
University of Southern Queensland

Faculty of Engineering & Surveying

Quality Assurance For Virtual Reference Stations

A dissertation submitted by

Jamie Heit

in fulfilment of the requirements of

ENG4112 Research Project

towards the degree of

Bachelor of Spatial Science (Surveying)

Submitted: Octoboer, 2005



Abstract

The Department of Natural Resources and Mines has identified the need for Quality

Assurance in all aspects of the operations of VRS. Their particular concern being with

data reliability at the rover and the ability to detect any anomalies as part of a strategy

to identify, minimise and manage potential risks associated with the VRS.

This thesis investigated and validated a system of monitoring and assessing the perfor-

mance of RTK-VRS by developing software which outputs a summary of characteristics

of the performance of VRS at a particular geographic location and time.

Quality Assurance software was created in this project to help minimise the lack of

Quality Control at the rover end of the VRS system. This program deals with data

collector files output from a Survey Data Recorder and creates summaries of particular

characteristics relating to the accuracy of the VRS system.

This software can now be implemented by Surveyors using the VRS system in South-

East Queensland. Providing them with a Quality Assurance tool to use at the Rover

end of the VRS network and partially solving the problem of a lack of Quality Assurance

for VRS.



University of Southern Queensland

Faculty of Engineering and Surveying

ENG4111/2 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Engineering and

Surveying, and the staff of the University of Southern Queensland, do not accept any

responsibility for the truth, accuracy or completeness of material contained within or

associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the

risk of the Council of the University of Southern Queensland, its Faculty of Engineering

and Surveying or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond

this exercise. The sole purpose of the course pair entitled “Research Project” is to

contribute to the overall education within the student’s chosen degree program. This

document, the associated hardware, software, drawings, and other material set out in

the associated appendices should not be used for any other purpose: if they are so used,

it is entirely at the risk of the user.

Prof G Baker

Dean

Faculty of Engineering and Surveying



Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and conclusions

set out in this dissertation are entirely my own effort, except where otherwise indicated

and acknowledged.

I further certify that the work is original and has not been previously submitted for

assessment in any other course or institution, except where specifically stated.

Jamie Heit

Q11222807

Signature

Date



Acknowledgments

This research was carried out under the principal supervision of Mr. Peter Gibbings.

I would like to sincerely thank him for all of his guidance and sharing his wealth of

experience throughout the year.

Appreciation is also due to Mr. Mathew Quarisa for his abundance of knowledge and

assistance. Much gratitude must go to Matt Higgins and Garry Cislowski from the

DNRM for their support.

Last, but not least, many thanks must go to my loving family and partner for their

help and understanding through this period.

Jamie Heit

University of Southern Queensland

Octoboer 2005



Contents

Abstract i

Acknowledgments iv

List of Figures ix

Nomenclature x

Chapter 1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Research Aim and Objectives . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Scope of Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Justification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Research Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 Summary: Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7



CONTENTS vi

Chapter 2 Literature Review 8

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Overview of VRS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 eGPS Solutions Georgia, USA . . . . . . . . . . . . . . . . . . . . 9

2.2.2 GPSnet.dk Denmark . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 DC file conversion . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.2 DC file manipulating software . . . . . . . . . . . . . . . . . . . . 13

2.3.3 Programming Languages . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.4 Programming Environments . . . . . . . . . . . . . . . . . . . . . 14

2.4 Quality Assurance Procedures . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.1 QA at the Server . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.2 QA at the Base Stations . . . . . . . . . . . . . . . . . . . . . . . 15

2.4.3 QA at the Rover . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.5 Summary: Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Chapter 3 Methodology 19

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Programming Language and Environment Choice . . . . . . . . . . . . . 20

3.3 Characteristics of Software . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.4 Data Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21



CONTENTS vii

3.5 Software Coding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5.1 QC1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5.2 Coordinate Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.6 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.7 Graphical User Interface Creation . . . . . . . . . . . . . . . . . . . . . . 35

3.8 Integration of Program Code to GUI . . . . . . . . . . . . . . . . . . . . 38

3.9 Software Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.10 Summary: Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Chapter 4 The QA System 42

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Revision of GUI Layout and Characteristic Definitions . . . . . . . . . . 43

4.3 Survey and User Requirements . . . . . . . . . . . . . . . . . . . . . . . 45

4.4 Disclaimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.5 Summary: Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Chapter 5 Validation 49

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Validation of dc Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.3 Summary: Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Chapter 6 Discussion and Recommendations 52



CONTENTS viii

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.3 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.3.1 Enhancements to the Program . . . . . . . . . . . . . . . . . . . 55

6.4 Summary: Chapter 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Chapter 7 Conclusion 57

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

7.3 Close . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

References 61

Appendix A Project Specification 64

Appendix B Source Code 66

B.1 The DC File Converter C++ Function . . . . . . . . . . . . . . . . . . 66



List of Figures

1.1 Concept of VRS (Trimble Home 2005) . . . . . . . . . . . . . . . . . . . 2

2.1 Coverage area of eGPS Solutions, Georgia, USA (eGPS Coverage Area

2005) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 GPSnet.dk Coverage Area in Denmark (GPSnet.dk Coverage Map Denmark

2005) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 The expected Horizontal accuracies of GPSnet.dk (The idea behind GP-

Snet.dk is simple - VRS is ingenious 2005) . . . . . . . . . . . . . . . . 13

3.1 Example of dc file opened with Notepad . . . . . . . . . . . . . . . . . . 24

3.2 The main screen which is shown after the execution of the software . . . 36

3.3 The design environment of the Windows Form Application . . . . . . . 37

3.4 The Load dc file window . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



Nomenclature

The following abbreviations have been used throughout the text and bibliography:-

DNRM Department of Natural Resources and Mines

GIS Geographic Information System

GPRS General Packet Radio Service

GPS Global Positioning System

GSM A public digital cellular network

GUI Graphical User Interface

MVS03 Microsoft Visual Studio.NET 2003

RTK Real Time Kinematic

TGO Trimble Geomatics Office

USQ University of Southern Queensland

VRS Virtual Reference Station



Chapter 1

Introduction

1.1 Background

Real Time Kinematic (RTK) Surveying is based on a differential use of carrier phase

measurements of the GPS signals where a single reference station provides the real-

time corrections of even to a centimetre level of accuracy. The integer ambiguity must

be solved for the carrier signals L1 and L2. The rover receiver in these particular

surveys should not be taken beyond 20-30 kilometres from the reference station (base

station) to avoid losing lock on the satellites. (Real Time Kinematic - Wikipedia, the

free encyclopedia 2005)

A Virtual Reference Station (VRS) is made up of GPS reference stations which are

generally spaced anywhere from 25-70 kilometres apart. The data observed at these

reference stations is sent to a central PC which is linked via computer networks. The

central PC checks the integrity of the data from each reference station, rejecting outliers

and correcting for any cycle slips that may have occurred.

Once the integrity of the data is check the central server corrects for any ionospheric,

topospheric and ephemeris errors. The effect of these errors on any rover in the network

can be modelled so systematic errors for RTK can be significantly reduced.

The rover in the field makes a phone call to the central server, sending its approximate



1.1 Background 2

position to the server. The central pc automatically receives this data and performs a

geometric displacement to the location. It interpolates, applies corrections and gener-

ates a Virtual Reference Station for that Rover.

It then sends corrections as though they were coming from the virtual reference station,

via mobile phone modem to the rover. Allowing the user to have real time coordinate

data for their observations.

Figure 1.1: Concept of VRS (Trimble Home 2005)

The concept of a VRS network is a simple, but very effective one. With the regular

operation of a Surveyor using GPS, the Surveyor is required to own/hire a base station,

rover, radio link, and data recorder. The purpose of VRS is that it removes the need

for a Surveyor in the field to setup a base station.

Background detail explaining the workings of GPS will not be discussed as this project

assumes some prior knowledge of the basic workings of this system.

The Department of Natural Resources and Mines has identified the need for quality

assurance (QA) in all aspects of the operation of the VRS. They are particularly con-

cerned with data reliability at the rover and the ability to detect any anomalies in the

field as part of a strategy to identify, minimise and manage potential risks associated



1.2 Research Aim and Objectives 3

with the VRS.

Monitoring of the VRS is necessary as a quality assurance function. If any allegation was

made that the VRS was not working to its specified range of accuracy in a particular

area, there could be legal consequences for the DNRM to deal with. It would be

necessary to verify if there was a problem with VRS in that specific location, or if the

errors had some other cause. Although VRS has some in-built assurance tools for RTK

VRS surveying, this project proposes a further tool to assist with this quality assurance

issue.

The issue at hand is that a Surveyor is placing trust in the coordinates which are

obtained in the field via the VRS procedure. There is a potential risk that if there

is a bias in the coordinate data given by VRS, the user may inadvertently end up

positioning survey marks out of place.

Constant accumulation of this data will allow a larger scale area being able to be

identified as giving a particular accuracy or if problems with connectivity have been

encountered in the location as well as countless other benefits to the user or their

company. A Surveyor would also of course make an immediate check on a known

mark surrounding their survey area to let them know of any differences from the stated

coordinates which may be occurring.

A Surveyors profession depends on their ability to provide a final product which is as-

sured of being of a very high quality. The quality assurance/quality control procedures

are a Surveyors way of guaranteeing this high quality outcome. Hence, this is how the

creation of this project came about.

1.2 Research Aim and Objectives

1.2.1 Aim

The aim of this research is to investigate and validate (by conducting a trial) a system

of monitoring and assessing the performance of RTK-VRS. A system will be developed



1.3 Scope of Research 4

that will allow the VRS to be monitored and assessed with a view to outputting a

summary of characteristics of performance specific to a particular geographic location

at a particular time.

1.2.2 Objectives

The objectives of this project are as follows:

• Research the background information regarding current QA systems for VRS and

current software which manipulates survey data controller files.

• Critically evaluate existing alternatives for QA at the rover end of RTK surveying

using VRS.

• Design software which will extract data from a controller file and output a sum-

mary of desired statistics.

• Test (validate) the designed software by conducting trials involving gathering

data and downloading to a computer which will run the software and produce

summary reports.

• Analyse results to prove the effectiveness of the designed software.

1.3 Scope of Research

This project investigated the implementation of a Quality Assurance system for RTK-

VRS surveying.

The construct of this research comprised of identifying the problems, trends and needs

of incorporating a Quality Assurance system as part of a strategic plan to manage the

risks associated with the operation of the Virtual Reference Stations in the South-East

Queensland area for the user end of VRS-RTK. The requirements of the Department

of Natural Resources and Mines were incorporated in this project as they were the

major sponsor. The fact the VRS infrastructure is governed by them also encourages



1.4 Justification 5

their involvement. Their governance covers all Hardware, Software and Quality Control

procedures which operate the VRS system.

The review of VRS-RTK schemes on a global scale helped to give an appreciation of

the state of technology in regards to Quality Assurance systems for VRS, and which of

these proved to be most effective.

1.4 Justification

The concept of VRS-RTK surveying may only seem a simple benefit, but financially,

as well as the increase in productivity, it has a much greater advantage. For instance,

once a base station is setup, there is a high chance that when field work commences, a

Surveyor will lose sight of the base station until the job is finished. This brings problems

in urban areas, and to a lesser extent rural, of the base station being removed, disturbed

or even stolen. The benefit of not having to be concerned about the base station is

very profitable to the surveyor. This comes about by not requiring the necessities

which come at times with conventional RTK-GPS surveying, these being either paying

somebody to sit at the base station for the duration of the survey, or purchasing a fence

to place around the base station.

Generally, being so far away from the base station means long baselines between the

rover and base station, though it is recognised that occasionally a base station may be

setup beside the rover, this only occurs on the occasions in which the survey job does

not cover a great area. The longer baselines lead to slightly less accurate data being

captured and therefore, a final product which does not live up to the potential of its

accuracy specifications.

The use of mobile phones allows the user to be much farther from the base stations

than if a radio link was used as the means of communication between the rover and

base. The obvious benefit from this is the fact that a far greater area may be covered

by the surveyor without having to relocate the base station as would be necessary with

conventional RTK.



1.5 Research Method 6

The benefit of applying a Quality Assurance system to the rover end of a RTK-VRS

surveying application is the instantaneous notification that the user will receive and

the permanent record that they will have of the performance in the particular area in

which they performed their survey. The benefit of the proposed software is that the

user can compare the VRS data in a specific geographic location with other GPS data

they may have, with the summary report intending to provide them with a log of the

VRS accuracy in that area.

Its also envisaged that the DNRM will use this program in association with new safe

guards built in to VRS to constantly monitor the system to provide an early warning if

there is a problem with the data. This will provide the DNRM another basis of Quality

Assurance in their task of ensuring high quality data is always provided to the end

user.

1.5 Research Method

Specifically, the research method is divided into three stages, the first is a VRS sys-

tem overview, the second is a revision of current software, and the third stage is an

investigation of current QA in regards to the Server, Bases and Rover ends of VRS.

A significant problem with VRS is the lack of Quality Control, or lack of independent

testing ability at the rover when used in the VRS network. Quality Assurance is well

developed throughout the world in VRS in terms of the data which is sent from the

central server (Trimble Home 2005), but this project proposes a method by which users

in the field can conduct their own Quality Assurance procedure. A large number of

epochs of data are gathered to provide greater confidence in the result after analysis.

Once this gathered data is downloaded to a computer, the proposed software produces

a summary of characteristics for the particular time and location in which the data was

gathered. These summaries will allow the user to have prior knowledge of the accuracy

they can be expected to get in a particular area before they leave the office.

The design for software to act as a QA system will be completed following the literature

review. This design will use a data collector (.dc) file which has been downloaded



1.6 Summary: Chapter 1 7

to the computer as a basis for its input file and will produce a summary of average

minimum number of satellites, Position Dilustion of Precion’s (PDOP’s), Horizontal

DOP’s, Vertical DOP’s, initialisation times, and total GPS positions gathered in the

survey for output which the user can file away for future occasions and which the

DNRM can use in the larger scale issue of being able to provide users with accuracy

estimates relevant to geographic location within the VRS coverage area.

1.6 Summary: Chapter 1

Monitoring of the VRS is necessary as a quality assurance function and risk management

function. If any allegation was made that the VRS was not working properly in a

particular area, there could be legal consequences for the providers of the VRS data. It

may be necessary to verify if there was a problem with VRS in that specific location,

or if the errors had some other cause. The main purpose of the software is to provide

both the DNRM and end users with a warning or alert them if there is a problem.

This thesis aims to investigate and validate a system of monitoring and assessing the

performance of RTK-VRS. The production of this software is hoped to partially resolve

the issue of too few QA tools for VRS. The research will result in the development of

software which has the capabilities to allow the real time users of VRS in the South

East Queensland area when/if the coordinate data they are using is within specification.

This will produce an item of QA which will perform as a considerable time-saver to

many surveyors and one which will create confidence for more surveyors to embrace

the real time capabilities of the VRS system and in doing so will take a massive step

forward in their productivity.

A pilot study was constructed from the findings of the literature review. The outcomes

of this study were used for the design and development of the Quality Assurance soft-

ware needed to fulfil the requirements of this project. Once this design was completed,

a process of validation occurred to purposefully induce errors and test the ability of the

QA software to handle a variety of situations.



Chapter 2

Literature Review

2.1 Introduction

This chapter will review literature to establish the design and validation of a QA system

which will monitor and assess the performance of the VRS for real time corrections.

The aim of this chapter is to discover and review literature which will give a general

overview of various VRS establishments throughout the world, as well as literature

which is relevant to current software being implemented in VRS. Finally this chapter

will review an assortment of literature relating to existing Quality Assurance procedures

for VRS at the central server, base stations, and rover.

A critical analysis of existing systems will provide the basis for developing a reliable

method of estimating the accuracy of RTK-VRS in different locations and situations.

The contemporary problems which are in place in the current VRS system with respect

to QA will be discovered and reported upon. This chapter will provide the arsenal

required to begin the design of the QA system software, by that, what is meant is

that the needs for the QA system will be able to be perceived a great deal easier by

obtaining the knowledge of what is currently in place.



2.2 Overview of VRS 9

2.2 Overview of VRS

This section will provide an overview of various VRS units from around the globe. This

will be done to examine the infrastructure and workings behind each VRS operation.

This is done to guarantee the same type of multi-based network GPS application as

in South-East Queensland is in place when reviewing the QA of each VRS or CORS

application

2.2.1 eGPS Solutions Georgia, USA

In Georgia, USA, eGPS solutions Inc. provides GPS users with an advanced Real

Time, internet-based, GPS network. (eGPS Solutions Internet-Based Real Time GPS

Network 2005) The eGPS solutions system runs on Trimble Navigation, Virtual Refer-

ence Station (VRS) technology and incorporates a network of fourteen permanent base

stations around the central and north Georgia region. Figure 2.1 shows the coverage

area in which eGPS operates.

