
Reducing Cognitive Overhead on the Wor ld Wide Web

Rebecca J Witt Susan P Tyerman
School of Computer and Information Science

University of South Australia

{ Rebecca. Wi t t , Sue. Tyer man} @uni sa. edu. au

Abstract
HyperScout, a Web application, is an intermediary between a
server and a client. It intercepts a page to the client, gathers
information on each link, and annotates each link with the
discovered information. This paper reports on the development
of HyperScout var UniSA, a development of the HyperScout
model and application, that dramatically extends static and
dynamic link annotations. Annotations provide the user with
additional information, which they use to make better
navigational choices. On the web, it is common for long lists of
hyperlinks to be presented to the user, from which they select
links to follow or ignore. The user’s mental state in this
situation is termed cognitive overhead, a potentially
overwhelming condition. To assist the user in making their
choice, various characteristics of a link may be presented to the
user. Despite these characteristics being readily available from
a number of sources, current web servers and browsers do not
attempt to retrieve, let alone display, such attributes. To show
that cognitive overhead is easily, and immediately, reducible, a
number of techniques were explored. Development progressed
from statically created annotations, through to dynamically
generated annotations. The static annotations were
implemented with a combination of tools available to every web
author. It was found that, while simple enough for every author
to implement, static annotations bearing static information
would not be accurate or timely enough to guide the user.
Therefore, information must be gathered dynamically. The
solution is either an intermediary between server and client, or a
more sophisticated browser..

Keywords: hypertext, navigation, world wide web, cognitive
overhead.

1 Introduction

A web user’s navigation trail is a complex mix of forward
linear traversals, cyclic paths, leaps, dead-ends, and
backtracks. To increase the efficiency of their navigation,
a user visits a search engine and enters words that have
relevancy to the topic being investigated. The search
engine presents a list of, supposedly, relevant sites. The
user is now faced with many decisions: which links are
the most relevant, completely irrelevant, authorities on the
subject, fast, broken, up-to-date, in French, etc. Instead
of being a relatively transparent process, the search
mechanics impinge strongly on the user's consciousness,
leading to cognitive overhead.

.Copyright © 2001, Australian Computer Society, Inc. This
paper appeared at the Twenty-Fifth Australasian Computer
Science Conference (ACSC2002), Melbourne, Australia.
Conferences in Research and Practice in Information
Technology, Vol. 4. Michael Oudshoorn, Ed. Reproduction for
academic, not-for profit purposes permitted provided this text is
included.

Conklin (Conklin 1987) defines cognitive overhead as the
burden of meta-level decision making, i.e. of making
decisions about decisions. Subconsciously, a user may
decide that the relevance, authority, speed, and language
are the criteria against which a web page is measured.
Essentially, cognitive overhead is the problem of deciding
upon which criteria a link choice will be based.

This paper proposes that cognitive overhead on the World
Wide Web can be decreased immediately. It explores a
range of techniques with which to do so, both from the
perspective of the author and web client.

Some background to the work is reported, followed by an
explanation of the important issues. Section three and
four describe the model and implementation of the
system, Hyperscout var UniSA (HvU). The remaining
sections describe the evaluation of the system and ends
with some concluding remarks.

2 From Hyper text to the Wor ld Wide Web

The World Wide Web (WWW) is comparable with a
hypermedia system, hypermedia being a generalisation of
hypertext. As such, the WWW inherits the disadvantages
of hypertext, identified by Conklin as the impairment of
user navigation due to disorientation and cognitive
overhead. In fact, these problems are heightened on the
WWW, as association, that is the specification of page
relationships, and physical characteristics are
uncontrollable. Hypertext-specific remedies are
applicable to the WWW, but WWW-specific solutions
are also required.

2.1 Hyper text

Human thought is not linear, but moves instantly to an
associated thought. Hypertext attempts to model this
process with hyperlinks. To be truly effective, hyperlinks
require a minimal user effort and low cognitive overhead.
Conklin also recommends that the time delay when
traversing a link be as small as possible. Neglecting this
adds to user disorientation. While the time delay may be
controllable in hypertext systems, hypermedia systems
add another level of unpredictability.

