification Systems 

 

In Australia in 1992, the AUSTROADS (1992b) Committee on polymer modified 

binders (PMBs) released guideline and specifications covering the use and applications 

of PMBs in asphalt and sprayed sealing applications and presented procedures for 

handling, storage, application and safety. The approach adopted was largely prescriptive 
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where polymer type and concentrations were the key focus (APRG 1997b). Also 

introduced was the nomenclature for eight sealing and seven asphalt PMBs with typical 

material properties. The binder type designations, SB"x” and AB”y”, denotes sprayed 

seal and asphalt binders respectively. The numbers, “x” and “y”, were intended for 

identification only, and not necessarily intended as a ranking. The Asphalt Binder 

classifications were AB1, AB2, AB3, AB4, AB5, AB6 and AB25. Information on the 

impact of PMB on the performance of Dense and Open Graded Asphalts were presented 

– SMA had not been used in Australia at that time.  

 

A perceived problem with the 1992 specification was that users could associate 

classifications with polymer content (e.g. AB5 = 5%SBS) (Parry et al 1998). In 1997, a 

new PMB classifications system was introduced based on the type of binder system 

application as a prefix, an arbitrary numerical designation and the predominant polymer 

group represented by the PMB as a suffix. Binder systems are coded as “S” (for sealing 

grades) or “A” (for asphalt grades). Polymer groups are coded as “E” (for elastomeric 

polymer types), “P” (for plastomeric polymer types) or “R” (for granulated crumb 

rubber materials). For example, A10E is an asphalt grade PMB based predominantly on 

an elastomeric polymer type and arbitrarily designated as 10 (APRG 1997b). 

 

The Code E includes SBS (styrene-butadiene-styrene), SIS (styrene-isoprene-styrene), 

SBR (styrene-butadiene rubber), natural rubber, PBD (polybutadiene), chloroprene and 

other similar polymer types. The Code P includes EVA (ethylene vinyl acetate), EMA 

(ethylene methacrylate), APP (atactic polypropylene), various forms of PE 

(polyethylene) and other similar polymer types. The Code R includes crumbed rubber 

usually from old tyres. Whilst the code letters allow various types of modifiers, those 

typically used for the grades of PMB for asphalt applications are A10E (SBS), A15E 

(SBS), A20E (SBS), A25E (PBD), A30P (EMA,EVA), A35P (EMA,EVA) and A40R 

(scrap rubber). Guidelines are included for the choice of PMB to improve the 

performance of Dense Graded Asphalt in rut resistance and fatigue resistance, Open 

Graded Asphalt and High Modulus Asphalt (APRG 1997b). 

 

The 1992 AB25 and the post-1997 A40R classifications were included to allow the use 

of crumb rubber and were based upon the “dry: addition of the crumb rubber directly to 

the asphalt mixing plant (APRG 1997b). Inclusion of mixes manufactured by this 
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method is inappropriate for a binder specification and the classification has been 

removed from later specifications (AUSTROADS 2000b). 

 

APRG (1997b) was revised and issued in late 2000 as technical report AP-T04 

“Austroads Specification Framework for Polymer Modified Binders” (AUSTROADS 

2000b) and is the subject of ongoing review and will probably reduce the number of 

classes and adopt a more “user friendly” classification system. 

 

Whilst based on APRG (1997b), Queensland Department of Main Roads introduced its 

own classification system (MRS11.18 of 12/99). It has five PMB classes for asphalt (A) 

and restricts the polymer types to SBS (S), EMA (M), and EVA (V). The numeric code 

denotes the minimum consistency in kPa.s at 60°C which is more meaningful than the 

arbitrary value adopted in AUSTROADS (2000b). The Queensland classifications (with 

the nearest AUSTROADS equivalent class) are A0.6S (A20E), A5S (A15E), and A10S 

(A10E, A1.8M (A30P and A2V (A35P). 

 

 

 

4.2.3 Aggregate 

 

Aggregate can be described as material composed of discrete mineral particles of 

specified size or size distribution, produced from sand, gravel, rock or metallurgical 

slag, using one or more of the following processes selective extraction, screening, 

blasting, crushing (AS1348.1:1986). Aggregate is normally classified as either coarse or 

fine however there is some difference of option as to where the transition occurs 

between coarse and fine aggregate. AS1348.1:1986 defines coarse aggregate as “of such 

size that is substantially retained on a sieve of specified size, commonly 4.75mm or 

2.36mm according to usage.” AS2758.5:1996 uses a definition of “an aggregate having 

a nominal size of not less than 5mm. The convention used by road authorities in 

Australia is that the 4.75mm sieve is the transition between coarse and fine aggregate 

(APRG 1997a, DMR (QLD) MRS11.33, RTANSW 1998). This convention will be 

adopted for this paper. 

 

Aggregates typically make up 90% to 95% of the mass of all asphalt mixes and provide 
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a very substantial proportion of the load carrying capacity. Their selection is critical to 

mix performance. Specifications and standards set limits on the test properties that must 

be achieved by the aggregates (AS2758.5:1996, DMR (QLD) MRS11.33). Most 

aggregate tests and/or related specifications have been developed over a period of time 

and reflect local conditions and properties of available aggregate sources (Kandhal et al 

1997). 

 

 

 

 4.2.3.1 Coarse Aggregate 

 

The Queensland Department of Main Roads asphalt specifications (MRS11.30, 

MRS11.33, MRS11.34 and MRS11.36) set the same limits for coarse aggregate for all 

asphalt types. The test included are flakiness index, ten percent fines value (Wet), 

wet/dry strength variation, degradation factor, water absorption, crushed particles, weak 

particles and polished aggregate friction value (PAFV). Based on the predicted life of 

SMA, research could be justified as to whether there should be a separate (more 

stringent) requirement of PAFV for SMA. PAFV values have been the centre of much 

discussion in the Northern Region of Qld. Main Roads, and a separate specification was 

developed with a higher reading than the rest of the state – 50 vs. 45 – see Appendix C 

for results from local quarries which form the aggregate supply.  Also consult Appendix 

G for a copy of the Interim Specification for SMA for District 11 Peninsula: the only 

area with its own unique modifications to the standard specification in the state out of 

15 Districts.  This document will be referred to throughout the paper.  More stringent 

requirements for flakiness index and ten percent fines value (Wet) have been specified 

for heavy duty pavements (Jones et al 1998). 

 

For asphalt to be used in heavy and very heavy traffic applications, AAPA (2000b) sets 

more stringent limits for the coarse aggregate properties of los angeles abrasion loss, 

unsound stone content, marginal stone content, flakiness index, water absorption and 

PSV/PAFV. The expected service life of SMA is greater than DG and OG asphalt for 

the same applications. This implies that SMA will be subject to greater traffic during its 

life. It can therefore be seen that the two intrinsic properties required of the coarse 

aggregate in SMA are strength and polishing resistance (Loveday and Pellin 1998). 
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4.2.3.2 Fine Aggregate 

 

The Queensland Department of Main Roads asphalt specifications (MRS11.30, 

MRS11.33, MRS11.34 and MRS11.36) set the same criteria for fine aggregate for all 

asphalt types. The specifications are brief and simply state “Fine aggregate shall consist 

of natural sand particles and/or crushed rock or crushed stone particles of size smaller 

than 4.75mm but larger than 0.075mm. The aggregate shall be clean, hard, durable, and 

free from clay and other aggregations of fine material, soil, organic material and any 

other deleterious material”. A recent specification for a heavy duty pavement in 

Queensland included additional limitations on maximum Plasticity Index and Clay 

Index of the fine aggregate (Jones et al 1998). 

 

The selection of fine aggregate is a balance between stability and workability. For 

heavy duty applications (where SMA is typically used), where a high degree of rutting 

is required, wholly crushed fine aggregate is recommended (AAPA 1998a). Some 

specifications for SMA limit the amount of natural sand to a maximum of 50% of the 

fine aggregate (Nicholls 1998(a), prEN 13108-5:2000). 

 

 

 

4.2.4 Filler 

 

Filler is a fine material, the majority of which passes a 75µm sieve derived from 

aggregate or other similar granular material. The common fillers used in Australia are 

portland cement, hydrated lime, and ground limestone; cement plant flue dust, fly ash, 

ground slag and bag-house dust (APRG 1997a). The choice of filler will normally 

depend on availability and cost, although hydrated lime (Baig and Wahhab 1998) and 

Portland cement both have adhesion improvement qualities (APRG 1997a). 

 

According to numerous studies the properties of mineral filler have a significant effect 
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on the properties of the asphalt in terms of permanent deformation, fatigue cracking and 

moisture susceptibility. The introduction of environmental regulations and subsequent 

adoption of dust collection systems (baghouses) has encouraged the return of most fines 

to the asphalt mixture. Maximum filler to binder (F/B) ratio of 1/2 to 1/5, based on 

weight, is used by many agencies to limit the amount of minus 0.075mm material. 

However, the fines vary in grading, particle shape, surface area, voids content, mineral 

composition and physio-chemical properties; therefore, their influence on the properties 

of asphalt also varies. The maximum allowable amount should thus be different for 

different fines (Kandhal 1981). 

 

Fillers for use in Australia are currently covered by AS2357:1980. As well as those 

materials listed in Table 3.7 of the Australian Standard filler may be “any other 

materials nominated or approved by the purchaser”. The Queensland asphalt 

specifications (DMR) QLD) MRS 11.30, MRS11.33, MRS11.34 and MRS11.36) refer 

to the combined filler complying with AS2357 with the additional requirements of 

being… “Free from lumps, clay, organic matter and any other deleterious material” and 

with “voids in the dry compacted filler of not less than 38%.” 

 

The F/B ratio is particularly important in the climatic condition of North Qld.  It has 

been monitored closely in each of the plants within the area and forms apart of the mix 

design approval, as well as part of the modification to the interim specifications.  

 

 

 

4.2.5 Fibres 

 

Fibers used in SMA are typically cellulose fiber in a palletized form pre-blended with 

bitumen, or in loose form. In the early nineties several other stabilizers were trialed 

including glass fiber and rock wool fiber. Recent trials using acrylic fibers have been 

conducted by QDMR in North Queensland. 

 

Fibers can generally be purchased in two forms, loose fiber and pellets. Loose fiber can 

be packaged in plastic bags or in bulk. Pre-weighed plastic bags are often used in batch 

plant production. The bags are made from a material that melts readily at mixing 
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temperatures. The appropriate number of bags can, therefore, be added to the pug mill 

during each dry mixing cycle. Filler bags can be elevated to the pug mill platform by 

conveyor and manually added to each batch. The process is labour intensive and best 

suited to relatively low tonnage projects. 

 

An alternative to the use of pre-weighed bags is to blow a metered amount of bulk 

material into each batch. Machines specially designed for handling and blowing bulk 

fiber materials have been developed by some fiber manufacturers. Accurate calibration 

and control of density, as well as separation of fibers so that they adequately disperse in 

the asphalt mixture, are important features of such materials. The Pioneer Plant in North 

Queensland has a blower attached to the plant, where-as Boral is still very labour 

intensive. 

 

In batch plants the fibers are generally dispersed by adding to the dry aggregates and 

dry mixing for a short time (no more than 10 seconds), although some fiber 

manufacturers recommend adding fiber at the same time as binder. 

 

The fiber blown system can also be used in drum mix plants. In this method it is 

imperative that the fiber line is placed in the drum beside the bitumen line and merged 

into a mixing head so that the fibers are captured by the bitumen before being exposed 

to the high velocity gases in the drum. If fiber is not properly captured by the binder it 

will be lost to the dust collection system. 

 

Palletized fibers can be used in both batch and drum mixing plants by adding direct to 

the pug mill or at the RAP collar of drum mixing plants. Palletizing assists in improving 

the ease and accuracy of metering as well as reducing the likelihood of fibers becoming 

airborne and carried out by the plant draft. Some palletized fibers are mixed with a 

small amount of bitumen binder that must be allowed for in the overall binder content 

of the mix. Bulk palletized materials are placed in a hopper and metered into either the 

pug mill or drum mixer. Appropriate feed calibration is an important step in all fiber 

addition systems. 

 

Compared to conventional dense graded asphalt mixes, SMA mixes generally have 

higher bitumen content and contain more coarse aggregate. Drainage  occurs when the 
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bitumen runs off and through the aggregate during delivery or in the hopper of the 

paver. The main causes of drainage are excessive binder content in the mix and high 

temperature of the mix. The worst problems were reported on SMA projects where 

there was a combination of excessive binder content as well as high mix production and 

placement temperatures (Scherocman 1997). Fibres are used as drainage inhibitors in 

asphalt and the types available include cellulose, rock wool, fiberglass and other 

mineral sources. German SMA was originally produced using asbestos fibres. Whilst 

asbestos was perfectly suited from a technical point of view, its application was 

prohibited for health reasons. Cellulose fibres now have a 90-95% share of the German 

market (Schrimpf 1998). The Schellenberg drain-down test can be used to determine 

mix propensity to “draining” (APRG 1997a). 

 

Because of their increased stiffness, multigrade binders and Polymer Modified Binders 

(PMB) may reduce the need for binder drainage inhibitors however at the high bitumen 

contents typically used, a drainage inhibitor will still be necessary. Brown et al (1997a) 

compared the effect on binder drainage of the incorporation of SBS and polyolefin 

polymers and cellulose and rock wool fibres into the bitumen binder. They concluded 

that the fibre stabilizers were superior to the polymer stabilizers in preventing binder 

drainage in SMA mixes. The polymer stabilizers however produce more rut resistant 

mixes as they provide increased mastic support to the stone skeleton.  

 

Polymer fibres do not normally interact chemically with the bitumen. Experiments with 

the use of fibres to modify bitumen and asphalt have investigated increasing the 

toughness of the asphalt by increasing the amount of energy absorbed during fatigue 

and fracture testing (Lu 1997). One study demonstrated that the addition of cellulose 

fibre to SMA mixtures may affect performance in ways not being considered at present. 

While addition of small amounts (0.3%) will reduce binder drainage, greater additions 

may affect in-service properties such as cohesiveness, stiffness and resistance to 

permanent deformation in unexpected ways which need to be considered when 

predicting in-service performance (Woodside et al 1988).  
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Figure 4.3 - Effect of cellulose fibre addition on SMA mixture indirect 

tensile stiffness modulus (After Woodside et al 1998) 

 

 

The addition of cellulose fibres can affect the stiffness modulus as measured with the 

indirect tensile test as shown in Figure 4.3 (Woodside et al 1998). In terms of maximum 

stiffness, the optimum addition of loose fibre was dependent upon the fibre, that is, 

1.0% for loose fibre A and 0.6% for loose fibre B. Stiffness also increased with the 

addition of palletized fibre; however, an optimum value had not been reached with the 

addition of up to 1.5% fibres. SMA mixes typically contain 0.3% of cellulose fibres to 

prevent binder drainage. 

 

 

 

4.3 Asphalt Mix Design 
 

4.3.1 Background to Mixture Design Studies 

 

Asphalt mixture design is undergoing a transition throughout the world from the 

empirical mix design methods (for example, Marchall and Hveem) to performance-

based or performance-related methods (Luminari and Fidato 1998).  The aim of the 

design of asphalt mixes is to determine the proportions of bitumen, filter, aggregate and 

any other materials that will produce a mix that meets the appropriate constructability 



Chapter 4 – Asphalt Materials, Material Properties and Asphalt Mix Design 

 

_____________________________________________________________________________________________________ 
41 

and performance criteria (Lay 1998). Whilst pavement design methods use values for 

stiffness and fatigue relationships, there is also a range of serviceability issues that need 

to be addressed as part of the mix design process.  These include resistant to permanent 

deformation (rutting), resistance to low temperature cracking, durability, and resistance 

to moisture induces damage, skid resistance and workability (Roberts et al 1996). 

 

 

 

4.3.2  Performance Based Mix Deign Methods 

 

 

4.3.2.1 United States of America 

 

The American Superpave ™ mix design method was the end result of the “Asphalt” 

research effort of the Strategic Highway Research Program (S.H.R.P.).  The Program 

operated from 1987 to 1992 and represents the integration of more than 25 research 

areas in a single system for the characterization and design of asphalt mixes.  The 

procedure contained in this method includes specifications of the raw materials, test 

methods with the specially developed equipment, the strict mix design method itself, 

and a related software system (“core”).  The system is referred to as the Superior 

Performing Asphalt Pavement System that has been termed Superpave ™. 

 

Superpave ™ is supposed to substitute the specifications on materials and the mix 

methods currently used in the 50 states of the USA (Roberts et al 1996).  This will 

create a single, performance based system which can provide results tailors to the 

different climatic and traffic conditions present for the different classes of roads in the 

United States and Canada.  This method is applicable to mixes such as Hot Mix Asphalt 

(HMA) whether virgin or recycled, of closed (dense) grading, with or without modifies 

bitumen, as well as a variety of special mixes such as Stone Matrix Asphalt (Luminari 

and Fidato 1998).  It can also be applied to newly constructed wearing courses, base 

course layers and for resurfacing of deteriorated pavement surfacing layers, with the 

aim or selecting appropriate materials, reducing and controlling permanent 

deformations, and cracking, whether due to fatigue or low temperature.  The flexibility 

of the system permits mix design taking into consideration, both separately and in 
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combination, the three main distress factors, and predicting, the influence of aging and 

sensitivity to water at the onset of these types of deterioration (Roberts et al 1996). The 

usage and relevance of the US SHRP test methods and specifications are being 

considered by a number of countries (Stacey 19994, EAPA 1999). 

 

 

 

4.3.2.2 Europe 

 

During the 1990’s, the implementation of the European Union single market has given 

transport issues, including road pavements, a stronger European dimension.  Cross 

border contacts and co-operation has grown rapidly.  The EU Commissions views on 

the key elements affecting the competitiveness in the construction sector include 

quality, construction process, regulatory environment and technology. (EAPA 1999) 

One of the major impediments to effective competition has been the difference 

standards and techniques applied by different countries.  Work is currently underway to 

harmonise the standards or road building materials in the countries of the European 

Union (EAPA 1999). 

 

Between 1988 and 1995, two succeeding RILEM Committees: TC 101 BAT “Bitumen 

and Asphalt testing “and TC 152 PBM “Performance of Bituminous Materials” 

concentrated a major effort in this area (Francken 1998).  An early part of this research 

was a “state of the art” review of asphalt mixture design methods and Luminari and 

Fidato (1998) outlined the advantages and disadvantages of each method. 

 

Elements for a new mix design method were proposed and the aims were to evaluate the 

possibilities of implementing rational concepts and testing procedures for the design 

and manufacture of bituminous materials in order to cope with the present and future 

conditions of use in pavement construction.  The final purpose of the committees was to 

recommend significant test procedures for binder evaluation, mix design and 

performance assessment of bituminous materials.  A large international inter-laboratory 

testing program was undertaken (Eustacchio et al 1998).  In an era when strong changes 

are expected in experimental procedures and specifications for asphalt materials in 

Europe, the RILEM project provides some of the fundamental research for future 



Chapter 4 – Asphalt Materials, Material Properties and Asphalt Mix Design 

 

_____________________________________________________________________________________________________ 
43 

decisions. (Francken 1998) 

4.3.2.3 Australia 

 

In 1988, AUSTROADS, the Australian Asphalt Pavements Association (AAPA) and 

ARRB Transport Research (ARRB TR) started work on a project to develop a 

performance based asphalt mix design procedure which measured relevant, fundamental 

mix properties.  This required the development of test equipment that was affordable, 

accurate and easy to use (Wonson and Bethune 2000).  This new approach is intended 

to replace the existing Marshall and Hubbard Field procedures.  The intention of the 

procedures is to allow cost effective asphalt mixes to be designed for mechanistic 

pavement design.  The guide steers the users through the various processes and 

indicated the type of results that can be expected (APRG 1997a). Figure 4.4 illustrates 

the new provisional Australian Procedures. 

 

 
Figure 4.4 - Flow diagram of asphalt mix design by the AUSTROADS 

(APRG 1997a) method. 

The mix procedure is divided into distinct phases.  In the first phase, the volumetric 

proportions are determined.  The second phase involves carrying out performance 

related tests such a resilient modules, dynamic creep and fatigue to ensure that they 
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meet specified acceptance criteria.  The uncompacted asphalt is conditioned by heating 

in an oven for 1 hour at 150°c to simulate binder hardening during transport and placing 

and approximates one or two years or post construction compaction by traffic. 

 

Mixes are designs for light, medium and heavy traffic situation that are simulated by 50, 

80 and 120 cycles respectively by the gyratory compactor. 

 

 

• For level 1 (light traffic situations) the mix design process ends once the 

volumetric properties of the compacted conditioned sample have been 

satisfactorily achieved. 

• For level 2 (medium and heavy traffic situations) performance related testing 

is undertaken after the volumetric properties are achieved. 

• For level 3 (very heavy traffic situations) the mix is also subjected to 350 

cycles of the gyratory compactor to ensure there are at least 3% are voids at 

what could be considered refusal density for the mix.  Further performance 

related testing may be undertaken.  This requirement is currently under 

review. With the new proposed limits being a minimum of 2.0% voids at 

250 cycles (Oliver 2001). 

 

 

 

4.4 Material Properties 

 
The majority of test methods for compacted asphalt and its component materials such as 

aggregates, bitumen binders, fillers and fibres are covered by Australian Standard test 

methods such as the suite of tests contained in AS 2891 “Methods Sampling and 

Testing Asphalt” or State Road Authority test methods (DMR(Qld) 1998a). Many of 

these tests are based on the American Society of Testing Materials (ASTM) or 

American Association of State Highway and Transportation Officials (AASHTO) 

methods. Brown et al (1996) gives a good overview of the significance and expected 

results from the ASTM and AASHTO methods.  
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The traditional mix design tests like Marshall Stability and flow are still widely used 

throughout the world (Luminari and Fidato 1998, EAPA 1998, DMR (Qld) MRS11.30 

to MRS11.36). These traditional mix design methods (e.g. Marshall and Hveem) are 

neither performance-based nor performance-related. They try to predict performance by 

measuring certain empirical properties, but neither method can ensure that the designed 

mix conforms to specific pavement performance criteria (Lumunaru and Fidato 1998). 

 

The recent trend has been to develop and use compaction methods and test that simulate 

the field conditions and the introduction of performance based and performance related 

specifications. Performance based test methods are typically conducted under similar 

conditions as in the pavement and allow determination of physical properties that are 

directly related to the performance. Performance related properties are indirectly linked 

to and influence the pavement response to loading, however do not control the 

performance such as the mineral aggregate specification. Undertaken between 1987 and 

1992, the major project in this area was United States’ Strategic Highway Research 

Program (SHRP) which developed the Superpave™ mix design methods (Luminari and 

Fidato 1998). Australia has adopted a similar performance related design method 

(APRG 1997a). 

 

The main thrust of the Australian Asphalt Pavement Association Research and 

Development (AAPA R&D) program, established in 1988, has been to develop 

equipment and test methods to determine the fundamental properties of asphalt mixes. 

These properties can be used in pavement design and to provide a datum whereby new 

and improved mixes can be rationally compared. This has been coupled with the desire 

that the new methods involve relatively simple, low cost testing equipment and test 

methods. In 1998, the AAPA R&D Policy Group selected three asphalt mix parameters 

as being the most important for investigation in their first program. These were Stiffness 

Modulus, Deformation Resistance and Fatigue Resistance. As an outcome of this 

research, the following test methods have been produced (Wonson and Bethune 2000): 

 

 

(a) Australian Standards 

 

 AS 2891.2.2 – 1995, Sample Preparation – Compaction of asphalt 
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test specimens using a gyratory compactor. 

 

 AS 2891.12.1 – 1995, Determination of the permanent.   

 compressive characteristic of asphalt – Dynamic creep test. 

 

 AS 2891.13.1 – 1995, Determination of the resilient modulus of 

asphalt – Indirect tensile method. 

 

(b) AUSTROADS Provisional Methods 

 

 AST01: 1999, Deformation resistance of asphalt   

 mixtures by the wheel tracking test.   

 

 AST02: 1999, Stripping potential of asphalt – tensile   

 strength ratio. 

 

  AST03: 1999, Fatigue life of compacted bituminous mixes subject to 

repeated flexural bending. 

 

 AST04: 1999, Asphalt binder content – ignition oven   

 method. 

 

 AST05: 1999, Sample preparation – compaction of  asphalt slabs 

suitable for characterization. 

 

 AST06: 1999, Asphalt binder drain off. 

  

 AST07: 1999, Asphalt particle loss.  

 

 

The Australian provisional mix design procedure includes performance related testing 

in the following areas – Resilient Modulus (Indirect Tensile Modulus), Dynamic Creep 

(Direct Compression Test), Wheel Tracking Test, Beam Fatigue (Flexural Test) and 

Abrasion Loss (APRG 1997a). 
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4.4.1 Measurement of Air Voids Content 

 

Asphalt mixes in Australia are specified in terms of the compacted voids content: 

measured and reported as the degree of compaction. The fundamental performance 

properties of compacted asphalt such as Resilient Modulus, Dynamic Creep, Wheel 

Tracking Rate, Fatigue, Permeability and Marshall Stability are directly related to the 

voids content (APRG 1996, APRG 1997a). Whilst typical relationships for Dense 

Graded Asphalt were developed as part of the Accelerated Loading Facility (ALF) trials 

conducted at Beerburrum in Queensland (APRG 1996), the establishment of similar 

relationships for SMA is the subject of continuing research. 

 

The amount of type voids in a mixture is not only a function of the amount of 

compaction or quality of the binder but also the grading of the aggregate, all of which 

will affect performance (Laitinen 1998). There are several methods of measuring and 

classifying voids in asphalt and many relationships between those methods. These are 

categorized in Figure 4.5 (NAASRA 1984a). Whilst many countries use the same 

terminology, different definitions and formulae may result in different values being 

quoted for an identical mixture depending on the methods specified. It is important to 

be aware of the specification and the test methods being used when comparing results 

from different countries and even within the same country (Laitinen 1998). 

 

 

Figure 4.5 - Voids relationships in asphalt mixes (After NAASRA 1984a) 
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In Australia the air voids in the compacted sample are calculated from following 

equation (AS2891.8 – 1993): 

AV = Pmax – Pbulk x 100 

Pmax 

 

Where AV = air voids in the compacted sample, in percent  

 

Pmax  = maximum density of mix, in tonnes per cubic metre (From AS 2891.7.1, AS 

2891.7.2 or AS 2891.7.3). 