The eGPS Solutions base station network currently serves an area of approximately

20,542 square milesroughly 35

The network software performs quality and data integrity checks continuously by rel-

ative positioning between base antennas. The network is monitored during regular

business hours, 8:00am until 5:00pm, Monday through Friday.

eGPS Solutions’ system reports WGS-84 datum. The antenna locations are surveyed

in from HARN monuments (known as survey marks in Australia) and vertical con-

trol monuments throughout North Georgia. The values of these are presently being

Bluebooked through NGS.

The maximum Positional Error Tolerance of points that eGPS solutions systematically

observed using a VRS correction over a period of months and with one minute of data:

• Horizontal = 0.03’



2.2 Overview of VRS 10

Figure 2.1: Coverage area of eGPS Solutions, Georgia, USA (eGPS Coverage Area 2005)

• Vertical = 0.06’

eGPS Solutions recommends that users verify their own data by observing existing

survey monuments near their projects as datum verification, and that they repeat

observations to model positional error tolerances for themselves. This verification would

be similar to use of a calibrated baseline for EDM equipment verification. (eGPS Data

Reliability 2005)



2.3 Software 11

2.2.2 GPSnet.dk Denmark

The Trimble Center Danmark has established GPSnet.dk - an electronic Reference Net

- in cooperation with the leading official and private GPS-users in Denmark.

GPSnet.dk incorporates the following characteristics:

• 100% coverage of Denmark;

• No border problems between reference stations;

• Uniform accuracy throughout Denmark;

• One phone number - to measure throughout Denmark;

• 24 hour surveillance;

• 26 Dual Frequency GPS receivers.

(About GPSnet.dk 2005)

Figure 2.2 shows the coverage area of GPSnet.dk throughout all of Denmark. Each

of the green dots represent the reference stations. Coverage ends at 100km from the

nearest reference station.

The VRS technology has significantly improved the time it takes to initialize an RTK

survey. Extensive testing has shown that an average initialization time of under 1

minute is possible. 90% of all measurements are initialized under 1.5 minutes and all

measurements are initialized in under 3 minutes.

The following figures give an example of the accuracies expected when using GPSnet.dk

in Denmark.

2.3 Software

This section will cover the background information in regards to software which requires

the use of Trimble data recorder’s dc file and is currently available to the end user of



2.3 Software 12

Figure 2.2: GPSnet.dk Coverage Area in Denmark (GPSnet.dk Coverage Map Denmark

2005)

VRS. This is done to investigate any outputs which are produced by the software and

gather information on how this is done. This process is incorporated so that no long-

winded unnecessary steps are done when programming is commenced for this project.

2.3.1 DC file conversion

The point of finding a conversion system for the dc file was to see if it could be converted

to a text file in the format which it is much more aesthetically pleasing and legible in

Trimbles’ dc file editor within Trimble Geomatics Office (TGO). This would of allowed

for much easier reading and simpler manipulation within software.

No programs could be found however after an extensive review of journals and informa-

tion available on the world wide web. This led to the conclusion of not worrying about



2.3 Software 13

Figure 2.3: The expected Horizontal accuracies of GPSnet.dk (The idea behind GPSnet.dk

is simple - VRS is ingenious 2005)

converting the file, but instead just finding the consistencies in the file when viewed in

windows notepad. These consistencies were found and this was viewed as good enough

for the software to still be implemented smoothly.

2.3.2 DC file manipulating software

Trimble Total Control Software provides the user with powerful processing and tools to

enable large bodies of data to be processed extremely quickly, with extensive analysis

and reporting. The software is ideal as a processing package for GPS and total station

data. (Trimble Total Control Software 2005)

The software provides an option to analyse GPS data. The results include data for

variance-covariance matrices used in the network adjustment, standard errors, and

best and worst PDOP and RDOP during the measurement session. The results report

can be customised to include only values of immediate interest to the user.

Data can be edited satellite by satellite, allowing the user to define satellites used,

elevations and observation intervals for each line. Locations of cycle slips are shown,



2.3 Software 14

though the software corrects for these automatically during processing.

These processing options also helped in deciding exactly which outputs the software

which is being designed should include in its summary report. The exact code used in

these programs is of course unavailable for reading but the processing of files gives a

good example of what can be done with survey file input.

2.3.3 Programming Languages

The development of the software within this project was to be done in any of the

common programming languages known. These were C/C++, Java and Visual Basic.

The pre-requisites were that it just be capable of creating a program which could take

input from a file, as well as be used in the development of a Graphical User Interface

(GUI).

C++ has support for both the input and output of files through a variety of classes

and by the inclusion of specific header files. It also has functions to deal with the many

manipulations required of the dc file to correctly extract the data. (C++ tutorial:

6.1,Input/Output with files 2005)

The Java programming language also deals with the input and output of files, with this

being established by reading through examples and tutorials dealing with this. (Java

examples (example source code) File Input, Output Data, Input Output, Data IO Test

2 2005)

It was discovered that Visual Basic also performs the same basic functions. With the

ability of each not differing a great deal, there was little to separate the programming

languages from a novice programmer’s perspective.

2.3.4 Programming Environments

There was no choice as far as programming environments were concerned, with Mi-

crosoft Visual Studio.Net being available at both university and at home. The cost of



2.4 Quality Assurance Procedures 15

purchasing another package which could perform the same functions as Microsoft Visual

Studio.Net was outside the limit of spending capabilities for this research project.

The package only required the ability to handle either of the 3 programming languages

previously discussed, and have the capabilities of being able to integrate any of the

languages into a Graphical User Interface (GUI). The GUI being required to show the

output to the user.

2.4 Quality Assurance Procedures

This section will provide an overview of current quality assurance procedures being

incorporated into various VRS setups around the world. The quality assurance which

is implemented at the server, bases and rover will be analysed. This is done to review

which, if any, current VRS applications around the world will influence the design and

operation of the QA to be incorporated into the current setup which this project is

involved in.

2.4.1 QA at the Server

At the time of this project, the information on software and procedures being used

in each of the researched VRS/CORS operations was very limited/non-existent. The

content of these QA systems at the Server are difficult to obtain because of their

expensive nature, it is known for example, that the software operating the server at

the DNRM is worth in the tens of thousands of dollars.

This is the reasoning behind the lack of information on the QA procedures at the server.

2.4.2 QA at the Base Stations

Land Victoria is a section of the Victorian Government which controls the information

and services about land and property anywhere in Victoria. They control a multiple

reference station network called GPSnet. GPSnet spans all of Victoria, as can be seen



2.4 Quality Assurance Procedures 16

below.

Figure 1.1 - Coverage area provided from GPSnet (Source: (eGPS Coverage Area 2005)

GPSnet provides position determination by differentially post-processing GPS data.

They allow their users to access the files they require generally ten minutes after the

end of each hour. This is so because data is stored in universal RINEX file format at

five second intervals each hour.

The quality control which is in place in each of the base stations in GPSnet is a piece of

software named GQC. GQC is used to assess the quality of raw GPS data in the RINEX

format. It has a functional automatic mode whereby it can automatically process data

generated by a GPS reference network. QGC creates summaries and sends alerts via

email if quality conditions are not met.

GQC has an additional normal mode of operation to its automatic mode. The features

of both modes are listed below: Normal Mode:

• Processes individual RINEX observation and navigation file to produce quality

statistics.

• Quality parameters may be modified by the user.

• Output can be saved to rich text files.

Automatic Mode:

• Quality reports and summaries are created.

• Optional email error messages and warnings can be sent to alert the network

manager(s) to potential quality and integrity problems.

• RINEX data can be archived.

• GQC can plot graphs of the output and save them to jpegs or bitmaps.

• GQC can create and update web pages that summarise the status of a reference

network, showing plots of key quality indicators, status lights and file summaries.



2.5 Summary: Chapter 2 17

This is a sample of the GQC software:

Figure 1.2 GQC software sample. Source: (GPSnet Coverage Area Victoria 2005)

The fundamental input required by GQC is RINEX Version 2 observation and navi-

gation files that contain only GPS data. While the basic output of GQC is a log file

containing a summary of the contents of the file and various quality indicators. When

performing automatic processing, a number of log files may be produced depending on

the settings in use. These log files record information regarding the operation of the

program and its processes. (GPSnet Coverage Area Victoria 2005)

2.4.3 QA at the Rover

There was an extensive search attempting to find any QA at the Rover end of the VRS

operation. This search resulted in nothing being found. Further backing the necessity

for the creation of this software and justifying the topic of this research project.

The only known QA procedures at the Rover end are within the Data Recorder, with

the Surveyor always being able to see on the touch screen the number of satellites, and

DOP’s available and the geometry of the satellites if need be.

2.5 Summary: Chapter 2

The review of literature in this chapter has helped to significantly narrow the vision

of the direction of this project. Allowing a clearer path to be made in respect to the

design requirements and steps involved in reaching this final design.

The review of other relevant VRS operations around the globe helped to appreciate

what accuracies are thought to be relevant and to also understand the infrastructural

requirements of each operation. The software relating to the manipulation of dc files

helped to understand the characteristics which are generally output from software when

dealing with an input of dc files. This information helped the further design of what

must be included in the output of this project.



2.5 Summary: Chapter 2 18

The choice between programming languages was not a difficult one considering the

similarities between each. This meant that neither of the languages had an advantage,

capability wise, over the other. This left the choice of C/C++ as the programming

language because of previous courses studied, giving some useful background knowledge

on the language. As previously mentioned the decision to use the Microsoft Visual

Studio.Net programming environment was not difficult, and would of most likely been

chosen even a choice was possible to purchase another.

The lack of QA at the rover end of VRS further justified the aim and objectives of this

project. Allowing the design to not have any limiting parameters, and set a precedent

for future work in QA software for the Rover.

The next chapter will now move on to discuss the design and methods implemented

in creating the QA for VRS software. The design now has boundaries and a set of

necessary characteristics which need to be included because of the findings of this

chapters literature review.



Chapter 3

Methodology

3.1 Introduction

This chapter will discuss the experimental methods and design techniques used in

developing software which will be used as a Quality Assurance tool for VRS. As there

were very few precedents set for the design of the software, trial and error, rather than

following established methods will be used in this project.

This chapter will explain in great detail the methods by which Quality Assurance

software will be created and how it is planned to be validated.

Experience will be drawn from previous bodies of work to ensure that correct procedures

are followed and to prevent wasting time by discovering mistakes which have already

been made. Discoveries from the conclusions found in Chapter 2 will be analysed,

though as previously stated, there will be only a small value from these because of the

lack of experimentation and design in this specific field. The design of this software

will be the most arduous task and will take up the majority of time in this project.

Once the design is completed a process of validating the software will be conducted

by completing a field test. ’Bad’ data will be purposefully introduced to ensure that

the limits of the softwares capabilities are discovered. The current VRS base station

configuration will soon change. Previous stations at Beenleigh and the Landcentre will



3.2 Programming Language and Environment Choice 20

no longer be base stations in the new configuration. However, the infrastructure will

remain at each of these stations. Consequently, they provide an ideal opportunity to

carry out some continuous testing and monitoring of the VRS from a QA perspective.

The results, further recommendations and conclusions can then be made from here.

3.2 Programming Language and Environment Choice

The initial issue which had to be analysed was which programming language would be

chosen for the creation of this software. There are no set specifications from DNRM

on which language they prefer, with the program only having to run on a desktop pc

or laptop.

The two languages which were short-listed for use in this project were Visual Basic and

C/C++. The language I decided upon was C++. This is because I have some previous

experience with C and C++ from prior courses studied. These courses were CSC1100 -

Foundation Programming with C and CSC2311 - Advanced Procedural Programming.

It was realised at a very early point that this software needed a Graphical User Interface

(GUI) to portray the output in a simple and effective manner. This GUI needed to be

created in a programming environment which can be used in the Windows operating

system. This is so because of my familiarity with windows and my concern at trying

to learn how to use the Linux operating system.

The decision making behind my choice of which programming environment was simple

because of the access I had to Microsoft Visual Studio.NET 2003. This environment

allows the user to program in Visual Basic, C/C++ and Java, thus providing the

suitability I required.

3.3 Characteristics of Software

It has been established that this program will create a summary report on several

characteristics which will be obtained from the Trimble Data Recorder .dc file after



3.4 Data Extraction 21

the user has observed and recorded enough data on a point with known or unknown

coordinates. There is an option in the Trimble Data Recorder which allows the user to

record QC1, QC2 and QC3 data in their .dc file. This is usually not done because of the

size issues which it creates. QC means Quality Control and this section records a lot

more data about the satellites and Dilution of Precision’s (DOP’s) than would normally

be recorded. The user is only asked to record QC1 information on their .dc file for the

purpose of this software, and this option can be turned off once the initial checking has

been done and software has been executed. The .dc file is to be downloaded by the

user to a computer with a copy of this software on it. From there the program is to be

run and the summary report being the output of the execution of this software.

3.4 Data Extraction

The first problem at hand is deciding upon how to obtain the data from the .dc file

which the user downloads to the pc. The .dc file is read best with the .dc file editor

which is apart of Trimble Geomatics Office (TGO). The difficult decision was whether

the data is read directly from the .dc file or whether it is converted to a .txt file and

then read from there. If a file converter is used, then this must be able to be run as a

function within the code for the software, as part of the requirements for this software

is that the user only needs to run this program, and that no other manipulation of files

is required on their behalf. A suitable file converter could not be found, leaving this

project to extract the data directly from the dc file.

If being opened from a .txt file editor (i.e. notepad) the format of the data in a

dc file becomes quite mixed and difficult to interpret which numbers represent which

characteristic. The general format of the data however is always in the same order,

providing an opportunity to investigate exactly the position of the QC1 data in the file

and where it lies in relation to other data on the file.

This provided an opportunity to code into the software that it not store any of the

read data in the file until it reads a predetermined prefix or suffix, depending of course

on the location of the data in the file. For the purpose of analysis and comparison,



3.5 Software Coding 22

the data in each dc file was printed out as it is seen in both the dc file editor and the

text file editor. This comparison helped to locate the exact location in each file of the

required data.

It was determined from the comparison and analysis that each line of QC1 data and

each line of relevant GPS coordinate data had a four (4) character code at its beginning.

The four character code for a line of QC1 data was ”C6NM”. With the code for GPS

coordinate data being ”08PD”. The knowledge of each of these codes allowed the use

of a search function throughout the whole file.

The data to be read from the file includes the following: Number of Space Vehicles

(satellites), PDOP’s, HDOP’s, VDOP’s, Easting, Northing and Reduced Level.

3.5 Software Coding

3.5.1 QC1 Data

Each C/C++ file begins with a number of header files. These header files give directives

as to which functions and operations that the user can perform. For example without

the header, #include <string>, the user cannot manipulate strings of data such as a

line of data from the dc file. This is so because of the functions which are included in

that particular header file, meaning that manipulations or enquiries of the line of data

are not possible.

From this, it can be concluded that the user must ensure each necessary header file must

be included at the beginning of a file used in the project. Through the help systems

available in Microsoft Visual Studio.NET 2003 (MVS03) the necessary header files can

be found dependant upon which functions the user requires when programming.

Moving on from the header directives, the program must next deal with the main()

function. This is the first function which is executed within the code. Within the

main() function many other functions can be called. These other functions can be

created either before or after the main function is written, but regardless of this, the



3.5 Software Coding 23

main function is always the first to be executed.

The beginning of the main function began with several variables being initialised, these

variables are used to store data and they are used within some of the functions which

are called within main. Their purpose is also as a counter or arrays of characters.

The code first checks as to whether the file chosen can be opened. If it can’t, the

program simply prints an error message to the screen and exits, otherwise the file is

opened and is then ready for reading. The program then looks for the four character

code for QC1 data (C6NM), running through each line until it reaches the end of the

file. If a line in the file is found to have that code it is stored in a class along with

the other relevant lines of data. If the search cannot find the QC1 data code, then it

searches for one of the above mentioned Coordinate data codes. Any line of data found

to have one of the coordinate data codes is then stored within coordata class, which

performs operations on the line to find the data within it.

Before continuing with further methodology, it must first be explained what a class is.

A class in C++ is similar to a structure in that it is like one big variable which has the

ability to hold many other variables within it. It can also hold many other functions

within it, allowing for many processes to be shortened by defining a class and calling

it throughout the program.

For the data within the file to become usable for processing and calculations, some

manipulations firstly had to be done so that they were in a legible format and showed

the true values for each of the required characteristics. The data in the file came in the

format shown in Figure 3.1 when opened with a text file editor.

Using this exert from a file used in the validation process, the manipulations used to

get the data in their correct legible state will be described as follows. This example

is for a line of QC1 data, as can be imagined, the line begins when the code C6NM

is found and continues with the rest of the data in the example, it is only wrapped

because of the little amount of space available here for the length of the line.