While nodes in hypertext are of similar size, node sizes in
hypermedia vary greatly. From text of a few tens of
kilobytes, to graphics of a few hundred kilobytes, to video
of tens of megabytes, link transition times necessarily
vary. This situation is echoed in the WWW, and is
compounded by network delays.

Loeb (Loeb 1992) introduces the concept of network
advice, notifying the user of potential delays in the

system. If uses can anticipate delays, they will not lose
patience when attempting to retrieve information. It is
often the unexpected delays that increase disorientation.
Network advice is one solution for reducing problems
associated with cognitive overhead.

2.2 Hyper links and Association

Linking is analogous with the association process of the
human mind. However, “Links, in general, tie together
concepts that have a natural association in the mind of the
person creating the links” (emphasis added, Schnase et
al. 1993). This is reflected in the WWW, where users
find it difficult to understand an association an author
meant to convey via a link.

Various models have been proposed to clarify
associations (or the lack thereof). Akscyn et al identify a
number of design issues in hypermedia (Akscyn et al
1987), and Landow has a set of rules for authors that are
still relevant today (Landow 1991). These are attempts to
force authors to adequately structure their
hyperdocuments. Unfortunately, coercing web authors to
follow conventions is an impossible task, as it is
unenforceable.

2.3 Disadvantages of Hyper text

Conklin identifies two general problems of Hypertext that
are pertinent to this research. Both affect a user’s
navigation if steps are not taken to avoid the problems of
disorientation and cognitive overhead.

2.3.1 Disor ientation

A user becomes disorientated when they lose track of
where they are, or when pages are complex, contain
unexpected content, or include internal and broken links.

Clicking an internal link moves the focus to a different
location in the same page. This action is not indicated to
the user, and the only means of judging their new location
in the document is by the vertical scroll bar. The user
may not even be aware that they are within the same
document. Not knowing the association between the old
and new location worsens the situation.

Broken links are particularly disorientating, especially in
the current versions of browsers. A browser receiving a
numeric error message replaces the current page with a
new page displaying the error. The user is required to
interpret the message and to back-button to the original
page. This seems inefficient, potentially confusing the
user. The browser could simply display a message box
without displacing the original page, thereby allowing the
user to retain a sense of context.

2.3.2 Cognitive Overhead

As previously defined, cognitive overhead is decision
making about decisions. Currently, most of the decision
criteria available for a link are hidden from a user.
Attributes, such as author, modification date, and server
status, are available from a number of sources, but the

only attribute browsers present to the user is the URL.
Only after traversing a link may a user discover this extra
information. It is then too late to decide the link is not
worth following.

2.4 Recent Work

Three recent studies that attempt to resolve some of the
issues addressed previously are presented here. All
annotate links with additional information, with varying
degrees of success. These applications all work as plug-
ins to existing browsers.

Link Lens (Stanyer and Procter 1999) provides an
abstraction mechanism for the link, with two elements,
channel and site. Channel represents a connection
between the client and the server. Site represents the
documents on the server. For these elements, a Quality of
Service summary is calculated. Stanyer and Procter
divide the user’s link evaluation process into two parts:

• an assessment of content and
• an assessment of download Quality of Service.

The content component of Link Lens is created from
META tags of target pages and information derived from
the link’s URL. Link Lens provides attributes such as
author and title, and analyses a page for the distribution
of keywords, a thumbnail outline of the document, and the
number and size of embedded media and links. The
major disadvantage of this approach is the intrusiveness
of the display as a substantial portion of the window is
covered by the thumbnail and other displayed data.