Pbulk = bulk density of the compacted mix, in tonnes per cubic metre (from AS 

2891.9.1, AS 2891.9.2 or AS 2891.9.3). 

 

 

From the definitions associated with this equation, there are 3 allowable methods for the 

determination of the maximum density of the mix and three methods for the bulk 

density of the compacted mix. The maximum density of asphalt can be determined by 

displacement in water (AS 2891.7.1), trichoroethane (As 2891.7.2) and methylated 

spirits (AS 2891.7.3). The methods involving chemicals especially trichoroethane are 

now infrequently used due to workplace health and safety issues. The water 

displacement methods is in common use in Australia (APRG 1997a), as well as many 

overseas countries (Brown et al 1996, Laitinen 1998), because it does not require any 

solvents or specialized equipment. The maximum density can also be calculated by 

using aggregate, filler and binder proportions and bulk densities of each (AS 2891.8 – 

1993). 

The water displacement method may give a slightly different maximum to that 

calculated from the individual components but is more accurate and quicker for a 

specific mixture (Laitinen 1998). It has been long recognized that the method used to 

determine the maximum density should always be reported (NAASRA 198a, Laitinen 

1998). 

 

The Australia Standards method allows three methods of determining the bulk density 

of the compacted asphalt. The waxing (AS 2891.9.1) and pre-saturation (AS 2891.9.2) 

methods involve immersing the samples under water to determine a buoyant mass 

which is used to calculate the sample volume. These methods are not suitable for mixes 
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with high voids contents and large interconnected voids. The mensuration procedure 

(AS 2891.9.3) involves measuring the diameter and height of the specimen which is 

used to calculate the sample volume. Australian Road Research Board recommends the 

mensuration procedure for calculating the air voids in Open Graded and Stone Mastic 

Asphalt mixes (APRG 1997). 

 

One of the limitations of the wax coating method is that the specimens may not be 

suitable for further testing due to the wax on the exterior of the specimens (Harvey et al 

1994). The Queensland Department of Main Roads has wax sealed (Q306A) and pre-

saturation (Q306B) methods for dense graded asphalt and mensuration (Q306D) method 

for open graded asphalt, however there is also a silicone coated (Q306C) method for 

dense graded asphalt. It is used in preference to the wax coating method where the 

asphalt core or pat has excessive voids and where the results may be affected by water 

absorption during testing. After testing for bulk density, the silicone coating can be 

removed to allow further testing to be undertaken (Q306C). There is no test method 

particularly stated for SMA, however DMR (Qld) Specification for Stone Mastic 

Asphalt (MRS11.33) calls up the silicone coated (Q306C) method.  

 

A decision was undertaken at the national level in Australia that asphalt test methods 

should be standardized across the country. The methods adopted for bulk density were 

the pre-saturation (AS 2891.9.2) and mensuration (AS 2891.9.3) procedures. For 

maximum density, the water immersion or ‘Rice’ method (AS 2891.7.1) is 

recommended (APRG 1997a). Despite this decision, DMR (Qld) continues to specify 

its silicone coated method for the measurement of bulk density. 

 

A comparison between voids content measured by the pre-saturation (water emersion) 

and mensuration methods in given in Figure 4.6 (Oliver 2000) for laboratory compacted 

mixes. This figure shows that the relationship between voids content measured by the 

two methods is dependent on the mix type and the size of the sample being measured. A 

straight line relationship appeared to give the best fit for the DG mix over the range 

data. For the SMA mixture, a logarithmic of similar curve best described the 

relationship. At high voids contents, the voids in the mix will become interconnected 

and thus, whilst the mensuration voids will continue to increase, the water immersion 

voids will not. This will result in a curve that is asymptotic to the horizontal axis at high 
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voids contents (Oliver 2000). 

 

 

 
Figure 4.6 - Comparison between voids contents measured by two methods for 

three mixes and two sample diameters (After Oliver 2000). 

 

 

 

4.4.2 Laboratory Compaction Methods 

 

APRG (1997a) sets out the number of laboratory compaction cycles to be used in the 

design of asphalt mixes for varying traffic categories. The gyratory compaction levels 

adopted are intended to simulate the compaction which occurs on the road after some 

traffic. They were determined by a national exercise which correlated gyratory 

compaction with Marshall Compaction since extensive field experience indicated that 

Marshall Compaction densities were usually achieved in the field after several years of 

traffic compaction. Generally, 75 blows Marshall compaction is considered to be 

equivalent to heavy traffic compaction in the field, 50 blow Marshall to medium traffic, 

and 35 blow Marshall to light traffic. It was determined that 50, 80 and 120 gyratory 

cycles were approximately equivalent to 35, 50 and 75 Marshall blows, respectively 

(APRG 1997a). 
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SMA is typically used in heavy duty applications (EAPA 1998, AAPA 2000a), 

therefore it would be expected that the mix would be designed using 120 cycles or 

120/350 cycles to be consistent with APRG (1997a). It is inconsistent that APRG 

(1997a) requires that the mix design criteria should be achieved after 80 gyratory 

cycles. Later research by the ARRB TR (1998) used 120 cycles. 

 

 

 

4.4.3 Modulus of Elasticity 

 

The dynamic complex modulus and resilient modulus tests are used to measure the 

modulus of elasticity (Croney and Croney, 1998). A major difference between the 

resilient modulus and the complex modulus us that inelastic as well as elastic 

deformations are measured in the complex modulus test (Roberts et al 1996). The 

notion of resilient modulus has been defined to make better allowance for the conditions 

of loading on pavements. The resilient modulus, or reversible modulus, corresponds to 

the ration of repeated stress to the reversible strain. The Europeans use the complex 

modulus (Francken Vanelstraete, 1996, di Benedetto and de la Roche, 1998) where as 

the USA favours the resilient modulus (Barksdale et al, 1997). 

 

Because of its simplicity and applicability to test field cores, the repeated load indirect 

tensile resilient modulus test is the common method of measuring stiffness modulus of 

asphalt in the USA (Roberts et al 1996). Although there appears to be some flaws in the 

methods, the advantages appear to outweigh the disadvantages (Read and Brown 1996). 

 

Whilst some researchers have concluded that the use of the indirect tensile test must be 

restricted to temperatures below either 20°C (di Benedetto and de la Roche 1998) or 

30°C (Read and Brown 1996) to ensure that the linear elastic theory is applicable for 

bituminous materials, Barksdale et al (1997) performed their indirect tensile testing 

programme at 5°C, 25°C and 40°C. AS/NZS 2891.13.1 specifies a test temperature of 

25°C however the test consists of 5 conditioning pulses followed by 5 loading pulses 

and creep may not be a concern over such a short loading period. Creep may become an 

issue when the indirect tensile test is used for longer term fatigue testing.  
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4.4.3.1 Australian Test Procedures 

Australia has adopted the resilient modulus as measured by an indirect tensile test 

procedure to describe the elastic modulus of asphalt (APRG 1997a). During 1990, a 

Melbourne company, Industrial Process Controls Ltd, developed a piece of apparatus 

similar to the Nottingham Asphalt Tester (NAT) called the Materials Testing Apparatus 

(MATTA). By coupling developments in pneumatic control values with digital control 

technology, the new machine was able to equal an even exceeds the performance of 

many expensive electro-hydraulic machines (Tritt and Feeley 1994). The MATTA has 

been adopted as the ‘standard’ equipment to be used for the determination of the 

resilient modulus using a pulsed load with standard reference test conditions (AS/NZS 

2891.13.1). 

 

 

 

4.4.4 Fatigue Testing Methods 

 

Different test methods have been used through out the world to measure fatigue. The 

principal methods and their characteristic are discussed by Matthews et al (1993). It was 

considered that the repeated flexure test offered the best combination of simulation of 

filed conditions and simplicity of test. Sinusoidal and haversine wave shapes are now 

the most commonly used in laboratory fatigue tests (Said 1998, 1996). 

 

 

 

 4.4.4.1 Interpretation of Test Results 

  

Following an extensive literature review, Baburamani (1999) concluded that there are 3 

main methods used to evaluate and predict the fatigue characteristics of asphalt mixes. 

They are initial strain – fatigue life, dissipated energy – fatigue life and facture 

mechanics – rate of crack propagation. A brief review of each method is given below. 

 

 



Chapter 4 – Asphalt Materials, Material Properties and Asphalt Mix Design 

 

_____________________________________________________________________________________________________ 
53 

 

 

 

4.4.4.1.1 Initial Strain – Fatigue Life 

 

The results of controlled strain and controlled stress testing can be interpreted in terms 

of a relationship between life, N, and the initial strain amplitude (µε). In the 

conventional strain approach, the relationship is given by an inverse relationship: 

 
                b  

            K 

  N =       µε 

 

 

Where K and b are mix-dependent constants. The values of K and b vary with 

bitumen/binder type, temperature and frequency of loading. The exponent ‘b’ features 

in all the fatigue life prediction approaches and this form of the relationship can be 

readily used as part of the mechanistic design process. 

 

 

 

4.4.4.1.2 Dissipated Energy – Fatigue Life 

 

Fatigue damage in viscoelastic materials can be explained using stored and dissipated 

energies. The energy balance is influenced by rheological properties of the mix and the 

binder, which are in turn functions of temperature, frequency or loading and 

stress/strain. Development and accumulation of damage is evaluated in terms of 

dissipated energy and number of cycles. The initial phase angles between stress and 

strain waveforms are indicative of the viscous or elastic nature of the material. During a 

dynamic bending test in controlled stress or strain sinusoidal loading force, phase angle 

and dissipated energy/cycle per volume will change due to the change in the mix 

behaviour and damage accumulation. 

 

The relationship between the number of cycles to fatigue failure NFAT and the 
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cumulative (total) dissipated energy per unit volume WFAT is given by: 

 

 
 
        m 
       W FAT = C(NFAT)  
 

 

Where C and m are experimental constants related to mix stiffness and phase angles 

(Shell 1978). It is claimed that factors such as test type, temperature, frequency of 

loading, rest periods and mode of loading (controlled stress or strain) do not appear to 

influence the relationship between cumulative dissipated energy to failure and number 

of cycles to failure (Baburamani and Potter 1996), however this may need to be 

moderated in light of the results obtained from the Strategic Highway Research 

Program (SHRP) (di Benedetto and de la Roche 1998). 

 

Whilst APRG (1997a) states that interpretation of the dissipated energy data was one of 

the measures under consideration, it offers no guidance as to how the data was to be 

assessed. The test method (AST 03:1999) requires that initial dissipated energy per 

cycle and cumulative dissipated energy at failure are recorded. Because there is no 

clearly defined failure point for constant strain testing, it may be difficult to apply the 

dissipated energy approach (di Benedetto and de la Roche 1998). 

 

The dissipated energy approach assumes that the dissipated energy causes damage to 

the asphalt. Some researchers have challenged this assumption because the dissipated 

energy does not destroy bonds, but rather appears to act to mainly to mainly to heat the 

specimen (di Benedetto and de la Roache 1998). 

 

The application of energy considerations to the structural design of asphalt pavements 

appears to be the major difficulty to be overcome for the wide spread use of the 

cumulative dissipated energy approach for the design pavements (Matthews et al 1993), 

when compared to strain based life prediction models that can be readily used in 

accepted design procedures (AUSTROADS 1992a). 
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4.4.4.1.3 Fracture Mechanics – Rate of Crack Propagation 

 

In fracture mechanics, fatigue is considered to develop progressively through the 3 

phases of crack initiation, stable crack growth and unstable crack propagation. It is 

assumed that the second phase consumes most of the fatigue life and fracture mechanic 

models have been based on this phase using long established fracture mechanics 

principles. The Paris law of crack propagation relates the increase in crack length per 

load cycle to the stress intensity factor, KC. It also provides a means of including 

specimen configuration, boundary conditions and load effects and a means of estimating 

the size of the plastic zone ahead of the crack tip, in a power law relationship. Pronk 

(2001) has attempted to apply fracture mechanics to SMA, however found that due to 

the stone matrix, failure consisted of a series of parallel cracks which made it 

impossible to define a crack speed or measure the effective crack length. The Paris law 

of crack propagation could not be applied to the SMA. 

 

 

 

4.4.4.2 Loading Type 

 

It is widely accepted that the mode of loading has an influence on the laboratory fatigue 

results because the response of asphalt mixes varies according to the input constraints, 

i.e. force (stress) or displacement (strain). In the controlled strain test, the displacement 

amplitude is maintained constant and the force required to maintain the initial strain 

level decreases gradually after crack initiation, as the flexural stiffness of the mix is 

effectively decreased. The failure, or termination point, is arbitrarily selected as a 

certain reduction (generally taken as 50%) in the initial stiffness, arbitrarily defined as 

the stiffness at the 50th cycle of the test, as there is no well defined fracture of the 

specimen (Baburamani 1999). 

 

In the controlled stress mode of loading, the force amplitude is maintained at the same 
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level as the initial force. As a result of repetitive application of this force, the 

displacement amplitude increases until it reaches twice the amplitude, when the flexural 

stiffness is reduced to half the initial flexural stiffness, which constitutes failure 

(Baburamani 1999). It should be highlighted that the fatigue life using a controlled 

strain can be up to ten times as long as the life in a test using controlled stress when 

starting from the same initial strain level (di Benedetto and de La Roache 1998). 

 

The fatigue-modulus relationship is particularly important for thin asphalt pavements 

over inbound base material. In this situation, the relatively high modulus of the asphalt 

may have very little impact on the overall pavement stiffness, or on the level of tensile 

strain in the asphalt. The asphalt layer functions essentially in strain (displacement) 

control mode, rather than stress (force) control mode, and may be subject to a high 

strain level. Effectively, the strain level in the asphalt layer cannot be reduced by using 

a stiffer asphalt mix. Therefore, a potential improvement in fatigue resistance of the 

asphalt can be very significant (Kadar and Donald 1994). 

 

Some debate continues as to the relationship between in-situ asphalt thickness and the 

appropriate test method. For typical SMA applications as a thin surfacing layer, the 

controlled strain mode of loading is appropriate (di Benedetto and de La Roche 1998, 

Baburamani 1999, APRG 1997a). The controlled strain method is generally used in 

Australia since the majority of asphalt surfacings are relatively thin (APRG 1997a). 

 

 

 

4.4.4.3 Temperature 

 

Temperature is one of the most significant factors affecting the fatigue of asphalt 

(APRG 1997a). Asphalt is a viscoelastic material which means that its stiffness 

properties are dependent on temperature and rate of loading, the stiffness of the mix 

influences the fatigue life of the asphalt, therefore the effect can be considered in terms 

of the influence of temperature on mix stiffness (Baburamani 1999). For the controlled 

strain testing, an increase in test temperature will reduce the stiffness and increase the 

fatigue life. Therefore for fatigue life, it is the lower pavement temperatures that are of 

interest.  
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The standard test conditions for Australia are 20°C (AUSTROADS AST03:1999), 

however other test temperatures (5°C to 20°C) can be used to investigate the effect of 

temperature on fatigue life (APRG 1997a). A temperature of 20°C provides a lower 

bound on Weighted Mean Annual Pavement Temperature (WMAPT) for the majority 

of Australia (AUSTROADS 1992b). All fatigue testing for this thesis was undertaken at 

the standard temperature of 20°C. 

 

 

 

4.4.4.4 Australian Fatigue Testing Method 

 

Wonson and Bethune (2000) give an overview of the recent developments in fatigue 

testing equipment in Australia. In early 1994, the Fatigue project group of the 

Australian National Asphalt Research Committee (NARC) adopted the SHRP M009 

test method as the basis of a draft Australian Standard Test Method (Sonadinos 1994, 

NARC 1995). The test method is currently the AUSTROADS Provisional Method 

AST03:1999, “Fatigue Life of Compacted Bituminous Mixes subject To Repeated 

Flexural Bending”. 

 

A Four Point Bending Fatigue Test Apparatus, such as that manufactured by the 

Australian company Industrial Process Controls (IPC), is the preferred test in Australia 

(ARPG 1997a). Due to the relative cheapness of the Four Point Bending Fatigue Test 

Apparatus, the Trapezoidal Fatigue Test Apparatus has not been adopted for regular 

fatigue testing (Bullen et al 1996, Wonson and Bethune 2000). 

 

 

 

4.4.4.5 Haversine Loading Conditions 

 

In the Australian procedure (AUSTROADS AST03:1999), testing is carried out under 

controlled strain at 20°C with continuous haversine loading at 10 HZ. Strain level is 

user-specified and is generally in the range of 100 µε to 1,000 µε. Testing is normally 

continued until the mix stiffness is reduced to half of its initial (50th cycle) value (APRG 
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1997a). 

 

Alford et al (1997) used an auxiliary data acquisition system to measure the actual 

induced strains on the extreme fibres of the test specimens. They found that the actual 

applied force, to maintain a required constant displacement from the origin, transforms 

from haversine to sinusoidal within the first 5 load cycles, and then remains sinusoidal 

for the duration of the test. Pronk (1996) in detailed mathematically investigation into 

the theory of the four point dynamic bending test demonstrated that due to phase lag 

between the applied force and the resultant displacement, a haversine force distribution 

cannot be achieved by applying simple point load forces at the two inner clamps.  

 

In a displacement controlled test, permanent deformations (creep) lead to a new 

equilibrium condition in which the stresses and strains are fully sinusoidal. According 

to the manufacturer (IPC), tests had shown that the force signal in a haversine 

displacement controlled mode changed to a full sine signal within the first few cycles, 

causing them to use the same equations to determine the stress, independent of the kind 

of displacement signal selected (King 1998). It appears that this equilibrium is reached 

so fast that the test is very similar to a displacement controlled test using a sine loading 

(Pronk and Erkens 2001). 

 

It can be concluded that whilst the displacement is haversine in shape, the applied load 

is sinusoidal. Because the IPC software uses peak-peak values for stress and strain, the 

values reported by the software are consistent with the actual stress state in the test 

specimens. 

 

 

 

4.5 Summary 
 

The mechanistic design of road pavements requires elastic properties and a performance 

model as the inputs to the design process. The model to be used for the assessment of 

pavement performance has been identified as the AUSTROADS (1992a) method. The 

material performance model for fatigue has been identified as fatigue strain method. 
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Because bitumen and hence asphalt is a viscoelastic material, properties of which are 

dependant on the duration of loading, some of the concepts of vehicle loading of 

pavements have been reviewed. The time of loading becomes important when 

determining test loads in the laboratory and relating these to pavement performance.  

 

The components that make up asphalt mixtures include the binder, aggregates, filler and 

fibres. Polymer modified binders and the reasons for their use have been reviewed. The 

effects of the polymers on the performance of the bitumen and the resultant change in 

the properties of the asphalt have been highlighted. The need to use high quality 

aggregate for the manufacture of stone mastic asphalt has been demonstrated. 

The raw materials need to be combined in the correct proportions to give the asphalt 

mixture its required properties. The traditional methods of asphalt mix design such as 

Marshall, Hveem and Hubbard-Field are empirical methods where the limits are set 

based upon prior experience with the type of mix. The methods cannot be used in 

situations where new mix types, materials and loadings are introduced. The empirical 

tests only permit a generic assessment of the performance of the mix and do not permit 

eh determination of the intrinsic properties of the materials. Their manner of stressing 

specimens is very different than the ways in which the asphalt is stressed in the 

pavement. 
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CHAPTER 5 – ASPHALT MANUFACTURE, 

STORAGE, TRANSPORT AND APPLICATION 
 

5.1 General Concepts of Manufacture. 
 

5.1.1 Production Temperatures. 

These will vary with placing conditions and materials being used. Generally, production 

temperatures will be in the range of 150-165°C. Exceeding this range would increase 

the susceptibility of the mixture to binder drainage. Mix production temperatures of up 

to 180°C have been noted for modified binders and temperature of up to 170-175°C for 

non-modified binders. Higher temperatures increase the risk of binder drainage and 

binder effects should be checked for the maximum production temperatures proposed. 

 

Cellulose fibers can be damaged by high temperature and it is important that they do not 

come in contact with aggregates or drum mix gases at a temperature greater than 200°C. 

Such restrictions do not apply to mineral fibers such as rock wool and glass fiber. 

 

With mixing times, the addition of fibers to SMA mixes generally requires an increase 

in mixing time to ensure that the fiber is adequately dispersed and the entire product 

uniformly mixed. In batch plants an increase in both dry and wet mix cycles of 5-15 

seconds may be required. In drum mix plants, the bitumen injection line may need to be 

relocated when palletized fibers are used to allow for complete mixing of the pellets 

before adding bitumen. Drum mix mixing times may also need to be increased by 

reducing production rate or changes to mixing configuration. 

 

In all cases, the effectiveness of mixing should be monitored by visual inspection to 

ensure the absence of clumps of fibers or pellets in the mixture and sufficient coating of 

aggregate particles. If necessary, wet times should be increased or any other changes 

made to improve mix uniformity. 
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5.1.2 Storage 

 

SMA mixes should not be stored for extended periods of time at elevated temperatures. 

This could result in unnecessary and detrimental binder drainage. In most cases, storage 

should not exceed 2-3 hours, and never stored overnight. As a rule, and as in the case of 

other types of asphalts, SMA mixtures should not be intermediately stored in the 

loading silo for long periods; otherwise damaging changes in the binder may occur. The 

loading areas in the transport vehicle must be clean. With a suitable anti-sticking agent 

being used in the trays, with diesel not being permitted.  

 

 

 

5.2 Transport 
 

In addition to the manufacture of the bituminous asphalt mixture in the mixing plant, 

special significance is attached to the transport of the material to the point of 

application; normally the bituminous asphalt mixture is transported in a heavy goods 

vehicle covered with tarpaulins (double-sheeted) and/or in a heat-insulated vehicle. 

 

Covering the hot asphalt mixture should prevent damage to the bitumen as a result of 

oxidation due to the effect of the oxygen in the airflow during transportation, because 

otherwise there is the possibility of a hardening of the bitumen equivalent to up to two 

binder type gradings. This is then associated with a negative effect on the cohesive 

behavior of the bitumen on the mineral material. Furthermore, rapid cooling of the 

bitumen asphalt mixture should also be avoided, particularly in unfavorable weather and 

long transportation times, as should also the ingress of water into the hot mixture. In 

fact, in city road construction (mainly capital city), where relatively low quantities of 

asphalt are involved and work progresses more slowly, the use of heated HGV 

containers and insulated trailers with horizontal belt conveyors have proved to be 

particularly advantageous. 

 

It is a mistake to believe that the cooling of the bitumen asphalt mixture over long 
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transportation routes can be compensated for by the use of excessive mixing 

temperatures. Obviously in North Queensland, the climatic condition is such that road 

transport temperatures are always high, but covering is still mandatory to achieve the 

extended travel distances. SMA can only be carted a maximum distance of 2.5 hours to 

stay in the approved specification. The tarps help to extend the time if there is extended 

delays on site as well. 

 

Haul times for SMA should be as short as possible.  Increased temperature plus 

vibration from vehicles can result in excessive binder drainage. The high binder content 

may cause SMA mixtures to adhere to truck bodies to a greater extent than conventional 

asphalt materials. Particular attention must be paid to cleanliness of truck bodies and 

proper use of release agents. Even in summer, the transport vehicle must be covered 

with windproof tarpaulins to avoid cooling off of the mixture and damaging oxidation 

of the binder as a result of contact with the oxygen in the air. 

 

 

 

5.3 Application 
 

5.3.1 Combined Procedures 

 

In the Main Roads Standards manual, in addition to general aspects, the Department 

describes the composition of the bituminous mixture, its manufacture, transportation 

and the application and compaction of SMA. The manual is a useful guide for the client, 

the asphalt producer and the contractor applying the product.  

 

When preparing the qualification test, voids content of 3.5 Vol.-% should be targeted in 

construction classes SV and I. In all other cases, and when using a PmB, a value of 

appox, 3.0 Vol-% is required. The total coarse aggregate content has been reduced from 

75 to 73% by mass. This contributes to a better homogeneity in the mixture. 

 

The following points are given for application and compaction: 
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• The temperature of the mixture on the finisher hopper should be as 

uniform as possible, i.e. no cold accumulations of the mixture in corners 

and crevices. 

 

• The road finisher that is used should be adjusted to the speed of 

application, such that an appropriate level of precompaction is achieved, 

i.e. it should not be too high.  Basically the rolling operation should follow 

soon after the finisher. 

 

• A minimum of two rollers is required for each application track. 

 

• The compaction should be achieved with heavy tandem or three-wheel 

rollers (service weight>9t). 

 

• Vibration compaction should only be carried out at sufficiently high mix 

temperatures and after static compression. 

 

• Vibration should not be used if the later temperature is below 100°C. As a 

rule, vibration should not be used in the case of a rigid foundation (e.g. 

concrete) and for course thickness of less than 2cm, since this can lead to 

loosening of the foundation and break up of the aggregates. 

 

• Rubber wheel rollers are ineffective for the compaction of SMA. They are 

contra-productive under certain circumstances and are no longer used. 

 

• Any additional manual operations (hand-laying) with SMA should be 

carried out quickly and without delay and, if possible, at the same time as 

the application with the finisher. The roller compaction must be 

undertaken without any delay after the application. A lack of 

precompaction by the finisher should be accounted for in the thickness of 

the application. 

 

• From the German experiences, they have the following notes to be 
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observed when treating the paved surface: 

 

 

• In order to increase the initial grip characteristics the precautions referred 

to in ZTV Asphalt-Stub 01 [4], similar to our SMA 10-14mm should be 

taken account of in the detailed estimates. 

 

• The quantity (of grot) for spreading is 1 to 2kg/m²; in addition to the 

1/3mm aggregate size, a dedusted / light bitumen coated crushed sand 

0.25/2mm has also been proven in use. If possible, 2/5mm stone chippings 

should not be used due to the higher noise emission.  Amazingly enough, 

in Australia, and definitely in North Queensland, this is not performed, 

and probably seen as a specification past our requirements 

 

• The material to be spread can be applied wither directly behind the 

finisher beam or between the first rollers, but in any case it must be 

applied to the still adequately hot and bondable surface and rolled in. A 

mechanical method of spreading should be employed to obtain an even 

surface appearance. 

 

• After the application, the compacting and subsequent treatment a 

minimum period of 24 hours should be allowed, if possible, to allow the 

surface course to cool before the road is released for use by traffic. 

