
Programming students NEED instant feedback!

Anne Venables and Liz Haywood
School of Communications and Informatics

Victoria University of Technology
PO Box 14228, Melbourne CMC, 8001, Victoria

 [anne.venables, liz.haywood]@vu.edu.au

Abstract

This paper describes the work that has been undertaken to
improve the quantity and quality of feedback given to
students studying introductory Java programming. An on-
line submission program (submit) was developed that
specifically addresses the needs of beginning
programming students by providing automatic and instant
feedback to a student’s programming efforts.
Traditionally, this feedback was provided by staff in
scheduled laboratory sessions, yet the amount of
individual attention a particular student received was
haphazard. In addition, the introduction of the submit
program has reduced the  marking  and administrative
load associated with providing timely feedback to
students for participating staff.

submit is more than just an on-line letter box for students
to post their programs. submit also provides instant
feedback which encourages students to improve their
programs to meet all given requirements as well as to
improve programming style.

In order to assess the effectiveness of the submit program
over four trials, student responses to questionnaires were
collated and support some tentative conclusions as to the
effectiveness of submit as a learning aid to students.  Staff
opinion from those involved in the day-to-day teaching of
Java programming was also solicited.  These responses
have been very positive, especially from the staff that
supervise laboratory work..

Keywords:  Computer aided learning, on-line submission.

1 Introduction

The Australian Computer Society (ACS) considers
program design and implementation to be a core area of
knowledge required by a professional in the computer
industry (ACS 2002). At Victoria University of
Technology, Java is taught as the introductory
programming language to all students studying Computer
Science and Computer Technology in the School of
Communications & Informatics at the Footscray Park
campus.

                                                            

Copyright © 2001, Australian Computer Society, Inc.  This
paper appeared at the 5th Australasian Computing Education
Conference (ACE2003), Adelaide, Australia.  Conferences in
Research and Practice in Information Technology, Vol. 20.
Tony Greening and Raymond Lister, Eds. Reproduction for
academic, not-for profit purposes provided this text is included.

In learning any programming language, it is essential that
students be given the opportunity to practice their new
programming skills in an environment where they can
receive constructive and corrective feedback. The
provision of this feedback by staff is given directly during
time-tabled laboratory sessions and also by the marking
of regularly submitted exercises.  The regular and routine
assessment of these programming exercises is both
mundane and very time-consuming. As Foxley et. al.
point out,  "marking is boring and assessment in general
is probably the least liked task of most academics!"
(Foxley et. al. 2001). Yet despite the heavy marking
workload for those involved in the first year
programming subjects, the value of regular and corrective
feedback has been recognised as crucial to student
learning of a programming language.

From a student perspective, feedback has not always been
easy to get.  When surveyed, students uniformly stated
that the laboratory sessions were never long enough and
that they were regularly competing with other students for
a demonstrator’s attention. In addition, our students and
staff, like those of Arnow (Arnow 1995), have difficulty
in synchronising schedules in order to supply help when
the students felt they needed it.

 Given that students would like more assistance and that
staff goodwill was already stretched with heavy marking
loads, one solution would have been to employ more staff
and give students longer laboratory sessions and thus
more feedback. In today’s university environment the
funding of this solution is very unlikely. Thus, against
this background, the submit program was commissioned.
Despite the existence of automated feedback and
submission systems, we could not find one that was freely
available, including source code, to enable full
configuration and augmentation. We also required a
greater degree of client platform independence than, for
example, the BOSS system developed by Joy and Luck
(Luck  & Joy 1999).

The submit program has been developed so that students
can receive instant and automated feedback to individual
programming exercises.  A student simply uploads their
Java programs via a web page interface and receives
immediate and automated feedback on various aspects
including correct running on sample data, and on program
style. Students are able to upload their submissions as
many times as they like until the due date that has been
set by the lecturer. After the due date passes, a tutor is
able to review each student’s final submission and
provide further feedback, including a grade and
comments on-line.



Section 2 of this paper contains relevant contextual
information and some comparisons with programs similar
to submit. Section 3 includes some technical details about
the submit program. In section 4, the research method is
described and Section 5 provides results of the trials we
have conducted. Conclusions and further work are found
in Sections 6 and 7.