Once the program finds this code at the beginning of the line, it then begins to read in

data ’after’ the code. It was found that the data in the file actually matched up with



3.5 Software Coding 24

Figure 3.1: Example of dc file opened with Notepad

what was stated when opening the file with TGO’s dc file editor, meaning that each

decimal place, or ’.’ in the file was actually in the correct place, but was just attached

directly to the next number and so on.

The difficulty here was to break up the numbers in the file in the correct position so

that the correct number was left stored in a variable at the end. Once it was decided

what needed to be done with the data in the line which began with C6NM, it was then

a priority to make sure that the format was exactly the same on the other lines of QC1

data (lines with code C6NM) so that a generic solution could be made to the problem

of breaking up and sorting through the numbers to give their correct values.

On further investigation, it was found that the lines of QC1 data throughout three

different VRS dc files were in exactly the same format, allowing for a much easier

solution to the problem than had they of been different each and every line.

Now the problem and what was required of the solution were known, I then had to sift

through the MVS03 help systems to find built in functions which would allow me to

manipulate the numbers in the file the way in which I knew they had to be separated.



3.5 Software Coding 25

This was what finding the functions was all about, having the ability to separate and

distinguish the numbers from each other.

The function which I chose to initially separate the numbers was char *strtok(). This

function allows the separation of blocks of data at whichever delimiters the user chooses.

I chose to separate the numbers at each ’.’ (decimal place) and each ’ ’ (space). If there

more than one spaces between numbers the function would sift through the line until

it found the next block of data anyway, meaning the number of spaces did not matter.

The strtok() function was used within another function in the class created to handle

lines of QC1 data. The initial line which was to be tokenised as it is called in C++ was

put into a character string variable, and then the strtok() function was run over it. For

each separation at either a decimal place or space, the block of numbers needed to be

stored within a temporary variable so further manipulations could take place. A string

array variable was created to handle each block of numbers which were separated from

each other in the line of QC1 data.

An array is simply a variable able to hold many numbers of variables within itself at

different addresses in memory. The number of variables able to be stored within the

array is determined when it is declared.

To be able to store the next block of data at the next location, the array has to have

counter, or variable to increment so that the next address is then available to store the

next block of data, or in this case to store the next block of numbers. This can be done

by running the strtok() function in a for loop and having the block of numbers stored

after each increment in address.

A for loop in C++ generally comes in the form for (i=0;i<8;i++) {}. This all reads as

follows: i=0 initializes the counter variable, i<8 can be any condition so long as it is not

an infinite one, here it says while i is less than 8 and i++ says to increment the counter

i while that condition holds true. The operations are then held within the {} (curly

brackets). These operations are as stated earlier for this function in the class handling

QC1 lines of data, which are to tokenise the line and store each block of numbers in

the next address or location in the string array.



3.5 Software Coding 26

Once each block of data is separated, the next step was to find an operation which

could take the last number of one block, and add it to the first number of the next

block with a decimal place in between. This was needed because this is how the format

of the numbers came in the line of QC1 data.

Again upon further investigation of the MVS03 help system, the option found was to

use the ability to append a decimal place to the start of a block of numbers and to

use the function basic string substr(). This gave the ability to search through a block

of numbers and move along x number of characters and then to read and therefore

store y number of characters from that point. This meant that for a particular block,

I could count the number of characters, decide which number/s I needed to append to

the front of the next block and then use this particular function.

Before this could be done a string variable had to be created so that it could act as a

temporary storage for the numbers while the operations were taking place before the

correct numbers were stored in their final variables within the class created to handle

the lines of QC1 data.

Once this variable was initialised it could then be used with the previously created

string array which stored the blocks of numbers. This string array had seven memory

addresses used. These could be accessed by simply typing that number in brackets

beside the variable name ( buf[2] ), this was how each individual block of numbers was

accessed in the following manipulations.

The first relative number required in each line was that of the number of minimum

number of satellites for each QC1 data recording. This number is always located as a

two digit number directly beside the C6NM code which identifies the QC1 line. The

first digit is always a 0 after the M, so this meant that to correctly identify the number

of satellites, the new string variable (bufnew) is given the value from the first block

of numbers (( buf[0] ) 0 is always the first address used in an array) and the substr()

must be used to move along 4 characters before grabbing the next 2. (eg C6NM08 -

here substr() would move along the first 4 characters, then grab 08 as the number of

satellites, which is the correct number).



3.5 Software Coding 27

The number is then moved from the temporary storage point of bufnew to the perma-

nent variable numsats. Before it is transferred however, the value in bufnew is currently

still a string (which means it is regarded as a character, not a numerical value), so it

must be transformed to an integer so that it can be used in future calculations. It is

impossible in C++ to do calculations with other integers if the number you are trying

to calculate with is in the form of a string or character, regardless of whether or not it

still looks like 8 in both forms.

Before continuing, it is worth mentioning that in C++, an integer is regarded as a whole

number, and therefore using it for satellite numbers is fine because there is never going

to be a value of 8.2 or 6.4 satellites. Though it must be remembered when dealing with

any form of DOP’s, the program must transform these to doubles, as doubles allow

a value much greater than what will be used in this field and they also allow a great

number of significant decimal places. This is all relative because when it comes to

calculations, each particular characteristic in the QC1 data line must be of a relevant

numerical standing, otherwise no calculations are possible.

Another couple of C++ functions which are relevant to what is about to be discussed

are the unsigned int length() function and the basic string append() function. The

length() function returns the length of the characters in a variable as a single numerical

integer, allowing it to be of particular use when incorporated with the substr() function

previously mentioned. The append() function allows the programmer to simply ”add”

or ”append” a character or number to the beginning or end of a block of data, regardless

of whether it is alpha or numerical. This function is used in the creation of each

characteristic from QC1 which has significant figures after the decimal value.

The process used in the forming of the numerical value for PDOP’s is exactly the same

as that for HDOP’s and VDOP’s. This is so because the number of characters in each

of the blocks containing their information was exactly the same.

The first block of data which contained the QC1 data code for the line and the number of

satellites also contained as it’s last digit, the whole number PDOP’s. This is so because

as was stated earlier, each line of QC1 data was broken up into blocks wherever there

was a decimal place ’.’ or a space ’ ’. Therefore obviously this leaves us with the last



3.5 Software Coding 28

digit of several of the blocks as the whole number, and the next block containing the

numbers ’after’ the decimal place, until of course the last digit, which is then the whole

number for the next QC1 characteristic, be it in this case after PDOP’s it is HDOP’s.

The manipulations used in forming the DOP values also required the use of a temporary

storage variable, so once again the string variable bufnew was used, it could be used

again because the value it was storing has been passed to it’s permanent address and

therefore not required in the temporary bufnew anymore.

So using the substr() and length() functions it was possible to gain the whole number of

each of the DOP values. The actual code read as follows: bufnew = buf[0].substr(buf[0].length()-

1,1);

Notice the use of the length() function within the substr() function. This is done so

that for the whole number of PDOP’s, the length of the first number block minus 1 is

given as the number of characters to move along, before grabbing the last character,

which is obviously the number required.

From here, the temporary storage variable bufnew then has a ”.” (decimal place/full

stop) placed at the end of it, signifying the break between the whole number just

retrieved and the part values to follow. The variable bufnew then has the next block

of numbers in the array appended to it apart from the final value, which of course is

the whole number for the next number of DOP’s, in this case it would be the whole

number for the number HDOP’s.

After this the numerical value currently stored in bufnew then has to be transformed

from its current format as a string, into the required format as a double. Being a double

allows the variable storing the value for either of the DOP numbers to be used in the

calculations required in the production of this software.

The gathering of the values for HDOP and VDOP were done exactly the same way,

with the same number of digits in each. The only difference being with each one is that

number of the array being queried incremented by one in each case. This meant that

the array of number blocks had moved through to array number 5 ( buf[4] ) after the

manipulation of the data in the previous blocks to produce the values for each of the



3.5 Software Coding 29

DOP’s. Each of the other DOP values were also transformed to the format of a double

to assist in the calculations to come.

The program required the use of the substr() function to enable the sorting through

the characters as with the previous QC1 characteristics which were obtained from the

line of data. The value is then stored in the temporary string variable bufnew, from

which it has to be converted from the format of a string to the format of an integer. As

with the other numbers retrieved from the file, the format of the number is an integral

part of it’s formation by helping the ability to be used calculations. This helping the

production of the final product, which are the summaries.

This then finishes the manipulations of the line of data which is found when a QC1

data code is found at its beginning. The retrieval of information from the lines of data

allow for the simple calculations and viewing which will be later seen when entered into

a Graphical User Interface. The extraction of the data from each line of QC1 data was

also made simpler because of the consistency factor. Each line of QC1 data available to

me on file from a VRS survey had the exact same format. By format it is meant that

spacing and decimal places and character numbers were the same for each file viewed.

Without this the task of extracting QC1 data from the file would have been a far more

arduous task and one which would of most likely set the project back quite a deal of

time.

3.5.2 Coordinate Data

While the program is searching through each line of the file searching for the QC1 data

line code, it is also searching for the code which relates to GPS coordinate data. The

code has a four character code at the beginning of its line.

Each line of coordinate data contains three very important pieces of information. These

are the Easting, Northing and Reduced Level of the current GPS position. These three

pieces of information differ slightly in the manner in which they have to be retrieved

from the line of data, therefore requiring several methods of extracting coordinate data

will be explained.



3.5 Software Coding 30

The code which I have discovered is that of ”08PD”. This code appears on the dc

files which were exported with a SDR 33 format. This file was produced in the field

using conventional RTK-GPS. None of the VRS dc files at my disposal were exported

in the SDR 33 format. This left the assumption that these lines would be in the same

format in a dc file from a RTK-VRS survey. This is a fair assumption because the

lines of coordinate data which are in the standard dc file transfer do not differ between

conventional RTK and RTK-VRS.

Once the four character code at the beginning of the line has been determined, the

program then shifts to the class created to handle the lines of coordinate data. The

program then moves through the line of data, tokenising the characters in the line as

was done with the QC1 data. This being at every ”.” (decimal place) and at every ” ”

(space). This left the data in blocks, these were stored in string arrays as was also the

case with the QC1 data.

The first characteristic which had to be retrieved from the line of data was that of the

easting of the point. The easting of a point is given in the 3rd number block in the

array. This, as was the case with the operations in the QC1 data file, will be stored in

a temporary string variable before its format is changed and it is stored permanently.

So, after giving the temporary string the 3rd number block, the program then uses the

append() function to add a decimal place behind it and then uses the append() function

again to add the first 6 characters of the next number block after the decimal place. It

only gathers the first 6 numbers by using the substr() function which was also outlined

earlier. As the case was with the retrieved characteristics in from the lines of QC1 data,

the easting value has to be converted from the format of a string to that of a double.

The double is necessary because of the significant figures after the decimal place. Once

converted, the easting value is then stored in its permanent variable location in the

class designed to handle the lines of GPS coordinate data.

The characteristic next in line was that of the northing of the point. The extraction

of the northing value of each point used the substr() and append() functions to create

the correct number. The string variable bufnew was given the whole number of the

longitude by grabbing 7 numbers from the 4th number block array. From here that

whole number then had a decimal place appended to it, followed by the appending of



3.6 Data Processing 31

the first 8 characters from the 5th number block array. As with every other previous

characteristic, the number value had to be converted from its format as a string to that

of a double for calculation purposes.

The final characteristic to be retrieved from the lines of coordinate data was that

of the reduced level value of the point measured. Once again as with the previous

manipulations of the line to extract data, the number given to represent the reduced

level of the point needed to use the substr() and the append() functions. The height

number was contained firstly within the 5th number block array and then moved to

the 6th number block array. The substr() function was first used to move through the

number block 8 places so that the next 3 numbers after that could be grabbed, i.e. the

9th and 10th characters in the number block. This of course was placed again in the

temporary string variable bufnew. A decimal place was then appended to the end of

the whole number value. From here the first 9 numbers of the 6th number block was

appended to the figure in bufnew to form the number of significant figures after the

decimal place. The reduced level value was converted from its format as a string to

that of a double to assist in the calculations.

3.6 Data Processing

The aim within the unit of data Processing, or data computations, is to produce the

desired outcome of a summary of the previously mentioned data. That data which is

read from the file will then have to be run through a series of formulae. These formulae

will help to produce some later explained output graphs and also provide the user with

a simple summary report in which mostly averages of each individual characteristic will

be shown. This output would then provide a historical log of how accurately RTK VRS

performs under different circumstances with many variables in a particular location.

The accumulation and average of the DOP values was the first thing which needed to

be calculated. These calculations were all performed back in the main() function which

was explained earlier. The requirements for these calculations were that of having a

double variable for each individual DOP each time one was read from the data class. As



3.6 Data Processing 32

well there were double variables required to accumulate the values from each individual

pass to the class, along with an integer variable to act as a counter within the while()

loop.

The while() loop in C++ has the following form: while(argument) {}. The argument

within the first set of brackets is generally in the form of a Boolean expression. Boolean

expressions can range from: == (equal to), != (not equal to), < (less than), > (greater

than), && (and), || (or), <= (less than or equal to) and finally >= (greater than or

equal to). The while loop performs whatever operations are then placed within the

curly brackets {} while the Boolean expression is true. To avoid the case of an infinite

loop, a counter will generally be placed within the curly brackets to increment itself if

it is placed within the Boolean expression.

The program has the expression while(dcdata list->next != NULL) {} in the while

loop, so as long as this expression was true the while loop continued. Within the while

loop the functions created within the class used to handle the QC1 data were called

again to move through the variables which were given the DOP values after they were

manipulated in the raw file and transformed to their true form. This function would

run through and grab each lines DOP values, i.e. the PDOP, HDOP and VDOP values

from each line. Once this value was ascertained it was then added to the respective

accumulating variable for each DOP. The counter was in place within the loop to count

how many different lots of DOP values were received and added to the accumulator

variable.

This was done until as the while loop I showed before stated, the next value was

equal to NULL. The averages for each of the DOP values could then be calculated by

incorporating another 3 variables to represent each DOP value. Each of these variables

had to be created as doubles as stated earlier to help deal with the calculations. These

new variables were given the value of the accumulated variable divided by the counter

variable. This is obviously very simple mathematics, though it proves very effective in

that in can handle in theory, hundreds of thousands of lines of QC1 data in the one

file and output just three numbers to show an average of each of the DOP numbers.

Having such a large file in conventional VRS RTK surveying for the user in the field is

highly improbable and verging on never happening, but the ability is there for the rare



3.6 Data Processing 33

cases. As is always the case, it is better to over design than to underestimate and run

into trouble very early on.

The accumulation and averages of the MGA 94 Coordinates were the next processes

to take place. The need was for the creation of the averages of the Easting, Northing

and Reduced Level of the point. As has been stated earlier, the theory behind being

able to use this as Quality Assurance/Quality Control tool is that the user will remain

on the same mark, be it a known Permanent Survey Mark or simply just an unknown

random mark anywhere within the VRS coverage region. This provides the opportunity

to give the user a report, or feedback, on how well the VRS system is performing at

that particular time, in that particular location.

With this in mind, the ability to report to the user the averages of the coordinates is very

beneficial especially when considering its independent ability and assuring qualities.

The steps involved are very similar to those which were involved in the calculations

of the DOP number averages. The first step was to ensure that double variables were

created to temporarily store each of the 3 coordinate values as they were read in, and

also for 3 accumulating variables to store the total of each of the coordinates which

were read.

The difference between the workings of the while() loop in the calculations of the

Coordinate data is that within the while loop the ability to compare each individual

against the final average is required. This is needed so that the graphs of accuracy and

precision can be created. To create the precision graph, a plot of each of the points

residual is needed, and in order to have the ability to calculate that residual, each

point must be compared to the final average. With the calculation of averages for the

DOP values, once the individual value for each DOP was read in and added to the

accumulating variable, it was then overwritten by the next respective value behind it.

To counteract the overwriting of the value, it was decided to store each value into a

variable and store it permanently so that it could be used in comparison later. The

simplest way to do this was by creating three arrays of double variables. These arrays

of doubles could store a number for each coordinate value and then a counter within



3.6 Data Processing 34

the while loop could then move each of them to their next memory address, i.e. move

them up one position so as to not overwrite the previous value, thus allowing a mass

storage of the coordinate values.

As the while() loop formation was stated previously, it can just be said that the ar-

gument was the same as for the QC1 data, except obviously this was from the class

created to handle the lines of Coordinate data, not that of the QC1 data. Each co-

ordinate value, as in each Easting, Northing and Reduced Level value were gathered

from the class using a function previously stated. Once gathered and placed in their

temporary storage variables, these were added to the double arrays and also to the ac-

cumulating variables. The counter would then increment one value to move the memory

address forward one location in the arrays and also to keep a count on the number of

different coordinate values passed in so as to help in the calculation of the average for

each coordinate. Once the next value was equal to NULL the while loop ceased and

the calculation of averages and residuals could commence.