 

 

 

5.3.2 SMA Design. 

 

Queensland and Victoria State Road Authorities both have issued specifications for the 

manufacture of SMA materials using nominal sizes 7, 10 and 14mm. The Australian 

Asphalt Pavement Association has produced SMA Asphalt Design and Application 

Guide, AUSTROADS has published APRG Report No.18 and Australian Standards has 

published AS2150-1995 Hot Mix Asphalt, which covers SMA mixes in sizes 7, 10 and 
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14mm. 

 

Australian practice in SMA design is based on the use of coarse crushed aggregate 

particles and mastic consisting of fine crushed aggregates, natural or crushed sands, 

filler, fiber and binder with a gap graded particle size distribution. The coarse aggregate 

particles give SMA its resistance to deformation by the aggregate skeleton created, 

achieving a stone on stone contact. The mastic of fine aggregate, filler, fiber and binder 

fills the voids between particles to enhance the SMA’s durability and resistance to water 

susceptibility. 

The Department in North Queensland is instrumental with regards to adapting the 

designs to the local conditions. The district produced an SMA 12 mix with varying mix 

properties but predominately with a 12 mm single sized aggregate. Design grading and 

other details are in the Appendix H. 

 

 

 

5.3.3 Production Specifics with Aggregates and Fillers. 

 

The German specification requires coarse aggregates to be of the highest quality 

crushed aggregate available with cubical shape, high durability and resistance to 

polishing. Aggregate with elongated or flat partial shape should be avoided. Typical 

coarse aggregate types used in Australia are basalts, granites and hornfels. The flakiness 

index for the coarse aggregate varies from 20-35% depending on the State or 

Government Authority issuing the specification. To adhere closer to the German 

experience the flakiness index for coarse aggregates should be no more than 20%. The 

aggregate degradation factor and polished stone values should be increased so only high 

quality aggregates are used in the manufacture of SMA as all aggregates sources are not 

suitable for the manufacture of SMA. In Germany, fine aggregates are required to be of 

the highest quality crushed aggregates, but in Australia natural sands are allowed which 

may adversely affect the mix stability. 

 

Plants may require modification to handle the large proportion of added filler. Both 

filler feeding and weighing systems may need upgrading to handle the larger quantities 

and deliver the required amount without restricting production rates. 
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In drum mix plants it is important that the filler is captured by the binder and aggregates 

as soon as it is added to the mixture. This is best achieved by introducing filler through 

a line that is placed next to the bitumen line so that the filler is coated with bitumen 

before it is exposed to high velocity gas flow through the drum. This keeps the filler in 

the mixture rather than being lost into the dust collection system. 

 

Where filler must be introduced via the belt feed, it should be done by placing the filler 

on the belt before any other aggregate component. In this manner, the filler is protected 

to some degree by the coarse aggregate as the aggregate stream enters the drum, 

although the potential loss of filler is much greater using this procedure than that 

recommended above. 

 

Once again, in the North Queensland region there are only a limited number of quarries, 

so the source rock is basically fixed. PAFV (aggregate polishing values) numbers are an 

issue, but basically the main problem is achieving a cubicle stone for the grading of the 

aggregate that the quarries produce.  The other issue is the variability in gradings of the 

aggregate with a large standard deviation. 

 

 

 

5.3.4 SMA Laying. 

 

Weather Conditions: in order to achieve proper placement and compaction, placing of 

SMA mixtures in cold or inclement weather should be avoided. SMA should not be 

placed to pavement temperatures below 10°C, particularly where polymer modified 

binders are used. The decision to place SMA will also depend on wind conditions, 

pavement temperature, thickness being placed and equipment and procedures to be used 

in placing and compacting the mix. 

 

Surface Preparation:  the surface is generally the same as for conventional asphalt 

mixes. Loss of shape or depressions in existing pavements should be milled or filled 

using a regulating layer and any distressed areas properly repaired. While SMA has 

shown superior performance, it cannot be expected to perform as desired when it is used 
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to cover up existing pavement problems. All surfaces should be tack coated prior to 

placing SMA using materials and application rates appropriate to conventional asphalt 

construction. 

 

Spreading:  normal good practice should be followed. Attention should be paid to such 

factors as maintaining a steady forward speed of the paver and constant material flow 

through the paver so that a uniform head of material is maintained ahead of the screed 

with feed conveyors and augers operating nearly continuously. As SMA mixes are 

stickier and less workable than dense graded mixes, hand work should be avoided or 

kept to a minimum. The difference between the loose layer thickness spread by the 

paver and the compacted layer thickness of SMA mixed is generally less than that of 

dense graded mixes and must be taken into account in determining and setting paver 

thickness controls for spreading. 

 

Compaction:  the procedures require some variation to that used for conventional mixes. 

The preferred method of compaction of SMA is with heavy, non-vibrating, steel wheel 

rollers. As very few asphalt contractors have such compaction equipment it is often 

necessary to use vibrating steel wheel rollers. In such cases, breakdown rolling should 

be done with one or two passes in non-vibrating mode before using one or two vibrating 

passes. Care must be taken to avoid drawing binder to the surface of the SMA by 

excessive vibration, and to avoid fracturing of coarse aggregate. Generally, only low 

frequency vibration should be used. Compaction procedures must be monitored and 

modified if required. 

 

Breakdown rolling should begin immediately behind the paver and the roller must stay 

close behind the paver at all times. If the rolling operation gets behind, placement 

should slow down until the rollers catch up with the paver. 

 

Multi tyred rolling is not recommended for SMA, and the primary reason is to avoid 

drawing binder to the surface and flushing of binder. Heavy trafficking of freshly placed 

SMA, while it is still hot, may also have a similar effect. Pick-up of the binder-rich 

SMA mortar can be a further difficulty with multi tyred rollers and traffic on hot 

surfaces. The multi-tyred rollers can also reduce the skid resistance of the mixture by 

closing up the surface texture. A high standard of field compacted density of SMA is 



Chapter 5 – Asphalt Manufacture, Storage, Transport And Application 

 

_____________________________________________________________________________________________________ 
68 

desirable for good performance so that optimization of compaction procedures is an 

important element of placing. The standard of compacted density for SMA mixes 

should be no less than that adopted for conventional dense graded mixes. 

 

The compaction process as applied to SMA in Australia differs from the compaction 

practice used in Germany. As stated above, compaction is commenced immediately 

behind the paver by heavy steel drum rollers with no vibration used. Despite the known 

problems, vibratory compaction and multi-tyred rollers have been used on occasions to 

achieve field compaction. Vibration should be avoided to achieve compaction as 

degradation of coarse aggregates will occur and induce bleeding of the binder to the 

surface. Typical air voids of laid SMA surfacing are generally much higher than in 

Germany where air voids are typically 3.0 -3.5%. SMA layed in the early nineties were 

recorded to have field air voids in the range of 6-9% although they are now in the range 

of 5-7%. In Queensland, SMA mixtures have produced field voids in the range of 6-

11%. The opening up to traffic of SMA mixtures has seen mat (roadway) temperatures 

in the range of 80-110°C, compared with common German practice of 40 to 60°C. 

 

Static compaction by heavy duty rollers with a weight of 8-12 tonnes close to the paver 

ensures a high compaction rate (>97% recommended).  As stated previously, one train 

of thought to increase the initial skid resistance of the surface is to spread 

sand/chippings fraction e.g.1/3mm at 0.5-1.0kg/sqm or aggregates e.g. 2/5mm at 1.0-2.0 

kg/sqm on the hot surface. 
 

Opening to Traffic: SMA wearing surfaces should not be opened to traffic until the 

surface temperature falls below about 40°C to avoid drawing of the binder to the 

surface by the initial traffic. 

 

The initial skid resistance of SMA may be relatively low until the binder film is worn 

from the surface by the traffic. A technique that has been used in some countries is to 

lightly grit the surface with a coarse sand, or small sized (i.e. 5mm) crushed aggregate, 

to assist in wearing the binder from the surface in situations where skid resistance is of 

prime importance. Alternatively, speed restrictions may be applies for a short period of 

time. 
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In North Queensland, problems are associated with this pavement temperature being 

reached in the time required to open the work to traffic.  Contractors request the 

approval to water cool the layers, which is not desired but sometimes necessary.  Early 

life rutting and deformation is evident on some projects which were opened to traffic 

too early, although other factors require assembly in these situations. 
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CHAPTER 6 – STONE MASTIC ASPHALT 

RESEARCH DEVELOPMENT AND 

SPECIFICATIONS 
 

6.1 Introduction 
 

The major International, Australian and Queensland specifications for Stone Mastic 

Asphalt (SMA) and in particular their requirements for the aggregate gradings, bitumen 

and voids contents are reviewed. Whilst the design of SMA is still largely “recipe” 

based, there is growing interest in more fundamental design methods that ensure that a 

stone skeleton with stone-on-stone contact is achieved. The following is a brief 

summary of the principal requirements of a range of typical SMA specifications and/or 

design guides. Brief details of a number of other European specifications are given in 

EAPA (1998). 

 

 

 

6.2 Review of Specification for SMA 

 

6.2.1 Germany (EAPA 1998, Loveday and Bellin 1998) 

 

In German guidelines, stabilizing additives are specified as 0.3-1.15% organic or 

mineral fibre, silica or polymer. For heavy traffic situations, the binder grade is 

specified as 65(pen) or PMB45 and 80(pen) for other applications. The pen is for 

penetration which is a standard test at 25 °C. Three grading classifications are used 

based on the sieve size that retains 10% or less of the material – for the 0/11 mix this is 

the 11.2mm sieve, 0/8 uses the 8.0mm sieve and the 5mm sieve for the 0/5 mixes. 

Bitumen content for the 0-11S mix is a minimum of 7.0% and a minimum of 7.2% for a 

0-5 mix. The ‘S’ signifies mixes for heavy traffic applications and these mixes must 

include only crushed sand.  

 

Marshall Compaction is specified with a voids content range 3.0-4.0% for the 0-11S 
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and 0-8S mixes and 2.0-4.0% for the 0-8 and 0-5 mixes. 

 

 

 

6.2.2 Draft UK Specification (Nicholls 1998a) 

 

The draft UK specification describes whether a modified binder or, alternatively, 

bitumen with a stabilizing additive to be used is a choice of the Contractor otherwise it 

will be in an Appendix. Unmodified bitumen's are at to have a nominal penetration of 

50 or 100 and at least 0.3% (by mass of the total mix) of stabilizing additive (Cellulose, 

mineral or other suitable fibre) is required. For a modified binder, the base bitumen 

before modifications is to have a nominal penetration of 50 or 100 or 200. For a 14mm 

nominal size SMA, the binder content is specified as 6.5-7.5% (by mass) compared to 

6.5-7.0% (by mass) for the 10mm nominal size SMA. 

 

Laboratory specimens are manufactured using 50 blow/face Marshall Compaction. At 

the target composition, the air voids content is specified to be within the range 2-4% 

where the maximum density is determined by the ‘Rice’ method and the bulk density by 

an uncoated water immersion method. 

 

 

 

6.2.3 Draft European Specification (prEN 13108-5:2000) 

 

This specification could be described as a compromise document. As well as providing 

two basic sets for the grading and binder content referred to “Basic set plus set 1” and 

“Basic set plus set 2” which cannot be combined, there is also provision for a National 

Annexure to give grading curves with a clear indication of the required values. The 

sizes included in “Basic set plus set 1” are SMA-4, SMA-8, SMA8E, SMA-11E, SMA-

16 and SMA-22. “Basic set plus set 2” includes SMA-4, SMA-6, SMA-6E, SMA-10E, 

SMA-14 and SMA-20. The letter “E” refers to an additional requirement that only 

crushed fine aggregate is to be used. Laboratory specimens are to be compacted by 

impact compactor (Marshall 2x50 blows), gyratory compactor (200 gyrations) or 

vibratory compactor. Two methods of determining maximum density are allowed 
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however only one hydro-static method for determining bulk density is allowed. 

 

A single value of the voids content is specified for each of the seven traffic categories 

which range from Category 1 for the highest traffic to Category VII for the lowest 

traffic. The voids contents range from 2.5% for Category 1 to 5.5% for Category Vii 

with a 0.5% increase in voids content per traffic category. The binder content 

requirements are limited to minimum values. For a given grading, there are two 

minimum bitumen contents specified. These are based on the target voids content being 

≤ 4 % and > 4%. The target voids content is determined from the appropriate traffic 

category. A summary of specified values is given in Table 6.1. 

 

 

“BASIC SET PLUS SET 1” 

MIX TARGET 

VOIDS 

SMA 4 SMA 8 SMA 

8E 

SMA 

11E 

SMA 

16 

SMA 

22 

≤ 4% 7.2 7.0 7.0 6.5 6.0 5.7 Binder 

Content 

(%) 

Min 

> 4% 6.7 6.5 6.5 6.0 5.5 5.2 

“BASIC SET PLUS SET 2” 

MIX TARGET 

VOIDS 

SMA 4 SMA 6 SMA 

6E 

SMA 

10E 

SMA 

14 

SMA 

20 

≤ 4% 7.2 7.0 7.0 6.6 6.2 5.9 Binder 

Content 

(%) 

Min 

> 4% 6.7 6.5 6.5 6.1 5.7 5.4 

 

Table 6.1 - Minimum bitumen contents (%) for Draft European Standard  

SMA Mixtures (After prEN 13108-5:2000) 

 

 

The binder contents in Table 6.1 are based on an aggregate density of 2,650 kg/m³ and a 

correction factor is applied which is the ratio of 2,650 kg/m³ divided by the aggregate 

density in kg/m³. Effectively, this is a conversion for volume of bitumen since the 
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binder content is specified in percent based mass.  

 

 

 

6.2.4 Draft AASHTO Specification (NCAT 1998c) 

 

The draft AASHTO Specification allows laboratory specimens to be prepared using 

either Marshall Hammer compaction or the Superpave™ Gyratory Compactor. For both 

compaction methods the air voids content is specified at exactly 4% with the note that 

for low traffic volume roadways or colder climates, air voids contents less than 4.0 

percent can be used, but should not be les than 3.0 percent. There is a minimum VMA 

requirement of 17%. The concept of Voids in the Coarse Aggregate (VCA) is 

introduced with the requirement that the VCA for the mix (VCAmix) must be less than 

the VCA of the “dry rodded” coarse aggregate (VCADRC). 

 

Minimum binder contents are specified based on the combined aggregate bulk specific 

density. Minimum binder content varies from 6.8% for aggregate with a density of 

2,400 kg/m³ to 5.5% for aggregate with a density of 3,000 kg/m³. Performance grade 

binder appropriate for the climate and traffic loading conditions at the site are to be 

used.  

 

 

 

6.2.5 Australia 

 

6.2.5.1 APRG Report No. 18 (APRG 1997a) 

 

This report was published in 1997 and reflects the state of the knowledge in Australia at 

that time. The mix design criteria were to be achieved after 80 cycles of a gyratory 

compactor. Three mix sizes are listed being Size 7mm, Size 10mm and Size 14mm with 

the voids content range of 3-5% specified for all mixes. The specified bitumen content 

ranges are 6.5-7.5% (by mass of mix) for Size 7mm, 6.3-7.0% for Size 10mm and 6.0-

7.0% for Size 14mm mixes. There are minimum VMA requirements of 19%, 18% and 

17% for Size 7mm, Size 10mm and Size 14mm respectively. 
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6.2.5.2 Stone Mastic Asphalt – Design & Application Guide (AAPA 2000a) 

 

The recipe approach to SMA design, based on the AAPA Design Guide (AAPA 2000a) 

is now the preferred method of use in Australia (Oliver 1999). The same three mix sizes 

are specified as were included in APRG (1997a) however the voids content range has 

been narrowed to 3.5-4.5% and the mixes have a coarser grading. Minimum VMA 

requirements are the same as APRG (1997a). Typical design binder content ranges are 

6.0-7.0% (by mass of mix) for Size 7mm, 6.0-7.0% for Size 10mm and 5.6-6.8% for 

Size 14mm mixes which are generally slightly less than those in AGRG (1997a). 

 

The guide (AAPA 2000a) suggest that laboratory compaction for volumetric testing is 

usually carried out using 80 cycles of gyratory compaction except particularly heavy 

duty applications where 120 cycle may be used. Where gyratory compaction is not 

readily available, mixes may be compacted using 50 blows of Marshall Compaction. 

Some specifications also set minimum air voids for refusal density taken as 350 

gyratory cycles. 

 

 

 

6.2.5.3 Queensland Department of Main Roads MRS11.33 

 

When SMA was first being layed in North Queensland, the current version of MRS 

11.33 was dated Interim 5/97. SM10 SM14 mixes were specified with samples to be 

compacted with 50 Marshall Blows per face with a minimum stability of 8kN and 

minimum flow of 2mm. The specified voids content range for both mixes was 3-7% 

with bulk density to be measured by either the wax coating (Q306A) or silicone coating 

(Q306C) methods. Minimum VMA requirements of 14% for SM10 and 13% for SM14 

are specified. The binder content of the design mix was specified as between 5.9% and 

6.9% (by mass). 

 

The 12/99 version of MRS11.33 introduced some changes to the requirements. Whilst 
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50 blow/face Marshall Compaction was retained the minimum stability was reduced to 

6 kN and the minimum flow remained unchanged at 2mm. The reduction in Marshall 

Stability results in a value similar to several overseas specifications (EAPA 1998, 

NCAT 1998c). The Draft AASHTO Specification also includes the note that successful 

SMA mixtures have been designed with Marshall Stability values below 6.2 kNm 

therefore this requirement can be waived based on experience (NCAT 1998c). 

 

In the 12/99 version of MRS11.33, the range for the specified voids content increased to 

2-7.5% with the bulk density to be measured by the silicone coating method (Q306C). 

Minimum VMA requirements have changed to 15% for SM10 and 14% for SM14. A 

fundamental change has been that the binder content is now specified as the minimum 

unabsorbed binder volume rather than by mass as used in earlier editions. The specified 

minimum binder volumes are 13% for SM10 and 12% for SM14. 

 

The Interim 5-97 version of MRS11.33 had a default option that if a modified binder 

was not specified in the addendum (where job specific options are contained) then Class 

320 bitumen was to be used. The 12/99 version of MRS11.33 removes this default and 

the binder type must be specified in the addendum. 

 

The current MRS 11.33a and b specification are discussed throughout Chapters 7 and 9, 

as well as the introduction of the Northern mix - SMA12. Appendix H Provides a 

comparative graph of the asphalts from this specification. 

 

Various modifications became necessary to adapt the specification to the local source 

materials and the production possibilities. 

The main changes to the specifications were as follows: 

 

•  Density better than 94% (characteristic value); 

•  Less use of fly ash and hydrated lime; 

•  Changed grading to increase VMA; predominately 100% hydrated 

lime 

•  Implementation of 100 tonne preliminary trial sections prior to 

construction of local projects. 
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Mix approval based on production results from 100 tonne test sections; 

• Use of a different PMB and less modification; 

• Introduction of a free binder volume requirement.   

 

These changes have come about through the past years of experience with SMA 

projects, and the continual trials with the associated testing which helps to develop the 

failure mechanisms. 

 

 

 

6.3 Trends in SMA Specifications 
 

6.3.1 Aggregate Grading 

 

Figure 6.1 shows a comparison between the centre-line grading curves of two 

Australian SMA Mixes and the draft specifications of Europe, U.K. and U.S.A. Part (a) 

of Figure 6.1 is for SMA10 mixes whereas part (b) is for SMA14 mixes. For the 

international mixes, the “nearest” similar size mix has been used for the comparison. 

Figure 6.2 shows a comparison between the centre-line grading of various Australian 

SMA Mixes. Again part (a) is for SMA10 mixes and part (b) is for SMA14 mixes. The 

grading curves of SMA are typified by the definite “step” between the course and the 

fine components compared to dense graded asphalt were this is a smooth transition. 

 

From Figure 6.1(a), it can be seen that the step generally occurs around 2.36mm for all 

mixes with the exception of the AAPA (2000a) mix which has the coarsest of all 

SMA10 gradings. The AASHTO 9.5mm grading is very similar to the DMR (Qld) 

MRS11.33 SMA10. Whilst the UK 10mm has a defined “step” around 6.7mm, it is the 

finest of all mixes at 2.36mm/ All mixes have about 10% passing the 75 µm sieve 

which forms the filler part of the mastic. Comparing the Australian SMA10 mixes 

(Figure 6.2 (a)), it is seen that the AAPA (2000a) SMA10 is the coarsest of all mixes 

and the most significant difference between it and the DMR (Qld) SMA10 occurs in the 

middle of the range of sieve sizes and particularly on the 4.75mm and 6.7mm sieves. 

As shown in Figure 6.1(b) for the SMA14 mixes, the “step” in the grading typically 
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occurs around the 4.75mm sieve. The AASHTO 12.5mm grading is very similar to the 

DMR (Qld) MRS11.33 SMA14. The AAPA (2000a) SMA14 has the coarsest of all the 

SMA14 gradings. Comparing the Australian SMA14 gradings (Figure 6.2(b)), the 

differences between DMR (Qld) and AAPA (2000a) gradings are note as significant as 

the differences between their SMA10 gradings. 

 

 

 
Figure 6.1 (a) – Comparison of typical International and Australian  

gradings for SMA 10 
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Figure 6.1 (b) – Comparison of typical International and Australian 

gradings for SMA 14 

 

 

 

6.3.2 Compaction Methods 

 

The laboratory compaction methods specified demonstrates the transition across the 

world in pavement design with combinations of Marshall, Gyratory and Vibratory 

compaction being included; with the European specification including all three 

methods. The specifications with Marshall Compaction use 50 blows per face. The 

Europeans equate this to 200 of their gyratory cycles. AAPA (2000a) quotes 80/120 

gyratory cycles or 50 blow/face Marshall Compaction from which it can be conferred 

that there is a correlation. 
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6.3.3 Bitumen Content 

 

A number of trends in specifying bitumen content can be identified such as specifying 

minimum binder content rather than a range with a lower and upper limit. Typically the 

bitumen content varies with maximum aggregate size and is a reflection of the 

respective volumes and densities of the aggregates and bitumen. Another trend is that of 

recognizing the importance of the volumetrics of the SMA mixes. This is reflected in 

the increasing use of binder volume either as a direct volume requirement (MRS11.33 

of 12/99) or as an adjustment to binder volume based on density of the aggregate 

(NCAT 1998c. prEN 13108-5:2000). 

 

The minimum binder contents specified in Australia are typically lower than those 

quoted for the Europe, UK and USA. This could be a reflection of the different climates 

especially when considering the sub-tropic climate of Queensland compared to Europe 

and a desire to avoid potential surface “flushing” problems.  

 

 

 

6.3.4 Voids Content 

 

The majority of specifications have a very tight limit on voids contents with a typical 

range between 2% and 4% or ± 0.5% o the specified value. The voids contents within 

the range 2-7.5% as specified by DMR(Qld) MRS11.33 is a significantly wider range 

than specified in the majority of the international specifications. Comparison of these 

values requires an appreciation of the compaction and testing methods used in the 

source specifications. 
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CHAPTER 7 –DESIGN CRITERIA FOR STONE 

MASTIC ASPHALT 
 

7.1 Introduction 
 

This chapter discusses the research undertaken to address the following areas of the 

research programme: 

 

• The development of the relationship between Marshall and “gyropac” 

compaction for SMA; 

• The development of the relationship between voids content determined by 

mensuration and silicone coating; and 

• The extension of the Dilation Point Method of design for the stone skeleton 

of SMA. 

 

 

 

7.2 Comparison of Compaction Methods 
 

Figure 7.1 shows a comparison made between the voids contents for a plant produced 

SMA10 manufactured to DMR(Qld) MRS11.33 and compacted by varying numbers of 

Marshall blows/face (20, 30, 40, 50, 60, 70 and 75) and “gyropac” cycles (50, 80, 120, 

180 and 350). The samples were compacted in 100mm (nom.) diameter moulds. From 

Figure 7.1, it can be seen that the data is separated into two distinct groups with the 

Marshall compacted samples generally having less than 8% voids and the gyratory 

compacted samples having more than 8% voids. For the samples compacted at 140°C, it 

can be inferred that 25 blows/face Marshall compaction produces the same voids 

content as 350 gyratory cycles. 

 

Table 7.1 shoes a comparative study undertaken by the Queensland Department of Main 

Roads (DMR (Qld) 2001a). For the SMA10 with a variety of filler and binder 

combinations, it can be seen that the voids content after 350 gyratory cycles is of the 
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same order as that obtained with 35 Marshall blows/face. For the SMA14 mix, the voids 

content at 350 gyratory cycles would be obtained at less than 35 Marshall blows/face. 

The research undertaken by Stephenson 2002 shows that laboratory prepared mixes has 

the same trend as the plant produced SMA12 tested for this thesis.  

 

 

 
Figure 7.1 – Comparison of voids contents from Marshall and Gyropac 

compaction 

 
Table 7.1 – Effect of compaction on voids content of various mix types 
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(After DMR (Qld) 2001a)    

For the DG14N mix, 50 Marshall blows/face produced and voids content of 4.8% which 

is very similar to the 4.6% for the sample compacted with 80 gyratory cycles. 

Compaction by 75 Marshall blows/face (3.4% voids and 120 gyratory cycles (3.0%) 

produced voids contents of a similar magnitude. 

 

The relationship that 50, 80 and 120 gyratory cycle was approximately equivalent to 35, 

50 and 75 Marshall Blows, respectively (APRG 1997a) appears to apply to the dense 

graded asphalt however it is not appropriate for the SMA mixes to the DMR (Qld) 

MRS11.33 specification. An assumption that 35 Marshall blows/face produces a voids 

content similar to 350 gyratory cycles is more appropriate for this material. 

 

The relationship between Marshall and gyratory compaction was further investigated by 

a grading and bitumen content analysis of compacted samples of the plant produced 

SMA10. The samples selected were some of those compacted to produce the data 

shown in Figure 7.1. All samples were prepared from the same batch of material so it 

would be anticipated that the grading before compaction should be identical. The 

gradings for all samples compacted by gyratory compaction were found to be generally 

within ±1% passing on the same sieve size. It can reasonably be concluded that the 

gyratory compaction has not altered the aggregate grading. There does however appear 

to be a trend of reduced bitumen content with higher number of cycles. The continued 

kneading action at high temperature may be causing some flushing of the binder which 

is absorbed by the paper inserts used on the wearing plates or left as a smear on the 

internal faces of the mould.  