2 Context

Footscray Park Campus of Victoria University is located
in an ethnically mixed, traditionally working class area of
Melbourne. It was the former Footscray Institute of
Technology, before the amalgamation with Western
Institute in 1992 which created the university. In 1998 the
University was further expanded, by a merger with
Western Metropolitan Institute of TAFE. Today there are
15 campuses and over 20,000 students enrolled in Higher
Education and TAFE courses.  The School of
Communications and Informatics at the Footscray Park
campus is responsible for the development and delivery
of six Bachelor of Science, including Computer Science
and Computer Technology and three Bachelor of
Engineering courses, including Computer Engineering
and Electrical Engineering.

Java is taught as a first programming subject to Computer
Science and Computer Technology students. Currently,
the Java programming teaching style is fairly traditional,
with lectures, tutorials and laboratory work being the
most common mode of delivery. Many students find
difficulty in taking responsibility for their own learning
and they have a high dependency on staff, not least
because all laboratory exercises are corrected and
assessed by hand.

In the laboratory, a tutor is expected to assist students in
their programming endeavours and it can be a very hectic
hour answering the rather repetitive and often trivial
queries. There is never enough time to see every student
during the hour and they are easily distracted if they are
waiting for the tutor to help them.

Student feedback confirmed that most felt they needed
longer time in supervised laboratory sessions.  Most
students commented that the style of problems were
graded and covered the course adequately and these were
not the issue.

On-line submission of student’s work is totally new for
staff and students in computing subjects at Victoria
University of Technology.  However, some universities
such as the University of Melbourne have been using
electronic submission of student programming projects
for a number of years (Stern & Venables, 2002).

The submit program at the University of Melbourne is
used essentially as an electronic mailbox for large, once
or twice a semester project submissions.  Students are
able to receive electronic feedback against automatic
testing, but they are often oblivious to invisible testing
against which they are also marked.  submit contains
similar functionality to that of the University of
Melbourne’s submit program, but  with a web interface,
as opposed to running a shell script, and the additional

option of specifying either text or graphics based
programs.  However, its direct incorporation into the
teaching program to provide instant feedback to the
students for their regular exercises is quite different in
approach and execution from that of the University of
Melbourne's program.

Another project developed at the Nottingham University
was the Ceilidh System (Benford et al.,1994)(Zin &
Foxley, 1994). It has been in use since 1988 marking
student programs written in C. Although the
programming language is different from submit, the
reported aims of the Ceilidh project are similar.  Yet the
Ceilidh system achieves its on-line marking by restricting
students to modifying and completing template programs.
The more recent offering by Foxley et. al., the
CourseMaster, (Foxley et. al. 2001) also places "strict
constraints" on student's coding style. Thus student work
conforms to a particular style thereby enabling the
automatic testing and marking of their work. In contrast,
our intention is the same as that of Joy and Luck, that is
to allow students to submit assignments, and for the
programs to be tested automatically (Joy and Luck 1998).
It is not the intent of submit to do away with human
feedback and perusal of student work.

In addition, there are a number of on-line teaching
environments, such as WebCT (2002), which require staff
to commit to remote and on-line teaching via a cyber
classroom space.  Again, the intent of using submit is to
support students and staff in their normal face-to-face
laboratory sessions, not to move interaction on-line. Also
WebCT like programs offer much in the way of
additional functionality ensuring they are complex to set
up without offering the same Java-specific features that
are required.  Thus, after collecting the available options,
a staff in-service day was held to evaluate several
solutions, and submit was chosen as the most suitable for
the situation.

3 The Submit Program

submit is written in Java using servlets (Sun 2002),
residing on a dedicated UNIX machine running a Java
servlet platform, Tomcat (Apache 2002). The database
backend is a hierarchy of flat files.

Java was chosen as the language of implementation as an
experiment in itself for discovering the practicality of
developing a serious Java application. It was also
developed as an example for later year Java students to
demonstrate techniques the students need to learn. The
source code is freely available (VUT 2002).

The interface is intuitive, with minimal interaction and
provides little option for mistaken input by students.
Students find submitting their programs no more difficult
than attaching a file to an email. Security, an issue
highlighted by Reek (Reek 1989), and Luck and Joy
(Luck & Joy 1999), is via login names and passwords
already allocated to students by the School. Students must
also be officially enrolled in a subject in order to login. A
restricted execution environment, a Java sandbox, is used
to execute the students programs to protect against
uploading Trojans. This is an improvement over using the



scheme described by Luck and Joy (Luck & Joy 1999),
where the UNIX operating system is used to implement
security which protects the file system, but not the
network. In addition, groups of students can be formed
via submit, eg. students working in pairs on an
assignment.