The averages were a very simple mathematical calculation as it was for the DOP values.

Each Coordinate, those being Easting, Northing and Reduced Level were given a double

variable to use as the storage point for the averages. Input to these variables were, the

accumulating variable divided by the counter, which incidentally had to be converted

to a double from an integer to allow calculations. This also occurred in the previous

DOP average calculations.

After the averages were calculated, the residuals for each coordinate had to be calcu-

lated. For this task it was required to run the array variables through a for() loop

so that each of the memory addresses could be accessed. The variable used in the

arguments for the for() loop was that of the counter. Within the for loop the arrays

which stored each individual coordinate value for all 3 of the Easting, Northing and

Reduced Level numbers had to be subtracted by the average. This number was stored

in a separate double array so that the residuals could be kept and not overwritten as

was the case with each individual coordinate value. The array would then move to its

next position so that the next individual coordinate vale for all 3 could be calculated,

and so on.



3.7 Graphical User Interface Creation 35

The values within these double array variables which stored the residuals will then

be used in the future for the creation of the precision graphs for each point which is

surveyed, be it known or unknown.

As has been shown in the previous paragraphs, the mathematical calculations are very

simplistic when dealing with creating summaries for VRS RTK surveying. This is

because of the need for only averages and residuals, and these are all that are required

when a surveyor is trying to deal with large amounts of data. All the surveyor requires

is another Quality Assurance check and this is what this software provides. The difficult

processes are quite easy to see in that the manipulation of the data from the file is a

very exact process and cannot be out by one character, otherwise the data becomes

completely negligible.

3.7 Graphical User Interface Creation

The Graphical User Interface for this project is something which was required to be

simple, yet very effective in delivering every required piece of characteristic information

to the user. A graphical user interface (or GUI) is a method of interacting with a

computer through a metaphor of direct manipulation of graphical images and widgets

in addition to text. (Graphical User Interface - Wikipedia, the free encyclopedia 2005)

So, in short, the GUI that was created for this project is a very simple design which

shows the user all of the required information. It shows the user the summaries and at

the click of a button the user can have the graphs pop up in a similar sized window.

The design for the GUI took a couple of different forms before deciding to stick with

the layout which will be discussed. It was recognised early on that the user required

the ability to both load a file into the interface, and also to save the summary which

was created by loading a file. This saving ability was particularly necessary for its help

in creating a log of VRS performance and also providing documentation for Quality

Assurance purposes. The format of the program is that the user will just need to double

click on the exe file (executable file) to open the software. This will just pop up the

GUI in a conventional windows format window.



3.7 Graphical User Interface Creation 36

Figure 3.2: The main screen which is shown after the execution of the software

Figure wotever shows the form of the software once the exe file is run. This is the GUI

which is being discussed. As can be seen, the QC1 data and coordinate data which was

calculated in the previous section are shown to the user in a simple format, giving the

surveyor in the field the ability to make quick, decisive decisions on whether or not the

survey should continue, or if the accuracy is within the standards required.

The purpose of having such a simple interface for the user to look at and read through is

that although looking pretty does help, it’s effectiveness in loading quickly and showing

clearly the summaries are far more valuable to a Surveyor.

The decision to group the QC1 data to one side was quite clear in its intentions and

needs very little explanation. The need to show these QC1 data summaries together

is for simply the ease of reading through them, showing arguably the important infor-

mation in order of priority from top to bottom. The area on the left hand side of the

form shows where the user can enter the coordinates of the point in which they are

gathering their test data on. This can only be done if the user is performing the VRS

RTK survey on an established/known mark. This would generally be in the form of a

Permanent Survey Mark.

If the user does not enter into the software the coordinates of their mark, then it is



3.7 Graphical User Interface Creation 37

assumed that they are on a random point somewhere within the VRS system coverage

region. Without these coordinates, it is then impossible for the user to create an

accuracy graph, though a precision graph can be created regardless of the situation.

These two graphs are created by simply clicking on the buttons which are shown in the

bottom left hand corner of the software layout. The placement of these buttons was

just as simple as the text boxes with the ability to simply drag and drop them where

it was deemed necessary.

The only other obvious characteristics of the GUI is that of the drop down menu in

the top left corner. The File menu allows the user to load the file which they want

a summary created for, which is what will happen every time that user executes the

software. The other options are to save the summary which is currently being shown on

the interface, and the last option is that of exiting the program. The drop down Help

menu which is located beside the File menu will has a very simple set of instructions

in regards to what must be done to ensure that the program runs smoothly and also

some user requirements.

Figure 3.3: The design environment of the Windows Form Application

A GUI like the one in this project is very easy to design in MVS03. Firstly the creation

of a new project must be that of a Windows Form Application. This form starts blank



3.8 Integration of Program Code to GUI 38

and can be expanded to a full size window dependant on the information required to

be shown. Text boxes are simply added in the places where information will be loaded

to once the programs code is integrated with the GUI. These boxes can then be given

names by adding Labels to the form. These can be all grouped as the QC1 data is with

a simple Group Box from the Toolbox area in the design environment. The Toolbox is

where all of the textboxes, labels and buttons are taken from and generally just dragged

to the windows form design window wherever they are deemed necessary. The design

environment of the Windows Form Application is shown in Fig wotever. This further

shows the nature of dragging the required boxes from the Toolbox on the left to the

form on the right.

These steps outline how the creation of the GUI came about and how simple the steps

were to create a basic design like the one made for the purposes of this project. This also

leads into the next subchapter in that the program code which was previously discussed

must be integrated into the GUI created in this project to enable the software to work

fully on its own. This is by far a more difficult step than the design of the GUI. Once

again, this is quite clearly not the most demanding looking GUI, design wise, but its

effectiveness in showing the required output summaries is second to none. The notion

was taken in designing this that the less superfluous information on the GUI, the less

that could go wrong.

3.8 Integration of Program Code to GUI

The integration of the programs code to the GUI was done by adding the files created

earlier into the project which had made the GUI. Copying the cpp files which store all

the code, and the h (header) files which govern how the cpp files operate, left the GUI

with the ability to handle any variables which had been created within the previous

work.

The first function to be operated was that of opening a dc file. Once the load file

function was opened, it was only a matter of using standard visual C++ functions to

get the operation of clicking on the load menu to pop up a window allowing the user



3.8 Integration of Program Code to GUI 39

to pick a file from their hard drive. As shown in Figure 3.4.

Figure 3.4: The Load dc file window

The status bar at the bottom of the GUI was given a getfilename function. This

function let the name of the file being loaded appear in this section, reminding the user

of which dc file they are viewing the summary of.

The save function allowed a similar process to take place, with the user having the

ability to save the summary to their hard drive. The exit function consisted only of

exit(1);, this left the program to exit upon execution of the exit option in the main

menu.

The next operation to take place was that of printing the previously created averages

to the GUI upon the choice of a file by the user. This yet again involved a simple

solution with only the following required:

sprintf(sz, ”%f”, pavg);

textBox5->Text = sz;

The only thing to change between variables was the name where pavg is, and the

textbox number. The operation to accept the users input of the coordinate values was

just an exercise in assigning a variable that particular textbox, and using that value to

compare against each individual coordinate value to help the creation of the accuracy



3.9 Software Validation 40

graph.

The help menu was able to have a file addressed to it so that whenever it was clicked,

a file with a set of parameters is popped up to remind the user of their requirements

both in the field, and when using the software.

The last piece of the integration plan was to have the graphs pop up when either one of

the buttons were selected. This was the most difficult part of completing the software,

with requirements to set up pen colours, sizes and where the x and y axis began and

finished. Upon the clicking of either of the Precision graph or Accuracy graph buttons,

the functions within these were to allow a window to pop up and show the user a

graph of residuals formed from calculations previously addressed. Problems occurred

with the integration of the graphing funcitons to the GUI. They did not work correctly

once integrated, and due to the time frame of this project, the submitted copy of this

software could not show the graphs working correctly. Though this problem can be

fixed and the software will be ready in time for final submission to the DNRM.

3.9 Software Validation

Ideally, a process of validation was to be done after the software was completed and

was running bug free on some test .dc files. The validation process was designed to be

identical to the situations which will arise for the end user in the field when this project

is complete. The testing for this software was to take place in an area which is still to

be decided by the DNRM, but it is known that it will be relatively central in regards

to the area covered by the VRS setup.

This was the perfect world situation for this project. But as time was at a minimum

toward the end, it was decided that for all intents and purposes the validation of the

software would be more than sufficient by just testing the running of the program on

the dc files which were provided from the DNRM.

The single requirements of the dc files which I obtained from the DNRM, was that they

be from a VRS RTK survey, and not from a conventional RTK survey. There is very



3.10 Summary: Chapter 3 41

little difference between the two, as will be spoken about in the next chapter, but the

fact that there is a difference made it very difficult to provide a piece of software which

could deal with both, so for this project, conventional RTK dc files were not required.

It must be stated however, that with some slight variations in the programs code, this

software could quite easily deal with conventional RTK dc files.

Three VRS dc files were received from the DNRM to test the software on. These files

obviously also assisted in the creation of the program, because without them there

would have been no standards in which to measure against. These standards I am

referring to are those of finding out the spacing and format of data in each line so as

to construct the methods required in the earlier discussion of the manipulations which

took place. So, in essence, these files were both the precedents and the validation files.

This mattered little as the files showed that they have the same format throughout.

3.10 Summary: Chapter 3

This chapter discussed the experimental methods and design techniques which were

used in establishing the software which will be used as a Quality Assurance tool for

VRS.

Following this chapter, it is envisaged that the methods and details that have been

discussed will allow another person to recreate the process’ that were involved in de-

veloping this piece of software and how it was validated. Though it also must be

concluded that besides reading through these steps, it would be well in the following

students/users interest to seek references from Appendix B so as to guide them along

the way. All of the files which were used within the MSV03 programming environment

are repeated here and will provide a very beneficial tool to anybody looking to improve

and upgrade the software.

Now the outline of the design and steps taken to write the programs code has been

completed, the actual functionality of the software, its possible faults, problems involved

and final product can be discussed and evaluated in Chapter 4, this will show the final

GUI which has been designed and prepare the user on how to use the software.



Chapter 4

The QA System

4.1 Introduction

This chapter will discuss the attributes and workings of the Quality Assurance software

which has been developed in this project. The user of course needs to be instructed in

how to use the software and must be shown any limitations and be given troubleshooting

tips when problems arise.

The chapter aims to provide the eventual users of this program an insight into what

they can expect from the software. The user should, after reading this chapter, be able

to take away the executable file created which runs this software, and be able to use it

and solve most issues which may occur along the way.

The user/reader will be shown what each result in the output summary means. This

will cover information on all of the QC1 data averages, coordinate information and

the graphs which the user will have the ability to execute. The method in loading

files and saving summaries will be covered so the user has the ability to start keeping

logs/records of the VRS system performance in each survey that they perform.



4.2 Revision of GUI Layout and Characteristic Definitions 43

4.2 Revision of GUI Layout and Characteristic Defini-

tions

It is important that the user be familiarised with what the GUI of the software will

be showing them before speaking about what each number represents and this can be

used in the survey that they are performing.

The GUI for this software is only very basic, with it only producing the pop-up window

which is started up execution of the file. From here the only other windows to be

shown are that for loading, saving, help and the graphs. Once again, though simple, it

provides the user with all the information required and is therefore very effective.

The layout, as shown earlier in Fig.wotever, can be referenced to identify with the

following descriptions. The information in the group box on the right hand side of the

window consists entirely of QC1 data. The QC1 data is Quality Control data which

the user can reference in the future as a measure of how well the VRS system was

performing in the particular area of the survey at that particular date and time.

These QC1 summaries are the backbone of the software in regards to Quality Assurance

and Quality Control. These summaries will be able to provide the user with leg to stand

on as far as performing a survey to the best of their abilities and as best as the conditions

will let them. If for example, any of the DOP averages are too far out of range, or the

minimum satellite average is too low, then the user can postpone their survey on the

basis of the softwares outputs.

In the future this software will hopefully be recognised to be sufficient enough to allow

the surveyor to claim that VRS system was either good enough, or the quality was not

good enough, for them to use this as a basis for evidence in a court of law if required.

It is realised that after only just being developed and not tested for long enough, that

this is an unrealistic proposition at present, but definitely a hope for the future of the

project and the software.

In the top left hand corner of the GUI, the information in regards to known point

coordinates is located. As has been previously stated, the user may only enter the



4.2 Revision of GUI Layout and Characteristic Definitions 44

coordinates of the point that they are surveying on if that point is a recognised known

mark. If the mark is unrecognised/random, then the user must leave these boxes blank

as they will only affect the integrity of the accuracy graph if they are entered. These

coordinates must be entered as MGA 94 Coordinates, this is because of the way that

they are measured within the VRS dc files. So, in short, the user mustn’t enter any

coordinates into these boxes unless they are those of the known point in which they

are performing data collection on.

In the middle of the GUI the user is given an average of the coordinates for the point

in which they are observing their data. These averages are of the observations which

they have performed, and are the number which the residuals will come from in the

precision graph.

In the bottom left hand corner of the interface, the user has the ability to create a

precision graph, accuracy graph, or both. This is all dependant upon whether the data

collection is over a mark which the surveyor knows the coordinates of. The creation

of the precision graph is one which can be done for either case. This is so because the

precision graph will show the residuals of how far each and every point read is away

from the calculated average of the coordinates. This calculated average simply came

from the addition of every set of coordinate over the mark being added and divided by

the number of sets. This precision graph is very useful in more showing the consistency

of the VRS system, rather than its overall effectiveness in tying in with coordinate data

from previous surveys.

The creation of the accuracy graph, as has already been stated, may only occur when

the user has entered the coordinates of the point in which they are collecting the data

from. For this reason, it is assumed that this graph will not be created as often as the

precision graph. The accuracy graph will plot the residuals from each set of coordinates

read over the known mark against those coordinates which the user has entered in the

software window. The purpose of the accuracy graph is to give an indication to the

user of how well the VRS system is performing in comparison with previously recorded

and reported survey data. These residuals will give the user an idea of how far different

the VRS system is to that of the National Geodetic Network. That is assuming there

is a difference.



4.3 Survey and User Requirements 45

Both of these graphs provide the user with yet another log of how the VRS system

performs in different areas at different times. The precision graph can be logged to keep

a record of the consistency of VRS in many different locations all over the coverage

region. The accuracy graph can therefore help to keep a log of any differences from

previously surveyed marks and from the National Geodetic Network. These logs of the

accuracy graphs will help in particular to find any bias that there might be between

the VRS system and the National Geodetic Network by logging data over some known

marks covered by both of these networks. If any trends are found, then this will lend

itself to help in perhaps calculating a block shift, or just identifying users of the trend

in differences between the two.

The other functions which the software provides are those of being able to save the

current summary to a file, as well of course, as being able to load a file into it. A small

help section is also available, more to clarify any queries the user may have than being

an extensive help system.

With the characteristics of the software now identified, after reading through this chap-

ter it should be possible for any user of the VRS system in South East Queensland to

obtain a copy of the software and understand its outputs and the effect their values

would have on their survey.

4.3 Survey and User Requirements

This section of the chapter is to clarify exactly what the user needs to do in regards

to their performance in the field and also some minor things which may come about in

using the software.

When performing their VRS-RTK survey in the field, there are very few requirements

asked of the user to ensure that the software is given its highest chance to perform

optimally. Before beginning the survey, the user should turn on in the Trimble Data

Recorder the ability to record QC1 data, as well as recording their coordinates in the

Easting, Northing, Reduced Level format of MGA 94 coordinates. Beside this, the only

other requirement which would be advisable to meet is that of the user keeping their



4.3 Survey and User Requirements 46

rover over the same mark/point for anywhere between 10-50 epochs of data. This size

of data allows some trends to come out in the results. Though not desirable in size

for the data analysis purist, up to 50 epochs of data will begin to give a very good

indication of how the VRS system will be performing on that day in that location. The

software is designed after all, to benefit the user by allowing them perform the checks

relatively quickly if they have a laptop in the field, and if the software is installed in

the Trimble Data Recorder, even more so.

There should be very few issues for the user when it comes to loading their file into the

software. The user must first transfer their dc as normal, then after this has occurred,

the user is then asked to transfer the file in the format of SDR 33 dc file. The dc

file needs to be loaded in the SDR 33 format so that the MGA 94 coordinates can be

loaded from this. The normal format of the dc file when transferred does not contain

these coordinates, and therefore this second format is a necessity.

Before the user can begin using the software, they first must have the Microsoft .NET

Framework installed. This is a 23mb installation package, it contains Microsoft.Net

runtime libraries and it is a necessary requirement to run an executable (exe) file which

has been created in the Microsoft Visual Studio.NET environment. (.NET Framework

Developer Center 2005)

The software should be first run by double-clicking on the VRSQA.exe. Once the

window pops up, the user may then load their file into the software by clicking on

the File drop down menu in the top left hand corner of the window, before scrolling

down to the load button. Once loaded, the user may then enter the coordinates of the

mark in which they captured their data on if it was a known Permanent Survey Mark,

otherwise the user may then click on either of the graph buttons to execute the creation

of either only the precision graph, or if over a known mark, then the accuracy graph

as well.