 

Inspection of the data in Table 7.2 for the Marshall compaction shows a trend for the 

percentage passing the 6.7mm and 4.75mm sieves to increase as the number of Marshall 

blows increase from 20 to 50 blows/face. The sample compacted with 75 blows/face 

(M11) does not fit this trend and it is observed that its voids content is higher than the 

samples compacted with 40 and 50 blows/face. A duplicate samples compacted with 75 

blows/face (M12) did produce a voids content lower than the samples compacted with 

40 and 50 blows/face.  Although this testing is from former research and from some 

years ago, the points to be emphasized remain the same and the trends still apply. 
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Table 7.2 – Effect of compaction on grading of plant produced SMA10 to DMR 

(Qld) MRS11.33 

 

 

Comparison on the grading, final voids content and number of Marshall blows/face, 

indicates that the reduced voids contents of the Marshall samples compared to the 

gyratory compacted samples is due to breakdown of the larger sized aggregate as part of 

the Marshall compaction process. In a number of cases, the grading has been altered to 

the extent that it is outside the specification limits. This is particularly the case with the 

samples compacted with 50 Marshall blows/face which is the current Queensland 

specification design compaction. 

 

Research at NCAT (1998b) indicated that aggregate hardness affects the relationship 

between the bulk densities of samples compacted with the Marshall hammer and the 

SHRP gyratory compactor. It was recommended that for SMA mixtures utilising 

aggregates with LA Abrasion loss values of 30%, a design number of gyrations of 70 be 

used. For harder aggregates (loss value less than 30%), a design number of gyrations of 

100 was proposed. 

Mixes designed by the Marshall method can have artificially low design voids contents 



Chapter 7 – Design Criteria for Stone Mastic Asphalt 

 

_____________________________________________________________________________________________________ 
84 

which are the result of the fracturing of the larger aggregate particles during the 

laboratory compaction process. This particle fracture may not be reproduced under field 

compaction conditions resulting in excessive in situ voids contents for mixes designed 

by the Marshall Compaction method. 

 

 

 

7.3 Comparison of Methods of Measure Voids Content 
 

The testing in this section was performed mainly by Stephenson 2002 with a 

comparison by various organisations and individuals was undertaken between the 

“mensuration” and “silicone coated” voids for a range of samples including plant 

produced SMA10 and laboratory trial mixes. The voids were first determined by the 

mensuration method before the same samples were silicone coated so that a direct 

comparison could be made between the voids contents determined by the two methods. 

The water immersion (Rice) method was used to determine the maximum density. The 

mensuration method will include both the internal voids (voids which have no 

connection to the surface) and surface voids. Because the silicone coating can fill the 

surface voids, they are excluded from the voids measurement in the silicone coated 

method. Because the coating prevents the entry of water, it would be expected that 

relationship between mensuration and silicone coated voids would continue to rise with 

increasing voids contents which contrasts with the relationship between mensuration 

and “uncoated” water immersion voids (Oliver 2000). 

 

Figure 7.2 shows a comparison made between the voids content measurement methods 

for a plant produced SMA10 manufactured to DMR (Qld MRS11.33). The laboratory 

samples were compacted in 100mm diameter moulds. Those with mensuration voids 

content less than 12% were compacted by the Marshall hammer whilst the higher voids 

content samples were compacted with the Gyropac. A linear regression line has been 

fitted assuming that since the silicon coating will fill the surface voids, both methods 

will be capable or recording zero voids (i.e. y intercept = 0). It can be seen that silicone 

coated voids are 60% of the mensuration voids for the same sample. At high voids 

contents, some concern may exist as to whether the silicone is filling more than just the 
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surface voids. The two high values above 20% void suggest that this may be occurring 

due to the very open surface texture of these samples. 

 

 

 
Figure 7.2 – Relationship between methods of measuring voids content for plant 

produced SMA10 

 

 

Three cores that had been removed from the pavement where the same mix was placed 

were also available and these are also shown in Figure 7.2. The cores had a 150mm 

nom. diameter with a 30mm nom. thickness. Being cores removed from the pavement, 

they had smooth sides and a surface texture very different from the laboratory 

compacted samples. It can be seen that silicone coated voids are 71% of the 

mensuration voids for the same cored sample. The difference between voids 

measurement methods for 100mm (60%) and 150mm (71%) samples is of a similar 

magnitude to that reported for the sample size effect for Dense Graded Asphalt (Oliver 

2000). Due to the different thickness of the cores and the laboratory samples, the 

different relationships may also be explained due to the surface side effect of the mould 

(Lorio et al 1999). 

 

This further highlights the need to understand which test method is being used when 

comparing results and the limitations of any test method. Such variables are just one of 
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the difficulties in technology transfer between countries. Figure 5.2 provides a basis for 

comparing mensuration voids and silicone coated voids.  

 

 

 

7.4 Trials 
 

7.4.1 History in North Queensland 

 

In 1997 Main Roads approval was given to one of the districts for a submitted SM10 

mix design followed by further SM14 and SM10 mix designs being approved in 1998 

for both of the districts suppliers.  These SMA mixes were approved with a range of 

different binders including Class 320 bitumen, Multigrade and A5S Polymer. 

 

The district basically has recognized the long term fatigue benefits of SMA on the road 

network when compared against other asphalt types.  Although still in the period of 

service having not reached a full pavement life history in some sections, SMA is 

generally performing well. 

 

The SMA trials are located in various areas of North Queensland as per the table in 

Appendix D. Due to the number of trial sections within each of the locations; a priority 

list has been developed on the basis of varying mix types and varying visual 

performance criteria. 

 

SMA trials conducted in 2004 by Northern District Townsville revealed workability 

problems associated with “overliming” the mix.  There was difficulty found by the 

contractor in placement of the SMA14 mix design where the added filler component 

comprised hydrated lime only.  A revised mix design was then trialed with reduced 

hydrated lime content (50:50 Fly Ash/ Hydrated Lime) which provided improved 

working characteristics during paving and compaction operations. 

 

Trials were also conducted in Peninsula District in 2004 aimed at improving workability 

of the mix and reducing permeability.  Trials were conducted on Brinsmead-Kamerunga 
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Road where the hydrated lime content filler content in the SM12 mix design was 

significantly reduced.  Considerations were made for the configuration of asphalt plant 

used in the trial as only one type of filler could be stored at a time.  To overcome this 

issue blended filler (50:50 Fly Ash/ Hydrated Lime) was supplied for the trial. 

 

A decision was made by Mr. Dave Hamilton of DMR based on research of overseas 

experiences with SMA Mix designs and other asphalt mixes to substitute the existing 

asphalt filler (fly ash) with hydrated lime filler.  This requirement was written into the 

Peninsula Districts supplementary specifications for contracts containing MRS 11.33 

SMA mixes in 1998. 

 

With the current configurations of both asphalt plants in the district having the capacity 

to store only one type of filler a time there is an added benefit to all asphalt mixes 

produced where the filler used in hydrated lime. Filler is used to control void content, 

but much research into varying types has proved that products such as lime create a 

hydrating effect to set up and help with density of the mix. 

 

As a result of these trials there was interest generated within RS&E (Regional Systems 

and Engineering) related as to the effect of different fillers on the mastic component 

within SMA.  Consequently investigation and research of filler effects upon the mastic 

followed.  The research findings confirmed the trial outcomes with respect to 

“overliming” of the SMA mix causing problems with workability and over stiffening 

the mastic component.   

 

The design speed adopted years before a design was 80 km/h. In the circumstances, 

having regard to likely driver behavior on overtaking lanes, the predominate speed is 

limited due to geometry.  Recent testing on Skid Resistance on various sections of the 

trial sites also shows values of 160-180mm, which converts to a Skid Resistance factor 

of 2.5-3.5mm.  The minimum parameter for intervention is 0.6mm so the sections are 

clearly performing well and certainly past the initial stage of early life skid resistance. 
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7.4.2 Case Study - Trial Site 

 

There have been numerous trials within the North Queensland area, with varying mix 

types, project quantities and constituent proportions. One of the main sections where 

trials have been conducted is the Gillies Range. This section was divided into 8 similar 

sub-sections where the bitumen types were varied as were the contractors. 

 

Prior to 1994, the Gillies range was predominately a sealed surface with locations where 

radius curves were acceptable at reduced speeds, but would be considered too tight for 

modern highway engineering practice. In 1994, the road was widened in sections by 

resurfacing with asphalt and widening the shoulders. New works started to provide 

overtaking lanes in each direction. To achieve this, there were adjustments to horizontal 

and vertical curves. 

 

Skid resistance is related to tyre contact area and road surface friction characteristics. 

Typically, both open graded asphalt and stone mastic asphalt provide a better surface 

texture as regards drainage, splash and spray, than does the finer surfaced dense graded 

asphalt. On the other hand they provide less real tyre contact area than dense graded 

asphalt does. However, open graded asphalt is more forgiving in the wet. It allows 

surface water to be forced through the pavement surface under the weight of the tyre 

and thereby allows better tyre contact with the road surface in the wet, compared to 

these other asphalt surface types. 
 

A full list of the trial sites is included in Appendix D. Apart from the Gillies site there 

are many areas where SMA has been trialed with different binders, fines ratios, and 

aggregates. The sites all have varying underlying layers from straight C170 seals to 

open graded asphalt. 

 

The actual skid resistance characteristics of the previous sealed surface sections at the 

trial sites are not known. SMA is generally an appropriate asphalt for good skid 

resistance, even compared to open graded asphalt. However, given the open graded 

asphalt’s inherent ability to promote contact with a vehicle’s tyre when excess water is 

present on the road surface, it is considered that it provides a greater degree of surface 
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friction, when water is present on the road surface, than the SMA surface is able to. The 

problem with open-graded asphalt is its life span and problems associated with 

unraveling on tight geometry. In short, the combination of the curve’s reduced super-

elevation on the range section and poor surface drainage required a greater reliance on 

side friction in wet weather.  SMA was therefore the preferred asphalt and a good 

section for a trial. 

 

 

 

7.4.3 Mix Volume Ratio 

 

The mix volume ratio is one of the new standard SMA tests.  The method to perform the 

test was developed in-house using information contained within technical references.  It 

describes the procedure for calculation of the mix volume ratio of stone mastic asphalt.  

This ratio is defined as the volume of the components other than the coarse aggregate 

(>4.75m) within a compacted mix expressed as a proportion on the volume of air voids 

contained within the coarse aggregate in a dry rodded condition.  The method required 

determination of the binder content and grading of the mix, the particle density on a dry 

basis of the coarse aggregate, the compacted unit mass of the coarse aggregate and the 

compacted density of the mix. 

 

Basically, from raw data, the test compares the compactive density of the aggregate to 

the design.  In straights forward terms though, the aggregate is tested as per the grading 

or size of the various sieves.  This design being calculated with much theory, it is 

obvious of the aggregate is exactly on the centre line grading of the envelope, the test 

will pass with a ratio of 1.  Any deflection to say the upper limit of 55% from the centre 

line 50% will give a ratio of above 1. 

 

The chances of a centre line grading every time are slim, and the effect of this on the 

performance is limited. If the aggregate stays within the total envelope then it is within 

the design limits. If it strays then the mix is out of specification for many reasons. The 

test is more about ensuring compliance with another test than any direct future 

performance. 
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7.4.4 Mix Sensitivity 

 

This test was also developed in-house using techniques evolved through internal Main 

Roads research investigations into laboratory tolerance mix preparation and evaluation.  

This method describes the procedure for the preparation and testing of asphalt tolerance 

mixes for evaluation of asphalt mix designs submitted for approval. 

 

The test has two separate parts with two specific percentage criteria.  Firstly we take a 

sample with aggregate from the fine side of the grading of high fraction, with the high 

side of the bitumen content.  This should be maintained at 1%.  The other part is a 

sample with the coarse side of the centre line grading or low fraction, with the low side 

of the bitumen content range.  Both samples must also stay within the maximum 

permitted variation of the gradings, the second part maintaining a result of 6%. 

 

The test basically ensures that the balance between fine and coarse aggregate to the 

binder maintains a balance: within a sensitivity range. Once again though, the issue with 

this test is still one of checking that the sample is conforming to the design.   It purely 

checks whether the samples are maintaining a result which keeps the level within the 

approved limits.  Testing of various samples have proved that this is a design control 

test. The issue is about continuing to develop design tests that reflect the in-situ asphalt 

product from a design perspective. 

 

 

 

7.4.5 Field Voids 

 

The relative voids of SMA are firstly established from the design mix approval.  

Developed for certain loadings and volumes, the mix has a target voids content to 

achieve the desired performance.  In practice, the specifications are written to provide a 

maximum compactive effort as a percentage whilst maintaining depth and surface 

texture.  With SMA, we usually find that the gap graded nature of the mix which 

promotes stone on stone contact means that the compaction is achievable, but cannot be 

surpassed by many percentage points. 
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The field voids are a very important part of the laying, testing and audits, as it ensures 

that many of the design mix criteria are being provided with a chance of being achieved.  

The voids have been mentioned previously throughout the report and this is the check 

that it is being kept within tolerance of the design.  Section 7.5 will provide a detailed 

analysis of the trial sites and compaction results of field voids. 

 

 

 
Figure 7.3 - Voids in Mix 

 

 

The comparison between a design mix from ‘pat samples’ and the production field 

voids link many of the design criteria together. The testing is fairly simple to perform, 

and the conceptual picture of the air voids can be seen in Figure 7.3.  

 

 

 

7.4.6 Filler Binder Ratio 

 

This has been a very crucial test in the break through of knowledge for SMA.  The filler 

content of the mix is set at a level not only to provide the total fines content required, 

but also to ensure that the quantity allows for the properties of the filler to be active.  In 

recent times it is now an issue of calculating whether a production plant naturally 

produces or looses fines. The level of fines can then be adjusted in respect to the 

addition of fines or filler compared to the total allowable grading content of the fines 

fraction. 
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What type of filler needs to be determined in designing the mix and this has been 

discussed previously.  Certain types of filler can have varying degrees of how absorbent 

they are, which affects the ability to “lock up” the fines within the binder. This affects 

the level of free binder within the mix which is vital to performance and specifications 

are now provided to check the level.  Excess binder will cause the mix to go “fatty” and 

any free and unmixed binder will tend to float to the surface.  Alternatively, too much 

filler is describes as a filler rich mix which can cause the asphalt to be ‘doughy or 

spongy’, and compaction can then be a problem 

 

Mineral filler can be introduced from a number of sources: bag-house fines, fly-ash 

lime.  The type does certainly affect the properties of the mastic, and in North 

Queensland the approved mix designs are currently for 100% hydrated lime.  The 

technology input here is that it changes with the ability of the mix to flow over time.  

The lime component especially acts in a strengthening mechanism rather that just a 

component of the fines ratio. This test is certainly in all of the latest specifications, and 

Section 7.5 provides results on this test from the data on the trial sites.  

 

The test will predict the importance on the effect of fillers and absorbent fines, and 

whether the mix will therefore be ‘fatty or boney’.  It also determines the ratio of 

effective vs. free binder volume on the mix.  The results will also use the data to 

determine the fixed binder fractions, which is the amount of bitumen absorbed into the 

filler.  The test uses raw data which compares the bitumen content % with the minus 

75mm fines ratio sieve size.  The ratio should be 1.3.  The fibre within the SMA mix 

design also acts to help trap free binder, depending on types and on the specific entry 

point into the mixing process. 

 

 

 

7.4.7 Specific Determinants 

 

The relationship of all constituents is obviously important.  Some of the parts to this 

recipe based mix remain fairly constant and maintaining the volumes and sizes within a 

reasonable range will provide a stable mix.  Other parts require the analysis of 
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sensitivity in the mix where slight changes in volume and changes in specific types of 

constituents are compared. 

 

Binder tends to be vitally important, and the ability of the filler to trap free binder 

especially for rutting. Of course if there is good stone to stone contact SMA shouldn’t 

rut.  Excess binder will result in flushing, as discussed previously, and especially on hot 

days the bitumen is dragged to the surface forming’ blotchy fatty spots’.  If excessive, 

these spots join together and form larger deposits. 

 

One of the inherent issues that arise out of the results over the years in North 

Queensland is the production capabilities.  Due to the continual control testing and 

auditing of asphalt in general, the two production plants are consistent enough to place 

production limits on the various procedures.  The problem becomes similar to that of 

the source materials in the area, in that the economics of the situation are such that 

adjustments need to be made to the mix designs of SMA to incorporate the capabilities 

and constraints. Aggregate gradings are one of those fairly constant measures, and these 

will be reviewed through test data in the next section. 

 

 

 

7.4.8 Site Details 

 

The sites were not only prioritized on the basis of issues and type, but also on data from 

yearly condition surveys on the roadways. Appendix C shows print-outs from some of 

the sites with rutting, cracking and profiles of each section.  Appendix D then lists the 

sites where SMA has been layed in totality, and then the reduced table. Appendix E 

gives an example of the sites where bleeding is occurring and where different types of 

binder have been trialed. 
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7.5 Testing 
 

Results from much of the testing for SMA is about conformance and maintaining a 

balance between upper and lower limits on certain criteria. The graphs and tables in the 

following sub-sections have been derived from trial site raw data from North 

Queensland, and from the Boral plant.  The main areas of representation are surface 

texture, filler – binder ratio, field voids, gradings and polished aggregate values. 

Appendix F shows a summarized table of the raw data for the specific project areas. 

 

 

 

7.5.1 Surface Textures 

 

Various local and in-house Department trials of SMA surfacing on a the main highways 

demonstrate that particles tend to collect in the voids in the surface and so effectively 

reducing the texture depth. As soon as the surface is opened to traffic, a high proportion 

of the grit particles are then picked up by vehicles tyres and dispersed to the sides of the 

road. 

 

Table 7.3 below shows the change in texture depth that might be expected over the first 

few months of trafficking. An initial texture depth by the sand patch method of just over 

1.5mm may reduce to around 1.1 or 1.2mm within the first twelve months, depending 

on the traffic density, before tending to level off during a further period of trafficking. 

Associated with this behavior, the change in surface friction with speed is also of 

interest. The required friction level of SMA surfaces seems to require local clarification, 

but as an interesting feature of some of the completed testing is that the friction of the 

SMA surface does not appear to be influenced by speed to any great degree over the 

range examined. This might suggest that texture depth may not be quite so critical for 

this type of material, but further work would be needed to substantiate such a claim. 
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Macro Texture Averages 

SITE 1998 1999 2000 2001 2002

SMA – Right Wheel track

SMA – Combined 

01S-0707-I 

Left Wheel track 

Right Wheel track 

Combined 

01S-0707-D 

Left Wheel track 

Right Wheel track 

Combined 

0.37 

0.38 

 

1.50 

1.45 

1.47 

 

1.47 

1.44 

1.45 

0.38 

0.36 

 

1.45 

1.46 

1.45 

 

1.55 

1.57 

1.56 

0.97 

0.97 

 

1.14 

1.05 

1.09 

 

1.16 

1.12 

1.14 

0.94 

0.97 

 

1.27 

1.41 

1.34 

 

1.37 

1.41 

1.39 

1.07 

1.05 

 

1.28 

1.39 

1.33 

 

1.35 

1.37 

1.36 

Table 7.3 – Macro Texture Averages 

 

 

Evidence to date also suggests that SMA can tolerate application on a relatively 

irregular, existing surface without detriment to the regularity of the final surface. This 

may well be related to the need for a smaller surcharge of material for compaction by 

the paver's screed and rollers. 

 

 

 

7.5.2 Filler – Binder Ratio 

 

The ratio of the various projects and the fixed binder fractions can be seen in Figure 7.4.  

When comparing the results to the recognized figure of 1.3, the following correlations 

can be drawn from the data. 

 

As mentioned previously, the results should indicate a relationship between the binder 

and filler and can be used as a guide for the fixed binder fraction and the free binder.  

The results show that generally the ratio is higher than the specification which can 

either indicate too much binder, not enough fines/filler or a combination.  Of course it is 
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certainly possible that the filler may not be the right type. 

The fixed binder can be directly calculated from the filler/ binder ratio, and this gives us 

a relative figure for the free binder.  With binder being promoted as the trigger for 

fatigue and good pavement life, a mix such as SMA tends to have increased bitumen 

content. 

 

 

 
Figure 7.4 – Filler/Binder Ratio 

 

 

7.5.3 Field Voids 

 

The general minimum compaction value is currently set at 94% for SMA.  The figure 

has fluctuated over the past years and generally has moved in an increasing direction 

from 91 to 94%.  The data from the various trials would show that most of the 

compactions only just pass the minimum for voids.  Figure 7.5 shows that on the trial 

locations the percentages vary over a couple of percent.  Even though some projects 

would be deemed to have failed, they were layed before the interim specification.  The 

figures alert us to the fact that contractors are only achieving the minimum of 

compactive effort from the particular year of specification. 

 

Figure 7.5 also shows a representation of the field densities achieved on the prioritized 

trial sections.  The % compaction scale is a CV average, although the chart is populates 

to produce a full spread of data. 
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Figure 7.5 - Compactions  



Chapter 7 – Design Criteria for Stone Mastic Asphalt 

 

_____________________________________________________________________________________________________ 
98 

 

 

The compaction effort obviously affects the density result, but it must be done correctly 

and with appropriate equipment.  It is not simply a case of extra roller effort to achieve 

a higher result.  Even with everything being correct, it is really the mix that allows for 

proper and achievable compaction. 

 

The field voids are then a direct relationship, and the results of the testing are seen in 

Figure 7.6. The spread of results should stay reasonably close, and with the scale being 

in 0.5% range, most of the project sections are tight in range.  If design, production, and 

then laying could stay consistent then the figures should remain within a tight envelope.  

The problems arise out of pure volume which requires many days of manufacture and 

field works.   
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Figure 7.6 – Field Voids 
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7.5.4 Gradings 

 

The grading samples are taken in every production day, so the amount of results is such 

that averages make more sense to compare in a graphical sense.  The limits of the 

envelope show trends of the various samples which tend to bounce from the upper to 

the lower sides in certain cases. The graphs of the various combined grading curves for 

SM 10, 12 and 14 mixes are in Appendix F and H. The total gradings for all of the trial 

sites on every daily production data was placed against the target upper and lower 

limits. The results basically proved the daily production was in specification. 

 

There is a tendency for the actual gradings to bounce from one side to another of the 

limits, but there is a specification to cover this criterion. All samples passed, so the 

benefit of further analysis was limited for this area. This does not detract from the 

importance of this test, but merely allows a check on conformance. The discussion 

about tightening the limits is worthy of further analysis and this is mentioned in later 

sections of the report. 

 

 

 

7.5.5 Polished Aggregate Friction Value 

 

The draft District report indicates that the aggregate used in the SMA was above but 

close to the minimum acceptable value for the characteristic known as Polished 

Aggregate Friction Value. From the construction records the District report suggests 

that this characteristic may have been slightly below the specified minimum value. 

Hence the aggregate used to manufacture the SMA may have been more susceptible to 

polishing.  

 

The early life skid resistance was similar to that of conventional bituminous surfacings 

and improved with time but this could take up to two years and in exceptional cases 

three years to achieve. Thereafter the material remained consistent before experiencing 

a decrease in skid resistance in the following years as the aggregates at the surface 

polished. 
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As mentioned previously, the texture of 14mm SMA measured in the twelve months 

following re-surfacing is below the optimum required for a new surfacing but is still 

above the recommended threshold level of 0.6mm. SMA surfaces with 10mm coarse 

aggregate give a higher skid resistance but have 25% lower texture. 

 

As mentioned previously, Appendix C shows the testing of the PAFV’s over the years 

at the various North Queensland quarries.  It’s worth noting that the results only just 

pass the State wide specification of 45, and rarely pass the interim and current North 

Queensland specification of 50.   

 

7.6 Specifications 
 

Texture depth has a marked impact on the high speed skid resistance of a road surface. 

The average Sensor Measured Textured Depth (SMTD) on the sections examined has 

an initial value lower than expected of a new surface. There is a marginal improvement 

in the year two before a gradual decrease in the following three years.  

 

Friction on low textured surfaces falls more rapidly with speed than for high textured 

surfaces and of the 14mm SMA sites considered all but one were above the specified 

threshold value of 0.6mm but five had a SMTD value below 0.7mm in the year after re-

surfacing. 

 

The single sized nature of the aggregate skeleton in SMA produces a relatively high 

void content filled with binder rich mastic mortar. This mixture allows the coarse 

aggregate to be re-orientated during rolling and presents flat sided aggregates at the 

surface. This helps provide the noise reduction welcomed by many motorists and 

residents but reduces the materials ability to provide adequate texture. An important 

aspect in the manufacture of the material is to maintain a volumetric balance to avoid 

fatting up the mastic mortar which exacerbates the problem of poor texture. 

 

The sensor measured texture depth (SMTD) of the sections of road examined in this 

paper produced a mean value of 0.92mm with a range of 0.59 to 1.4mm. Whilst texture 

depth seems to fluctuate over the give years the general trend is one of a slight decrease 
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due in part to the contamination of the void space. 

 

The various districts throughout Queensland have been developing their own databases 

of issues and problems, and these are transferred back to the corporate technology bases 

of Main Roads in Brisbane for analysis. Whilst this is a process where-by formal and 

overall specifications are assessed, developed and finally implemented into a 

specification that is State wide, the process can take a number of years. In the interim, 

various areas of the department have become instrumental in ensuring that careful 

minor changes to the mix design are instigated through approved trials so-as to 

continual enhance the performance of SMA. Hence the use of interim specification 

guides, of which North Queensland has one for the SMA 12 mm mix. Appendix G has a 

reduced version showing only the mix proportion tables. Another area is South East 

Queensland which has recently developed an interim specification. The following table 

shows a summarised comparison of the differences in the two specifications, as well as 

the current State wide document. 

 

The following table 7.4 is a complete condensed outline of the areas where all of the 

three major and current specifications differ i.e. MRS 11.33 (State Wide Spec.), 

SMA14, MRS 11.33b (North Queensland Spec.), SMA12 and MRS 11.33 (SE 

Queensland Spec.), SMA14.  The major modification for the SMA12 specification is 

the PAFV of 50.  For the SE Queensland specification, this includes the latest concepts 

of SMA Design, and has modifications in Air Voids and Mix Volume. Ratio. For voids 

there is now an increased upper limit in the field voids of 0.5%.  For the mix Volume 

Ratio is has a design now specified at 0.95% and a production limit of 0.99%. 
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Table 7.4 SMA Specification Comparisons 
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7.7 Mix Design Methods for SMA 

 

The highly rut resistant properties of SMA depend on the establishment of stone to 

stone contact in the mix.  This stone to stone contact is assumed to be formed by the 

coarse aggregate, which in Australia, is defined as the material retained on the 4.75 mm 

sieve.  Sufficient fine aggregate, filler, binder and fibres are added to produce a durable 

mix but not interfere with the establishment of the coarse stone to stone contact. 