Submission of a Java program is effected by entering the
filenames (zipped files are automatically unpacked) of the
class files. Clicking the “submit” button uploads the files
to the server. Figure 1 shows the interface for this action.

Figure 1: Submit a file

Once the files are submitted, the student must nominate a
main class, as can be seen in Figure 2.

Figure 2 Getting automatic feedback

Clicking the “automatic feedback” link causes submit to
do three actions. Firstly, submit analyses the student’s
program for elements of good style, such as comments
and length of methods. Currently, this is confined to
checking for comments at the beginning of each ‘.java’
file and parsing the comment string to identify keywords:
Name, StudentID, Date, TuteGroup, and Subject. A
comment for each method is also expected, and a warning
will be issued if a method is more than 50 lines long.

Step two is to compile the student’s program on the
server – compiler output is relayed back to the student. If
compilation is successful, the student’s program is run
using the sample input provided by the lecturer. The
program’s output is displayed for the students to compare
with model output as supplied by the lecturer.

Apart from the immediate feedback on compiling and
running of a Java programming exercise, the students are
also able to view tutor’s comments and their mark on-line
as soon as the tutor has graded it.

In addition to the student interface, there are interfaces for
Tutors, to view files and grade assignments, and
Lecturers, to set up new assignments, view various
statistics, and review or re-assess student’s submissions.

Setting up an assignment requires some input from the
lecturer, such as due date, number and weighting of
marking criteria, the type of output (text or as Java
applet), and samples of input and desired output (if text).
This is much simpler than writing scripts, as described by
Reek (Reek 96), and the economies are the same, in that
only one lecturer needs to set up the assignment and test
cases.

Figure 3 Setting an assignment

There have been relatively few glitches in the submit
program, and overall it has stood up very well during the
trials described in Section 4. There are a number of
enhancements that could be made to submit, as described
in Section 7 and it is hoped that these will be effected in
the near future.

4 Research Method

So far, there have been four trials of submit. The first trial
was with a summer school cohort of students (2001/02).
Students were required to submit their major
programming assignment towards the end of the
semester.  There were 50+ enrolled students each
submitting several different class files, using multiple
attempts. This trial primarily tested that the useability of
submit was sufficient, ie. that the interface was intuitive
to new programmers. Performance of the hardware and
software under normal usage was also under inspection.

The second trial, in first semester 2002 was designed to
confirm that it was possible to use submit on a regular
(fortnightly) basis for multiple laboratory exercises, as



well as for major assignments. This trial involved a single
lab group (out of 12 lab groups)  to submit 20+ laboratory
exercises (some consisting of several class files) during
the semester.  Unfortunately, the randomly chosen lab
group was unusually small due to timetabling constraints.
Each student in the cohort, including the group who used
submit was surveyed about their laboratory sessions.

With a view to ultimately incorporating submit more fully
across the curriculum, the third trial tested the use of
submit, merely as an electronic letter box. This involved a
group of 130+ Engineering students submitting only text
documents that didn't require any of the "instant"
feedback associated with submitting Java programs. The
useability of the interface by students in courses other
than Computer Science was also of interest.

A fourth trial, similar to the second trial, is currently
under way with four lab groups, consisting of both new
and repeating students. There are 70+ students each
submitting regular Java programming laboratory
exercises.

5 Results

The first trial demonstrated that students were able to
successfully submit their Java programming assignment
with minimal instruction, confirming that the interface is
intuitive to use. In addition, the submit hardware and
software handled the high demand usage near deadline
time.

Principally, the second trial was to discover if the
feedback supplied by submit to students was worthwhile
and that they found the learning experience to be
valuable. When students were surveyed, three responses
came back fully completed. All three students were in
agreement that the automatic electronic feedback was
very useful although interestingly, all of these students
stated that they had submitted only once.  When asked
about the ease of using submit, two students rated it as
moderately easy and the third as very easy.  When these
students were asked how submit may be improved, one
suggested a less complicated submitting procedure,
another student stated that 'I don't see any other ways it
should be improved' and the third stated that 'The
automatic electronic system is [a] very good way to
submit'

In addition, the second trial was concerned with
evaluating the overhead of setting and grading the lab
exercises on-line to see if it was too high for the lecturing
staff. The setting of test cases for the automatic feedback
did prove to be a measurable overhead (about half an
hour per laboratory set of 5 or 6 exercises), especially as
it was for only one small lab group. It was recognised that
the same overhead would be incurred regardless of the
size of the student cohort. Thus, if submit is adopted as
planned for 2003, this overhead is acceptable for the 200+
students who will be using it.