The user may also get a reminder of the fundamentals of using the software by simply

clicking on the Help drop down menu bar in the top left hand corner of the window.

To exit the software, the user may simply click on the File drop down menu, and then

scroll down to the Exit button.



4.4 Disclaimer 47

These descriptions combined with instructions which will be given to each of the users

of the software, should be more than sufficient to ensure that they can process their

data quickly and easily.

4.4 Disclaimer

This disclaimer is to ensure that the users of this software realise that it has been

created by a USQ student for the purposes of the Department of Natural Resources

and Mines. USQ in no way hold responsibility for any shortcomings or problems which

may arise from the software. The purpose and workings of this software are spelled

out quite clearly in this dissertation, leaving no stone unturned means there will be no

unexpected surprises from using the software.

The software is also not guaranteed to be 100% correct, 100% of the time, so any errors

which come about from the software are the responsibility of the user. This software

is not recognised as a device which could hold a person liable, or used as a defence in

a court of law, and should therefore not attempted to be.

4.5 Summary: Chapter 4

This chapter discussed the attributes and processes of the Quality Assurance software

which has been developed in this project in accordance to the requirements of the

Department of Natural Resources and Mines. The user is now instructed in how to use

the software and has been shown the limitations and given warnings on it also.

Following this chapter, it is envisaged that the user, once given a copy of the software,

should now be able to go out into the field, perform their required VRS-RTK survey

over a known or unknown mark and bring it back to the computer and download it.

Once downloaded, the user should then be able to open the software and load their

file, creating their summary of VRS performance in their area of survey at the time in

which they performed it.



4.5 Summary: Chapter 4 48

Now that the description of how the software works, and steps on how to implement its

capabilities have been discussed, the next chapter will look to describe how the software

was validated by running through the steps on how the test VRS dc files were broken

down to find the location of their characteristics and how these were confirmed.



Chapter 5

Validation

5.1 Introduction

This chapter will show how the information in the dc files was found when opened

with a text file editor. The comparisons will be made between the image of a dc file

opened with a dc file editor and then with a text file editor, showing the validation of

the software.

This chapter aims to prove that this software was created using the correct formats

and that it has the ability to correctly handle VRS dc files. The validation process will

be explained thoroughly.

The chapter will show how the validation of the characteristics within the dc files was

obtained, as well as explaining the differences between files.

5.2 Validation of dc Files

The problem with viewing a dc file in a text file editor is that it loses any legibility

it had. This section will look at how this problem was overcome and how the lines of

QC1 data and Coordinate data were deciphered.



5.2 Validation of dc Files 50

The issue which first arose was that when programming in C++, the way the program

which is being created will deal with a file, is to look at it as if it were being opened

as a text file. This led to some problems when trying to establish where each attribute

lay in the file.

This was overcome by viewing the file in its recommended dc file editor (a subsidiary

of TGO) and printing out the output from these files. Once this was completed, the

printed files were then compared to the same files viewed with a text file editor. The

comparison of these files took a great deal of time, because the difference between the

two is quite astounding.

After some further investigation, it was realised that each new line (besides those which

were wrapped around) had a unique four character code at its beginning. These codes

differed greatly, but after establishing in one of the earlier standard RTK dc files which

were available before the VRS dc files that the position of the QC1 data was in the first

row in the dc file editor, the four character code for that first line could be matched up

in the file when opened in the text file. After checking the numbers against each other,

it was found that ”C6NM” was the code for a line of QC1 data in the text file editor.

This process continued throughout the file and data proved to be very consistent, which

was the basis around this whole software development. Without consistency in the files,

it would be impossible to tell which lines of data were QC1, and which were coordinate

data without analysing every single character in their line, rather than simply analysing

the four character code at its beginning.

When several VRS-RTK dc files became available, it was with great relief to find that

they too had the same code as the standard RTK produced dc file. The only difference

between the two as far as lines of QC1 data was concerned is that of the difference

in buffers and spacing between characters on the line, though this was only slight and

required very little adjustment between the two.

The process to establish the position of the lines of Coordinate data within the dc files

was identical to the exploration which occurred for the QC1 data lines. After checking

the position of the lines of coordinate data, these were then checked to find a similar

situation with the four character code.



5.3 Summary: Chapter 5 51

The methods of extraction, and functions required for the manipulation of the QC1 and

Coordinate data was detailed in Chapter 3. These manipulations extracted what looked

like several big blocks of numbers, and made them appear as they would when opened

with the dc file editor. This allowed the computations to take place, and therefore

allowed the program to produce its summaries which provide the basis of the Quality

Assurance to the Surveyor.

5.3 Summary: Chapter 5

This chapter explained the comparisons with the dc files as viewed by a dc file editor

and by a text file editor. This gave an insight into the difficulties associated with

dealing with dc file opened in a text file editor.

Following this chapter it is hoped that there is a greater understanding of the working

of a dc file and the layout in which it comes. The purpose of this being that the user

may understand why some of the parameters are put into place, hopefully ensuring

that they abide by each of these when using the software.

Now that the validation of the software has been described, the next chapter will move

into some discussions on the software and recommendations for the future of QA for

VRS.



Chapter 6

Discussion and Recommendations

6.1 Introduction

This chapter will discuss some of the issues which may arise from the user about what

may go wrong with the software, and also some of the possibilities of further developing

the software. The recommendations section will look to the future, in regards to further

research on this particular topic and the future projects that this particular study may

bring about.

The aim of the chapter is to inform about some of the possible future endeavours which

are now available to students as a result of this project. As well as trying to ensure

that most issues users may have with the software will be answered.

A discussion on errors which may occur, how to fix some of these and some attributes

which could ideally be added to this software in the future will be mentioned. The

topics for future student projects are to be shown as well as the benefit each of these

will bring to the DNRM.



6.2 Discussion 53

6.2 Discussion

This project was designed with idea of having a minimalist approach. This stemmed

from the manner in which the code was manipulated once gathered from the file, to the

design of the GUI and its functionality. This approach was adopted, for starters, with

the short length of time available for this project in mind, as well as having something

which could be looked upon as more efficient and effective than pretty.

The design criteria also allowed the user to be able to understand all the operations of

the software, and have something which was conducive to encouraging the surveying

population to embrace it. Its simple, yet effective GUI is something which could be

made to be more aesthetically pleasing in the future, but for the moment, and for the

purpose of this project, it does the job.

The ability to keep an independent log/record of VRS performance is encouraging for

the user. With its dual purposes of providing Quality Assurance for the independent

users as well as slowly increasing their trust in the system and enhancing the likelihood

of them embracing the technology, and turning to it more often as their first option,

providing of course they are within the coverage region.

The software itself should provide very few problems to its users. The only operations

the user needs to perform are those of loading a dc file into the interface, as well as

saving the summary and entering the coordinates of the known mark they are/were

positioned on, if that were the circumstance. If problems occurred with the summaries,

or numbers appeared which seemed to be well outside of what would normally be

expected, then the user may want to go the methods in which they collected the data

and make sure that the correct survey style was chosen and that they had selected QC1

data to be recorded.

These are the only known/recognisable problems which may occur with the software.

Other issues may require programming fixes or a reload of the software. If it is pro-

gramming issues, then the user may in fact want to revisit the survey again, and ensure

that, as mentioned earlier, the correct style was chosen.



6.3 Recommendations 54

The user should be able to load the software and .NET framework required to run it

without any problems. It is also recommended that the user ensure they keep a save

of the summaries in a folder common to their jobs, so that reference can be made to

previous surveys and their accuracies. This will be particularly relevant dependant

almost wholly on location.

6.3 Recommendations

This project had a responsibility to deliver a product which not only gave the user

software which provides a piece of Quality Assurance, but also provides students in the

coming years a basis on which to begin other projects. Thus, further developing more

Quality Assurance and getting to better understand the way in which a VRS system

performs under a multitude of conditions and over its whole coverage region.

The future for projects involving VRS are very bright, with this year’s projects only

skimming the surface in regards to analysing the performance and quality of results

gathered from the system. As far as Quality Assurance is concerned, it is hoped that

this project will provide an incentive for students in the future to continue on with the

work which has been started.

One possible development which is hoped will occur in the next year or so, is that

of using the software which has been developed in this project to gain an idea of the

performance of the VRS system over the SEQ coverage region. This would involve a

student performing an RTK-VRS survey for approximately 60 - 100 epochs of data over

a known survey mark in the coverage region. From here the student would run the dc

file created in the survey through the software from this project, always keeping a log

of their data.

It is envisaged that these logs of data could be used in conjunction with a GIS of some

description, helping to show an overlayed map of accuracies across the whole region.

This map could show these accuracies with different colour shading to particular regions

to represent the specific accuracy of that area.



6.3 Recommendations 55

This particular map would be a very useful tool for the DNRM. It is recommended

that once this project is completed, that particular accuracy map could be issued to

users of the VRS system once they register their intent to use it with the DNRM. A

package handed to users could include the accuracy map, as well as still providing them

with the software created in this project for their own independent checking. Thus still

providing another QA tool if the user so desires to use it.

The package could be distributed on a compact disc (CD). Having a digital copy of the

accuracy map just allows users to print or view this at their own will. It is still not

established whether the DNRM will establish a small fee for the CD, or whether it will

be bundled in the information given once the user registers for use of the VRS setup.

6.3.1 Enhancements to the Program

Several issues arose with the time constraint of this project with three of the char-

acteristics from QC1 data which were intended to be shown. These characteristics

constantly proved a bane of the softwares’ existence by providing continuous errors in

the development of the program. These were the average initialisation times, the total

number of GPS positions captured in the survey, and the avg number of satellites.

These will be made ready for the version of the software to be given to the DNRM, but

unfortunately the time requirement could not be met for this dissertation.

A final problem which occured on the day before printing this project, was that of the

graph functions not integrating into the GUI correctly. These graph functions were

created separately and when supplied with fake data, produced the expected residual

plot. However upon integration, errors occured, and due to the time at which these

were integrated, a solution could not be immediately found. The problem is known,

and will be fixed so that the correct integration can occur in the copy given to the

DNRM. This is unfortunate as it takes away from the final product handed in with this

dissertation. Though the main point is that the DNRM will still be receiving their QA

software which works correctly and analyses the coordinate and QC1 data as specified

throughout this text.



6.4 Summary: Chapter 6 56

These would be very advantageous in a future version of the software, but without

them, the software still provides enough Quality Control data to notify the user of

the potential integrity of the survey they are about to undertake. Another potential

improvement would be to be able to create perhaps some scatter plots, showing the

known mark with each individual set of coordinates captured shown around it.

6.4 Summary: Chapter 6

This chapter discussed some of the potential shortcomings of the software, and how to

deal with these. The benefits of the design of the software were mentioned, with the

reasons for these clearly stated. Some recommendations for potential projects to come

from this project were made, as well as providing ideas on how the software should be

managed and distributed.

Following this chapter it is envisaged that some future project ideas will have been

established, along with the DNRM having ideas on how the software will be packaged

and distributed. The user should now be aware of the problems which may occur and

any questions which they may have had should be answered. This discussion should

help the user realise that there are no hidden bugs or problems and hopefully endear

them to the software and its potential benefits.

Now that the discussion on some possible Frequently Asked Questions has occurred,

and the recommendations for the future of QA involving VRS has been stated, the

software should now be potentially implemented by the user and encouraged to be used

by the DNRM. The next chapter will forward in summarising the main points from

this project, and will establish whether the aims and objectives have been successfully

completed along with the legacy that this project will leave.



Chapter 7

Conclusion

7.1 Introduction

This chapter will draw together and provide summaries of the information which has

been gathered in this project. It will also draw some conclusions from the results of

the work which has been undertaken.

The aim of the chapter is to ensure that correct final message is taken away. Summaries

will be drawn from each chapter to reiterate the main points of this project as well its

benefits to all parties concerned.

The chapter will step through the aims and objectives mentioned at the start of the

project and discuss the success or failure of each of these. The enhancements which

this software will bring to the QA of VRS will also be discussed, helping to further

enhance the justification behind the conclusions which will be drawn in this chapter.

7.2 Conclusions

The aim of this research project was to investigate and validate a system of monitor-

ing and assessing the performance of VRS-RTK. A system was to be developed that



7.2 Conclusions 58

allowed the VRS to be monitored and assessed with a view to outputting a summary of

characteristics of performance specific to a particular geographic location at a particu-

lar time. It can be stated that this aim was achieved in full, though as with most other

things, there is room for improvement. These suggestions were made in the discussion

chapter and won’t be noted again here.

Chapter 1 also gave an outline as to what VRS-RTK surveying is, and how it works.

The scope and justification for this project were also discussed, showing a clear reason

for the necessity of this research.

1. Research the background information regarding current QA systems for VRS and

current software which manipulates survey data controller files.

2. Critically evaluate existing alternatives for QA at the rover end of RTK surveying

using VRS.

The first two objectives, as stated above, were successfully met throughout the course

of Chapter 2. Chapter 2 reviewed literature showing the overviews and accuracies of

other global VRS operations, as well as their QA procedures within the Server, Bases,

and Rover. This review further enhanced the importance of this project by showing

very limited QA operations at the Rover. The only QA were those characteristics which

are updated in real-time on the survey data controller.

The review also covered relevant literature in regards to any software which may ma-

nipulate survey data controller files, be it in this case the Trimble dc file. The software

reviewed showed the characteristics which are regarded as most important, and which

have the greatest significance in regards to showing their influence on the final accuracy

of a survey. These findings helped lead into the completion of the design, and hence

also, the next objective.

3. Design a piece of software which will extract data from a controller file and output

a summary of desired statistics.

The information gathered from the literature review was imperative in helping to nar-

row the field of vision in the designing of this piece of software. The literature review



7.2 Conclusions 59

helped recognise the important characteristics which could be stored within a dc file.

These characteristics were then used in the design of the software, allowing only the

characteristics whose data affected the accuracy with their fluctuations to be included

in the final output summaries. The programming language and environment was also

decided in the literature review.

The logical steps in the design have all been recorded with the files for the software

being included in the submitted CD. Thus allowing a future student to go back over

the work conducted in this project and see how it was completed, and make further

changes if so required. It is quite clear from the design methods in Chapter 3, and the

explanation of the softwares capabilities in Chapter 4, that objective 3 was partially

met in this research project. The problem being with the integration of graphs. Though

these will be corrected in the copy submitted to the DNRM, it is dissapointing that

they were not ready in time for the final submission of this project.

4. Test (validate) the designed software by conducting trials which will gather data and

download to a pc which will run the software and produce summary reports.

This objective had some changes as it was found out when it came to validation time,

that the effectiveness of running a previously acquired RTK-VRS survey’s dc file was

the same as that of physically being in the test area and acquiring the file in real-

time. From this knowledge the testing was completed successfully with the provided dc

files. The testing on the graphs was done individually before the attempted integration,

and all of these worked correctly. Manipulating of the files also provided the desired

outcome, proving that software worked as stated, with it, completing objective number

4.

5. Analyse results to prove the effectiveness of the designed software.

Analysis of the results from running the dc files through the software was also apart of

the validation step. The analysis further proved the effectiveness of the software and

showed that it met all design specifications and will provide a beneficial tool for the

DRNM. This meaning that the final objective was also met successfully.



7.3 Close 60

7.3 Close

Following the successful completion of the aim and objectives, this project will provide

an invaluable tool for the Department of Natural Resources and Mines to be used in

association with the new safe guards built in to VRS to constantly monitor the system.

The final outcome to be taken away from this project is most importantly the new

software created. This software solves a significant problem for the DNRM and provides

another basis of Quality Assurance in their task of ensuring high quality data is always

provided to the end user.



References

About GPSnet.dk (2005), Trimble Center Danmark.

http://www.gpsnet.dk/omgpsnet int.php

current October 2005.

C++ tutorial: 6.1,Input/Output with files (2005), The C++ Resources Network,2000.

http://www.cplusplus.com/doc/tutorial/tut6-1.html

current October 2005.

eGPS Coverage Area (2005), eGPS Solutions USA.

http://www.egps.net/aboutus.htm

current May 2005.

eGPS Data Reliability (2005), eGPS Solutions USA.

http://www.egps.net/data.htm

current October 2005.

eGPS Solutions Internet-Based Real Time GPS Network (2005), eGPS Solutions USA.

http://www.egps.net/index.htm

current May 2005.

GPSnet Coverage Area Victoria (2005), Land Victoria.

http://www.land.vic.gov.au/land/lcnlc2.nsf/LinkView/

C22C2EBAF2DC90F34A256A250007E33C0887F847B6D2DA16CA256E5F0013CBB8

current April 2005.