 

In Germany where “Splittmastixasphalt” (SMA) originated, there is no true method.  

Mixes are selected from an array of standard mixes defined as “recipes.” These have 

been developed through years of experience and have been applied to the various levels 

of traffic volume by using the Marshall test to analyse the voids in the mix and to select 

the percentage of bitumen (Luminari and Fidato 1998).  The process is thus entirely 

empirical. 

 

A good overview of European practice is given by EAPA (1998).  A draft European 

Code for SMA has been released (PrEN 13108-5:2000).  In the United Kingdom, the 

design method for their rolled asphalt is specifies in a British Standard, BS 598: part 

107(BSI 1990), however, there is no parallel design method for SMA.  A draft US 

specification based on a series of specific sub-clauses to amend BS 4987 and the 

Specification for Highway Work has been published (Loveday and Bellin 1998).  The 

design procedure is based on achieving a specified target grading and using Marshall 

compaction. 

 

The early SMA projects in the US were generally built with the coarse aggregates 

having 100% of the material passing the 12.5mm or 19.0mm sieve.  In addition, the 

amount of combined aggregate (coarse and fine aggregates and mineral filler) was 

typically in the following ranges: 

 

· Passing the 4.75mm sieve – 27% to 33%; 
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· Passing the 2.36mm sieve – 18% to 23%; and 

· Passing the 0.075mm sieve – 8% to 12%. 

 

This lead to a 30-20-10 “rule of thumb”  targeting 30% passing the 4.75mm sieve, 20% 

passing the 2.36mm sieve and 10% passing the 0.075mm sieve (Scherocman 1997).  

Brown et al (1997b) have demonstrated that the SMA mixes have tended to become 

coarser from year to year since 1991 with the specification for percent passing the 

4.75mm sieve now in the range of 20% to 28%.  The reduction was made based on 

research that indicated for most SMA mixtures the percent of material passing the 

4.75mm sieve had to be less than 30 percent to ensure stone on stone contact and to 

meet minimum VMA requirements.  The Australian experience also reflects the 

increasing coarseness of the SMA grading from SAA (1995) to APRG (1997a) and 

AAPA (2000a). 

 

In Australia, these mixes are currently being designed using a “recipe” method.  Typical 

compositions and volumetric properties for Stone Mastic Asphalt mixes are available 

(SAA 1995, APRG 1997a, APPA 2000a).  In Queensland then DMR MRS11.33 

specification provides a grading envelope within which the target grading must lie, 

together with requirements for binder and fibre type and content.  Compaction is by 

Marshall hammer and Marshall Stability and Flow requirements are stated.  MRS 11.33 

also has a requirement unique to SMA for a “mix volume ratio” that is defined by test 

method Q318-1998.  This ratio is defined as the volume of the components other than 

the coarse aggregate (≥ 4.75mm) within a compacted mix expressed as a proportion of 

the volume or air voids contained within the coarse aggregate in a dry rodded condition. 

 

In effect, it is ratio of the volume of mastic (bitumen, filler and fine aggregate) to the 

volume of voids in the coarse aggregate skeleton.  For SMA14, the ratio is specified to 

be less than 1.0, however for SMA10; the value is just to be recorded.  By maintaining 

the mix volume ratio at less than 1.0, stone on stone contact for the coarse aggregate 

will be maintained. This requirement is based on volumes, whereas the grading 

specified are based on weight.  Specifications such as MRS11.33 are not recipe 

composition specifications in the conventional sense because the producer must use 
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skill and judgment to design a mix within these constraints that will satisfy performance 

requirements (Loveday and Bellin 1998).  

7.8 Development of New Mix Design Methods for SMA 
 

There is a world wide interest in the development of a rational method for the design of 

the grading of SMA mixes. The National Center for Asphalt Technology (NCAT) 

method is intended to identify the point at which addition of fine aggregate cause's 

expansion of the coarse aggregate structure and thus prevents the coarse aggregate stone 

on stone contact which gives SMA its very high rut resistance. The concept of the 

NCAT method is that the mix design proportion for fine aggregate is determined by 

adding increasing amounts of fine aggregate in a series of trial mixes and identifying the 

point at which further addition of the fine aggregate expands the coarse aggregate 

matrix. The percentage of fine aggregate which first causes the expansion is called the 

dilation point (Brown et al, 1997a). 

 

The method uses two types of voids calculations. They are the conventional voids in the 

mineral aggregate (VMA) and the voids in the coarse aggregate (VCA). VMA is the 

volume of the mix which is not occupied by the mineral material (coarse and fine 

aggregate and filler) expressed as a percentage of the total volume of the mix. VCA is 

the volume of a mix not occupied by the coarse aggregate expressed as a percentage of 

the total mix volume. The point where a change of slope occurs on a plot of VMA 

and/or VCA verses Percent Passing 4.75mm sieve is interpreted as the dilation point. 

 

Procedures have now been prepared in the United States for the design of SMA 

mixtures as the draft AASHTO standard. The procedure involves proportioning the 

percentage of aggregates by volume and mix design examples are available (NCAT 

1998c). 

 

The NCAT method also attempts to pre-estimate VCA by determining the bulk density 

of a sample of the coarse aggregate compacted into a large cylinder by dry rolling. 

ARRB (1998) research concluded that the measurement of the dry rodded VCA of the 

coarse aggregate, although rapid and thus an attractive and perhaps indicative 

procedure, may not duplicate the aggregate packing in the bitumen bound mix and thus 
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may be unsuitable for incorporation into a design procedure.  

 

Determination of the volume of compacted samples by mensuration is recommended by 

ARRB (1998). When samples are prepared by the Gyropac, the volume can be 

determined by measuring the sample height, as determined from the piston position, and 

multiplying the value by the area of the base of the sample mould. Given that the area of 

the base of the samples will be constant, a plot of Gyropac height verses percentage 

fines can be used to identify the dilation point (AAPA 2000a). Based on this concept of 

measuring the dilation point, ARRB (1998) proposed a procedure for the design of the 

aggregate skeleton based on a series of trial mixes with differing percentages of fine 

aggregate added to a common coarse aggregate fraction. 

 

However, it is now recommended that … “The recipe approach to SMA design, based 

on the AAPA Design Guide (now AAPA 2000a), should be incorporated into the 

Provisional Guide (APRG 1997a) as the preferred method, with the dilation point 

approach reserved for special mixes” (Oliver 1999). The gradings in AAPA (2000a) are 

based on the Maccarrone et al (1997b) CSRE-1 gradings and are much coarser than 

those originally include in APRG (1997a). 

 

Given the importance of the “undilated” stone skeleton to ensure that the good rut 

resistance properties of SMA are maintained, a rational method of design such as the 

Dilation Point Method (DPM) would appear more desirable than the return to a recipe 

approach. Past research has presented theory to identify a means of extending the DPM 

by incorporating particle packing theory and the resilient modulus test.  

 

 

 

7.8.1 “Design of SMA Mixes” – Australia 

 

This research undertaken by ARRB Transport Research (1998) investigated the Dilation 

Point of SMA mixtures by adding varying percentages of fine aggregate to the coarse 

aggregate skeleton. Based on this research, a draft mix design method for the aggregate 

grading was proposed. The report conclude that the dilation point procedure appears to 

have promise but it may be desirable for the concept to be more widely considered 
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before a decision is made on its adoption. An alternative path suggested was to specify a 

grading envelope based on the grading produced by the identification of the dilation 

point. 

 

 

 

7.9 Implications for the Design of the SMA Stone Skeleton 
 

The collected research demonstrates that unless a singles sized coarse aggregate is used, 

it is not possible to design an undilated mix using the Dilation Point Method in its 

current form. A 10mm SMA designed by the dilation point test method will have a 

grading significantly different to a mix designed to DMR (Qld) MRS11.33. 

 

Results from the various resilient modulus testing with Stephensons Report (2002) 

support the Dilation Point Method. For a single sized coarse aggregate, it is a simple 

means of verifying the dilation point. For mixes with a more complex coarse stone 

structure such as the DMR(Qld) MRS11.33 SMA10, the resilient modulus testing was 

able to identify upper grading limits to ensure an undilated “double stone skeleton: 

where a single dilation point could not be identified from the change in “Gyropac” 

height. The concept of an undilated “double stone skeleton” accounts for the good rut 

resistance that has been reported for the Queensland SMA in service (Hogan et al 

1999). Such a comment could not be made based solely on the “Gyropac” height verses 

the fines content due to the complex interactions between the two stone skeletons and 

the mastic. 

 

Whilst there are strong relationships between voids contents and the percentage passing 

the 4.75mm sieve, models developed to predict the voids content include the percentage 

passing the 4.75mm sieve as only one of the important factors. The models suggest that 

for SMA10, the percentage passing the 9.5mm, 1.18mm and 75µm are also important. 

The research also demonstrates that it is the relationship between percentages passing 

adjacent sieve sizes e.g. 4.75mm/2.36mm that is important. The filler content will also 

have a significant effect on the final voids in the asphalt. Consideration of packing 

theories has confirmed that the maximum size of the aggregate used in the mortar is 
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dependent on the size of the coarse aggregate in the stone skeleton. It is suggested that 

the cut-off between coarse and fine aggregates should be 2.36mm for the SMA14 and 

1.18mm for the SMA10. The 1.18mm sieve was also identified in the predictive 

relationships fir the SMA10. 

 

The development of the stone on stone contact in the stone skeleton is a function of both 

the grading of the coarse aggregate and the maximum size of the fine aggregate used in 

the mortar. Particle packing theory shows that using the 4.75mm sieve as the maximum 

size for the mortar components, as used by many researchers (NCAT 1998c, ARRB 

1998) is inappropriate. This study has found that the sieve size should be varied 

depending on the grading and maximum size of the coarse aggregate. 

 

 

 

7.10 Extended Method for Design of the SMA Stone Skeleton 
 

Based on the research of Stephenson Report (2002), incorporating additional steps into 

the Dilation Point Method (DPM) of SMA Mix design, provides methods for selecting 

the maximum size of the fine aggregate in the mortar and determining the upper grading 

limits of the SMA. By using these steps, the DPM can also be applied to the “double 

stone skeleton” SMA as used in the DMR (QLD) MRS11.33 specification. The design 

of SMA mixes using the extended DPM provides a rational means of selecting the 

combined aggregate grading to ensure that the important stone on stone contact is 

maintained. The extended DPM also gives a simple means of assessing the complex 

interactions within the combined aggregate grading which are ignored when using 

“recipe” methods. 

 

 

 

7.11 Summary 
 

The Chapter highlighted comparisons made between different compaction methods and 

methods of measuring voids and provides some relationships between the various 
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methods. The method of measuring the voids content has a significant effect on the 

value reported. The mensuration method always gives a higher value when compared to 

the silicone coated method however there is a strong relationship between the two 

methods of measurement. The greatest difference occurs at higher voids contents. In the 

mensuration method, the surface voids are included in the voids content whereas with 

the silicone coated method, these voids would be filled with silicone and excluded from 

the voids content. Any comparison between reported voids content needs to consider 

the method used to measure the voids to ensure that appropriate comparison is made. 

This thesis presents the need to highlight that there are useful methods when comparing 

voids measurements by using the two different methods.  

 

The experimental programme and literature review of testing undertaken for this thesis 

revealed the limitations of the current methods for the design of SMA mixes without 

trial data. Based on the empirical evidence reported in this thesis, sections of actual 

roadway with SMA surfaces need a continuous program for experimental research.  A 

“cradle to grave” trial (start to finish with complete process control audits) is necessary 

to ensure that variables are revealed and compared with actual failures, but based on 

empirical evidence.  

 

By rating certain criteria over time a relationship is developed to be able to modify to 

standard specifications. The critical upper limits of the grading curve can be determined 

by using the resilient modulus test. The extended DPM from other research data 

provides the means of designing complex “double stone skeleton” SMA mixes such as 

specified in DMR (Qld) MRS11.33. 

 

The analysis of the actual field voids and compaction results within the chapter promote 

that it is worthy of future and more detailed testing of sites.  The compaction will 

always hover around the specification, due somewhat to the commercial environment.  

The field voids are spread too much though per project, and as we see from the Cook 

Highway and Bruce Highway sections, there are changes where the results are quite 

different.  With SMA, this can really change the appearance, surface texture, and 

fatigue of the mix. 

 

With the filler/ binder ratio once again it is the variation.  If the results were tighter and 
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with less standard deviation, at least one could concentrate on the design issues.  The 

results again from some of the sections show that is may be a more of control issue.  

The results would tend to support excess free binder in the mix, which is certainly 

evident in the field.  The upper and lower limits in most cases are about the 

specification, and the centre line result would average high.  The Gillies project though 

is certainly the only one on the lower side, and it is at this location where many of the 

trials were conducted, and they are certainly performing well in relative terms. 
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CHAPTER 8 – HOT WEATHER 

CONSIDERATIONS AND DEFORMATION 

RESISTANCE 
 

8.1 Introduction 

 

The basis of the report was particularly SMA produced and layed in a tropical climate.  

Developing criteria and known failure mechanisms for hot and wet weather is part of 

the consideration of this climate, and certainly for the zone where this Thesis is 

surrounded – Tropical North Queensland.  

 

 

 

8.2 Need for consideration 
 

It is generally recognised that weather conditions have a significant influence on the 

laying and compaction of asphalt. Cold, wet and windy conditions during laying can 

result in poor quality asphalt that will perform badly in service. Most areas with 

problems have occurred in the colder climatic conditions; so that laying difficulties 

were seen to be associated with low air temperatures. Understanding of the effects of 

wind speed and air temperature on the cooling of hot laid asphalt layers increased 

rapidly in the 1980s. The term ‘Cold Weather Working’ was replaced by ‘Adverse 

Weather Working’ to emphasise the influence of wind speed. In assessing adverse 

weather, the emphasis was still on adverse cold weather laying conditions and the effect 

of solar radiation was regarded as a benefit that was generally discounted in 

specifications.  

 

Difficulties following the laying of asphalt in adverse hot weather became very apparent 

in Queensland during the very hot summer of 1995 when early failure, in the form of 

excessive deformation and loss of texture depth, occurred on several occasions. The 

problems arose from paving materials being trafficked whilst the material was still too 



Chapter 8 – Hot Weather Considerations And Deformation 

 

_____________________________________________________________________________________________________ 
113 

hot, although this has been partially alleviated by the current trend to use thinner layers 

that cool more quickly. Nevertheless, there is a need for advice about laying bituminous 

materials in hot weather when the time taken to cool sufficiently to permit trafficking 

can be critical. If the time allowed is too short, it can result in premature rutting by the 

traffic. If adequate time is allowed, there may be considerable traffic congestion that 

will lead to pressure to open the site to traffic prematurely. Whilst this is primarily a 

problem associated with surface course materials, it can also affect the lower layers that 

are trafficked by site vehicles or are used as temporary running surfacings. Also, the 

temperature of lower layers will have an effect on the rate of cooling of any layer placed 

over it. 

 

In order to provide authoritative advice, one needs to be able to estimate the time that a 

pavement course takes to cool sufficiently before it can be trafficked under various 

weather conditions. Hence, a model was developed by Nicholls and Carswell (TRL 

Report 494) to estimate the rate of cooling and a criterion established for the condition 

of the pavement layer that will not be detrimentally affected by trafficking. The cooling 

model, which incorporates the trafficking criterion, can be used as the basis for advice 

about whether the conditions are, or are not, suitable for laying bituminous materials 

within a specified time period before being exposed to traffic. 

 

 

 

8.3 Laying asphalt in hot weather conditions 
 

8.3.1 Potential Problems 

 

When hot asphalt is laid during weather conditions of high ambient temperature, 

particularly during continuous periods of strong sunlight, it can remain workable for a 

considerable time. During the laying and compaction it may be difficult to maintain 

profile and, in the case of hot rolled asphalt surface course with added pre-coated 

chippings, it may be difficult to achieve adequate texture depth. 

 

During extended periods of hot, sunny conditions, the newly-laid surfacing layers of a 
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pavement can maintain temperatures after opening to traffic that are sufficiently high to 

allow excessive rutting and the rapid embedment of any chippings, with the latter 

causing a reduction of texture depth. The conditions are compounded in conditions 

where traffic intensity is high and speeds are restricted. Excessive texture depth loss and 

rutting may affect vehicle steering and braking. 

 

 

 

8.3.2 Cooling of asphalt layers 

 

Heat is lost from a hot-laid asphalt layer by conduction into the cooler substrate and by 

convection and radiation from the top surface. As the hot asphalt layer cools, the heat 

flow into the substrate will reduce as the layer approaches a condition of temperature 

equilibrium with the environment. 

 

The rate at which an asphalt layer cools depends on both environmental and asphalt 

factors. Both higher wind speeds and lower air temperatures increase the cooling rate 

and, hence, reduce the time available for compaction. Increasing incident solar radiation 

reduces the cooling rate, thus extending the time available for compaction. Asphalt 

factors that affect the cooling rate include its temperature, thermal conductivity, specific 

heat, surface albedo (reflection coefficient) and layer thickness. The most important 

material factor is asphalt layer thickness, followed by its temperature. For fixed 

conditions, the cooling time is proportional to the asphalt layer thickness raised to the 

power 1.8 (Daines, 1985). Calculations describing the cooling behaviour of hot laid 

asphalt layers are complex (Jordan and Thomas, 1976) and require the use of 

computers. However, there are simplified equations that are sufficiently accurate for 

practical purposes to predict the time available for compaction (Daines, 1985; Nicholls 

and Daines, 1993). 

 

This method of estimating the cooling behaviour of a hot-laid asphalt layer is only 

applicable down to a mid-layer temperature of about 80°C for constant environmental 

conditions. Extrapolation using this method to lower temperatures is unreliable and an 

asphalt layer will not cool below about 50°C, twice the air temperature in degrees 

Celsius, on a day that it hot, calm and sunny. This temperature can be compared to the 
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safe temperature for trafficking of below 50°C. 

 

Some of the heat absorbed by the pavement from a newly laid hot asphalt layer remains 

when the next daily temperature cycle resumes. The temperature behaviour of the 

pavement, from the end of the compaction period until the new layer has cooled to 

ambient temperature, is influenced by the cyclic effect of solar radiation. This is 

extremely complex and, to date has not been modeled. Nevertheless, in general a day 

must elapse before the heat from a 50mm thick layer is dissipated and three days for a 

150mm thick layer. 

 

 

 

8.3.3 Solar Radiation 

 

Solar radiation is stronger and endures for longer periods of the day during the summer 

months, although its intensity can be reduced by cloud cover. Table 8.1 gives 

measurements of solar radiation at the Meteorological Office in Backnell, Central 

Southern England, in which the 99th and first percentile figures related to full sunshine 

and full cloud cover, respectively. 

 

 

Table 8.1 - Total incident energy averaged between 12:00 and 13:00 EST 

 Total incident energy (W/M²) 

Month 99th Percentile (full 

sunshine) 

1st Percentile (full cloud 

cover) 

January 

April 

July 

October 

900 

322 

550 

830 

50 

20 

40 

70 

 

 

Table 8.1 shows that high levels of solar radiation can occur in the months from 

October to March, and that even in winter solar radiation can be appreciable. The risk of 

hot weather having an adverse effect on the laying of asphalt is obviously higher during 
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the summer months of December to February, but it may be significant for shorter 

periods of the day in the spring and autumn. 

 

New asphalt road surfacings, which can have an albedo (reflection coefficient) close to 

zero, are blacker than ‘weathered’ surfacings. Unfortunately, from the viewpoint of 

construction and early trafficking, a black new surfacing is more vulnerable to the 

effects of solar radiation and therefore at greater risk of deformation during the first 

summer compared with subsequent summers. Although, in the past, it was assumed that 

road surface temperatures rarely exceeded 45°C, recent hot summers have demonstrated 

that the asphalt surface temperature can reach, and may even exceed, 50°C, particularly 

for those in North Queensland. 

 

 

 

8.4 Risk Assessment Model 
 

With such an unforgiving type of pavement, the risk of various criteria needs to be 

assessed on paper.  One procedure for achieving this is through modeling. 

 

 

 

8.4.1 Requirement 

 

The model was developed to help assess the risk of unacceptable deformation occurring 

when asphalt is laid in hot weather conditions.  

 

 

 

8.4.2 Factors 

 

The risk of a road surface deforming (and losing texture depth) is related to several 

parameters, of which the primary ones are: 
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· The temperature throughout the depth of the pavement; 

 

• Deformation resistance of the asphalt layers at those temperatures; 

 

• The loading on the pavement from the traffic flowing over it; 

 

• The speed of traffic; and 

 

• The length of time that the conditions persist. 

 

 

To develop a risk assessment model, these parameters are rationalized into the 

following factors; 

 

 

• Material & Temperature Factor: 

the wheel-tracking rate at the maximum surface temperature, in mm/h; 

 

• Traffic Load Factor: 

the design commercial traffic flow, in cv/l/d; 

 

• Traffic Speed Factor: 

the time that wheels load the pavement, in s; 

 

• Optional Action Factor: 

an allowance for specific measures, in particular using light-coloured pre-

coated chippings and/or cooling the surface; and 

 

• Time Period Factor: 

The period for which the other factors remain reasonably constant, in days. 
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The wheel-tracking rate of the top layer of the road pavement at the maximum surface 

temperature, in mm/h, is taken to reflect the material and temperature parameters. This 

will be conservative in that there is likely to be a temperature gradient through the depth 

with the material being cooler further down but optimistic because deformation in lower 

layers will not be considered. In the event of no better information for the particular 

circumstances, the maximum road surface temperature is assumed to depend on the 

latitude and the month of construction. Other factors that can affect it are the road 

direction, slope and extent of shading, both from sunlight and from winds that can cool 

the surface.  

 

The applied load and loading time will influence the deformation. For asphalt binders 

showing Newtonian behaviour, the deformation will be proportional to the load and to 

the loading time. Bitumen binders and more particularly modified binders, exhibit some 

non-Newtonian behaviour because the binder viscosity is reduced by increased shearing 

rate. Nevertheless, for the purposes of this risk assessment method, the risk of 

deformation due to traffic load is taken to be proportional to the duration of vehicle 

loading, estimated in terms of commercial vehicles per lane per day. 

 

Loading time is also inversely related to the traffic speed. Deformation increases with 

loading time, particularly for long loading times when the visco-elastic properties of the 

binder are less applicable and the binder tends to behave as a Newtonian fluid. For the 

purposes of this method, deformation is taken to be inversely proportional to vehicle 

speed. 

 

However, calculating the equivalent loading for stationary vehicle is more complicated. 

For the stationery phase, the loading and speed factors need to be combined into a 

single factor that can be regarded as the proportion of the time when a commercial 

vehicle is loading the area, in s per day. 7s of stationary loading is equivalent to 1 

wheel-pass at 50 km/hr and that a commercial vehicle traveling at that speed has a 

Speed Factor of 0.08s. Therefore, the combined factor for 3-axled commercial vehicles 

when permanently stationary is 3,000s/day. However, this factor must be reduced by the 

proportion of commercial vehicles in the traffic and by the proportion of the time when 

the traffic is stationary. 
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During the flowing phase, the total traffic loading must also be applied because each 

vehicle has to pass across each location, even if at a closer spacing due the stationary 

phase. Therefore, the deformation due to any stationary phase is additional to the 

normal deformation and does not replace part of it. 

 

Clearly, deformation will increase with the length of time the other factors are extant. 

For the purposes of the risk assessment method, the time period is measured in days. 

The risk for the first day after opening to traffic can be assessed as well as the risk for 

an extended speed restricted period in, for example, a contra flow situation. For 

assessing the risk over an extended period some of the risk parameters may take 

different values. 

 

 

 

8.4.3 Calculation procedure 

 

An overall indication of asphalt deformation, summed over each period when the risk 

factors remain constant, may be estimated from the product of the individual factors in 

the following Equation 

 Expected deformation = k x ∑ (RT x T1 x TS x Pd)  

 

 Where k = the calibration coefficient; 

  

   RT = Material & Temperature Factor (the wheel-tracking  

   rate at the maximum surface temperature, in mm/h): 

 

   Tr = Traffic Load & Speed Factor (the commercial traffic 

   flow, in cv/l/d, times the time that a wheel will load    

 the pavement, in s); and 

 

   Pd = Time Period Factor (the period for which the other  

   factors remain nearly constant, in days). 
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8.4.4 Calibration of relative risk factor 

  

A wheel-tracking rate at 45°C of 2mm/h is required to achieve a deformation rate of 

0.5mm per year for a traffic flow of 6000cv/l/d (Daines, 1992). In a typical year, about 

90 percent of the deformation occurs during about 15 -20 hot summer days when the 

road surface temperature attains about 45°C. Of course this figure is obviously arguable 

with relation to location and some summers are hotter and longer. A typical speed for a 

commercial vehicle is 80 km/hr. Therefore, for the conditions in this example: 

 

  Estimated deformation 

 

   = k x 2 x 6000 x 0.04 x 15 = 7200k   

 

 Therefore, the calibration coefficient, k, equals 6.2 x 10-5. 

 

 

 

8.5 Discussion 
 

8.5.1 Laboratory trials 

 

The laboratory trials from investigating the change in the rate of deformation with both 

temperature and speed provided general confirmation of the expected relationships 

whilst indicating that they are not strictly accurate. The findings are equally applicable 

to both ‘traditional’ hot rolled asphalt and SMA. 

 

With regard to temperature, the easiest way of modeling the relationship is to take the 

logarithm of the wheel-tracking rate to be proportional to the temperature. However, 

this is not completely accurate, with the relationship flattening off to reach a plateau at 
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higher temperatures. 

 

The tests showed that relatively little deformation resulted from a stationery wheel load 

compared to a moving wheel load. However, experience shows that more rutting 

develops when traffic speeds are reduced. This dichotomy suggests that loading time is 

important but, at the same time, a dynamic component is essential for the formation of 

ruts. 

 

 

 

8.5.2 Mathematical models 

 

There is no single solution to the problems of trafficking newly laid asphalt during hot 

weather. Nevertheless, there are ways of reducing the risks to manageable levels by use 

of a procedure such as the proposed risk assessment model. By minimising the risks at 

all stages of the work, from mixture production to traffic control, the amount of damage 

induced should be within acceptable limits. Not all the measures are necessarily 

applicable to all schemes and, therefore, the option measures that are most appropriate 

and that provide the greatest cost benefit both to the Contractor and the road used 

should be selected. 