The result of the second trial showed a reduction in the
marking load traditionally associated in grading of
exercises. Prior to submit, students handed in file
printouts and the Java programs saved on disc.

Considerable time was spent opening the disc, finding the
directory and then the file, running it if student had
remembered to compile it, if not, compiling the code then
eventually running it several times against test cases,
followed by reading the code in the printouts.  Marking
on line eliminates all the unnecessary handling of discs
and locating and compiling of files, and running them
against test cases.  A tutor simply sees how a student’s
program has performed against the various test cases and
at the click of a button is able to read the supporting code.
The tutor is relieved of the above described drudgery and
left solely to exercise academic judgement

The third trial was to see how submit stood up to the
demands and possible abuse by a larger cohort (100+) of
non-computer science students, submitting work that was
not Java programs, but text documents instead. submit
performed as well as expected, ie. without any drama, and
the turn round time for grading work and providing
feedback to students was reduced. Traditionally there had
been a lot of paper shuffling and sorting of scripts into
tutorial groups and placing the work in boxes ready for
student collection with the added risk of mysterious
disappearances of “good” work.

The collation of results has eased as submit provides a tab
separated list of names, ids, and grades, ready for
importing into a spreadsheet. This is a big improvement
on the current system of each tutor creating their own list
and the lecturer having to collate them at the end of
semester.

The fourth trial is currently underway and will be finished
at the end of semester 2, 2002. Indications so far, are that
the benefits to the students are similar to that of the
second trial, ie. Students are more willing to put the effort
into improving their programs until submit is satisfied and
that they obtain timely tutor feedback.

6 Conclusions

For students, the benefits of using submit include the fact
that they are able to test their program by submitting it
several times, hopefully, improving their program with
each attempt. This has been evidenced by a program
submitted on-line that included the following comment in
the code.

/* Original Code

   goldCard.makePayment (100);

   System.out.println ("Balance owing: $" ….) ;

Modified code

Modified to conform with submit's expected
results

*/

By supplying output against various test cases student
understanding of the requirements of the program is
expected to improve before receiving feedback from
tutors and demonstrators. This in turn has alleviated the
laboratory tutors from the having to view student
programs in order to provide the often repetitive feedback
that submit can provide automatically on the simpler
aspects of the student's programs. As a result, tutors have



been able to spend more time helping students with less
mundane questions and engage in discussion regarding
style, strategy and algorithms.

Turnaround time for students retrieving tutor’s comments
and marks improved remarkably now that they are
available on-line as soon as they are released.  Previously,
a turn around time of 10 days was typical, this has been
reduced to 5 days.

The marking workload for laboratory staff has also been
reduced.  With submit handling the loading, compiling
and running of all exercises, the staff need only assess
academic judgement.  A further reduction in workload for
staff has also come about with the acceptance by students
of automatic testing.  Previously staff manually marked
every exercise for every student. Now students happily
accept that staff randomly chose one of the five or six
submitted exercises for marking and the rest are taken
care of by submit. This is a major time saver for staff.

There have been a few unexpected benefits. For some
reason, students seem to be more willing to accept the
deadlines chosen by the lecturer, but implemented by
submit, and late submissions have reduced accordingly.
Students also seem to be more willing to take
responsibility for their learning, in that they will keep
improving their program until submit accepts it without
complaint, whereas previously, they had a tendency to be
sloppy when it came to program style and testing. It has
reduced the potential for confrontational discourse
between tutor and student regarding programming style
and testing.

There is also a role for submi t in the policing of
enrolments. Unenrolled students are able to attend class
but can no longer submit their work for grading. There
have been cases in the past where students have waited
until they knew their grades before actually enrolling in a
subject – thus saving on fees if they failed.

Our experiences have been similar to those of Joy and
Luck (Luck & Joy 1999), however submit differs in the
following important areas:

•  submit is web-based. All levels of user (student,
tutor, lecturer) have a web interface. There is no need
to login to the host machine. The client machine
needs only a browser and intranet connection.

