
Program Comprehension:
Investigating the Effects of Naming Style and Documentation

Scott Blinman Andy Cockburn
Department of Computer Science and Software Engineering

University of Canterbury
Christchurch, New Zealand

{sdb47, andy}@cosc.canterbury.ac.nz

Abstract
In both commercial and academic environments,
software development frameworks are an important tool
in the construction of industrial strength software
solutions. Despite the role they play in present day
software development, little research has gone into
understanding which aspects of their design, influence
the way software developers use frameworks at the
source code level.

This paper investigates how the comprehensibility of an
application’s source code is affected by two factors: the
naming styles for framework interfaces, and the
availability of interface documentation. Results show
that using a descriptive interface naming style is an
effective way to aid a developer’s comprehension.
Documentation also plays an important role, but it
increases the amount of time a developer will spend
studying the source code.

Keywords: Software development frameworks, program
comprehension, naming style, documentation.

1 Introduction
A Software development framework is an integrated set
of reusable software components designed for a specific
application domain. These components represent a semi-
defined application, which are customised by an
application developer (user) in-order to build a complete
application (Brugali 2000).

Development frameworks are often accompanied by an
Integrated Development Environment (IDE), which
provides the user with a graphical interface for the
framework’s functionality. An IDE will generally be
composed of a range of development tools designed to
increase the user’s productivity. Such tools may include:
a documentation viewer, debugging tool, visual
programming environment and interface design tools. In
principal, these tools aim to simplify the task of
developing software applications, by reducing the

amount of source code the user will need to type.
However, despite efforts by framework vendors to
provide users with efficient tools for developing
applications, the user will at some point, be required to
inhabit the framework at a source code level. This level
of interaction usually becomes necessary as the
complexity of the application being developed increases.

Programming source code requires the user to have a
more in-depth understanding of the fundamental design
of the framework. The amount of effort the user will
need to invest into developing this understanding will
ultimately depend on how well the framework is
designed. This raises some interesting questions
regarding which aspects of a framework’s design affect
how intuitive it is to use at the source code level.

Extensive prior research has been done in developing
the concept of frameworks, and formalising ways to
engineer them. A well designed development framework
should be constructed to closely encapsulate the problem
domain which they are intended to solve (Roberts 1997,
Schmidt 2003), and robust enough to be used in industry
for the development of large software applications.
There are many papers which evaluate how development
frameworks interact with operating systems, and
machine hardware. These comparisons may include how
efficient certain framework components are at retrieving
information from a database (Microsoft 2001), or how
effective one may be at rendering 3D graphics.
However, there has been no research into which aspects
of a framework’s design, effect how well users
comprehend the source code of an application which
have been developed with the aid of a framework.

The objective of the research presented in the paper is to
gain a better understanding of the factors which affect a
user’s interaction with a framework at the source code
level. This research investigates how the
comprehensibility of source code is influenced by the
naming style used for a framework’s interfaces, and the
availability of interface documentation. Gaining a better
understanding of these aspects will help framework
designers build development environments that are more
productive, and help application developers build
software which is easily maintained.

2 Related Work
Prior research into program comprehension has provided
a basis for this study. Two areas which are particularly
Copyright © 2005, Australian Computer Society, Inc. This
paper appeared at the 6th Australasian User Interface
Conference (AUIC2005), Newcastle. Conferences in
Research and Practice in Information Technology, Vol. 40. M.
Billinghurst and A. Cockburn, Eds. Reproduction for
academic, not-for profit purposes permitted provided this text
is included.

relevant include research into theoretical models of
program comprehension, and the development of
methods for measuring program comprehension.

2.1 Theories of Program Comprehension
Over the past thirty years, many studies have been
conducted into the human psychology of computer
programming. In particular, this work includes
understanding how programmers comprehend source
code from a cognitive and perceptual perspective. From
this research, two main theories of program
comprehension have emerged.