 

However, in general the conditions are unlikely to justify the use of the risk assessment 

model. The position should be to have conservative requirements that are simple to 

understand and operate with the use of the risk assessment model retained for those 

limited cases when its used can be justified. 

 

On the more specific aspect of limiting the permanent deformation of asphalt, the 

currently used model in the UKwas developed by Szatkowski and Jacobs in 1977 for 

hot rolled asphalt by specifying a maximum wheel-tracking rate sufficient to limit the 

deformation to 10mm over 20 years. However, the traffic conditions in all developed 

countries over the years since 1977 and more data are available for analysis. A review 

of the records of various road trials of rolled asphalt were used to develop an equation 

to predict the development of permanent deformation in an asphalt surfacing that 

correlates with site data with and R² adj value of 0.46. The relationship implies that the 
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permanent deformation is proportional to the traffic flow, the wheel-tracking rate at 

45°C and the logarithm of the age plus one. The correlation is not very good, and other 

relationships were developed that had higher correlations with existing data, up to and 

R²adj value of 0.72. However, there were inconsistencies when the data was 

extrapolated to other potential situations. In particular, the site temperature was not 

satisfactorily incorporated. 

 

The use of the proposed relationship should allow better estimates to be made of the 

extent and development of permanent deformation under typical conditions; it cannot 

assist in forecasting under exceptionally hot weather conditions. New data would allow 

the equation to be further developed with greater confidence in the results obtained, but 

to obtain such data should involve long-term systematic work, ideally over a twenty 

year period to obtain the full life history of successful surfacings. 

 

 

 

8.5.3 Actions to minimize the potential problems 

 

Within the research that has been undertaken, certain actions have been identified that 

are believed will help to minimize potential problems that can arise when laying hot 

asphalt material in adverse hot weather conditions. These actions are described below. 

 

 

 

8.5.3.1 Mixture selection 

  

The selection of deformation-resistant mixtures can mitigate, to a limited extent, the 

effect of premature deformation in adverse hot weather conditions, although lower 

stability materials are more likely to remain workable for longer periods. Rutting is 

often attributed just two surface courses but road bases, and particularly binder courses, 

can also deform significantly. The requirements of the wheel-tracking test for hot rolled 

asphalt binder course should be similar to those for surface course because, although the 

binder course will not attain temperatures as high as the surface course during service, it 

is expected to have doubled the life. The counter is that, when the surface course is 
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replaced, any permanent deformation in the lower layers will be taken out. 

Nevertheless, the use of more deformation resistant materials, such as multi-grade and 

polymer bitumen’s with a high modulus base is advisable. 

 

 

 

8.5.3.2 Delivery temperature 

 

Asphalt mixtures delivered to site at temperatures higher than necessary not only 

increase the time available for compaction but can also render the asphalt too workable 

to lay; it also wastes energy and promotes binder hardening. The delivery temperatures 

during hot weather should only be high enough to achieve the required workability. 

Reducing the delivery temperature for hot rolled asphalt from 160°C to 140°C reduces 

the time available for compaction by about 30%. 

 

 

 

8.5.3.3 Layer thickness 

 

The laid thickness markedly effects the time available for compaction, although contract 

specifications will normally have stipulated thicknesses for each asphalt layer. More 

flexible contract specifications would allow thinner layers to be used in hot weather 

conditions and thicker layers in cold weather conditions.  

 

 

8.5.3.4 Rollers 

 

The use of relatively light roller for initial compaction could be considered during hot 

weather conditions, particularly when rolling hot rolled asphalt with pre-coated 

chippings. A reduction in roller mass would diminish the risk of non-compliance with 

texture depth requirements due to excessive embedment of the chippings. 
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8.5.3.5 Time of day 

 

Laying during the evening and night has additional advantages during hot weather. The 

lower air temperatures, and a reduced level or absence of solar radiation, will enable the 

substrate to cool more rapidly. The cooling time of a subsequent hot overlay is then 

considerably reduced. Road closures at this time will reduce any traffic delays and 

deformation. 

 

If the weather and traffic conditions are such that the risk of premature damage to a 

newly opened surface is unacceptable in, for example, a speed-restricted contra flow 

system, a cessation of laying should be considered. Cessation of laying during the 

hottest part of the day, say when the road surface temperature exceeds 45°C, will not 

only help the Contractor to minimise problems of achieving asphalt compliance in terms 

of profile and texture depth, but will also enable the surface to cool more rapidly in the 

evening when laying can be resumed. Laying can then me resumed when the surface 

temperature has fallen to 30°C, usually at about 20:00, when the temperature at the 

depth of 100mm us also likely to be less than 30°C. Laying earlier at higher surface 

temperatures increases the overall cooling time of the pavement and, therefore, it is not 

advisable. 

 

This is good in theory but difficult in practice with most contractors, for obvious 

commercial reasons. 

 

 

 

8.5.3.6 Parking restrictions 

 

After completion of laying and prior to opening to traffic, construction traffic should not 

be allowed on the newly laid asphalt. The parking of construction traffic on asphalt 

during hot weather may cause unacceptable, saucer shaped, depressions under the 

wheels (Haydon, 1994). 
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8.6 Conclusions 
 

The main conclusions of this section are: 

 

  

• Below about 50°C the logarithm of the wheel-tracking rate is 

approximately proportional to the temperature; the wheel-tracking rate 

flattens off. 

 

• The loading time, and not the speed, influences the resultant deformation. 

However, the low deformations due to static load show that dynamic 

effects are important. 

 

• A risk model can be used to assess the probability of unacceptable 

deformation. However, economic considerations are unlikely to justify the 

effort required to make use of the risk assessment model in most cases. 

 

• The best relationship found to model deformation implies that the 

permanent deformation is  proportional to the traffic flow, the wheel-

tracking rate at 45°C and the logarithm of the age plus one. However, the 

value of the square of the correlation coefficient (after adjustment for the 

degrees of freedom) is a modest 0.46. 

 

• There are various physical actions that can be taken when laying hot 

asphalt in adverse hot weather conditions to minimise the potential 

problems. 

 

Specification clauses have taken into account the research already developed on the 

findings that are evidenced in this section.  



Chapter 9 – Stiffness Properties Of SMA Mixtures 

 

_____________________________________________________________________________________________________ 
126 

CHAPTER 9 – STIFFNESS PROPERTIES OF SMA 

MIXTURES 

 

9.1 Introduction 
 

The previous chapter presented a method to design the coarse aggregate stone skeleton 

of SMA. The other important component is the mastic that binds the stone skeleton. 

Mastic consists of the binder, fine aggregate, fibres and fillers. Because the mechanical 

properties of SMA rely on the stone to stone contact, it often clamed they are less 

sensitive to binder variations than the conventional mixes (APRG 1997a, Brown et al, 

1997b, Robert et al 1996, Kandhal et al 1998b). 

 

This chapter discusses the research undertaken to determine the influence of the binders 

and fillers on the elastic properties of SMA mixes.  

 

Investigations into stiffness properties undertaken as part of this research involved 

typical Queensland Department of Main Roads Stone Mastic Asphalt with a Polymer 

Modified Binder (PMB) containing Styrene-Butadiene-Styrene (SBS) co-polymer and a 

conventional binder (Class 320 bitumen). In addition, the stiffness properties of SMA 

manufactured to the grading requirements of APRG (1997a) and AAPA (2000a) were 

investigated Resilient modulus testing was undertaken at a range of temperatures to 

provide information on the temperature susceptibility of resilient modulus.  

 

 

 

9.2 Plant Produced SMA10 to DMR (QLD) MRS11.33 
 

The samples prepared during the comparison of compaction methods as discussed in 

Chapter 5 were used to determine the Resilient Modulus at 25°C by the indirect Tensile 

Method (AS/NZS 2891.13.1).  Sampling and testing was performed by others in the 

head laboratories of MRD Brisbane. 

 



Chapter 9 – Stiffness Properties Of SMA Mixtures 

 

_____________________________________________________________________________________________________ 
127 

The effect of air voids on Resilient Modulus is shown in Figure 9.1, that contains data 

for samples of plant produced SMA10 to DMR(QLD) MRS11.33 compacted by both 

Marshall Hammer and Gyropac compaction to achieve a spread of void contents. 

Specimens with voids contents less than 7.0% were prepared with the Marshall 

Hammer and those with voids contents greater than 7.7% with the Gyropac compactor. 

The modulus remains essentially constant for voids up until about 9.0%, before 

reducing sharply. The data shows a rapid reduction in strength with increasing voids 

contents which could illustrate the inappropriateness of the test to material with void 

contents in excess of 9.0%. At 5% voids, the average resilient modulus is 1073 MPa. 

 

 

 
Figure 9.1 – Effect of voids content on resilient modulus 

 

 

Generally the data in this and the next section is proved to be very similar whether the 

design mix details are taken from an approved SM 10 or SM 14, or the interim 

approved design for the SM 12 in North Queensland. The changes in certain criteria are 

followed through the whole specification to the completed stage of performance driven 

analysis. This ensures that so long as the total of one type of mix size is used then the 

sample is representative of an SMA. 
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9.3 Laboratory Produced Samples to DMR (QLD) MRS11.33 
 

DMR (Qld) (2001a) reported on resilient modulus testing undertaken on laboratory 

produced asphalt compacted with “gyropac” compaction. A summary of the modulus 

values reported is given in Table 9.1 which shows that the mixes containing SBS PMB 

have a significantly lower resilient modulus than this made with the Class 320 bitumen 

binder. APRG (1997a) states that using soft grade binders such as those modified with 

SBS polymer will produce a very low resilient modulus of about 2,000 MPa or less. The 

values determined for the plant produced SMA10 and reported for the DMR (Qld) 

(2001a) investigations are consistent with the APRG (1997a) statement. The resilient 

modulus for the plant produced SMA10 (Approximately 1,073 MPa @ 5% voids) is 

significantly lower than that of the laboratory produced mix (1,535 MPa). The plant mix 

contained natural coarse sand and fly ash filler compared to all crushed rock fines and 

filler in the laboratory mix. The lower modulus can be attributed to the use of rounded 

smoother textured particles in the plant produced mix (APRG 1997a). 

 

 

Mix Type SMA10 DG14N SMA10 

Properties AB5  

PMB + 

UFD  

Filler 

C320 

Bitumen  

+ UFD 

Filler 

C320 

Bitumen  

+Lime 

Filler 

C320 

Bitumen 

+Fly ash 

Filler 

C320 

Bitumen 

+UFD 

Filler 

AB5S 

PMB 

Fly ash 

Filler 

Voids 

Content 

5.5% 5.3% 5.2% 5.1% 4.5% 4.1% 

Bitumen 

Content 

6.0% 6.0% 6.0% 6.0% 4.4% 5.9% 

Resilient 

Modulus 

1,535 

MPa 

3,247 

MPa 

5,918 

MPa 

3,400 

MPa 

6,100 

MPa 

1,691MPa 

AB5 PMB contains SBS to DMR (Qld) MRS11.18 Classification A5S (AUSTROADS A15E) 

Added filler is 6% by mass to give a total filler content of 10% by mass 

Table 9.1 - Resilient Modulus for various Queensland mixes (After DMR (Qld) 

2001a) 
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Similarly, it would be expected that for the SMA10 mixes with Class 320 bitumen, the 

mix with ultra fine dust (U.F.D.) filler would have a greater modulus than the mix with 

fly ash filler. The data in table 9.1 shows the reverse however that the flexural stiffness 

testing discussed in Chapter 7 does show the expected trend with some “scatter” in the 

data. Flexural testing is considered more reliable than the indirect tensile test for the 

measurement of stiffness (Read and Brown 1996). In this case, the flexural testing 

covers a greater number of samples compared to the resilient modulus testing which 

also contributes to its reliability. The results form the resilient modulus testing fit within 

the range identified from the scatter in the flexural stiffness testing. The sample with 

U.F.D filler has a slightly higher voids content compared to the fly ash filler sample 

which may have contributed to a lower modulus value. 

 

The effect of adding lime to increase the stiffness of asphalt has been long recognised 

(NAASRA 1994a). The magnitude of the increase with increasing percentages of lime 

varies between aggregate sources (Stroup-Gardiner et al 1988). The use of lime filler 

has been reported to increase the stiffness by around 20% for various mix types (Baig 

and Wahhab 1998, Ishai and Craus 1996) whereas the results for SMA10 with Class 

320 bitumen shown in Table 9.1 shown an increase of around 78% when lime filler is 

used in preference to the U.F.D. and fly ash fillers. The high proportion of filler in the 

SMA would be expected to contribute to the increased stiffness, however the flexural 

stiffness testing discussed in Chapter 7 shows an increase in the vicinity of 18% which 

is more consistent with published results. The limited resilient modulus testing reported 

in Table 9.1 may be giving unrepresentative differences in the stiffness values for the 

various mix types. 

 

It is reported that mixes with larger maximum sized particles will tend to have greater 

resilient moduli than mixes with smaller particles (APRG 1997a). The modulus values 

from the SMA14 and SMA10 with PMB show this trend. It is also reported that the 

quantity of binder will also affect the resilient modulus. Within the normal range of 

binder contents (typically 3% to 10% by mass) the higher the bitumen content, the 

lower the resilient modulus of the mix will be (APRG 1997a). By comparing the 

SMA10 with Class 320 bitumen and U.F.D. filler with the DG14N as shown in Table 

9.1, the bitumen content decreases from 6.0% to 4.4% and there is an increase in the 
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maximum particle size. There is an increase in modulus from 3,247 MPa to 6,100 MPa 

due to the combined effect of these changes which is consistent with the expected trend.  

 

Maccarrone et al (1997b) reported the following resilient modulus values for: 

 

•  AC14 (4.6% bitumen and 5.2% voids) 5,250 MPa 

 

•  SMA-14 (6.0% bitumen and 4.3% voids) 4,500 MPa 

 

•  CSRE-1 (6.8% bitumen and 5.1% voids) 3,570 MPa 

 

Due to the low voids content for the SMA-14, a lower modulus might be expected at 

5.0% voids. These results show a 370 MPa reduction in resilient modulus for each 0.5% 

increase in bitumen content. A typical upper limit for resilient modulus for a dense 

graded asphalt with Class 320 bitumen is 5,000 MPa (APRG 1997a) however the value 

is dependent on the mix specification used (AUSTROAS 1992a). The value of 6,100 

MPa quoted in Table 9.1 is higher than typically adopted for a Queensland mix 

(AUSTROADS 1992a) however may be a function of the crushed rock fines an filler 

used  for this mix. A value of 4,527 MPa has been quoted for DMR(Qld) DG14 with 

Class 320 bitumen however no details are given of the fine aggregate and filler type 

used (Frederick 1999). A typical DG14 in the Brisbane area would contain some natural 

sand as fine aggregate and fly ash filler which could account for the lower value.   

Testing of samples from North Queensland have been performed previously through the 

normal state wide asphalt mix design approvals.  Similar results are evident.  

 

 

 

9.4 Effect of Temperature 
 

The resilient modulus significantly decreases as temperature increases (Barksdale et al 

1997, di Benedetto and de la Roache 1998). AS/NZS 2891.13.1 states that equations are 

available in the AUSTROADS Pavement Design Guide (1992a) to convert the resilient 

modulus at the standard settings to the resilient modulus for the particular field 
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environment in respect to temperature and load time. AUSTROADS (1992a) states that 

because of the many factors which may affect the result, it is recommended that 

whenever possible the values to be used for design be determined by testing a sample of 

the proposed mix, under conditions of temperatures and loading similar to those 

expected in the field.  

 

However, AUSTROADS (1992a) does include the “Shell Method” nomographs to 

obtain an estimate of the modulus. These are included in AUSTROADS (1992a) as 

Figure 6.6 (Van de Poel nomograph for bitumen stiffness) and Figure 6.7 (Bonnaure et 

al nomograph for asphalt stiffness). It is important to note that the penetration or 

viscosity data used as inputs to the nomographs are the values obtained for bitumen 

which has been subjected to the Rolling Thin Film over (RTFO) test. Other similar 

methods of relating bitumen stiffness to mix stiffness are given in Roberts et al (1996). 

 

These methods of estimating the mix stiffness use inputs such as the percentage of 

bitumen, aggregate and voids – all by volume. As shown in Table 9.1, the type of filler 

significantly impacts on the mix stiffness however is not considered by these methods. 

For low bitumen stiffness, e.g. higher temperature situations, the actual mix stiffness 

depends largely on the aggregate properties, particularly the angularity of the aggregates 

(AUSTROADS 1992a). In addition, Woodside et al (1998) demonstrated that the 

addition of 0.3% of loose fibres increased the stiffness by 48% compared to an increase 

of 10% when palletized fibres were used. The effects of fibres are not considered by the 

various nomograph methods. Use of these nomographs to estimate the effects of 

temperature is questionable. This is further complicated in Queensland where SMA 

typically contains PMB which means that the mixes would be expected to perform 

differently to the mixes produced with conventional binders. 

 

 

 

9.5 Investigation of Temperature Effects 
 

Given that the nomograph methods were developed using well compacted dense graded 

asphalt (Roberts et al 1996) and the effects of filler type and fibres on the modulus, 
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suggests that the methods may not be applicable to SMA. Stephenson (2002) 

constructed a test plan which was designed to investigate the temperature susceptibility 

of three SMA mixes. Mixes were made to the centerline grading of SMA10 from DMR 

(Qld) MRS11.33 and APRG (1997a). The dilation point grading approximated the 

AAPA (2000a) SMA10 grading. Samples were prepared at four different bitumen 

contents, initially to investigate the sensitivity of voids content to changes in bitumen 

content for each mix type. After conditioning for one hour at 150°C, the samples were 

compacted with 120 cycles of the “Gyropac”. The resilient modulus of each mix was 

determined at 10°C, 20°C, 30°C and 40°C so that the effects of temperature could be 

investigated.  

 

Figure 9.2 summarises the resilient modulus testing for the APRG (1997a) SMA10. It 

would be expected that resilient modulus will decrease with increasing bitumen content 

and increasing voids content (APRG 1997a). For the APRG (1997a) mixes the 

following observations can be made. APRG1 has the highest bitumen content (6.5%) 

and the second highest voids content (8.4%) which is consistent with it having the 

lowest resilient modulus of the four APRG (1997a) samples. Of these mixes, APRG3 

has the highest resilient modulus which is a reflection of it having the lowest voids 

content (5.4%) and the third lowest bitumen content (6.0%). The higher resilient 

modulus of APRG4 (5.3% bitumen, 9.2% voids) compared to APRG2 (6.2% bitumen, 

8.2%voids) shows that the 0.9% reduction is bitumen content has a greater effect on 

increasing stiffness than the stiffness decrease due to the 1.0% increase in voids content. 
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Figure 9.2 – Effect of temperature on resilient modulus of SMA 10 manufactured 

to APRG (1997a) 

 

 

Figure 9.3 summaries the resilient modulus testing for the AAPA (2000a) SMA10. The 

narrow spread of results suggests that the stiffness of the AAPA (2000a) mixes are less 

sensitive to changes in bitumen and voids contents however, it is also a reflection of the 

small range of bitumen contents (5.8% to 6.75%) and voids contents (6.3% to 7.8%) 

tested. Samples AAPA1 and AAPA3 both achieved 6.3% voids content. As expected, 

AAPA1 with 6.75% bitumen has a lower resilient modulus than AAPA3 with 6.0% 

bitumen content. AAPA3 (6.0% bitumen, 6.3% voids) and AAPA4 (5.8% bitumen, 

7.8% voids) have similar bitumen contents and the lowest resilient modulus value is 

from the sample with the highest voids content.  

 

 



Chapter 9 – Stiffness Properties Of SMA Mixtures 

 

_____________________________________________________________________________________________________ 
134 

 
Figure 9.3 – Effect of temperature on resilient modulus of SMA 10 manufactured 

to APRG (2000a) 

 

 

Figure 9.4 summaries the resilient modulus testing for the DMR (Qld) MRS11.33 

SMA10. For the DMR(Qld) MRS 11.33 mixes at 20°C there is very little difference in 

resilient modulus for samples QLD2 (5.9% bitumen, 9.3% voids) and QLD1 (6.6% 

bitumen, 8.0% voids) suggesting that the softening effect of increased bitumen is 

balanced by the stiffening effect of reduced voids. QLD4 (5.3% bitumen, 11.3% voids) 

has the lowest resilient modulus which is a reflection of the high voids content however, 

it would have been expected that the low bitumen content may have resulted in a higher 

resilient modulus particularly when compared to QLD3 (5.5% bitumen, 10.3% voids) 

which has the highest resilient modulus. 
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Figure 9.4 – Effect of temperature on resilient modulus of SMA 10 manufactured 

to DMR (Qld) MRS 11.33 

 

 

From Figures 9.2, 9.3 and 9.4, it can be seen that there is a very strong relation between 

resilient modulus and temperature with r² values of 0.98 or greater. At a common 

temperature (say 20°C) for a given mix (say APRG 1997a), there are dual effects on the 

resilient modulus of varying bitumen contents and voids contents.  

 

To assess the effect of voids on stiffness, the mixes were grouped based on bitumen 

content as shown in Figure 9.5. Figure 9.5(a) shows mixes with 6.5% to 6.7% bitumen 

content and the resilient modulus values are ranked in reverse order to the voids 

content. Similar trends are shown in Figure 6.5(b) (5.9% to 6.0% bitumen) and Figure 

6.5(c) (5.3% bitumen). The influence of the aggregate grading on resilient modulus, at 

constant bitumen content, is in its affect on the voids content of the compacted mix.  
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Figure 9.5 – Effect of voids content on different SMA10 mixes with similar bitumen 

content. 
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The statistical analysis software SPSS (SPSS Inc 2000) was used by Stephenson 2002 

to investigate relationships between resilient modulus as the dependant variable and the 

independent variables of bitumen content, voids content and temperature for the three 

mixes as well as combined data set made up of the three mixes. The models returned 

from this analysis and their R² values are shown in Table 9.2. Separate models were 

also investigated using temperature as the single independent variable and are shown in 

Table 9.3. Comparison of the R² values between the models in Tables 9.2 and 9.3 shows 

that temperature is the dominant independent variable in predicting resilient modulus 

and the inclusion of additional independent variables does not significantly improve the 

precision of the predicted resilient modulus values.  

 

 

Mix Types Regression Equation R² value 

APRG (1997a) Log10 RM = 4.847 – 0.0388 Temp – 0.102 % Bit 0.967 

AAPA (2000a) Log10 RM = 4.631 – 0.040 Temp – 0.0546% Bit 0.981 

DMR(Qld) 

MRS11.33 

Log10 RM = 4.4.56 – 0.0377 Temp – 0.041% Bit 0.981 

Combined Data Log10 RM = 4.569 – 0.0388 Temp – 0.0536% Bit 0.973 

 

Table 9.2- Resilient Modulus regression equations incorporating 

temperature and bitumen content as independent variables 

 

 

Mix Type Regression Equation R² value 

APRG (1997a) Log10 RM = 4.232 – 0.0388 Temp 0.956 

AAPA (2000a) Log10 RM = 4.292 – 0.0400 Temp 0.979 

DMR(Qld) 

MRS11.33 

Log10 RM = 4.217 – 0.0377 Temp 0.978 

Combined Data Log10 RM = 4.247 – 0.0388 Temp 0.970 

 

Table 9.3 - Resilient Modulus regression equations incorporating 

temperature as the independent variable 
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The equations included in Table 9.3 have been used to predict the resilient modulus of 

each mixes at a range of temperatures as shown in Table 9.4. These results are also 

shown in Figure 9.6. 

 

 

TEMP (°C) APRG (1997a) AAPA (2000a) DMR (Qld) ALL DATA 

10 6,982 7,798 6,918 7,228 

20 2,858 3,105 2,904 2,958 

30 1,169 1,236 1,219 1,211 

40 479 492 512 495 

Table 9.4 - Predicted Resilient Modulus based on temperature 

 

 

 
Figure 9.6 - Predicted Resilient Modulus based on temperature 

 

 

From Table 9.4 and Figure 9.6, it can be seen that for typical pavement temperatures in 

Queensland (>20°C) all equations predict similar values of resilient modulus. It is 
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proposed that the equation prepared using all data be used to predict the resilient 

modulus of SMA10 manufactured using Class 320 bitumen, 0.3% cellulose fibres and 

fly ash filler. Given that higher fibre contents and alternative fillers will result is stiffer 

mixes, the proposed relationship will give a lower bound estimate of the effect of 

temperature on resilient modulus.  

 

Stephenson (2002) proposed a relationship as follows: 

 

     (4.247-0.0388 Temp) 

RM = 10 
 

Similar testing is being performed in a continuous effort to endorse the use of SMA 

12mm mix in North Queensland. The results of testing will use the format of the 

research data from above, and will be discussed in Chapter 7. 

 

 

 

9.6 Summary 

 
Testing of a range of laboratory and plant produced SMA10 highlighted the effect of 

filler type, incorporation of fibres and type of binder on the mix stiffness.  The use of 

simple nomographs such as included in AUSTROADS (1992a) are not appropriate for 

estimating SMA stiffness as the effects of these significant mix component are not 

included.  The effects of temperature on mix stiffness can be determined using 

equipment such as the MATTA. 

 

An investigation was undertaken into the effects of changes in the SMA10 grading by 

considering samples manufactured to the gradings of APRG (1997a), APPA (2000a) 

and DMR (Qld) MRS11.33.  It was found that temperature has the most significant 

effect on the asphalt stiffness however, for constant bitumen content, the increase in 

stiffness was proportional to a reduction in voids content. The type of aggregate grading 

chosen does not greatly affect the stiffness rather, the influence of the aggregate grading 

on resilient modulus, at constant bitumen content, is in its affect on the voids content of 
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the compacted mix.  At typical Queensland in-service pavement temperatures, all 

SMA10 types with Class 320 binder produced similar resilient modulus values. 
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CHAPTER 10 – FATIGUE PROPERTIES OF SMA 

MIXTURES 
 

10.1 Introduction 
 

This chapter discusses the research undertaken to determine the influence of the binder 

and filler components of the mastic on the fatigue properties of SMA mixes. Much of 

the research has been developed by AAPA and their associated senior officers, other 

related technical boards, and other Papers such as Stephenson’s Report. 