Visual Preview (Kopetzky and Mühläuser 1999)
generates a visual description of a target page. This
thumbnail is displayed when a link is moused-over. Their
reasoning for this technique is based on user recall. Users
will associate images with particular pages, and in this
way, links can appear familiar to them. The disadvantage
of Visual Preview is the increase in network traffic. Each
target link is downloaded so that thumbnail images can be
generated. In contrast, Link Lens only requires the header
response for each page as the header contains the META
tags. However, Visual Preview does have an advantage
over Link Lens and HyperScout. META tags are author
generated information, so Link Lens and HyperScout are
at their most effective when the author has provided
information. When the author does not provide META
tags, the information provided by Link Lens and
HyperScout is adversely affected. Visual Preview, on the
other hand, delivers the same level of quality irrespective
of the amount of information provided by the author.

An additional problem with thumbnails is the growing
prevalence of corporate and standard formats for Web
pages which effectively reduce the recognition factor for
the user once the small image is rendered.

HyperScout (Weinreich and Lamersdorf 2000) is similar
in concept to Link Lens. META tags are gathered and
elements extracted from URLs, and results presented in
pop-ups that appear next to each link when the link is
moused-over. HyperScout appears to be superior to the
previous two systems in two areas:

• Weinreich and Lamersdorf present an analysis of
different techniques for displaying additional link
information. From this comes their justification for
the choice of implementation - the pop-up. The
authors of the previous prototypes did not include
justification.

• The system is more informative than Visual Preview,
and less obtrusive and more attractive than Link
Lens.

However, the HyperScout system is not perfect being in
an experimental, rather than commercial, prototype stage.
HyperScout has an inconsistent presentation. Currently,
whatever information is available is displayed. One link
may have only a few attributes, and for another link the
information may be quite detailed. This inconsistency is
likely to confuse novice users.

3 Model

This section describes the extensions to the HyperScout
model that have been realised in the HvU system.

3.1 Users

Novice WWW users are initially impressed by the
abundance of resources, though they are soon frustrated
when attempting to retrieve information from these
resources (Weinreich and Lamersdorf 2000, Kopetzky
1999). All users face the same difficulty, but experienced
users have an understanding of which criteria to use in
making a link choice. HvU makes explicit the information
available for each link, perhaps bringing awareness to the
user of the possible criteria sooner than if the information
remained hidden.

Pay-by-the-minute or pay-by-the-byte ISP customers are
interested in the fastest links and the smallest downloads.
In contrast, experienced users (and no-restrictions ISP
customers) may ignore fast links in favour of the most
relevant link. Relevancy is gauged on a number of
attributes including keywords, author, and the URL’s
domain, all of which the model presents to the user.
Additionally, all users wish to avoid wasting their time
with documents that cannot be accessed, or cannot be
interpreted once downloaded.

3.2 Data Model

This section details the attributes created for each link
(the output) and the sources used to generate the attribute
values (the input).

Hyperscout categorises link attributes into five classes.
Content attributes are title, author, keywords, description,
language, last modified date, and the first few lines of a
page. Content attributes are the resource for determining
a link’s relevance.

Access attributes are the status of a page (based on HTTP
codes) and the file size. The HyperScout model displays
the file size when it is greater than 30 Kbytes. HvU
indicates the approximate magnitude, i.e. small, medium,
or large, to aid the comparison of link sizes. The size
thresholds may be set by the user, for example, greater

than one Mbyte is medium, greater than 5 Mbyte is large.
A future model would calculate the magnitude
proportional to the current connection speed, i.e. the
slower the connection the lower the thresholds.

The Usage attribute, of the HyperScout model, is the time
of the user's last visit to the link. If the user is returning to
a link in the same day, the message is displayed as “Last
visit x minutes ago,” otherwise the date and time are
displayed. A future model would alter a link anchor’s
colour according to the time since the last visit. Current
browsers indicated previously visited with a distinct
colour that eventually times-out, i.e. is set back to not
visited. Instead, the anchor colour could fade or change
colour over time (Chen 1999). Even this, though, is
ineffective in pages that do not use the ‘standard’ colours
(blue for unvisited, purple for visited). In addition the
model could display the length of time the user spent at a
particular page, perhaps reminding the user of a page they
consider important. Moreover, if a user clicked on a link
and back buttoned immediately, perhaps even before any
portion of the page is displayed, the anchor colour would
not change to visited.