The earliest model of program comprehension,
commonly known as the ‘bottom-up’ approach, was
proposed by Shneidermann (1977) and further
developed by Shneidermann and Mayer (1979). This
theory essentially describes program comprehension as a
data driven process. The programmer uses their
syntactic knowledge of a particular programming
language, together with semantic knowledge
(understanding of general programming techniques and
knowledge gained through experience), to assign
meaning to small fragments of source code. Each small
piece of knowledge is easily remembered, and the
programmers understanding of the whole program is
increased as they comprehend more parts of the
program. Eventually, through this iterative process, a
large part or the whole program can be confidently
understood. Shneidermann proposed that descriptive or
mnemonic variable names help the programmer to
comprehend the program syntax more easily, by placing
less of a "burden on the programmer to encode the
meaning of the variable". Descriptive variable names
help reduce the program’s complexity, greatly
simplifying the programmer’s comprehension overhead.

A later and more popular model of program
comprehension commonly known as the ‘top-down’
approach was first proposed by Brooks (1983). This
model is a more conceptually driven concept, where a
programmer starts with a general hypothesis about what
the program does. The formation of this initial
hypothesis is often facilitated by sources outside the
program, such as high level documentation providing a
description of the program’s function. The initial
hypothesis will give the programmer some idea of what
to look for when they begin to study the source code.
Brooks believes that programmers do not necessarily
read a program line by line, but instead scan the source
code searching for 'beacons', which they use to elaborate
their current hypothesis by forming more specific, sub-
hypotheses. Over time the programmer will develop a
hierarchical structure of hypotheses, beginning with the
initial hypothesis at the top, followed by more refined
subsidiary hypotheses which are more closely bound to
specific parts of the programs source code. The larger
the hypotheses hierarchy a programmer develops, the
more the programmer understands the function of the
application the source code represents.

An important link between the ‘bottom-up’ and ‘top-
down’ models is the presence of beacons within the
source code. A beacon is defined as "sets of features that

typically indicate the occurrence of certain structures or
operations within the code" (Brooks 1983). This broad
definition for one of the more important aspects of the
‘top-down’ model, resulted in widespread research into
identifying what features of source code serve as
beacons. Wiedenbeck (1986) empirically verified that
recognizable patterns within the source code, which
serve as indicators of a stereotypical structures or
operations, can be considered beacons. Further work by
Gellenbeck and Cook (1991) showed that the definition
of a beacon can also be extended to include descriptive
procedure names and variables.

Teasley (1994) showed that the presence of good
naming style in a program’s source code was relied upon
more by novice programmer then an experienced
programmer. Novice programmers are less able to
recognise beacons associated with code patterns because
they lack knowledge gained by experience (semantic),
and therefore rely more on naming style to bring
meaning to code segments. On the other hand,
experienced programmers tended to rely more on code
pattern beacons rather then naming style when
comprehending a program’s source code. The fact that
experienced programmers have a broader experience
base to draw upon enables them to use a wider range of
strategies when comprehending source code. Similar
findings were reported by Crosby (2002), who found
that in the absence of a good naming style, experienced
programmers were able to extract more information
from a portion of source code, compared to novice
programmers. Crosby suggested that the use of a good
naming style and the inclusion of documentation such as
inline comments, could speed up the comprehension
time for both novice and experienced programmers.

The role that documentation has to play in assisting a
programmer to comprehend source code is important.
Documentation provides the programmer with a set of
indicators which will help them during hypothesis
verification (Brooks 1983). Indicators which could be
considered documentation include: source code header
information, inline source code comments, application
user manuals and software library manuals (i.e. API
reference texts).

Based on prior research, it is likely that a descriptive
naming style for a framework’s interfaces, accompanied
by interface documentation, will improve the
comprehensibility of an applications source code.