 

Investigations into fatigue life were undertaken and the research involved a typical 

Queensland Department of Main Roads Stone Mastic Asphalt with a Polymer Modified 

Binder (PMB) containing Styrene-Butadiene-Styrene (SBS) co-polymer and a 

conventional binder (Class 320 bitumen). For the SMA with Class 320 bitumen binder 

three different mineral fillers were used. These were Ultra Fine Dust, Hydrated Lime 

and Fly ash which are typical of the fillers used in Queensland; the actual choice 

normally being made on regional availability. The investigation also included a typical 

Dense Graded Asphalt mixture with Class 320 bitumen binder as this is the mix 

routinely used through out the State of Queensland. 

 

This chapter also presents new derived fatigue relationships that can be used for the 

design of pavements incorporating SMA layers. 

 

 

 

10.2 Experimental Work 
 

To investigate the fatigue properties of Stone Mastic Asphalt, the prior research 

involved the designing of a laboratory test program. The mix investigated was a centre-

line grading complying with Queensland Department of Main Roads Standard 

Specification MRS11.33 “Stone Mastic Asphalt Surfacing” (DMR (Qld) MRS11.33). 

The binder content remained constant at 6% by mass of the total mix including the 
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binder and 0.3% by mass of cellulose fibres were added. To assess the impact of the 

binder on fatigue, a polymer modified binder and a conventional binder (Class 320 

bitumen) were used with the same grading and mineral filler. The polymer modified 

binder selected was BP “AB5” incorporating Styrene-Butadiene-Styrene (SBS) co-

polymer. It was manufactured to comply with the A5S Classification of DMR (Qld) 

MRS11.18. 

 

To assess the impact of the filler on fatigue, three different mineral fillers were used 

with the same binder (Class 320 bitumen) and grading. The fillers used were Ultra Fine 

Dust – quarry manufactured fine material – Hydrated Lime and Fly ash. These fillers 

were selected because they are typical of those used in Queensland with the actual 

choice depending on regional availability. All mixes used the same quantity (6% by 

mass) of added filler. To allow comparison of the fatigue of SMA with a conventional 

Queensland Department of Main Roads mix, a 14mm Dense Graded mix to Standard 

Specification MRS11.30 “Dense Graded Asphalt Pavements” was included in the 

fatigue programme. The DG14 mix was chosen because it has historically been used in 

the applications where SMA10 is now specified. Figure 10.1 shows the centerline 

grading curves for the SMA10 and DG14 mixtures used in the fatigue testing 

comparisons. 
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Figure 10.1 – Grading Curves for SMA10 and DG14 Mixtures 

 

The mixes were produced at the Herston laboratory of the Queensland Department of 

Main Roads. After mixing, the mix was conditioned for 60 minutes at 150°C before 

slabs were compacted using a BP Slab Compactor. After the compacted mix cooled, 

50mm high x 65mm wide x 390mm long beams were cut from the slabs. These are 

nominal measurements and actual dimensions were recorded and used as the input into 

the fatigue testing software. The bulk density of the beams was determined by the water 

immersion method (DMR (Qld) Q319, Q320) which allowed the voids content (DMR 

(Qld) Q311) to be calculated (AUSTROADS AST03:1999). 

 

The beams were tested in a Four Point Bending Fatigue Test Apparatus, manufactured 

by the Australian company Industrial Process Controls (IPC). Test procedures were 

generally in accordance AUSTROADS Provisional Method AST03:1999 however a 

range of strain levels were investigated so that robust fatigue relationships could be 

developed. All testing was undertaken at 20°C ± 0.5°C and used the controlled strain 

mode of loading with a haversine wave form selected. Initial stiffness was taken as the 

stiffness after 50 loading cycles and fatigue defined as the point where the stiffness 

reduced to 50% of the initial value. 

 

 

Series Type Binder Filler Number of 

Beams 

Voids 

content 

I SMA10 AB5 PMB U.F.D. 17 3.5% to 7.3% 

II SMA10 C320 Bitumen U.F.D. 24 3.3% to 7.7% 

III SMA10 C320 Bitumen Lime 24 4.6% to 8.4% 

IV SMA10 C320 Bitumen Fly ash 30 2.8% to 8.1% 

V DG14 C320 Bitumen U.F.D. 12 4.2% to 5.7% 
 

Note: U.F.D. = Ultra Fine Dust 

Table 10.1 - Schedule of Fatigue tests showing binder and filler types 

 

 

As shown in Table 10.1, beams with a range of air voids contents were tested so that the 
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influence of voids on fatigue life could be examined. The range of voids contents came 

from the beam cut from the compacted slabs. The outer beams exhibited the highest 

voids contents as was identified by Maccaronne et al (1997a). Given that the materials 

used in each mix type remained constant, the different air voids contents are a result of 

different compaction levels and can be used to gain an appreciation of the effect of 

compaction on the fatigue properties.  

 

 

 

10.3 Test Results 

 

10.3.1 Analysis of Test Results 

 

Plots were produced for tensile strain, flexural stiffness, cumulative dissipated energy 

and core temperature.  The tensile strain and core temperature plots were produced to 

ensure that the specification conditions were being satisfied.  Some plots were also 

produced for phase angle.  The flexural stiffness and cumulative dissipated energy plots 

were used to estimate the fatigue properties of the mixes. 

 
 

10.3.2 Effect of Voids Contents 

 

The influence of the mix design parameters on the fatigue life has been the subject of 

many studies.  The feature common to these studies has been the attempt to predict the 

fatigue behavior of the mixes from their compositions.  An analysis of the influence of 

the each of the parameters is difficult due to their interdependencies (di Benedetto and 

de la Roche 1998).  Due to the influence of flexural stiffness on the fatigue life, those 

parameters that have the most influence (air voids, binder type and content/film 

thickness and its rheological properties, and aggregate type and grading (Baburamani 

1999)).   The literature reviews of the detailed research in this area demonstrates the 

relationship between initial flexural stiffness and air voids, binder type (Class 320 

bitumen and SBS PMB), filler type, and aggregate grading (SMA10 and DG14).  The 

results for the fatigue life production models were prepared on the basis of 
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incorporating the testing of all voids contents. 

 

 

10.4 Implications for the Design of the SMA Mastic 
 

Given the strong relationship between stiffness and fatigue life, the change in stiffness 

makes significant differences in fatigue life. The testing programme has shown that the 

type of filler and binder used in the SMA significantly affects the elastic properties and 

hence the fatigue life of the mix.  

 

For the mixes containing Class 320 bitumen, the higher fatigue life measured for the 

SMA mixes confirms the claim that the higher bitumen content of SMA10 compared to 

DG14 results in greater fatigue life (AAPA 2000a). The change in grading to allow the 

higher bitumen content of SMA10 compared to DG14 results in greater fatigue life 

(AAPA 2000a). The change in grading to allow the higher bitumen content resulted in a 

10 fold increase in fatigue life. 

 

The choice of binder has dramatic implications on the fatigue life. For the PMB used in 

this research, it resulted in a 100 fold increase in fatigue life. Of the SMA10 mixes 

containing the same binder, the fatigue life is a function of the filler type. Lime filler 

produced the shortest fatigue life, followed by ultra fine dust and fly ash. 

 

The testing machine requirements to measure phase angle as contained in 

AUSTROADS AST 03:1999 are not appropriate for high strain levels e.g. greater than 

600µε or for higher bitumen contents such as typically encountered in SMA. 

 

 

 

10.5 Summary 
 

The results of the experimental programme to investigate the fatigue life of SMA has 

been summarised and discussed. Strain based fatigue life prediction equations have 

been analysed by others for a number of SMA10 mixes manufactured to DMR (Qld) 
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MRS11.33 as well as DG14 manufactured to DMR (Qld) MRS 11.30.  

 

The testing programme researched showed the fatigue life benefits of using SMA in 

place of DG asphalt however it must be appreciated there will be a corresponding 

reduction in the stiffness of the mix. The fatigue life benefits of using the SBS-PMB 

were clearly demonstrated however this comes with the sacrifice of significantly 

reduced stiffness. The reduction in stiffness when using the SMA10 and/or SBS-PMB 

will need to be considered as part of any pavement design process.  

 

The testing has also quantified the effects on stiffness and fatigue life of commonly 

used fillers. This has implications for generic type specifications where a variety of 

fillers are permitted in nominally the “Same” mix. 
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CHAPTER 11 – CONTINUED USE OF SMA 
 

11.1 Introduction 
 

The previous two Chapters considered aspects of SMA that are important for the 

analysis and structural design of pavement layers. One of the fundamental serviceability 

requirements of asphalt mixes, especially surfacing layers, is resistance to permanent 

deformation (rutting) under applied traffic loads. The investigation into deformation 

resistance comprised of two parts namely: 

 

• Part A Development of new fundamental test method to assess the effects 

of the stone skeleton; and 

 

• Part B Assessment of the effects of different fillers and binder 

 

 

 

11.2 Advantages and Disadvantages of SMA 
 

ARRB Transport Research and Austroads reported the advantages and disadvantages of 

SMA in a Technical Note 16. The advantages were listed as: 

 

• SMA provides a textured, durable and rut resistant wearing course.  

 

• The surface texture characteristics of SMA were similar to OGA so that 

noise generated is lower than that on DGA but equal to or slightly higher 

than OGA. 

 

• SMA can be produced and compacted with the same plant and equipment 

available for normal hot mix (DGA), using the above procedure 

modifications. 
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• SMA may be used at intersections and other high traffic stress situations 

where OGA is unsuitable.  

 

• SMA surfacing may provide reduced reflective cracking from underlying 

cracked pavements due to its flexible mastic.  

 

• The durability of SMA should be equal, or greater than, DGA and 

significantly greater than OGA.” 

 

 

Point three, in the above list, states that a modified procedure should be used. For SMA, 

the recommended method of compaction is to use heavy steel rollers with limited 

vibration. If a significant amount of vibration were to be used, then the stone and the 

mastic would separate with the mastic coming to the surface. 

 

The majority of respondents in the asphalt industry provided the same list of advantages 

and emphasised an effective texture together with a long life and durability as the prime 

benefits. In addition, other respondents stated that: 

 

 

• There us a reduction in the water spray from a wet surface with SMA when 

compared with the spray from a DGA. 

 

• The greater durability enables SMA to have a longer life and reduced 

maintenance and whole-of life costs. 

 

• When it comes to be refurbished, provided the SMA surfacing has not been 

infiltrated with water, it need not be removed when resurfacing. In contrast, and 

OGA is designed to be porous and will generally always be removed before the 

pavement is resurfaced. 
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The disadvantages of SMA were stated in the ARRB Transport Research – Austroads 

Technical Note 14 as: · Increased material cost associated with higher binder and filler 

content.  

 

• Increased mixing time and time taken to add extra filler may result in reduced 

productivity. 

 

• Possible delays in opening (the roads) to traffic as the SMA should be cooled at 

40 degrees C to prevent flushing of the binder to the surface. 

 

• Initial skid resistance may be low until the thick binder film is work off the 

surface by traffic. In critical situations, a small, clean grit may need to be 

applied before opening to traffic.” 

 

 

Point four above indicates that the initial skid resistance could be low. SMA when 

constructed has a film of mastic over its upper surface. Under the action of traffic this 

film is removed and the skid resistance increases. Typically a lower speed limit and 

warning signs are installed during this period. 

 

 

Again the respondents provided other disadvantages. These were: 

 

 

• SMA requires more attention to detail when mixing and being produced 

transported and placed in the field. However, once the expertise and capability is 

obtained, the surfacing is no more difficult to place than other pavements.  

 

• The higher temperatures of the asphalt, when polymers are used, may limit the 

distances the material can be effectively transported. 
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11.3 Summary of Requirements  

 

With there being so many possibilities with a mix design for asphalt we need to 

continually focus on the specific directions of what we need to achieve. 

The most important performance requirements are: 

• Resistance to deformation 

• Resistance to fatigue cracking 

• Resistance to reflection cracking 

• Durability – resistance to fretting 

 

Deformation resistance of asphalt can be achieved through a number of different ways: 

 

• Mix design (mechanical interlock of aggregate skeleton) 

• Binder type (binder grade / PMB) 

• Binder Quantity 

• Aggregate type (mechanical strength) 

• Aggregate fines (internal friction of mixture) 

• Filler (quantity and type) 

 

Fatigue and cracking resistance of asphalt mixtures are mainly controlled by 

characteristics associated with the binder: 

 

Volume of binder in the mixture (Vb) The greater the quantity of binder, the 

greater the resistance to crack propagation 

 

Elasticity of the binder, PMBs made with elastomeric polymers can have an 
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enormous influence on improving fatigue characteristics 

 

Fretting distress is normally associated with open grade type mixtures and thin 

surfacings. 

Fretting is usually a function of the adhesion between binder and aggregate, or the 

cohesive properties of the binder.  

Both attributes can be greatly improved by the use of PMBs 

Open grade and thin surfacings normally use modified binders 

 

 

 

11.4 Where SMA should or should not be used? 
 

SMA is not considered to be the only surfacing alternative and respondents considered 

that the pavement selection guidelines should be consulted.  

 

Generally, SMA is ideal for highways as its strength makes it more resilient to rutting. 

It is particularly useful when there has been some cracking of a previous (lower) 

surfacing. SMA with its higher bitumen content is a more flexible surfacing and this 

allows it to accommodate more movement. As a result SMA decreases the tendency of 

cracking in the lower pavement layer reflecting (or propagating) through and affecting 

the SMA surface. Other surfacings like DGA do not have this capability. The ability to 

reduce cracking provides for a longer pavement life.  

 

SMA is not suitable for small areas or for areas where the asphalt laying plant has 

restricted access. SMA is very stiff and less workable than other asphalts. This stiffness 

makes it harder to compact particularly if modified binders have been used. The 

addition the use of modified binder decrease the time available for compaction. 

Construction crews, plant and supervision must develop skills for the effective 

placement and compaction of SMA. If these skills are not available then SMA should 

not be used. Because SMA is difficult to compact by hand, it is not suitable for small or 

restricted areas.  
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SMA is constructed with the significant stone on stone contact providing considerable 

compressive strength. It is also constructed with a textured surface where the stones on 

the upper surface stand proud of the mastic. This means that the stones are less resistant 

to sideway (shear) forces on the surface caused by trucks making tight turns. In these 

cases the tyre – surface forces can cause the “proud” stones to “roll out” and leave the 

binder behind. SMA is often not recommended at smaller roundabouts and DGA may 

be more appropriate. It is emphasised that any surfacing should not be considered to be 

a “universal” solution for all conditions and local knowledge and experience should be 

used to select the most appropriate mix.  

 

SMA and OGA have been developed to provide an effective surface texture. This is a 

prime safety requirement and helps to maintain skid resistance at the higher speeds. The 

texture is also useful in decreasing the water depth on the surface. These qualities make 

for safer roads. Skids resistance is a function of the mircotexture (or the roughness of 

the individual pieces of exposed aggregate) and the macrotexture (developed from the 

arrangement of the aggregate on the surface). These textures are shown 

diagrammatically in Figure 11.1 from the Austroads “Guidelines for the Management of 

Road Surface Skid Resistance”. Both qualities are required to produce effective skid 

resistance at highway speeds. 

 

 

 
Figure 11.1 – Microtexture and Macrotexture (Source: Austroads) 

 

 

 

11.5 Modifications of the SMA to suit Queensland conditions 
 

SMA is a generic name for a type of asphalt and is therefore not the same product for all 
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counties and regions. Small changes are possible and needed to enhance some 

characteristics and to make adjustment for differences in material properties and 

climates. The SMA used in Queensland was similar but not identical to the design used 

in Germany and other parts of the world.  

The Department of Main Roads has pursued SMA pavements with increased average 

surface texture depth. This feature enhances the safety of the motorist, as the texture 

depth increase macrotexture, which helps to maintain skid resistance at higher speeds 

and better controls spray from vehicles. These features constitute significant benefits to 

the community.  

 

Main Roads pavement specialist sought industry and District involvement in the 

development of the specifications. It was deemed essential that the industry could 

provide a mix that met the specifications and had an opportunity to provide technical 

input to its development.  

 

The modification and development of SMA requires studies of the performance of small 

specimens in the laboratory under controlled tests and also studies of the surfacing on 

the road. These field trials are important to understand the performance of the SMA 

surfacings and its associated material properties. Important aspects of these field trials 

are: 

 

 

• That they are undertaken at sites similar to proposed installation; 

 

• That there is a benchmark surfacing installed at the same time on the same 

section of road, and 

 

• That the performance of the road sections be monitored closely. 

 

 

Respondents from the industry, the specialist groups and the Districts have emphasised 

the importance of field trials in the development of SMA surfacings. 
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11.6 Consequential Effects 
 

• The development of North Queensland Specifications that is different to 

the National Specifications, particularly due to the climatic conditions. 

• Manufacturing differences due to the difficulty in maintaining source rock 

specifications. 

• Due to the necessary requirement to continue using SMA, we need to 

justify any changes for the North Queensland area. 

 

 

 

11.7 Results and Correlations 
 

The outcome of the result from the testing and analysis is which design criteria leads to 

which properties in service, and what is the failure mechanism of the surfacing. This is 

difficult to quantify is some respects due to variables such as climate, loading and 

existing surface which change with location.  

 

The following be considered as a part of the Supplementary Procedure for Volumetric 

Design of SMA Based on “Determination of Dilation Point” contained in AAPA 

(2000a): 

 

• The Aberg (1992a) particle packing equation be applied to the coarse aggregate 

grading as the first stage of the extended DPM process. The series of trial mixes 

be manufactured with increasing percentages of fine aggregate of this maximum 

size rather the 4.75mm maximum size used in the current procedure.    

 

• After the trial mixes are compacted, each sample to be tested for resilient 
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modulus and a plot of sample resilient modulus against % fines be prepared vs. 

the % passing 4.75 mm sieve. Separate the data into the two distinct groups 

through which straight lines can be drawn. The intersection point of these two 

straight lines becomes the dilation point. 

 

• Similar plots of resilient modulus can be produced for % passing the other sieve 

sizes as shown in Figure 5.14 and used to determine the upper limits of the SMA 

grading curve. 

 

The results from the filler/ binder ratio testing in Chapter 7 seem to correlate with where 

there are visual problems in the field.  The excess free binder is more about the filler 

than merely just reducing the limits of bitumen content.  SMA manufacture is such that 

the producing, including, and trapping of fines/ filler is an issue.  It becomes a greater 

issue is North Queensland due to the nature of the existing older plants available for 

production. 

 

With the field voids, the spread is too great per the project.  Of the trial sections where 

there are problems, the areas of concern are patchy and not across the scope of the 

roadway.  This may coincide with the fact that the ranges of air voids percentages are 

large.  The exact locations of the results are not specific enough though to compare to 

where there is a high or low result from the filler/ binder ratio. 

 

The correlation to be drawn is one of fines and binder.  Binder is good for fatigue, but 

excess creates a ‘fatty’ mix.  Not enough binder and the mix will internally unravel even 

if the field voids are within design range.  Too much fines, and the air voids increase 

and this creates excess binder.  The stone skeleton design of SMA certainly requires an 

intricate element of design testing.  

 

 

 

11.8 Economic Analysis 
 

There are several methods for economic comparison of alternative treatment types. The 
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Present Worth methods is used as it effectively allows for both uniform series and 

sporadic events, (e.g. routine and period maintenance) which will occur during the 

service life of the pavement. With the Present Worth method, all costs are converted 

into capital sums of money which, invested now for an analysis period, would provide 

the sums necessary for construction of a project and subsequent maintenance during that 

period. (AUSTROADS 1992a). 

The criterion of Nett Present Worth (NPW) can be used to compare mutually exclusive 

projects with unequal time spans. However, NPW amounts indicate the projects’ costs 

and earnings over their duration, and where these durations are different, NPW are not 

directly comparable. An assumption must be made, that investment opportunities 

equivalent to those under comparison will continue to be available and be accepted, and 

at least until a common multiple of project durations is reached. Repetitions of the 

project cash flows must then be simulated until this common multiple of project 

durations is reached, and the NPW of these multiple projects, of equal duration, can 

then be compared (McAnally and Iliff, 1984). 

 

The concept of “whole of life” costing (WHOLC) using the NPW of the construction, 

maintenance and road user costs and any residual (salvage) value is gaining increased 

acceptance. As an example, the review of pavement types for Pacific Highway Upgrade 

(Wallce et al 1996) used a similar approach which has now been extended into the 

DMR (Qld) (1998) WHOLC guidelines for heavy duty pavements. Joseph and Bullen 

(1999) incorporated the probability estimates for all alternatives being investigated. The 

process is referred to as P-WHOLC. 

 

Whilst construction, maintenance and salvage cost are readily identifiable and can be 

easily quantified, road user costs are more intangible. Wallace et al (1996) found that 

the road user costs are by far the largest cost in any economic analysis of different 

pavement alternatives, as only a 1% difference in these user costs can be equivalent to 

the present worth of the full construction or maintenance cost. DMR(Qld) (1998) takes 

the approach that road user costs (Vehicle operating cost and normal travel time) for 

routine road operations may be excluded from the analysis as they are essentially 

similar for heavy duty pavement alternatives, provided minimum levels of serviceability 

are maintained. 
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By assuming that the road user costs are the same or negligible for the alternative 

pavement types, the concept of whole-of-life agency cost (WHOLC) is introduced 

(DMR(Qld) 2001c) which only includes the discounted sum of construction, widening 

and maintenance costs, minus salvage value. Whilst this approach is convenient for 

pavement designers, it does not appear to have total support within the Department (Vos 

2002). The approach ignores operational impacts such as variable noise levels, skid 

resistance and slash and spray effects, such issues are gaining greater public attention 

(Jones 2002). It also ignores impacts and costs to the road users such as the frequency 

of required maintenance treatments and increased user costs due to reduced 

serviceability of the pavement over time.  

 

One of the issues associated with WHOLC is the source of funding. Construction and 

maintenance costs are met from road authority budgets which are normally inadequate 

to satisfy all competing demands often leading to the choice of ‘the lower cost”, higher 

coverage option as the best network-level solution” (Vic Roads 1998). The realties of a 

limited budget can often mean that the best economic solution for an individual 

pavement section is not the lowest cost solution for the whole road network. Because 

the road user costs are borne by the individual user, they are obscured and any savings 

are not reflected as an increase in the road authority budgets. To transfer these savings 

to the road authority budget would mean an increase in either direct or indirect taxation 

which would be expected to be politically unpalatable.  

 

The most obvious of road user costs is the delays associated with maintenance or 

rehabilitation. These costs may be significant on roads with high traffic volumes with 

the additional road user costs being estimated from road works delay modeling. As an 

example, for a 4 lane section of the Bruce Highway, DMR (Qld) (2001c) assumed that 

night maintenance would be undertaken between the hours of 6pm and 6am which 

would result in insignificant maintenance delay costs so they were not considered 

further in their analysis. This simplistic assumption may be inappropriate for the 

concrete pavements option because typical maintenance diaries for concrete pavements 

(Wallace et al 1996) including digging out, replacing and curing time for slab 

replacements would be expected to require closure for longer periods.  

 

The complete economic analysis of all alternative pavement types is beyond the scope 
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of this thesis. The foregoing discussion has highlighted some of the principles that have 

been used and items that can be considered. For the purpose of this thesis, the life cycles 

aspects are discussed in the context of substituting SMA for conventional AG asphalt as 

a surfacing.  

 

 

11.9 Summary 
 

The continued use of SMA in the Northern region under tropical climatic conditions 

will depend on the balance of alliance type discussions between DMR (MRD) Peninsula 

and the local manufacturing and laying companies. The guidelines are becoming clearer 

and more identifiable as we progress, and even though criteria remain the same the 

limits are being tightened. Methods to convert the stiffness and fatigue relationships 

derived under standard test conditions to actual pavement loading and temperature 

regimes were developed.  

 

It was found that the design stiffness values currently adopted to DMR (Qld) for their 

SMA14 are significantly higher than those reported elsewhere and are inappropriate for 

the service temperature conditions. This is of concern for any pavement studies because 

the pavement design relies on regular overlays to increase the pavement strength during 

the life of the pavement. This will not be such an issue where the surfacing layer is 

considered as a non-structural layer.  

 

The difference between overlay design by the AUSTROADS (1992a) and mechanistic 

methods is an issue that remains unresolved at the National level (Jameson 1996). The 

AUSTROADS (1992a) method is applicable to dense graded asphalt overlays and the 

development of appropriate curvature functions for SMA/PMB for overlay design is an 

area where further research is justified.  

 

The economic analysis shows that where increased life of the total pavement structure 

can be expected from the overlay using SMA/SBS, then there is sound justification for 

using the more expensive product. 
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To summarise the filler/ binder and voids testing part of the Chapter, we need to reflect 

on the actual level of current testing.  Analysis tables such as the one in section 7.5 give 

us a clear indication of the sections and areas where there are problems, and allow the 

correlation of these distinct locations against other design criteria. 
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CHAPTER 12 – CONCLUSIONS AND 

RECOMMENDATIONS 
 

12.1 Introduction and Overview 
 

The introduction of SMA into many marketplaces has been undertaken against a 

background of the change from empirical mix design methods to performance – based 

and performance – related mix design methods. Whilst the US SHRP programme has 

had a major influence throughout the world, other influences such as the desire to 

harmonize standards within the European Union have re-awakened the interest in 

asphalt mix design. This has also been a period of the implementation of a range of new 

bitumen and asphalt test procedures particularly in the USA as a result of SHRP. Most 

of the validation of this new equipment and design methods has been undertaken on 

dense graded asphalt or the US Superpave™ mixes. 

 

In Australia, a new asphalt mix design method (APRG 1997a) has been introduced 

along with a new range of test equipment (Wonson and Bethune 2000). The validation 

has been undertaken on dense graded asphalt and many of the proposed specification 

limits based on the performance of DG asphalt. This investigation of SMA has provided 

additional information that can be used in the on-going development of these test 

methods. An example was the fundamental research undertaken into the use of an 

applied vacuum to provide sample confinement in the dynamic creep test. This work 

needed to incorporate DG asphalt as well as SMA as there was no body of research 

findings to make comparisons between the performances of the two material types.  

 

Within the design process there are two distinct phases. In the asphalt mix design 

process, the proportions of the various components of the mix to achieve the structural 

properties are determined. The mix design process must ensure that a range of 

serviceability requirements are satisfied such as rut resistance, durability and surface 

texture properties. The structural design of the pavement uses the stiffness and fatigue 

properties of the asphalt layers to ensure that the imposed loads can be resisted for the 

design life. The structural and serviceability requirements often produce conflicting 
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requirements to the mix design process consists of compromises to optimize these 

requirements. 