GPSnet.dk Coverage Map Denmark (2005), Trimble Center Danmark.

http://www.gpsnet.dk/daekning int.php

current October 2005.

http://www.gpsnet.dk/omgpsnet_int.php
http://www.cplusplus.com/doc/tutorial/tut6-1.html
http://www.egps.net/aboutus.htm
http://www.egps.net/data.htm
http://www.egps.net/index.htm
http://www.land.vic.gov.au/land/lcnlc2.nsf/LinkView/C22C2EBAF2DC90F34A256A250007E33C0887F847B6D2DA16CA256E5F0013CBB8
http://www.land.vic.gov.au/land/lcnlc2.nsf/LinkView/C22C2EBAF2DC90F34A256A250007E33C0887F847B6D2DA16CA256E5F0013CBB8
http://www.gpsnet.dk/daekning_int.php


REFERENCES 62

Graphical User Interface - Wikipedia, the free encyclopedia (2005), Wikimedia.

http://en.wikipedia.org/wiki/Graphical User Interface

current October 2005.

Java examples (example source code) File Input, Output Data, Input Output, Data IO

Test 2 (2005), Java Source and Support.

http://www.java2s.com/ExampleCode/File-Input-Output/DataIOTest2.htm

current October 2005.

Land Victoria Home Page (2005), Land Victoria.

http://www.land.vic.gov.au/land/lcnlc2.nsf/Home+Page/Land+

Channel∼Home+Page

current April 2005.

.NET Framework Developer Center (2005), Microsoft Corporation.

http://msdn.microsoft.com/netframework/

current October 2005.

Real Time Kinematic - Wikipedia, the free encyclopedia (2005), Wikimedia.

http://en.wikipedia.org/wiki/Real Time Kinematic

current October 2005.

The idea behind GPSnet.dk is simple - VRS is ingenious (2005), Trimble Center Dan-

mark.

http://www.gpsnet.dk/VRSteknik int.php

current October 2005.

Trimble - GPS Glossary (2005), Trimble Navigation Limited.

http://www.trimble.com/gps/glossary.html

current August 2005.

Trimble Home (2005), Trimble Navigation Limited.

http://www.trimble.com/

current October 2005.

Trimble Total Control Software (2005), Trimble Navigation.

http://trl.trimble.com/docushare/dsweb/Get/Document-10049/

http://en.wikipedia.org/wiki/Graphical_User_Interface
http://www.java2s.com/ExampleCode/File-Input-Output/DataIOTest2.htm
http://www.land.vic.gov.au/land/lcnlc2.nsf/Home+Page/Land+Channel~Home+Page
http://www.land.vic.gov.au/land/lcnlc2.nsf/Home+Page/Land+Channel~Home+Page
http://msdn.microsoft.com/netframework/
http://en.wikipedia.org/wiki/Real_Time_Kinematic
http://www.gpsnet.dk/VRSteknik_int.php
http://www.trimble.com/gps/glossary.html
http://www.trimble.com/
http://trl.trimble.com/docushare/dsweb/Get/Document-10049/12631B_Trimble_Total_%20Control_TN_0305_lr.pdf
http://trl.trimble.com/docushare/dsweb/Get/Document-10049/12631B_Trimble_Total_%20Control_TN_0305_lr.pdf


REFERENCES 63

12631B Trimble Total %20Control TN 0305 lr.pdf

current May 2005.

Tutorials From FunctionX (2005), Function X.

http://www.functionx.com/

current September 2005.

http://trl.trimble.com/docushare/dsweb/Get/Document-10049/12631B_Trimble_Total_%20Control_TN_0305_lr.pdf
http://trl.trimble.com/docushare/dsweb/Get/Document-10049/12631B_Trimble_Total_%20Control_TN_0305_lr.pdf
http://trl.trimble.com/docushare/dsweb/Get/Document-10049/12631B_Trimble_Total_%20Control_TN_0305_lr.pdf
http://www.functionx.com/


Appendix A

Project Specification



University of Southern Queensland 

Faculty of Engineering and Surveying 

 

ENG 4111/4112 Research Project 

PROJECT SPECIFICATION 

 

 
FOR: Jamie Robert HEIT 

TOPIC: Quality Assurance for Virtual Reference Stations 

SUPERVISOR: Peter Gibbings 

 

SPONSORSHIP: Department of Natural Resources and Mines 

 

PROJECT AIM:  This project will investigate and validate (by conducting a trial) a 

system of monitoring and assessing the performance of RTK VRS 

in specific locations.  The data collected will be monitored and 

assessed with a view to outputting a summary of characteristics of 

performance to that particular area.   

 

 

PROGRAMME: Issue C, 22 October 2005 

 

1. Research the background information regarding current QA systems for VRS and 

current software which manipulates survey data controller files. 

 

2. Critically evaluate existing alternatives for QA at the rover end of RTK surveying 

using VRS. 

 

3. Design a piece of software which will extract data from a controller file and 

output a summary of desired statistics. 

 

4. Test (validate) the designed software by conducting trials which will gather data 

and download to a pc which will run the software and produce summary reports. 

 

5. Analyse results to prove the effectiveness of the designed software. 

 

 

 

 

 

 

 

 

AGREED:_____________________(Student)    ____________________(Supervisor) 

 

 

(Dated) ____/ ____/ ____ 



Appendix B

Source Code

B.1 The DC File Converter C++ Function

Listing B.1: dcdatatemplate.h.
#include <s t r ing >
#include <iostream>
#include <fstream>

us ing namespace std ;

c l a s s dcdt {
pr i va t e :

s t r i n g code ;
int numsats , t o t a l gp s po s , gps s tar t week , gp s s t a r t t ime , gps end week , gps end t ime ;
double p dop , h dop , v dop ;
// doub l e l a t i t u d e , l o n g i t u d e , h e i g h t ;
void eva l ( char ∗ cur rentL ine ) ;

pub l i c :
bool read data ( char ∗buf ) ;
int get num sats (void ) ;
s t r i n g ge t qc1 code (void ) ;
void s e t q c1 code ( s t r i n g theCode ) ;
void show de ta i l s (void ) ;

void get dops (double &pdop , double &hdop , double &vdop ) ;
} ;

Listing B.2: coordtemplate.h.
#ifndef COORD
#define COORD

#include <s t r ing >
#include <iostream>
#include <fstream>

us ing namespace std ;

c l a s s coordt {
pr i va t e :

s t r i n g code ;
double c ea s t i ng , c north ing , c r e du c ed l e v e l ;
void eva l ( char ∗ cur rentL ine ) ;

pub l i c :
bool read data ( char ∗buf ) ;
s t r i n g ge t coo rd code (void ) ;
void s e t c oo rd code ( s t r i n g theCode ) ;
void show de ta i l s (void ) ;

void ge t coo rd s (double &east ing , double &northing , double &reduced l ev e l ) ;
} ;

struct graph data {
double e i n t e r [ 1 0 2 4 ] ;



B.1 The DC File Converter C++ Function 67

double n i n t e r [ 1 0 2 4 ] ;
double r l i n t e r [ 1 0 2 4 ] ;

double eavg ;
double navg ;
double r l avg ;
int count ;

} ;

#endif

Listing B.3: dcdatatemplate.cpp.
#include <s tda fx . h>
#include ” dcdata template . h”

int dcdt : : get num sats (void ){
return numsats ;

}

s t r i n g dcdt : : g e t qc1 code (void ){
return code ;

}

void dcdt : : s e t q c1 code ( s t r i n g theCode ){
code = theCode ;

}

void dcdt : : s how de ta i l s (void ){
cout << ”Type : ” << ge t qc1 code ( ) << ” − Num Sats : ” << get num sats ( ) << \

” | GPS: TGP: ” << t o t a l g p s po s << ” GSW: ” << gps s ta r t week <<
” GST: ” << gp s s t a r t t ime << ” GEW: ” << gps end week << ” GET: ” << gps end t ime <<
” | DOPS: PDOP: ” << p dop << ” HDOP: ” << h dop << ” VDOP: ” << v dop << ” | ”<< endl ;

}

void dcdt : : get dops (double &pdop , double &hdop , double &vdop ){

// use c a l l by r e f e r e n c e to pass
// a l l t h e j u j u
pdop = p dop ;
hdop = h dop ;
vdop = v dop ;

}
bool dcdt : : read data ( char ∗buf ){

// now check i f i t i s qc1 data or j u s t crap
i f ( ! strncmp ( buf , ”C6NM” , 4)){

cout << ” ( dcdt c l a s s ) Found C6NM QC1 Data . . . \ n” ;
// now here p u l l apar t t h e l i n e and save
eva l ( buf ) ;

return t rue ; // r e t u rn t r u e so we know to new ( ) ano ther c l a s s
} else {

cout << ”−” ;
return f a l s e ;

}
}

void dcdt : : eva l ( char ∗ cur rentL ine ){
s t r i n g buf [ 8 ] ;
s t r i n g bufnew ;
char ∗ptr ;

int i = 0 ;

ptr = s t r t ok ( currentLine , ” . ” ) ;
buf [ i++] = ptr ;

for ( ; i <8; i++){
ptr = s t r t ok (NULL, ” . ” ) ;
buf [ i ] = ptr ;

}

/∗ f o r ( i = 0 ; i <8; i++){
cout << ”BUF” << i << ” : ” << bu f [ i ] << end l ;

}∗/

// now s t a r t p u l l i n g out t h e p e i c e s
// f i r s t g e t t h e to ta lnum o f s a t s
bufnew = buf [ 0 ] . subs t r (4 , 2 ) ;
numsats = a to i ( bufnew . c s t r ( ) ) ;

// g e t t h e pdop
bufnew = buf [ 0 ] . subs t r ( buf [ 0 ] . l ength () −1 ,1) ;
bufnew . append ( ” . ” ) ;
bufnew . append ( buf [ 1 ] . subs t r ( 0 , 1 4 ) ) ;
p dop = s t r t od ( bufnew . c s t r ( ) , NULL) ;

// g e t t h e hdop
bufnew = buf [ 1 ] . subs t r ( buf [ 1 ] . l ength () −1 ,1) ;
bufnew . append ( ” . ” ) ;
bufnew . append ( buf [ 2 ] . subs t r ( 0 , 1 4 ) ) ;
h dop = s t r t od ( bufnew . c s t r ( ) , NULL) ;

// g e t t h e vdop
bufnew = buf [ 2 ] . subs t r ( buf [ 2 ] . l ength () −1 ,1) ;
bufnew . append ( ” . ” ) ;
bufnew . append ( buf [ 3 ] . subs t r ( 0 , 1 4 ) ) ;
v dop = s t r t od ( bufnew . c s t r ( ) , NULL) ;

bufnew = buf [ 4 ] . subs t r ( 1 5 , 2 ) ;
t o t a l g p s po s = a to i ( bufnew . c s t r ( ) ) ;



B.1 The DC File Converter C++ Function 68

gps s ta r t week = a to i ( ( buf [ 5 ] . subs t r ( 0 , 4 ) ) . c s t r ( ) ) ;

bufnew = buf [ 5 ] . subs t r ( buf [ 5 ] . l ength () −6 ,6) ;
bufnew . append ( ” . ” ) ;
bufnew . append ( buf [ 6 ] . subs t r ( 0 , 9 ) ) ;
g p s s t a r t t ime = ato i ( bufnew . c s t r ( ) ) ;

gps end week = ato i ( ( buf [ 6 ] . subs t r ( 9 , 4 ) ) . c s t r ( ) ) ;

bufnew = buf [ 6 ] . subs t r ( buf [ 6 ] . l ength () −6 ,6) ;
bufnew . append ( ” . ” ) ;
bufnew . append ( buf [ 7 ] . subs t r ( 0 , 9 ) ) ;
gps end t ime = ato i ( bufnew . c s t r ( ) ) ;

/∗ f o r ( i = 5 ; i <7; i++) {
bufnew [ i ] = bu f [ i ] . s u b s t r ( bu f [ i ] . l e n g t h () −6 ,6) ;
bufnew [ i ] . append ( ” . ” ) ;
bufnew [ i ] . append ( bu f [ i +1] . s u b s t r ( 0 , 9 ) ) ;
cou t << ”GPS time i s : ” << bufnew [ i ] << end l ;

}∗/

cout << ”\nDecoded QC1 data\n” << endl ;
// cout << ”Min . Number o f S a t e l l i t e s : ” << bufnew [ 0 ] << end l ;

s e t q c1 code ( buf [ 0 ] . subs t r (0 , 4 ) ) ;

/∗ f o r ( i = 1 ; i <4; i++){
cout << ”∗DOP Max ” << i << ” : ” << bufnew [ i ] << end l ;

}∗/

}

Listing B.4: coordtemplate.cpp.
#include <s tda fx . h>
#include ” coord template . h”

s t r i n g coordt : : g e t coo rd code (void ){
return code ;

}

void coordt : : s e t c oo rd code ( s t r i n g theCode ){
code = theCode ;

}

void coordt : : s how de ta i l s (void ){
cout << ”Type : ” << ge t coo rd code ( ) << ” East ing : ” << c e a s t i n g << ” | Northing : ” <<

c nor th ing << ” | Reduced Level : ” << c r edu c ed l e v e l << endl ;
}

void coordt : : g e t coo rd s (double &east ing , double &northing , double &reduced l ev e l ){

// use c a l l by r e f e r e n c e to pass
// a l l t h e coords
ea s t i ng = c e a s t i n g ;
north ing = c nor th ing ;
r educed l ev e l = c r edu c ed l e v e l ;

}
bool coordt : : read data ( char ∗buf ){

// now check i f i t i s qc1 data
i f ( ! strncmp ( buf , ”08PD” , 4)){

cout << ” ( coordt c l a s s ) Found 08PD Coordinate Data . . . \ n” ;
// now here p u l l apar t t h e l i n e and save
eva l ( buf ) ;
return t rue ; // r e t u rn t r u e so we know to new ( ) ano ther c l a s s

}

else {
cout << ”−” ;
return f a l s e ;

}
}

void coordt : : eva l ( char ∗ cur rentL ine ){
s t r i n g buf [ 3 2 ] ;
s t r i n g bufnew ;
char ∗ptr ;

int where = 0 ;
int i = 0 ;

cout << ” (COORD) We are at mark ” << ++where << endl ;
cout << ” (COORD) Token i s e t h i s cunt ” << cur rentL ine << endl ;

ptr = s t r t ok ( currentLine , ” . ” ) ;
cout << ” POInter i s ” << ptr << endl ;

do{
buf [ i++] = ptr ;
cout << ” (COORD) i i s ” << i << ” and here i t i s ” << buf [ i −1] << endl ;
ptr = s t r t ok (NULL, ” . ” ) ;

}while ( ptr != NULL) ;

cout << ” (COORD) We are r e a l l y at mark ” << ++where << endl ;

cout << ”\nDecoded GPS Coordinate Data\n” << endl ;
bufnew = buf [ 2 ] ;
bufnew . append ( ” . ” ) ;
bufnew . append ( buf [ 3 ] . subs t r (0 , 6 ) ) ;



B.1 The DC File Converter C++ Function 69

c e a s t i n g = s t r t od ( bufnew . c s t r ( ) , NULL) ;

cout << ”East ing : ” << c e a s t i n g << endl ;

// cout << ” La t i t u d e : ” << bufnewer [ 0 ] << end l ;
cout << ” (COORD) We are at mark ” << ++where << endl ;

cout << ” BUF[ 3 ] i s ” << buf [ 3 ] << endl ;
bufnew = buf [ 3 ] . subs t r ( buf [ 3 ] . l ength () −7 ,7) ;
bufnew . append ( ” . ” ) ;
bufnew . append ( buf [ 4 ] . subs t r (0 , 8 ) ) ;
c no r th ing = s t r t od ( bufnew . c s t r ( ) , NULL) ;

cout << ”Northing : ” << c nor th ing << endl ;

cout << ” (COORD) We are at mark ” << ++where << endl ;

// cout << ” Long i tude : ” << bufnewer [ 1 ] << end l ;

bufnew = buf [ 4 ] . subs t r (8 , 3 ) ;
bufnew . append ( ” . ” ) ;
bufnew . append ( buf [ 5 ] . subs t r (0 , 9 ) ) ;
c r e du c ed l e v e l = s t r t od ( bufnew . c s t r ( ) , NULL) ;

cout << ”RL: ” << c r edu c ed l e v e l << endl ;

cout << ” (COORD) We are at mark ” << ++where << endl ;

// cout << ” He igh t : ” << bufnewer [ 2 ] << end l ;

cout << ”\nDecoded Coordinate data\n” << endl ;
// cout << ”Min . Number o f S a t e l l i t e s : ” << bufnew [ 0 ] << end l ;
cout << ” (COORD) We are at mark ” << ++where << endl ;

s e t c oo rd code ( buf [ 0 ] . subs t r (0 , 4 ) ) ;
cout << ” (COORD) We are at mark ” << ++where << endl ;