2.2 Measuring Program Comprehension
Early work by Shneidermann (1977), demonstrated that
program comprehension can be measured through the
use of a 'memorization-recall' test. This involves giving
the participant a set amount of time to study a segment
of source code. After this time, the source code segment
is removed from the participant’s sight. They are then
asked to write out as much as they can remember about
the source code segment they just studied. A measure of
comprehension is then given by using an appropriate
scoring system, where the functional and literal accuracy
of the recalled source code are both considered. The
rational behind this approach directly relates the

comprehensibility of a segment of source code to how
easy the source code is to memorise, and consequently
recall. Brooks (1980) later published a review of current
methodologies in studying programmer behaviour and
associated problems. He proposed a version of the
‘memorization-recall’ test, where high-level concepts
about the code segment’s global structure and
algorithms, should also be considered as a measure of
program comprehension. Brooks notes however, the use
of ‘memorization-recall’ tests is only applicable to
isolated code segments and small programs. They would
serve little benefit when studying the comprehension of
larger bodies of source.

3 Experimental Method
The study used a 2x2 within-participants factorial
design. The factors were: naming style and
documentation. Naming style had two levels of
measurement: full-descriptive naming style, and non-
descriptive naming style. Documentation had two levels
of measurement: documentation provided, and no
documentation provided. Dependant variables included
measurement of comprehensibility and task completion
time. A Latin Square method was used to counter-
balance order of exposure to conditions.

3.1 Application Design
The Microsoft .Net development framework was used as
the target framework. This framework uses descriptive
names and is accompanied by good documentation.
Using an existing framework eliminated the need to
develop a pseudo framework and consequently reduced
the experiment preparation time.

Four small (10-20 lines) win32 console applications
were developed using components from the .NET
framework. Each application performed a simple task
involving the processing of input data taken from either
standard input or the operating system (e.g. current date)
and sending a result to standard output. No two
applications performed the same task and each
application used a different set of .Net framework
interfaces.

All source code was written using the J# language
syntax which is identical to the Java language syntax.
This language was chosen to ensure that a majority of
the participants would be familiar with the source code
syntax. Before the experiment was conducted, it was
known that the participants would all be postgraduate
students from the University of Canterbury. It was
therefore anticipated that the majority of these students
would be familiar with the Java syntax, as it is taught by
the university as part of their computer science
undergraduate program.

After the four applications had been developed, two
applications were randomly chosen to have
accompanying documentation for each interface used in
the application. This was taken directly from the
documentation provided by the Microsoft .Net
framework. One of the documented applications was
then randomly chosen along with another application

without documentation. These two applications were
used as the test cases for tasks involving full-descriptive
interface names. The interface names which appeared in
the remaining two applications were then changed to
non-descriptive names. The method of stripping names
from the non-descriptive cases, involved renaming the
interfaces in one application to 'Function1', 'Function2',
'Function3' ... 'FunctionN', (where N represents the
number of the last interface). The interface names in the
second application were then renamed to 'FunctionA',
'FunctionB', 'FunctionC' ... 'FunctionZ'. This ensured
interfaces found in one application, did not have the
same non-descriptive name as interfaces found in the
other application.

The source code and documentation for each of the tasks
were printed out separately on plain paper.

3.2 Comprehension Design
A modified version of the ‘memorization-recall’ test was
used as the comprehension test. This test involved
asking the participant to study the source code of an
application (including the documentation in some cases),
until they felt confident that they understood its
function. There was no time limit imposed on the
participant’s study time, instead the total time taken by
the participant to study the source code was recorded.
The source code was then removed from the
participant’s sight, and a list of three high-level
descriptions, each describing possible functions for the
application was given to the participant. The participant
was asked to read through these descriptions, before
choosing one which they felt best described the function
of the application that they just studied. The participant
was encouraged not to guess the function of the
application. If they did not know which description to
choose, they were asked to indicate that they were
unsure of the answer.

The comprehensibility of the source code was measured
by considering how long the participant took to study
the source code, and whether they chose the correct
application description from the list provided

3.3 Participants
The participants used, were eleven postgraduate students
from the University of Canterbury. The average age of
the participants was 22. They had all been studying
computer science at the time of the experiment, for an
average of 4 years. 18% of the participants had previous
experience as professional software developers for an
average of 5 years. 91% of the participants had used
Java to develop software in the past and 18% of
participants had previously used the .Net development
framework.