Topological attributes, of the HyperScout model, indicate
the spatial relation between the current page and the pages
to which it links. A link is labelled Reference if it jumps
to a different location within the same page. This use of
the term Reference is a departure from the traditional
academic semantics of the term and is more like the
associative link described by Conklin. A link to a
different host is labelled External and, if there is no error,
the delay time is displayed. Otherwise “Server is
probably unreachable!” is displayed. Cluster, Survey,
Detail, and Associative indicate the relationship between
pages on the same server.

• Cluster links to a page in the same directory.
• Survey means the link is to a page in an ancestor

directory of the current page.
• Detail links to a page in a descendant directory.
• Associative represents links to pages existing in non-

overlapping directories.

Links are labelled as Query where the URL features the ?
symbol or as Home where the links are to the homepage
of the domain. In addition to these original HyperScout
attributes, HvU implements attributes to represent the
global topology of links. The domain's Country is listed
explicitly, as is the Domain type. While the original
attributes help reduce users’ disorientation, the new
attributes educate users on the components of URLs.
Country and Domain are also useful in judging relevance.
For example, if a user is searching for information on the
system of government in Iceland, a URL containing gov.is
may be missed unless Iceland and Government are
displayed.

The Action attribute, of the HyperScout model, indicates
whether a link opens a new window, removes a frame,
controls another frame, or performs some JavaScript
action. This attribute is very beneficial in avoiding user
disorientation - the user is warned before an unexpected
action occurs.

The Format attribute, of the HyperScout model, describes
the file type, for example, Audio or XML file. A possible
extension to this is to inform the user as to which
applications or plug-ins can view a type. Better yet, it
would indicate if the user has the applicable software
installed, unlike the present situation where a user must
traverse a link only to discover they may not be able to
view the page.

The above link attributes are derived from four sources:
the URL of a link, the other HTML attributes of the link’s
anchor tag, the META tags in the target page, and HTTP
response codes. All of these sources are immediately and
easily accessible.

The Content attributes are extracted from META tags.
Access attributes are derived from the HTTP response
header. The Format attribute is derived from the MIME
type of a link, which is included in the HTTP response
header.

The Topological attributes are all derived from a link’s
URL. Reference is the substring following a # symbol;
Query, the substring following a ? symbol. External is
derived from a comparison of the current host and the link
host (if they are different, then the link is external).
Cluster etc. is calculated by comparing the lengths of the
URL paths, where one path is the prefix for the other
path. If the link’s path is shorter, it is a link to a higher
directory (Survey). If the link’s path is longer, it is in a
lower directory (Detail). When neither URL path is a
prefix for the other, then the link is Associative. If the
URL path is null, i.e. the URL is just the host, then the
link points to the Home of the server.

Action attributes are derived from other HTML attributes
in the link’s anchor tag. If the HTML attribute t ar get
has a value _bl ank , then a new window opens. If
t ar get is _par ent , a frame is effectively removed
(i.e. the target page is loaded into the whole window, not
just the frame). If t ar get is any string not beginning
with an underscore _, then the link controls another
frame.

3.3 Functional Model

HvU does not alter the existing functional model. This
section describes the existing functional model of
HyperScout.

While a page is downloaded to a user’s browser, the page
is parsed for HTML elements containing a hypertext
reference (hr ef), i.e. a, ar ea, l i nk , and base tags.
For each link target, data is collected from the four
sources, if available. The resulting information is
dynamically inserted into the page, thereby annotating the
respective link. The manner of annotation is discussed in
Section 3.4.

When and what gathers the data and inserts the
annotations is an important question. Constantly
modifying existing pages is obviously impractical, so the
creation of annotations must occur sometime between the
server sending a page to the browser displaying the page.