}

Listing B.5: list.h.
// l i n k e d l i s t c l a s s

struct l i s t {
l i s t ∗next ;
void ∗data ;

} ;

l i s t ∗ add l i s t i t em ( l i s t ∗head , void ∗data ) ;
l i s t ∗ g e t l a s t l i s t i t e m ( l i s t ∗head ) ;

Listing B.6: list.cpp.
#include <s tda fx . h>
#include <iostream>
#include ” l i s t . h”

us ing namespace std ;

// l i n k e d l i s t f u n c t i o n s

// add an item to a l i s t
l i s t ∗ add l i s t i t em ( l i s t ∗head , void ∗data ){

l i s t ∗ l i s t p t r = new l i s t ;
l i s t p t r −>next = head ;
l i s t p t r −>data = data ;
head = l i s t p t r ;

return head ;
}

Listing B.7: Form1.h.
#pragma once
#include <s t r ing >
#include <s t r i n g . h>
#include <s t d l i b . h>
#include <s t d i o . h>
#include <c s t r i n g t . h>
#include <sstream>
#include <a t l s t r . h>
#include ” dcdata template . h”
#include ” l i s t . h”
#include ” coord template . h”
#include ”graph . h”

graph data graphdt ;

namespace AttemptTwo
{

us ing namespace System ;
us ing namespace System : : ComponentModel ;
us ing namespace System : : Co l l e c t i o n s ;
us ing namespace System : : Windows : : Forms ;
us ing namespace System : : Data ;
us ing namespace System : : Drawing ;

CString dc f ;

/// <summary>
/// Summary f o r Form1
///
/// WARNING: I f you change t h e name o f t h i s c l a s s , you w i l l need to change t h e
/// ’ Resource F i l e Name ’ p r op e r t y f o r t h e managed r e s ou r c e comp i l e r t o o l



B.1 The DC File Converter C++ Function 70

/// a s s o c i a t e d w i th a l l . r e s x f i l e s t h i s c l a s s depends on . Otherwise ,
/// th e d e s i g n e r s w i l l not be a b l e to i n t e r a c t p r o p e r l y w i th l o c a l i z e d
/// r e s ou r c e s a s s o c i a t e d w i th t h i s form .
/// </summary>
pub l i c g c c l a s s Form1 : pub l i c System : : Windows : : Forms : : Form
{
pub l i c :

Form1(void )
{

In i t i a l i z eComponent ( ) ;
}

protec ted :
void Dispose ( Boolean d i spo s ing )
{

i f ( d i spo s ing && components )
{

components−>Dispose ( ) ;
}

supe r : : Dispose ( d i spo s ing ) ;
}

pr i va t e : System : : Windows : : Forms : : MainMenu ∗ mainMenu1 ;
p r i va t e : System : : Windows : : Forms : : MenuItem ∗ menuItem1 ;
p r i va t e : System : : Windows : : Forms : : MenuItem ∗ menuItem2 ;
p r i va t e : System : : Windows : : Forms : : MenuItem ∗ menuItem3 ;
p r i va t e : System : : Windows : : Forms : : MenuItem ∗ menuItem4 ;
p r i va t e : System : : Windows : : Forms : : Label ∗ l a b e l 1 ;
p r i va t e : System : : Windows : : Forms : : Label ∗ l a b e l 2 ;
p r i va t e : System : : Windows : : Forms : : Label ∗ l a b e l 3 ;
p r i va t e : System : : Windows : : Forms : : TextBox ∗ textBox1 ;
p r i va t e : System : : Windows : : Forms : : TextBox ∗ textBox2 ;
p r i va t e : System : : Windows : : Forms : : GroupBox ∗ groupBox1 ;
p r i va t e : System : : Windows : : Forms : : Label ∗ l a b e l 4 ;
p r i va t e : System : : Windows : : Forms : : Label ∗ l a b e l 5 ;
p r i va t e : System : : Windows : : Forms : : Label ∗ l a b e l 6 ;
p r i va t e : System : : Windows : : Forms : : Label ∗ l a b e l 7 ;

p r i va t e : System : : Windows : : Forms : : TextBox ∗ textBox4 ;
p r i va t e : System : : Windows : : Forms : : TextBox ∗ textBox5 ;
p r i va t e : System : : Windows : : Forms : : TextBox ∗ textBox6 ;
p r i va t e : System : : Windows : : Forms : : TextBox ∗ textBox7 ;

p r i va t e : System : : Windows : : Forms : : Button ∗ button1 ;
p r i va t e : System : : Windows : : Forms : : Button ∗ button2 ;
p r i va t e : System : : Windows : : Forms : : Label ∗ l ab e l 10 ;
p r i va t e : System : : Windows : : Forms : : StatusBar ∗ statusBar1 ;
p r i va t e : System : : Windows : : Forms : : TextBox ∗ textBox3 ;
p r i va t e : System : : Windows : : Forms : : GroupBox ∗ groupBox2 ;
p r i va t e : System : : Windows : : Forms : : Label ∗ l ab e l 11 ;
p r i va t e : System : : Windows : : Forms : : Label ∗ l ab e l 12 ;
p r i va t e : System : : Windows : : Forms : : Label ∗ l ab e l 13 ;
p r i va t e : System : : Windows : : Forms : : TextBox ∗ textBox10 ;
p r i va t e : System : : Windows : : Forms : : TextBox ∗ textBox11 ;
p r i va t e : System : : Windows : : Forms : : TextBox ∗ textBox12 ;

p r i va t e :
/// <summary>
/// Required d e s i g n e r v a r i a b l e .
/// </summary>
System : : ComponentModel : : Container ∗ components ;

/// <summary>
/// Required method f o r Des igner suppor t − do not modi fy
/// th e c on t en t s o f t h i s method wi th t h e code e d i t o r .
/// </summary>
void In i t ia l i z eComponent (void )
{

th i s−>mainMenu1 = new System : : Windows : : Forms : : MainMenu ( ) ;
th i s−>menuItem1 = new System : : Windows : : Forms : : MenuItem ( ) ;
th i s−>menuItem2 = new System : : Windows : : Forms : : MenuItem ( ) ;
th i s−>menuItem3 = new System : : Windows : : Forms : : MenuItem ( ) ;
th i s−>menuItem4 = new System : : Windows : : Forms : : MenuItem ( ) ;
th i s−>l a b e l 1 = new System : : Windows : : Forms : : Label ( ) ;
th i s−>l a b e l 2 = new System : : Windows : : Forms : : Label ( ) ;
th i s−>l a b e l 3 = new System : : Windows : : Forms : : Label ( ) ;
th i s−>textBox1 = new System : : Windows : : Forms : : TextBox ( ) ;
th i s−>textBox2 = new System : : Windows : : Forms : : TextBox ( ) ;
th i s−>groupBox1 = new System : : Windows : : Forms : : GroupBox ( ) ;
th i s−>textBox7 = new System : : Windows : : Forms : : TextBox ( ) ;
th i s−>textBox6 = new System : : Windows : : Forms : : TextBox ( ) ;
th i s−>textBox5 = new System : : Windows : : Forms : : TextBox ( ) ;
th i s−>textBox4 = new System : : Windows : : Forms : : TextBox ( ) ;
th i s−>l a b e l 7 = new System : : Windows : : Forms : : Label ( ) ;
th i s−>l a b e l 6 = new System : : Windows : : Forms : : Label ( ) ;
th i s−>l a b e l 5 = new System : : Windows : : Forms : : Label ( ) ;
th i s−>l a b e l 4 = new System : : Windows : : Forms : : Label ( ) ;
th i s−>button1 = new System : : Windows : : Forms : : Button ( ) ;
th i s−>button2 = new System : : Windows : : Forms : : Button ( ) ;
th i s−>l ab e l 10 = new System : : Windows : : Forms : : Label ( ) ;
th i s−>statusBar1 = new System : : Windows : : Forms : : StatusBar ( ) ;
th i s−>textBox3 = new System : : Windows : : Forms : : TextBox ( ) ;
th i s−>groupBox2 = new System : : Windows : : Forms : : GroupBox ( ) ;
th i s−>textBox12 = new System : : Windows : : Forms : : TextBox ( ) ;
th i s−>textBox11 = new System : : Windows : : Forms : : TextBox ( ) ;
th i s−>textBox10 = new System : : Windows : : Forms : : TextBox ( ) ;
th i s−>l ab e l 13 = new System : : Windows : : Forms : : Label ( ) ;
th i s−>l ab e l 12 = new System : : Windows : : Forms : : Label ( ) ;
th i s−>l ab e l 11 = new System : : Windows : : Forms : : Label ( ) ;



B.1 The DC File Converter C++ Function 71

th i s−>groupBox1−>SuspendLayout ( ) ;
th i s−>groupBox2−>SuspendLayout ( ) ;
th i s−>SuspendLayout ( ) ;
//
// mainMenu1
//
System : : Windows : : Forms : : MenuItem∗ mcTemp 1 [ ] = new System : : Windows : : Forms : : MenuItem ∗ [ 2 ] ;

mcTemp 1 [ 0 ] = th i s−>menuItem1 ;
mcTemp 1 [ 1 ] = th i s−>menuItem4 ;

th i s−>mainMenu1−>MenuItems−>AddRange( mcTemp 1 ) ;
//
// menuItem1
//
th i s−>menuItem1−>Index = 0 ;
System : : Windows : : Forms : : MenuItem∗ mcTemp 2 [ ] = new System : : Windows : : Forms : : MenuItem ∗ [ 2 ] ;

mcTemp 2 [ 0 ] = th i s−>menuItem2 ;
mcTemp 2 [ 1 ] = th i s−>menuItem3 ;

th i s−>menuItem1−>MenuItems−>AddRange( mcTemp 2 ) ;
th i s−>menuItem1−>Text = S” F i l e ” ;
//
// menuItem2
//
th i s−>menuItem2−>Index = 0 ;
th i s−>menuItem2−>Text = S”Load DC f i l e . . ” ;
th i s−>menuItem2−>Cl ick += new System : : EventHandler ( th i s , menuItem2 Click ) ;
//
// menuItem3
//
th i s−>menuItem3−>Index = 1 ;
th i s−>menuItem3−>Text = S”Exit ” ;
//
// menuItem4
//
th i s−>menuItem4−>Index = 1 ;
th i s−>menuItem4−>Text = S”Help” ;
//
// l a b e l 1
//
th i s−>l abe l1−>Locat ion = System : : Drawing : : Point (24 , 6 4 ) ;
th i s−>l abe l1−>Name = S” l ab e l 1 ” ;
th i s−>l abe l1−>TabIndex = 0 ;
th i s−>l abe l1−>Text = S”Enter East ing : ” ;
//
// l a b e l 2
//
th i s−>l abe l2−>Locat ion = System : : Drawing : : Point (24 , 9 6 ) ;
th i s−>l abe l2−>Name = S” l ab e l 2 ” ;
th i s−>l abe l2−>TabIndex = 1 ;
th i s−>l abe l2−>Text = S”Enter Northing : ” ;
//
// l a b e l 3
//
th i s−>l abe l3−>Locat ion = System : : Drawing : : Point (24 , 128 ) ;
th i s−>l abe l3−>Name = S” l ab e l 3 ” ;
th i s−>l abe l3−>S i z e = System : : Drawing : : S i z e (120 , 2 3 ) ;
th i s−>l abe l3−>TabIndex = 2 ;
th i s−>l abe l3−>Text = S”Enter Reduced Level : ” ;
//
// tex tBox1
//
th i s−>textBox1−>Locat ion = System : : Drawing : : Point (168 , 6 4 ) ;
th i s−>textBox1−>Name = S”textBox1” ;
th i s−>textBox1−>TabIndex = 3 ;
th i s−>textBox1−>Text = S”” ;
//
// tex tBox2
//
th i s−>textBox2−>Locat ion = System : : Drawing : : Point (168 , 9 6 ) ;
th i s−>textBox2−>Name = S”textBox2” ;
th i s−>textBox2−>TabIndex = 4 ;
th i s−>textBox2−>Text = S”” ;
//
// groupBox1
//
th i s−>groupBox1−>Controls−>Add( th i s−>textBox7 ) ;
th i s−>groupBox1−>Controls−>Add( th i s−>textBox6 ) ;
th i s−>groupBox1−>Controls−>Add( th i s−>textBox5 ) ;
th i s−>groupBox1−>Controls−>Add( th i s−>textBox4 ) ;
th i s−>groupBox1−>Controls−>Add( th i s−>l a b e l 7 ) ;
th i s−>groupBox1−>Controls−>Add( th i s−>l a b e l 6 ) ;
th i s−>groupBox1−>Controls−>Add( th i s−>l a b e l 5 ) ;
th i s−>groupBox1−>Controls−>Add( th i s−>l a b e l 4 ) ;
th i s−>groupBox1−>Locat ion = System : : Drawing : : Point (336 , 176 ) ;
th i s−>groupBox1−>Name = S”groupBox1” ;
th i s−>groupBox1−>S i z e = System : : Drawing : : S i z e (264 , 168 ) ;
th i s−>groupBox1−>TabIndex = 6 ;
th i s−>groupBox1−>TabStop = f a l s e ;
th i s−>groupBox1−>Text = S”QC1 Data ( Averages ) ” ;
//
// tex tBox7
//
th i s−>textBox7−>Locat ion = System : : Drawing : : Point (168 , 120 ) ;
th i s−>textBox7−>Name = S”textBox7” ;
th i s−>textBox7−>S i z e = System : : Drawing : : S i z e (64 , 2 0 ) ;
th i s−>textBox7−>TabIndex = 9 ;
th i s−>textBox7−>Text = S”” ;
//



B.1 The DC File Converter C++ Function 72

// tex tBox6
//
th i s−>textBox6−>Locat ion = System : : Drawing : : Point (168 , 8 8 ) ;
th i s−>textBox6−>Name = S”textBox6” ;
th i s−>textBox6−>S i z e = System : : Drawing : : S i z e (64 , 2 0 ) ;
th i s−>textBox6−>TabIndex = 8 ;
th i s−>textBox6−>Text = S”” ;
//
// tex tBox5
//
th i s−>textBox5−>Locat ion = System : : Drawing : : Point (168 , 5 6 ) ;
th i s−>textBox5−>Name = S”textBox5” ;
th i s−>textBox5−>S i z e = System : : Drawing : : S i z e (64 , 2 0 ) ;
th i s−>textBox5−>TabIndex = 7 ;
th i s−>textBox5−>Text = S”” ;
//
// tex tBox4
//
th i s−>textBox4−>Locat ion = System : : Drawing : : Point (168 , 2 4 ) ;
th i s−>textBox4−>Name = S”textBox4” ;
th i s−>textBox4−>S i z e = System : : Drawing : : S i z e (64 , 2 0 ) ;
th i s−>textBox4−>TabIndex = 6 ;
th i s−>textBox4−>Text = S”” ;
//
// l a b e l 7
//
th i s−>l abe l7−>Locat ion = System : : Drawing : : Point (8 , 120 ) ;
th i s−>l abe l7−>Name = S” l ab e l 7 ” ;
th i s−>l abe l7−>TabIndex = 3 ;
th i s−>l abe l7−>Text = S”VDOP Max: ” ;
//
// l a b e l 6
//
th i s−>l abe l6−>Locat ion = System : : Drawing : : Point (8 , 8 8 ) ;
th i s−>l abe l6−>Name = S” l ab e l 6 ” ;
th i s−>l abe l6−>TabIndex = 2 ;
th i s−>l abe l6−>Text = S”HDOP Max: ” ;
//
// l a b e l 5
//
th i s−>l abe l5−>Locat ion = System : : Drawing : : Point (8 , 5 6 ) ;
th i s−>l abe l5−>Name = S” l ab e l 5 ” ;
th i s−>l abe l5−>TabIndex = 1 ;
th i s−>l abe l5−>Text = S”PDOP Max: ” ;
//
// l a b e l 4
//
th i s−>l abe l4−>Locat ion = System : : Drawing : : Point (8 , 2 4 ) ;
th i s−>l abe l4−>Name = S” l ab e l 4 ” ;
th i s−>l abe l4−>S i z e = System : : Drawing : : S i z e (128 , 2 3 ) ;
th i s−>l abe l4−>TabIndex = 0 ;
th i s−>l abe l4−>Text = S”Min S a t e l l i t e s Ava i lab l e : ” ;
//
// bu t t on1
//
th i s−>button1−>Locat ion = System : : Drawing : : Point (32 , 248 ) ;
th i s−>button1−>Name = S”button1” ;
th i s−>button1−>S i z e = System : : Drawing : : S i z e (112 , 3 2 ) ;
th i s−>button1−>TabIndex = 7 ;
th i s−>button1−>Text = S”Create Pr e c i s i on Graph” ;
th i s−>button1−>Cl ick += new System : : EventHandler ( th i s , button1 Cl i ck ) ;
//
// bu t t on2
//
th i s−>button2−>Locat ion = System : : Drawing : : Point (176 , 248 ) ;
th i s−>button2−>Name = S”button2” ;
th i s−>button2−>S i z e = System : : Drawing : : S i z e (112 , 3 2 ) ;
th i s−>button2−>TabIndex = 8 ;
th i s−>button2−>Text = S”Create Accuracy Graph” ;
//
// l a b e l 1 0
//
th i s−>l abe l10−>Locat ion = System : : Drawing : : Point (32 , 312 ) ;
th i s−>l abe l10−>Name = S” l abe l 10 ” ;
th i s−>l abe l10−>S i z e = System : : Drawing : : S i z e (264 , 3 2 ) ;
th i s−>l abe l10−>TabIndex = 9 ;
th i s−>l abe l10−>Text = S” ( Accuracy Graph ava i l a b l e only when user inputs Coordinates ) ” ;
//
// s t a tu sBar1
//
th i s−>statusBar1−>Locat ion = System : : Drawing : : Point (0 , 363 ) ;
th i s−>statusBar1−>Name = S” statusBar1 ” ;
th i s−>statusBar1−>S i z e = System : : Drawing : : S i z e (640 , 2 2 ) ;
th i s−>statusBar1−>TabIndex = 10 ;
th i s−>statusBar1−>Text = S”Loading : ” ;
//
// tex tBox3
//
th i s−>textBox3−>Locat ion = System : : Drawing : : Point (168 , 128 ) ;
th i s−>textBox3−>Name = S”textBox3” ;
th i s−>textBox3−>TabIndex = 11 ;
th i s−>textBox3−>Text = S”” ;
//
// groupBox2
//
th i s−>groupBox2−>Controls−>Add( th i s−>textBox12 ) ;
th i s−>groupBox2−>Controls−>Add( th i s−>textBox11 ) ;
th i s−>groupBox2−>Controls−>Add( th i s−>textBox10 ) ;