3.4 Procedure
Each participant completed a series of four source code
comprehension tasks using the application source code
and comprehension method described above. For each
task, the experimenter presented the participant with a
piece of paper containing a printed copy of the

application source code. In two out of the four cases, the
source code was accompanied by a second sheet of
paper containing the interface documentation. The
participant was asked to study the source code until they
felt that they understood the function of the application.
Once the participant had finished studying the source
code, the experimenter removed the sheets of paper, and
presented the participant with one multiple choice
comprehension question. The participants were asked to
answer this question, by writing their choice on the
paper provided before proceeding to the next
comprehension task. This process was continued until
all four comprehension task were completed. The time
taken for the participants to study each source code
example was recorded by the experimenter.

4 Results
Multi-factor analysis of variance was performed on
study times and multiple choice answers, based on data
collected from a total of 44 comprehension tasks.

4.1 Study Times
The graph in Figure 1 shows the mean study times for
each experimental task. Multi-factor analysis of variance
on the data gathered for task study times, showed that
the mean task study time for descriptive and non-
descriptive interface naming styles, 81.9 (σ 53.4) and
177.2 (σ 117.7) seconds respectively, was found to be
significantly different, F(1,10)=17.5, p < 0.01. The mean
study time for tasks containing interface documentation
and tasks not containing interface documentation, 179.5
(σ 107.6) and 79.7 (σ 68.3) seconds respectively, was
also found to be significantly different, F(1,10)=85.3, p
< 0.001.

A significant interaction was found between the study
times for interface naming style and the availability of
interface documentation, F(1,10) = 17.1, p < 0.01. This
between factors interaction is shown in Figure 1. The
interaction is interesting, as it suggests that when source-
code is obfuscated through non-descriptive names, the
use of documentation increases dramatically.

0

50

100

150

200

250

300

Descriptive Non-descriptive

Naming Style

M
ea

n
Ta

sk
 S

tu
dy

 T
im

e
(s

ec
) Documentation

No Documentation

Figure 1. Mean study time between factors.

4.2 Multiple Choice Answers
The graph in Figure 2 shows the percentage of correct
answers for each experimental task. Multi-factor
analysis of variance on the data gathered for answers
given to the multiple choice questions, showed that the

mean percentage of correct answers for tasks containing
descriptive or non-descriptive interface naming styles,
86.4 (σ 35.1) and 36.4 (σ 49.2) percent respectively,
was found to be significantly different, F(1,10)=27.5,
p<0.001. The mean percentage of correct answers for
tasks containing interface documentation and for tasks
not containing interface documentation, 77.27 (σ 42.9)
and 45.45 (σ 60.0) percent respectively, was also found
to be significantly different, F(1,10)=17.5, p<0.01.

A marginally significant interaction was found between
the percentage of correct answers for the interface
naming style and the availability of interface
documentation, F(1,10)=4.8, p=0.053. This interaction is
revealed in Figure 2, which shows that performance
degraded more rapidly between descriptive and non-
descriptive names in the absence of documentation.

0

10

20

30

40

50

60

70

80

90

100

Descriptive Non-descriptive

Naming Style

C
or

re
ct

 A
ns

w
er

s
(%

)

Documentation
No Documentation

Figure 2. Percentage of correct answers between factors.

4.3 Observations
In general, the participants enjoyed doing the tasks.
Their conduct during the experiment was very
professional and every participant read the source code
of each task thoroughly before indicating that they had
finished.

When studying those tasks which included
documentation, participants generally used the
documentation very carefully to cross reference each
interface name. However, a few participants ignored the
documentation for the task involving descriptive
interface names, with one participant commenting that
they “never read the documentation anyway”. Despite
this, all participants used the documentation when
studying the code for the task involving non-descriptive
interface names. Some participants were confused with
the meanings of various terms used in the
documentation. These terms included: ‘immutable’,
‘GetLowerBound’ and ‘regular expression’.