There exist three possibilities for what inserts annotations:
the server, a client side proxy, or the browser.

HyperScout is a client side proxy that performs three
tasks: records the user’s browsing history, generates some
additional link information, and inserts the annotations.
To provide all data available, it would be necessary for
the client to pre-fetch HTTP headers for all link targets.
Given concerns over increased network congestion, the
HyperScout client only collects data available from a
link’s URL, or from the HyperScout database (for each
page visited, all the attributes of the page are recorded in
the database).

To provide all available data, HyperScout may also be run
as a server. HyperScout-as-server appends additional
data to all anchor tags of an outgoing page. The
additional data is extracted from the server side database
that contains meta data for each page on the server as well
as data on every page referenced by a server page.
Section 5.4 provides a summary of the architecture of
HyperScout.

However, HyperScout does not take enough advantage of
a user’s bookmark file. While HyperScout-as-client
parses the bookmark file and adds the URLs to the
database, there is no indication that the corresponding
attributes for each page and each referred page are
updated.

The future version of HvU will have the following
functionality in regard to the bookmark file. It is
essentially a supplement to the functionality provided by
Internet Explorer 5 (IE5). IE5 allows a user to subscribe
to a page, whereby IE5 periodically checks such a
subscribed page for updates. Where IE5 checks if a file’s
modification date has altered, this model essentially
determines if a page’s context has altered. IE5 cannot
give an indication of what has altered on a page
(comparing only modification dates), but with the
information provided by HvU, the user may have a better
chance of detecting what has altered (such as text or
graphics).

Also, HvU would examine every link on frequently
visited bookmarked pages. This is justified in regard to
network congestion. The links within a frequently visited
site are also likely to be frequently visited. If the
referenced pages have not altered, then network
congestion has been increased needlessly. If HvU
increases network traffic with extra header requests, the
long term effect would be a decrease in congestion as the
user need not request entire pages, their associated images
or other data related to the pages.

3.4 Graphical User Inter face Model

Weinreich and Lamersdorf include a brief survey of the
different techniques for displaying link annotations
(Weinreich and Lamersdorf 2000). These include: an
overview map, a reserved area, insertion after links, link
colours, mouse pointers changes, and pop-ups. Pop-ups
were chosen for the HyperScout model (see Weinreich
and Lamersdorf 2000 for justification).

A pop-up appears as a yellow rectangle when a link is
moused-over. The pop-up appears near the link, but its
exact location varies according to the positioning of the
link in relation to the browser window. For example, if
the area below the link is smaller than the size of the pop-
up, the pop-up will appear above the link.

Consistent with HyperScout look-and-feel, HvU includes
icons for each new attribute. The new icons and their
interpretation are: $ symbol for Company, the earth for
Country, a mortar board for Education, a crown for
Government, a tank for Military, a net for Network, and
the UN and Red Cross logos for Organisation. The HvU
model allows the user to turn off either the icons or the
attribute name, to reduce the size of the pop-up.

HvU allows the user to specify which attributes to display.
This essentially implements that aspect of consistency
addressed by Weinreich and Lamersdorf as future work.

There are two basic methods for interacting with a
hyperlink anchor, thereby triggering the appearance and
disappearance of a pop-up: the mouse click and the
mouse-over. Each brings its own advantages and
disadvantages.

The mouse click requires at least two actions from the
user: the mouse-over (pointing the mouse at the desired
location) and a mouse button click. Popular browsers
(Netscape and IE) use this combination to activate the
link, so a different combination is required for the pop-up
to activate, i.e. right mouse button or keys, is required.
This, too, has its own difficulties vis-a-vis standard Apple
computer mice which have only one button. The
advantage this technique has over the mouse-over
technique (below) is the pop-up information widget
remains active until the user clicks outside the widget.