B.1 The DC File Converter C++ Function 73

th i s−>groupBox2−>Controls−>Add( th i s−>l ab e l 13 ) ;
th i s−>groupBox2−>Controls−>Add( th i s−>l ab e l 12 ) ;
th i s−>groupBox2−>Controls−>Add( th i s−>l ab e l 11 ) ;
th i s−>groupBox2−>Locat ion = System : : Drawing : : Point (336 , 1 6 ) ;
th i s−>groupBox2−>Name = S”groupBox2” ;
th i s−>groupBox2−>S i z e = System : : Drawing : : S i z e (264 , 136 ) ;
th i s−>groupBox2−>TabIndex = 12 ;
th i s−>groupBox2−>TabStop = f a l s e ;
th i s−>groupBox2−>Text = S”Coordinate Averages (From observed data ) ” ;
//
// tex tBox12
//
th i s−>textBox12−>Locat ion = System : : Drawing : : Point (144 , 8 8 ) ;
th i s−>textBox12−>Name = S”textBox12” ;
th i s−>textBox12−>TabIndex = 5 ;
th i s−>textBox12−>Text = S”” ;
//
// tex tBox11
//
th i s−>textBox11−>Locat ion = System : : Drawing : : Point (144 , 5 6 ) ;
th i s−>textBox11−>Name = S”textBox11” ;
th i s−>textBox11−>TabIndex = 4 ;
th i s−>textBox11−>Text = S”” ;
//
// tex tBox10
//
th i s−>textBox10−>Locat ion = System : : Drawing : : Point (144 , 2 4 ) ;
th i s−>textBox10−>Name = S”textBox10” ;
th i s−>textBox10−>TabIndex = 3 ;
th i s−>textBox10−>Text = S”” ;
//
// l a b e l 1 3
//
th i s−>l abe l13−>Locat ion = System : : Drawing : : Point (16 , 8 8 ) ;
th i s−>l abe l13−>Name = S” l abe l 13 ” ;
th i s−>l abe l13−>TabIndex = 2 ;
th i s−>l abe l13−>Text = S”Reduced Level : ” ;
//
// l a b e l 1 2
//
th i s−>l abe l12−>Locat ion = System : : Drawing : : Point (16 , 5 6 ) ;
th i s−>l abe l12−>Name = S” l abe l 12 ” ;
th i s−>l abe l12−>TabIndex = 1 ;
th i s−>l abe l12−>Text = S”Northing : ” ;
//
// l a b e l 1 1
//
th i s−>l abe l11−>Locat ion = System : : Drawing : : Point (16 , 2 4 ) ;
th i s−>l abe l11−>Name = S” l abe l 11 ” ;
th i s−>l abe l11−>TabIndex = 0 ;
th i s−>l abe l11−>Text = S”East ing : ” ;
//
// Form1
//
th i s−>AutoScaleBaseSize = System : : Drawing : : S i z e (5 , 1 3 ) ;
th i s−>Cl i en tS i z e = System : : Drawing : : S i z e (640 , 385 ) ;
th i s−>Controls−>Add( th i s−>groupBox2 ) ;
th i s−>Controls−>Add( th i s−>textBox3 ) ;
th i s−>Controls−>Add( th i s−>statusBar1 ) ;
th i s−>Controls−>Add( th i s−>l ab e l 10 ) ;
th i s−>Controls−>Add( th i s−>button2 ) ;
th i s−>Controls−>Add( th i s−>button1 ) ;
th i s−>Controls−>Add( th i s−>groupBox1 ) ;
th i s−>Controls−>Add( th i s−>textBox2 ) ;
th i s−>Controls−>Add( th i s−>textBox1 ) ;
th i s−>Controls−>Add( th i s−>l a b e l 3 ) ;
th i s−>Controls−>Add( th i s−>l a b e l 2 ) ;
th i s−>Controls−>Add( th i s−>l a b e l 1 ) ;
th i s−>Menu = th i s−>mainMenu1 ;
th i s−>Name = S”Form1” ;
th i s−>Text = S”v” ;
th i s−>groupBox1−>ResumeLayout ( f a l s e ) ;
th i s−>groupBox2−>ResumeLayout ( f a l s e ) ;
th i s−>ResumeLayout ( f a l s e ) ;

}
pr i va t e : System : : Void menuItem2 Click ( System : : Object ∗ sender , System : : EventArgs ∗ e )

{
OpenFileDialog ∗ openFi l eDia log1 = new OpenFileDialog ( ) ;

// openFi l eD ia l og1−>I n i t i a l D i r e c t o r y = S”c :\\” ;
openFi leDia log1−>F i l t e r = ”DC F i l e s (∗ . dc ) | ∗ . txt | Al l F i l e s ( ∗ . ∗ ) | ∗ . ∗ ” ;
openFi leDia log1−>F i l t e r I ndex = 2 ;
openFi leDia log1−>RestoreDi rec tory = true ;

i f ( openFi leDia log1−>ShowDialog ( ) == Dia logResu l t : :OK)
{

dcf = openFi leDia log1−>FileName ;
statusBar1−>Text = dcf ;
l o a d f i l e ( dc f ) ;

}

}

pr i va t e : System : : Void l o a d f i l e ( CString l o ad th i s ){
statusBar1−>Text = ”Loading : ” + l o ad th i s ;

dcdt ∗dcdata ;



B.1 The DC File Converter C++ Function 74

coordt ∗ coordata ;
l i s t ∗ d c d a t a l i s t = new l i s t ;
l i s t ∗ c o o r d a t a l i s t = new l i s t ;
d cda t a l i s t−>next = NULL;
c o o r d a t a l i s t−>next = NULL;
// dcd t ∗ d c d t p t r = &dcdata ;
CString tmpstr ;

int count = 0 ;
// i n t coun te r = 0 ;
// i n t coun t ing = 0 ;
// i n t county = 0 ;

i f s t r e am d c f i l e ;

i f ( l o ad th i s ){
d c f i l e . open ( l o ad th i s ) ;

} else {
MessageBox (NULL, ” F i l e does not e x i s t ! ” , ” Fatal Error ” , MB OK) ;
e x i t ( 1 ) ;

}

i f ( ! d c f i l e ){
MessageBox (NULL, ”Could not open f i l e ! ” , ” Fatal Error ” , MB OK) ;
e x i t ( 1 ) ;

}

char buf [ 1 0 2 4 ] ;
dcdata = new dcdt ;
coordata = new coordt ;

while ( ! d c f i l e . e o f ( ) ){

// read a l i n e o f data from the f i l e
d c f i l e . g e t l i n e ( buf , 256 ) ;

i f ( dcdata−>read data ( buf ) ){
// i f here , i t was qc1 data , so make a new dcd t
// cout << ”(main ) CHECKING READ DATA Code : ” << dcdata−>g e t q c 1 c o d e ( ) << ” Numsats : ” << dcdata−>g e t num sa t s ( ) << end l ;
d c d a t a l i s t = add l i s t i t em ( d cda t a l i s t , (void ∗) dcdata ) ;
dcdata = new dcdt ;

}
else i f ( coordata−>read data ( buf ) ){

// i f here , i t was coord data
c o o r d a t a l i s t = add l i s t i t em ( c o o r d a t a l i s t , (void ∗) coordata ) ;
coordata = new coordt ;

}

}

// here we are j u s t showing t h e data f o r debugg ing pe rpo s e s

l i s t ∗ l i s t p t r = d c d a t a l i s t ;
double ptmp , htmp , vtmp ;
double h accum = 0 .0 , p accum = 0 .0 , v accum = 0 . 0 ;
double e accum = 0 .0 , n accum = 0 .0 , r l accum = 0 . 0 ;
count = 0 ;
TCHAR sz [ 1 0 2 4 ] ;

while ( d cda t a l i s t−>next != NULL) {
( ( dcdt ∗ ) ( d cda t a l i s t−>data))−> show de ta i l s ( ) ;
( ( dcdt ∗ ) ( d cda t a l i s t−>data))−>get dops (ptmp , htmp , vtmp ) ;

// keep a t o t a l
p accum += ptmp ;
h accum += htmp ;
v accum += vtmp ;
count++;

d c d a t a l i s t = dcda t a l i s t−>next ;
}

double pavg = p accum / (double ) count ;
double havg = h accum / (double ) count ;
double vavg = v accum / (double ) count ;

// s p r i n t f ( sz , ”%d” , dc ) ;
// tex tBox4−>Text = s z ;

s p r i n t f ( sz , ”%f ” , pavg ) ;
textBox5−>Text = sz ;

s p r i n t f ( sz , ”%f ” , havg ) ;
textBox6−>Text = sz ;

s p r i n t f ( sz , ”%f ” , vavg ) ;
textBox7−>Text = sz ;

l i s t ∗ l i s t p o i n t e r = c o o r d a t a l i s t ;
double etmp , ntmp , rltmp ;
count = 0 ;

int counter = 0 ;
double e i n t e r [ 1 0 2 4 ] ;
double n i n t e r [ 1 0 2 4 ] ;
double r l i n t e r [ 1 0 2 4 ] ;

while ( c o o r d a t a l i s t−>next != NULL) {
( ( coordt ∗ ) ( c o o r d a t a l i s t−>data))−> show de ta i l s ( ) ;
( ( coordt ∗ ) ( c o o r d a t a l i s t−>data))−>ge t coo rd s ( etmp , ntmp , rltmp ) ;

// cout << ”The Coord ina te s ARE IN ! ” << l tmp << ” ” << l g tmp << ” ” << hgtmp << end l ;



B.1 The DC File Converter C++ Function 75

e i n t e r [ counter ] = etmp ;
n i n t e r [ counter ] = ntmp ;
r l i n t e r [ counter ] = rltmp ;

graphdt . e i n t e r [ counter ] = etmp ;
graphdt . n i n t e r [ counter ] = ntmp ;
graphdt . r l i n t e r [ counter ] = rltmp ;

// keep a t o t a l
e accum += etmp ;
n accum += ntmp ;
r l accum += rltmp ;
count++;
counter++;

c o o r d a t a l i s t = c o o r d a t a l i s t−>next ;
}

// cout << ”LETS SEE TOTALAGE! l a v g = ” << l accum / ( doub l e ) count << ” l g a v g = ” <<
// lg accum / ( doub l e ) count << ” hgavg = ” << hg accum / ( doub l e ) count << end l ;
// cout << ” |\n” << end l ;

double eavg = e accum / (double ) count ;
double navg = n accum / (double ) count ;
double r l avg = rl accum / (double ) count ;

graphdt . eavg = eavg ;
graphdt . navg = navg ;
graphdt . r l avg = r lavg ;

for ( counter = 0 ; counter < 6 ; counter++){
// tmps t r = ”Show Re s i dua l s o f La t i t u d e : ” + i t o a ( l i n t e r [ coun te r ] − l a v g ) + ” Long i tude : ”
// + i t o a ( l g i n t e r [ coun te r ] − l g a v g ) + ” He igh t : ” + i t o a ( h g i n t e r [ coun te r ] − hgavg ) ;
s p r i n t f ( sz , ” Res idua l s o f East ing : %f \n Northing : %f \n Reduced Level : %f ” , e i n t e r [ counter ] − eavg , n i n t e r [ counter ] − navg , r l i n t e r [ counter ] − r l avg ) ;

MessageBox (NULL, sz , ” In format ion ” , MB OK) ;

}

s p r i n t f ( sz , ”%f ” , eavg ) ;
textBox10−>Text = sz ;

s p r i n t f ( sz , ”%f ” , navg ) ;
textBox11−>Text = sz ;

s p r i n t f ( sz , ”%f ” , r l avg ) ;
textBox12−>Text = sz ;

double u ea s t i ng ;
double u north ing ;
double u r educed l ev e l ;

tmpstr = textBox1−>Text ;
u ea s t i ng = ato f ( tmpstr ) ;

tmpstr = textBox2−>Text ;
u north ing = ato f ( tmpstr ) ;

tmpstr = textBox3−>Text ;
u r educ ed l ev e l = ato f ( tmpstr ) ;

// s p r i n t f ( sz , ”User East : %f \n North : %f \n Reduced Leve l : %f ” , u e a s t i n g , u nor th ing , u r e d u c e d l e v e l ) ;
//MessageBox (NULL, s z , ” In fo rmat ion ” , MB OK) ;

d c f i l e . c l o s e ( ) ;
MessageBox (NULL, ”QC1 Data F i l e Ana lys i s Complete . ” , ” In format ion ” , MB OK) ;
}
pr i va t e : System : : Void menuItem3 Click ( System : : Object ∗ sender , System : : EventArgs ∗ e )

{
e x i t ( 0 ) ;

}

pr i va t e : System : : Void button1 Cl i ck ( System : : Object ∗ sender , System : : EventArgs ∗ e )
{

Graph ∗ thegraph = new Graph ( ) ;
thegraph−>ShowDialog ( ) ;
// thegraph−>p ic tureBox1−>Enabled =0;

}

} ;
}

Listing B.8: Form1.cpp.
#include ” s tda fx . h”
#include ”Form1 . h”
#include <windows . h>

us ing namespace AttemptTwo ;

int APIENTRY tWinMain (HINSTANCE hInstance ,
HINSTANCE hPrevInstance ,
LPTSTR lpCmdLine ,
int nCmdShow)

{
System : : Threading : : Thread : : CurrentThread−>ApartmentState = System : : Threading : : ApartmentState : : STA;
Appl i cat ion : : Run(new Form1 ( ) ) ;

return 0 ;
}


	Abstract
	Acknowledgments
	List of Figures
	Nomenclature
	Chapter Introduction
	Background
	Research Aim and Objectives
	Aim
	Objectives

	Scope of Research
	Justification
	Research Method
	Summary: Chapter 1

	Chapter Literature Review
	Introduction
	Overview of VRS
	eGPS Solutions Georgia, USA
	GPSnet.dk Denmark

	Software
	DC file conversion
	DC file manipulating software
	Programming Languages
	Programming Environments

	Quality Assurance Procedures
	QA at the Server
	QA at the Base Stations
	QA at the Rover

	Summary: Chapter 2
	Chapter Methodology
	Introduction
	Programming Language and Environment Choice
	Characteristics of Software
	Data Extraction
	Software Coding
	QC1 Data
	Coordinate Data

	Data Processing
	Graphical User Interface Creation
	Integration of Program Code to GUI
	Software Validation
	Summary: Chapter 3


	Chapter The QA System
	Introduction
	Revision of GUI Layout and Characteristic Definitions
	Survey and User Requirements
	Disclaimer
	Summary: Chapter 4

	Chapter Validation
	Introduction
	Validation of dc Files
	Summary: Chapter 5

	Chapter Discussion and Recommendations
	Introduction
	Discussion
	Recommendations
	Enhancements to the Program

	Summary: Chapter 6

	Chapter Conclusion
	Introduction
	Conclusions
	Close

	References
	Appendix Project Specification
	Appendix Source Code
	The DC File Converter C++ Function