 

This thesis has concentrated on the SMA Mix design process and then assessed the 

implications of the chosen components on the varying conditions of a Tropical Climate 

in North Queensland. Stone Mastic Asphalt can be considered as a stone skeleton made 

up of the coarse aggregate which is held together by the mastic made up of binder, fine 

aggregate, filler and fibres. The mix design can be considered as a two stage process – 

one for the coarse aggregate skeleton and the other for the mastic.  

 

 

 

12.2  Response to Aims of the Research 

 
12.2.1 Developing a Design Method 

 

Developing a design method to ensure that the important features of the coarse 

aggregate stone skeleton are attained is important. The reported rut resistance of SMA is 

generally attributed to the stone skeleton however the current design methods do not 

contain methods to assess whether this stone skeleton is achieved. With reference to the 

“Wheel Tracking Test Data”, the four SMA10 mixes investigated exhibited the same 

deformation resistance irrespective of the binder type and filler type. Because all the 

SMA10 mixes contained the same coarse aggregate, it was shown that all the SMA’s 

coarse aggregate skeleton provides the rut resistance of SMA. All combinations of 

binder and filler types produced a mortar that provided sufficient lateral restraint to the 

stone skeleton. The SMA14 mix, containing SBS/PMB and fly ash filler would be 

expected to produce a mix with a low stiffness. It has a similar rut rate to the SMA10 

mixes which further confirms that SMA’s stone skeleton is the important parameter for 

deformation resistance.  

 

The Vacuum Confined Dynamic Creep testing undertaken by Stephenson (2002) in 

conjunction with DMR (QLD) showed that the deformation resistance is dependent on 

the stone skeleton being established and the mix remaining “undilated” i.e. ensuring 
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coarse stone on stone contact is not interrupted by over filling the voids with mastic. 

Small increases in the quantity of fine aggregate above the dilation point significantly 

lowered the long term deformation resistance. This highlighted the importance of 

determining the actual dilation point and ensuring that the appropriate specification 

limits are achieved.   

 

Whilst most authorities use a demarcation between coarse and fine aggregate of either 

the 2.36mm or 4.75mm sieve, the choice appears somewhat arbitrary and based on the 

raw material classifications. The demarcation point is the same for all mix types and 

maximum sizes. Consideration of particle packing theory shows that the demarcation 

between coarse and fine aggregate is a function of the grading and the maximum size of 

the coarse aggregate. For different size mixes, the demarcation points occur on different 

size sieves. For SMA, the design criterion is to ensure that the voids in the coarse 

aggregate are not overfilled by the mastic. The effects on deformation resistance as 

demonstrated by the Vacuum Confined Dynamic Creep Test showed that this is the 

paramount consideration. Particle packing theory shows that using the 4.75mm sieve as 

the maximum size for the mortar components, as used by many researchers (NCAT 

1998c, ARRB 1998) is inappropriate. The sieve size should be varied depending on the 

grading and maximum size of the coarse aggregate. It is suggested that the cut-off 

between coarse and fine aggregate should be 2.36mm for the SMA14 and 1.18mm for 

the SMA10. The 1.18mm sieve was also identified in the predictive relationships for the 

SMA10. 

 

This research demonstrated that unless a single sized coarse aggregate is used, it is not 

possible to design an undilated mix using the Dilation Point Method (NCAT 1998c, 

ARRB 1998) in its current form. A 10mm SMA designed by the dilation point test 

method will have a grading significantly different to a mix designed to DMR (QLD) 

MRS11.33. 

 

The results from the resilient modulus testing support the Dilation Point Method. For a 

single sized coarse aggregate, it is a simple means of verifying the dilation point. For 

mixes with a more complex coarse stone structure such as the DMR (Qld) MRS11.33 

SMA10, the resilient modulus testing was able to identify upper grading limits to ensure 

an undilated “double stone skeleton” where a single dilation point could not be 



Chapter 12 – Conclusions And Recommendations 

 

_____________________________________________________________________________________________________ 
163 

identified from the change in “Gyropac” height. The concept of an undilated “double 

stone skeleton” accounts for the good rut resistance that has been reported for the 

Queensland SMA in service (Hogan et al 1999). Such a comment could not be made 

based solely on the “Gyropac” height verses the fines content due to the complex 

interactions between the two stone skeletons and the mastic. 

 

 

 

12.2.1.1 Extended Method of Design for the SMA Stone Skeleton 

 

Further development work should be incorporated into the specifications with regards to 

the Determination of Dilation Point AAPA (2002a). It has been proposed in past years 

that the process of using the DPM to ascertain the maximum particle size of the fine 

aggregate be adopted. Using the dilation point which is developed by plotting the 

resilient modulus should now be employed. The grading curve limits can be determined 

and altered with accuracy compared to the various parameters in source material and 

production limits. 

 

By incorporating these additional steps into the extended DPM of SMA mix design, 

methods are provided for selecting the maximum size of the fine aggregate in the mortar 

and determining the upper grading limits of the SMA. By using these steps, the 

extended DPM can also be applied to SMA with a “double stone skeleton” such as used 

in the DMR (Qld) MRS11.33 specification. The design of SMA mixes using the 

extended DPM provides a rational means of selecting the combined aggregate grading 

to ensure that the important stone on stone contact is maintained. The extended DPM 

also gives a simple means of assessing the complex interactions within the combined 

aggregate grading which are ignored when using “recipe” methods.  
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12.2.2 Impacts of the Filler and Binder 

 

12.2.2.1 Elastic Properties 

 

An analysis of the investigation was undertaken into the effects of changes in the 

SMA10 grading by considering samples manufactured to the gradings of APRG 

(1997a), AAPA (2000a) and DMR (Qld) MRS11.33. It was found that temperature has 

the most significant effect on the asphalt stiffness however, for constant bitumen 

content, the increase in stiffness was proportional to a reduction in voids content. The 

type of aggregate grading chosen does not greatly affect the stiffness rather, the 

influence of the aggregate grading on resilient modulus, at constant bitumen content, is 

in its affect on the voids content of the compacted mix. It was shown that the resilient 

modulus is inversely proportional to the voids content. Optimisation of the bitumen 

content for each mix type will eliminate this effect.  

 

At typical Queensland in-service pavement temperatures (>20°C), all SMA10 types 

with Class 320 binder produced similar resilient modulus values. Even in the hotter 

temperatures of North Queensland where pavement can reach 50°C, the dependency of 

aggregates on stiffness remain similar. It is the mastic content and hence bitumen 

content required to fill the voids in the aggregate skeleton that causes the temperature 

dependency. 

 

The type of filler and binder used in the SMA effect the elastic properties of the mix. 

The choice of filler makes an impact on the stiffness with the lime filler having the 

greatest stiffening effect. The choice of binder has the greatest impact on the stiffness. 

As expected the incorporation of the PMB/SBS significantly reduced the stiffness. In 

applications where the load spreading ability of SMA needs to be considered, the effects 

on stiffness of the mix of the chosen filler and binder should also be considered. Testing 

of a range of laboratory and plant produced SMA10 highlighted the effect of filler type, 

incorporation of fibres and type of binder on the mix stiffness. The use of simple 

nomographs such as included in AUSTROADS (1992) are not appropriate for 

estimating SMA stiffness as the effects of these significant mix components are not 

included. The effects of temperature on mix stiffness can be readily determined using 
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equipment such as the MATTA. 

12.2.2.2 Fatigue Properties 

  

The testing programme has shown the fatigue life benefits of using SMA in place of DG 

asphalt however it must be appreciated there will be a corresponding reduction in the 

stiffness of the mix. The fatigue life benefits of using the SBS-PMB were clearly 

demonstrated however this comes with the sacrifice of significantly reduced stiffness. 

The reduction in stiffness when using the SMA10 and/or SBS-PMB will need to be 

considered as part of any pavement design process. Given the strong relationship 

between stiffness and fatigue life, the change in stiffness makes significant differences 

in fatigue life. The testing programme has shown that the type of filler and binder used 

in the SMA significantly affects the elastic properties and hence the fatigue life of the 

mix. 

 

For the mixes containing Class 320 bitumen, the higher fatigue life measured for the 

SMA mixes confirms the claim that the higher bitumen content of SMA10 compared to 

DG14 results in greater fatigue life (AAPA 2000a). The change in grading to allow the 

higher bitumen content resulted in a 10 fold increase in fatigue life. The choice of 

binder has dramatic implications on the fatigue life. For the PMB used and discussed in 

this research, it resulted in a 100 fold increase in fatigue life of the SMA. Of the 

SMA10 mixes containing the same binder, the fatigue life is a function of the filler type. 

Lime filler produced the shortest fatigue life, followed by ultra fine dust and fly ash. 

 

 

 

12.2.2.3 Rut Resistance 

 

The analysis on the various SMA mixes investigated exhibited the same deformation 

resistance when reviewing data from the measurements using the wheel tracking test. 

There was no influence of the binder type and filler type on the rut resistance of the 

SMA10 mixes tested. All the SMA10 mixes contained the same coarse aggregate and it 

was shown that it is the SMA’s coarse aggregate skeleton that provides the rut 

resistance of SMA, if produced to design mix tolerances. 
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12.2.2.4 Implications for the Choice of Mastic Materials 

 

Typically, for dense graded asphalt good rut resistant mixes would have high stiffness 

values. As explained in Chapter 10, fatigue life is inversely proportional to mix 

stiffness, therefore the stiff; rut resistance mix would result in lower fatigue life. By 

using the SMA concept, rut resistant mixes can be produced with high fatigue life 

especially by incorporating the PMB/SBS. The testing programme has also quantified 

the effects on stiffness and fatigue life of commonly used fillers. This has implications 

for generic type specifications where a variety of fillers are permitted in nominally the 

“same” mix because the differing properties of the mix and the implications on 

pavement performance are not normally considered as part of the pavement design 

process. 

 

From the wheel tracking test, it was found that all combinations of binder and filler 

types produced a mortar that provided sufficient lateral restraint to the stone skeleton. 

The selection of binder and filler needs to be made on the basis of the other required 

mix properties. Binders and filler may be selected to increase stiffness or fatigue life 

without compromising the rut resistance of SMA. This has proved similar with DMR 

(QLD Peninsula) testing over the last 6 years, where lime is the predominate filler and 

PMB for the binder. 

 

 

 

12.3 Further Research and Recommendations 

 

12.3.1 Skid Resistance 

 

If public perception and general news is worthy of concern, the latest is all about safety 

and further work could be placed on Skid Resistance and how the problems can be 

addressed in the design and construction process. This could have a very meaningful 

outcome from the point of view of the supplier, road authority and hence the public. It 

would address a topic currently blown out of all proportions and seemingly poorly 
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understood by many, including people within the industry. 

 

The skid resistance parameters are specified using a range of different criteria – speed 

environment, rainfall events, and designed crossfall of the roadway, actual tyre and 

vehicle performance. The issue with the publicised crash data is that these items need to 

be reviewed in detail before commenting on the skid resistance. Was it raining greater 

than normal? Was the vehicle speeding? Is the roadway to a designed crossfall? Was the 

vehicle roadworthy? The issue becomes a media display and the road is termed slippery 

before any real analysis. 

 

In North Queensland the initial failure mechanism has been listed as coming from early 

life skid resistance.  This may in fact have come from flushing through which is an 

entirely different problem, but one that obviously causes the initial failure, even though 

indirectly. 

 

 

 

12.3.2 Continued Monitoring 

 

The trial sections identified previously in the paper comprised significant changes in the 

graduation and the type of binder used in the SMA. 

 

The performance of this SMA trial will need to be evaluated over time, and will go past 

the timing for this paper. A continued monitoring approach should be employed, and 

the testing proposed is identified. 

 

 

The following testing is to be evaluated over time: 

 

•  Texture; 

•  Skid resistance; 

•  Permeability;  

•  Stripping potential by extraction of cores; 



Chapter 12 – Conclusions And Recommendations 

 

_____________________________________________________________________________________________________ 
168 

•  Deflection testing (if early cracking is observed). 

 

The analysis charts and graphs from Chapter 7 are not normally produced per project, 

and certainly not per quarter or year against all projects.  This would not be difficult to 

administer, and would give the specifiers a guide as to where minor changes are 

necessary to enhance the design of SMA.  The element of production and field testing 

provides most of the data necessary, although it is recommended that it be better 

identified from a location perspective.  Definitely the current projects should continue 

to form a data-base for future analysis.  

 

 

12.3.3 Texture 

 

The drawback with using negatively or porous textured materials is that the high 

proportion of coarse aggregate requires a modified binder to ensure the materials 

integrity. This may be achieved by the used of an additive such as cellulose fibers to 

create a thicker binder film on the aggregate, modification of the binder using a 

polymer. This is a fundamental change in the type of surfacing material i.e. from 

positive texture to smoother negatively textured. The addition of fibers or polymer 

modification of the bitumen produces either a thicker binder film on the aggregate or 

stronger bond between binder and aggregate. Either way this will affect the rate at 

which trafficking can remove the binder and expose the aggregate. This seems to be a 

continued point of discussion. 

 

 

 

12.3.4 Underlying Layers 
 

The SMA layers throughout the State are generally used as the final wearing course. 

Preceding this layer is a number of prior layers that are of a bituminastic, cementicious 

or aggregate nature. One of the latest specifications in pavements is the using of foamed 

bitumen as a stabilising agent for gravel layers. In North Queensland where the water 

table sits at around 1 m above sea level, and the pavements are generally at 2 m, there is 

a metre of air in between. The movement of water within the ground we believe is 
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affecting the performance of the pavement designs. The layers are also under traffic and 

sealed with a C170 primer seal at an early stage which traps water within the gravel. 

 

The issue which would create a further research study is on the basis of a vapourisation 

affect of the water table to drag the bitumen from the pavement to the surface. This then 

affects the seal layers and eventually the SMA layer on top. The ‘blotchy and almost 

volcanic’ nature of the excess bitumen on the surface of a number of sections in North 

Queensland may actually be caused from such an action. 

 

 

 

12.3.5 North Queensland Approach 

 

The North Queensland approach to local issues has been towards “overdesign”.  The 

original SMA mixes were designed with good stone on stone contact, but the aggregate 

size changed due to availability.  The reduction to a 10mm saw flushed areas and early 

failure.  It is known that flushed areas tend to promote rutting as the next failure 

mechanism, but this is not always the case.  This concept was taken from the knowledge 

in Dense Graded Asphalt. 

 

With SMA, the flushing has not lead to rutting, which has assisted in proving the stone 

to stone contact of the design is what makes SMA a rut resitanct asphalt.  In the process 

a full 100% hydrated lime was introduced as a reaction to the possible rutting.  A full 

polymer modified binder was also directed as mandatory for stiffness reasons. 

 

Over time, we have seen areas where the traffic has worn away the binder on the 

surface, and generally thay have remained rut resistant.  The “belts and braces” 

approach has come with economic implications, and certainly caused the failure 

mechanisms to have many variables.  The harder binder has assisted with internal 

raveling, but the existing SMA mix design is still very applicable.   
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12.4 Conclusions 
 

Promoted as having high rut resistance, SMA is typically used in heavy and very heavy 

traffic conditions. In Queensland, where thin surfacing layers (<40mm for SMA10) are 

used, often over old and weak pavements with high deflection, fatigue failure of SMA 

rather than rutting may be the limiting design factor. This research has provided a 

rational basis for comparing the fatigue life benefits of using SMA in place of the 

traditional dense graded asphalt. By combining the rut resistant stone skeleton with 

fatigue performance of the SBS/OMB, SMA is able to satisfy two conflicting 

requirements. 

 

This research has demonstrated that it is the coarse stone skeleton of SMA that provides 

the rut resistant properties and endorses the notion of using an extended Dilation Point 

Method to ensure that the stones skeleton remains “undilated”. By considering the 

effects of different binders and fillers used in the mastic of SMA, comprehensive 

material performance data has been proposed for SMA mixes. It has been utilised to 

both explain and predict the future performance of the road pavements under a range of 

operating conditions. This thesis presents stiffness, fatigue and deformation 

performance data which can be used as inputs for the mechanistic approach to the 

design of pavements incorporating SMA and PMBs. 

 

This research has identified the various considerations in Production and Laying of 

SMA in a Tropical Climate, and the necessity for complete quality control. SMA can 

remain the preferred asphalt of choice in a climate such as North Queensland, but under 

strict guidance control. 

 

This research has reinforced the major works undertaken by DMR (QLD Peninsula) in 

the standards for SMA, and the localised and unique modifications of the specifications. 

Adherence by all concerned will ensure that SMA provides the properties necessary for 

a long life pavement. 
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Whilst conventional DG asphalt will remain adequate for many asphalt paving 

situations, SMA fulfils a niche role for surfacing in the heavy duty, high traffic volume 

pavement situations where DG asphalt does not perform adequately. Whilst SMA is a 

premium asphalt product, it is not a panacea for all pavement construction and 

maintenance situations. The level of research into SMA technology has been great and 

needs to continue on the basis of developing new longer life pavements with a 

minimum cost and greater economic benefits to the consumer, and reduced production 

issues and a minimum of cost.  

 

The continued testing of SMA is proving to be more about free binder and the 

combination of fines to binder, but the analysis over time is vital to performance. Stone 

Mastic Asphalt is just one of the many surfacing types in the arsenal of pavement 

designers. Its use and specification requires exercising sound engineering judgment. 

This research has provided a rational basis for such judgment, and this knowledge needs 

to extend throughout the network to all the specifiers of asphalt on our roadways. 

 

 

 

 



Appendix – Problems of Stone Mastic Use in North Queensland 
 

 

_____________________________________________________________________________________________________ 
170 
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Source: Sunday Mail 26/6/2005 
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Appendix C – Trial Data – Systems 
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Appendix D – Trial Data – Actual Sites 
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Appendix E – Site Photos 
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Appendix F – Specific Results 
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Appendix K Requirements- Checklist 
Clause 
No  

Description Requirement  Comply 
 

Comme
nts 

K2 AGGREGATES    
K2.1  Grading  

 
Minimum test frequency monthly or 1 
test per 1000 tonnes or 700 m3  by 
aggregate supplier together with audit 
testing by asphalt manufacturer or  by 
asphalt manufacturer. 

  

K2.2 Flakiness Index Minimum test frequency 3 
monthly arranged by asphalt 
manufacturer. 

  

K2.3 Wet Ten Percent 
Fines 

Minimum test frequency yearly but 
marginal aggregates 6 monthly (ie: <170 
kN) arranged by asphalt manufacturer. 

  

K2.4  Wet/Dry Strength 
Variation 

Minimum test frequency yearly but 
marginal aggregates 6 monthly (ie: 
>30%) arranged by asphalt 
manufacturer. 

  

K2.5 Degradation Factor Minimum test frequency yearly but 
marginal aggregates 6 monthly (ie: <50) 
arranged by asphalt manufacturer. 

  

K2.6 Polished Aggregate 
Friction Value 

Minimum test frequency yearly but 
marginal aggregates 6 monthly (ie: <47) 
arranged by asphalt manufacturer. 

  

K2.7 Water Absorption Minimum test frequency yearly but 
marginal aggregates 6 monthly (ie: 
>1.5%) arranged by asphalt 
manufacturer. 

  

K2.8 Crushed Faces Not mandatory if using crushed 
aggregates only 

  

K2.9 Weak Particles Minimum test frequency 3 
monthly arranged by asphalt 
manufacturer. 

  

K3 FILLER    
K3.1 Imported Filler Filler supplier certification each delivery, 

certification includes regular test results 
for voids in dry compacted filler. 
Minimum test frequency 3 monthly for 
voids in dry compacted filler arranged by 
asphalt manufacturer. 

  

K3.2 Reclaimed Filler Minimum test frequency monthly for 
voids in dry compacted filler arranged by 
asphalt manufacturer (where reclaimed 
filler is a specified component of the mix 
design). 

  

K3.3 Combined Filler Minimum test frequency monthly for 
voids in dry compacted filler arranged by 
asphalt manufacturer (on combined filler 
of a mix design). 
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K4 BINDER    
K4.1 Delivered Binder Binder supplier certification each 

delivery, certification includes test 
results for  

• Viscosity at 60°C for 
conventional and multigrade 
bitumen’s  

• Softening point and torsional 
recovery at 25°C for polymer 
modified binders 

  

K4.2 Stored Binder All binders held in storage for more than 
2 weeks must be tested  for  

• Viscosity at 60°C for 
conventional and multigrade 
bitumen’s  

• Softening point and torsional 
recovery at 25°C for polymer 
modified binders 

  

K5 ASSESSMENT OF 
ASPHALT 
QUALITY 

   

K5.1 Critical sampling 
and testing points 

Conformance tests on 
• Production batches of asphalt at 

the point of loading  

• Compacted asphalt pavement 
layers  

  

K5.2 Analysis of Test 
Data 

Parameters assessed for variability as 
well as compliance with specified 
requirements and approved mix design 
details 

• At the asphalt manufacturing 
plant  

- Combined grading results  

- Binder content 

- Maximum density 

• From completed asphalt pavement 

- Compaction data 

- Geometric measurements 
(layer depth alignment, surface 
levels, roughness) 

Statistical analysis e.g.: trend diagrams, 
standard deviations, coefficients of 
variation 
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Appendix G – DMR MRS 11.33b 
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Reduced Version – Tables Only 
Table 6 – Coarse Aggregate Properties 

Property Unit Limit Value
Flakiness 
Index Number Maximum 15* 

Ten Percent 
Fines Value 
(Wet) 

kN Minimum 150 

Wet/Dry 
Strength 
Variation 

% Maximum 35 

Degradation 
Factor Number Minimum 40 

Water 
Absorption % Maximum 2 † 

Crushed 
Particles % Minimum 100 

Weak 
Particles % Maximum 1 

Polished 
Aggregate 
Friction 
Value 
(PAFV) 

Number Minimum 50 

* Maximum of 20 for SM6 and SM8  

† For aggregate with water absorption between 2% and 2.5%, project-specific approval 
may be granted provided that, in the opinion of the Superintendent, a history of 
satisfactory performance has been demonstrated and suitable adjustments to the mix 
properties have been made. 
Table 7 – Grading Limits for Combined Mineral Aggregates and Added Filler 

Sieve 
Size 

Nominal Mix Size 
% by weight passing sieve 

 SM6 SM8 SM12 
13.2   100 
9.5  100 45 - 55 
6.7 100 45 - 55 29 - 39 
4.75 45 – 55 30 - 38 24 - 32 
2.36 32 – 36 23 - 27 18 - 22 
1.18 22 – 26 18 - 22 14 - 18 
0.60 15 – 19 14 – 18 12 - 16 
0.30 12 – 16 11 – 15 10 - 14 
0.15 10 – 14 9 – 13 8 - 12 
0.075 9 – 13 8 – 12 7 - 10 
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Value 
Stone Mastic Asphalt Nominal Size (mm) Property Unit Limit 
SM6 SM8 SM12 

Marshall blows Number - 50 50 50 

Stability kN Minimu
m 6.0 6.0 6.0 

Flow mm Minimu
m 2.0 2.0 2.0 

Stiffness †1 kN/mm Minimu
m 2.0 2.0 2.0 

Air voids in the compacted 
mix % 

Minimu
m 

Maximu
m 

1.0 tol, 2.5 
design 

6.0 tol, 3.5 
design 

1.0 tol, 2.5 
design 

6.0 tol, 3.5 
design 

1.0 tol, 2.5 
design 

6.0 tol, 3.5 
design 

Voids in mineral aggregate 
(VMA) % Minimu

m 18.0 17.0 16.0 

Binder Volume (unabsorbed) 
†2 % Minimu

m 16.0 15.0 14.0 

Binder drainage % Maximu
m 0.3 0.3 0.3 

Sensitivity to water % Minimu
m 80 80 80 

Wheel tracking rate mm/kCycl
e 

Maximu
m TBR TBR TBR 

Wheel tracking rut depth mm Maximu
m TBR TBR TBR 

Mix volume ratio †2 - Maximu
m TBR TBR 1.00 
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Table 8 – Asphalt Design Requirements 

Table 9 – Maximum Permitted Variations from the Approved Production Mix Design 

AS Sieve Size  
(mm) 

Maximum Permitted 
Variation  

(% by Mass) 
> 13.2 + 5 

9.5 + 5 
6.7 + 5 
4.75 + 4 
2.36 + 3 
1.18 + 3 
0.60 + 2 
0.30 + 2 

0.15 + 1 
0.075 + 1 

Other Properties  
Binder Content (%) 

 
+ 0.2 

 
 
 

Table 10 – Constituent Material Sample Quantities 

Material Sample 
Quantity 

Binder 8 litres 
Fibre 2 kg 
 
Coarse Aggregate 

- each constituent 
material of nominal 
size > 10 mm 

- each constituent 
material of nominal 
size < 10 mm 

 
100 kg 

 
75 kg 

Fine Aggregate – each 
constituent material 

50 kg 

Added Filler 5 kg 
Additive As 

requested 
 
 
 
 

†1 Stiffness of the mix = Stability/Flow  †2 Design mix only  tol = tolerance  TBR = To be recorded  
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Table 11 – Constituent Proportion Limits for Production Mix 

Constituent                      Limit  

Coarse 
aggregate 

For each constituent: 
± 20% of the approved              
proportion up to a maximum 
of 
± 5%† absolute 
 
For the total coarse aggregate 
proportion (>5mm nominal 
size): 
± 5% absolute 

Fine 
aggregate 

For each constituent: 
± 20% of the approved 
proportion up to a maximum 
of ± 5% absolute 

Added filler 

For each constituent filler 
proportion and for the total 
added filler proportion: 
± 15% of the approved              
proportion or 
± 0.5% absolute, 
whichever is the greater 

 
† Where this value is exceeded, the mix design approval may remain current, subject 

to the approval of the Superintendent, provided that modified constituent proportions 
are submitted for approval. 

 

Table 12 – Layer Thickness Limits 

Compacted Layer Thickness 
(mm) 

Asphalt Mix 
Nominal Size 

(mm) Minimum Maximum 
SM6 15 25 
SM8 25 30 
SM12 35 45 

 

Table 13 – Layer Thickness Tolerances 

Asphalt Mix Nominal 
Size (mm) 

Layer Thickness 
Tolerances (mm) 

SM6 + 4 
SM8 + 5 
SM12 + 7 
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Appendix H – Northern Development and 

Comparisons 
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