•  comparison with output is not made automatically,
this is left up to the student to decide if their output
matches the expected output.

•  compilation is undertaken on the host machine,
students cannot submit binaries.

• compilation is protected (as well as execution).

7 Future Work

There are a number of possible future extensions that can
be made to submit, to increase both the robustness and
functionality of the program. Currently, data is stored
using a hierarchy of files. A better solution would be to
store the data under a DataBase Management System,
such as MySQL (2002). During the trials, the submit

server has resided inside the University’s firewall, since
the computer systems manager was unsure of the security
aspects if submit were to be open to the world.
Ultimately, of course, it is desirable for students to be
able to submit their programs from home.

Functionality could be increased by including an
algorithm checker, such as proposed by MacNish (2000)
and plagiarism detectors, such as those developed by
Aiken (1994) and Joy and Luck (Joy & Luck 1999) .

Thought has been given to developing submit for other
languages, such as C++, which is also taught in the
school. One of the problems with C/C++ is the lack of
Java security. One solution would be to have a dedicated
machine to run student's programs that is separate from
the server holding results.

Other possible improvements include:

• the incorporation of the assignment or lab exercise
questions on the web page,

• an e-mail bridge to remind students who haven’t
submitted by the due date, or to e-mail results to
students after the tutor has graded the work,

• integration with other campus systems such as
automatically incorporating enrolment lists and
submitting marks back to a central server.

• enabling tutor interaction with an application
program, already possible for Java applets though
this would require some client software, such as X
windows.

8 Acknowledgements

We would like to thank Ian Haywood for his assistance in
developing submit, Cameron Giles, and Foster Hayward
for their part in procuring and maintaining a dedicated
server; and Victoria University for supplying a teaching
grant of $5,000 to enable the initial development of
submit.

9 References

ACS (2002): Guidelines For Accreditation of Courses in
Universities at the Professional Level,
HTTP://www.acs.org.au.

Aiken, A. (1994): MOSS A System for Detecting
Software Plagiarism,
http://www.cs.berkeley.edu/~aiken/moss.html

Apache Software Foundation (2002):
http://jakarta.apache.org/tomcat/

Arnow, D.M., (1995), :-) When you grade that: Using e-
mail and the Network in Programming Courses, In
Seminars in Academic Computing Conference, ACM.

Benford, S., Burke, E., Foxley, E., Gutteridge, N. and
Zin, A. M. (1994):The Ceilidh System A General
Overview.
http://www.cs.cf.ac.uk/Dave/C/chapter2_19.html#appc
eilidh



Foxley, E., Higgins, C., Symeonidis, P and Tsintsifas, A.
(2001): The CourseMaster Automated Assessment
System - a next generation Ceilidh. Computer Assisted
Assessment, University of Warwick, 5/6th April.
http://www.ics.ltsn.ac.uk/pub/caa/index.html

Joy, M. and Luck, M., (1998):The BOSS System for On-
line Submission and Assessment.
http://www.ulst.ac.uk/cticomp/joy.html

Luck, M., and Joy, M., (1999), A Secure On-line
Submission System, Journal of Software Practice and
Experience 29(8), 721-740.

MacNish, C. (2000) : Evolutionary programming
Techniqies for Testing Students' Code. Proc. of the
Fourth Australasian Computing Education Conference,
Monash University, Melbourne, 170- 173.

MySQL AB (2002): Open Source Database,
http://www.mysql.com/

Reek, K.A., (1989): The TRY System - or - How to
Avoid Testing Student programs, In SIGCSE Bulletin
21(1), 112-116.

Reek, K.A., (1996): A Software Infrastructure to support
Introductory Computer science Courses,  In ACM
SIGCSE Bulletin, 28(1), 125-129.

Stern, L. and Venables, A. (2002): Automated Tools to
Support Small Group Teaching.  Technical report.
Department of Computer Science & Software
Engineering, University of Melbourne.

Sun Microsystems Inc (2002):  Java Servlet Technology,
http://java.sun.com/products/servlet/

VUT submit home page: http://melba.vu.edu.au/~submit

WEBCT (2002): Leveraging Technology to Transform
the Educational Experience, http://www.webct.com.

Zin, A. M. and Foxley, E. (1994) Automatic Program
Assessment System.
http://www.cs.cf.ac.uk/Dave/C/chapter2_19.html#appc
eilidh