The task involving non-descriptive interface names with
documentation produced the most comments from
participants. Some of these comments included:

“This sucks!”, “I’m getting lost.” and “These are filthy
names.”

When participants were presented with the source code
for the task testing non-descriptive interface names
without documentation, most decided that the code was
too difficult to understand, and quickly indicated they

had finished studying. However, some participants made
a more serious attempted to decipher the source code.
These participants concentrated on the task more
intensely than most other tasks. With one participant
commenting that he would “have to memorise the
structure for this one”.

4.4 Discussion
For tasks testing descriptive naming style, participants
were able to determine the function of an application’s
source code more easily then tasks testing non-
descriptive naming style.

The availability of interface documentation helped
participants to understand the applications source code,
but increased the amount of time they would spend
studying. In particular, the task which used a non-
descriptive naming style with documentation,
participants relied entirely on the documentation to
determine the function of the source code.
Consequently, this task produced the highest study
times. For the task using a descriptive naming style with
documentation, participants relied less upon the
documentation, but still spent more time studying the
source code than tasks that were not accompanied by
documentation. These results suggest that the
availability of documentation increases the amount of
time needed to comprehend a piece of source code,
rather than decrease it, as suggested by Crosby (2002).

In the absence of interface documentation, participants
were able to determine the function source code using a
descriptive naming style more easily then a non-
descriptive naming style. However, by memorising the
source code structure, rather than relying on the
interface names, some participants were able to
determine the function of the source code using non-
descriptive interface names. This correlates with some
of the conclusions found by Teasley (1994) and Crosby
(2002), who found that expert programmers have more
adaptable comprehension techniques, enabling them to
utilise a wider range of beacons while comprehending
source code.

Some concerns should be noted for the unacceptably
high standard deviation calculated for some means. In
particular, the task testing non-descriptive naming style
without documentation had a standard error equal to the
mean percentage for that task. This poor distribution of
data may be due to the low number of participants in the
experiment (eleven in total). Further concerns regarding
the multiple choice questionnaire which was used for
each task should also be noted. The fact that there was
only one multiple choice question per task meant
participants were either 100% or 0% correct. A
questionnaire which contained more then one
comprehension question would be preferable. This
would produce a wider distribution of percentages, and
consequently a more accurate measure of
comprehension.

5 Conclusion
In the past, research into program comprehension has
studied programming languages such as FORTRAN,
COBOL and Pascal. The source code used has
represented small fragments of an application such as a
single function or a small group of sub-routines. Very
little work has been done on program comprehension for
an entire application, and no comprehension studies
have been conducted on source code written with a
software development framework.

For applications which have been written using a
framework, the majority of functional, data driven logic,
is encapsulated within the frameworks libraries. For
example, a user of a framework would not be concerned
with developing functions that perform an array sort or
binary search. Instead, they will develop applications
which use the array sort and binary search interfaces
provided by the framework. This type of source code
will therefore mainly consist of 'glue' logic, binding
individual framework interfaces together to form an
entire application. In this type of programming
environment, many types of structural code patterns that
have been recognised as beacons in the past, are likely to
be absent or less pronounced. However, beacons which
are common in source code that has been written with or
without the use of a framework include descriptive
procedure (interface) names, and forms of available
documentation.

This paper described a study that investigated how the
use of interface naming style and the availability of
interface documentation, influences a developer’s ability
to comprehend source code which has been written
using a software development framework.

A modified version of the ‘memorization-recall’ test was
used to measure a user’s comprehension of a series of
source code examples which used either descriptive or
non-descriptive framework interface names. The
availability of interface documentation was also
included as a component of these comprehension tests.

Results showed that developers were able to reliably
comprehend the function of an application which was
written with the aid of a framework that used a
descriptive interface naming style and was accompanied
by interface documentation. Applications written using a
descriptive naming style, and not accompanied by
documentation, were understood the second most
reliably. Applications which were written using a non-
descriptive interface names and accompanied by
interface documentation, were understood the third most
reliably. Application’s written using a non-descriptive
naming style and not accompanied by documentation,
were found to be the hardest for developers to
comprehend.

The amount of time a developer spends studying the
source code of each application, is dependant on the
availability of interface documentation. Developers
spent more time studying the source code of applications
that are accompanied by interface documentation,
regardless of whether a descriptive or non-descriptive
interface naming style is used. It was also very unlikely

that a developer would correctly comprehend the
function of source code which used a non-descriptive
naming style and was not accompanied by interface
documentation.

Although the results presented by this paper would seem
obvious to most readers. The implications of this type of
research bring to light the importance of naming style
and documentation to both users, and designers of
software development frameworks.

Modern software developers should be aware that in
recent years, the definition of ‘user’, has adopted a
broader context. The ‘user’ of an application includes
both the people who will operate the compiled
application, as well as the software developers who
write, and later maintain the applications source code.
Both user groups warrant careful consideration during
the application design and development process.

Acknowledgments
Our thanks to the participants who helped with this
study. Without their keen ability to comprehend the
incomprehensible, none of this would have been
possible.

References
Brooks, R. (1980). Studying Programmer Behavior

Experimentally: The Problems of Proper
Methodology. Communications of the ACM, Vol
23, Issue 4, pp207-213

Brooks, R. (1983). Towards a theory of the
comprehension of computer programs. International
Journal of Man-Machine Studies. Vol 18, pp543-
554.

Brugali, D. and Sycara, K. (2000). Frameworks and
Pattern Languages: An intriguing relationship.
ACM Computing Surveys (CSUR), Volume 32,
Issue 1es (March), Article No. 2.

Crosby, M, E. Scholtz, J. Wiedenbeck, S. (2002). The

Roles Beacons Play in Comprehension for Novice
and Expert Programmers. Proceedings of the
Fourteenth Annual Workshop of the Psychology of
programming Interest Group London. UK. pp 58-
73.

Gellenbeck, E, M. (1991). An Investigation of Procedure
and Variable Name as Beacons during Program
Comprehension. In J. Koenemann-Bellinveau, T. G.
Mohen and S, P. Robertson, Eds. Empirical Studies
of Programmers: Fourth Workshop, pp 65-81.
Norwood, NJ: Ablex.

Microsoft. (2001). Nile .NET vs. J2EE Benchmark.
http://www.gotdotnet.com/team/compare/nileperf.aspx

Roberts, D. and Johnson, R. (1997). Evolving
Frameworks: A pattern language for developing
object-oriented frameworks. D. Riehle,
F.Buschmann and R.C.Martin Eds, Pattern
Languages of Program Design. Vol 3. Reading
Mass, Addison Weley.

Schmidt, D. and Buschmann, F. (2003). Patterns,
Frameworks, and Middleware: Their synergistic
relationship. Proceedings of the 25th international
conference on Software engineering. pp694-704

Teasley, B, E. (1994) The effects of naming style and
expertise on program comprehension. International
Journal of Human-Computer Studies. Vol 40,
pp757-770.

Shneiderman, B. (1977). Measuring computer program
quality and comprehension. International Journal of
Man-Machine Studies. Vol 9, pp465-478.

Shneiderman, B. and Mayer, R. (1979).
Syntactic/semanticinteraction in programmer
behavior: a model and experimental results.
International Journal of Computer and Information
Sciences. Vol 8, pp219-283.

Wiedenbeck, S. (1986). Beacons in computer program
comprehension. International Journal of Man-
Machine Studies. Vol 25, pp 697-709.

	Abstract
	Introduction
	Related Work
	Theories of Program Comprehension
	Measuring Program Comprehension

	Experimental Method
	Application Design
	Comprehension Design
	Participants
	Procedure

	Results
	Study Times
	Multiple Choice Answers
	Observations
	Discussion

	Conclusion
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