The mouse-over (or hover) requires the least effort, but
perhaps more dexterity, from the user. The user moves
the mouse over the relevant hyperlink anchor and the
information window pops up. However, this technique
has the potential to become a visual intrusion if the user
moves the mouse randomly about the page. This
shortcoming is avoided by introducing a delay. If the user
hovers over a link for at least one second, then the system
assumes the user has intentionally moused-over the link.

This technique has been implemented for multiple-choice
quizzes in an online tutorial to coach students on the Java
programming language at the University of South
Australia. In this particular implementation students can
either make a choice immediately or hover over their
choice to see the hint within the pop-up. The system
records the number of correct and incorrect choices
students made as well as the number of hints the student
received.

The main disadvantage of the hovering technique,
compared with the mouse click technique, is the pop-up
widget remains active only while the user hovers at the
same point. Further, to select items within the widget, the
user must be able to glide into the widget space without
leaving its boundaries, else the widget disappears (the link
has lost the mouse-over focus).

The HyperScout model uses the mouse-over to trigger a
pop-up, and thus inherits the disadvantages of mouse-
overs addressed previously. To overcome these
disadvantages the HvU model includes a thumbtack
metaphor. A thumbtack is used to tack open a pop-up. In
this way, the user can have numerous pop-ups open and
can easily make comparisons between links. The
thumbtack appears in the top right corner of the pop-up,
as can be seen in Figure 6.

4 Methodology

This paper explores a range of techniques for displaying
additional link information, many of which have been
incorporated into the HvU implementation or are planned
for future versions. The general methodology is a
progression from static to dynamic annotations,
coinciding with a progression from author-specified
annotations to proxy-generated annotations.

4.1 Static Annotations

Author-specified annotations are necessarily static. They
exist in the page at the time of creation, i.e. before the
page is requested. The first step in development emulates
the browser’s built-in annotation, followed by a ToolTip
implementation, then a more substantial pop-up.

Currently, the browsers Netscape and IE5 display a link’s
target URL in the status bar (at the bottom of the browser
window) when the link is moused-over. This step is
implemented with a browser and HTML, tools that are
available to any web author.

However, the status bar is ineffective in presenting
information to a novice user. The user’s attention is
focused on the link, so they may not notice the activity at
the bottom of the window. Thus, the next stage of
development explores techniques for displaying
additional information at the link. A basic ToolTip is
developed.

The preceding steps only allow one line of text to be
displayed. The development of annotations that are more
substantial is next. These pop-ups contain any amount of
text or graphics.

4.2 Dynamic Annotations

A browser, from the static content of a link anchor’s
hr ef attribute dynamically generates the status bar URL.
Other than this, current web browsers do not have the
ability to offer any information on a link’s target.

In the case of dynamically generated pages, such as those
produced by a search engine, the annotation techniques
described in the previous section could be dynamically
included. Nevertheless, a goal of this paper is to define a
solution that is immediately available to all users, without
waiting for search engines and authors to improve their
page design.

The next development stage dynamically inserts
annotations. The annotations are implemented using
either ToolTips or pop-ups. Dynamic in this context

refers to the modification of a page after leaving the
server. This modification is carried out by either an
intermediary application (a proxy) or the browser itself.

An intermediary that dynamically generates and inserts
annotations already exists - HyperScout. Because of this,
the remaining stages of development revolve around
enhancing the HvU model and application.

The first step in the dynamic processes involved
implementing those informational features not included in
HyperScout, i.e. domain type and country information,
and images corresponding with a link’s MIME type.

This was followed by the addition of a user preferences
system. Initially, the ‘dummy’ preferences file is local to
the proxy, so each client of the proxy receives the same
level of detail. Ideally, each browser has a local
preferences file, so that HvU can access and satisfy an
individual user’s preferences.

The final phase is the development of the thumbtack
metaphor.

5 Implementation

This section describes the development of the
annotations. Beginning with a very basic, very limited,
incarnation, the development progresses through
increasingly complex and sophisticated annotations. Each
annotation technique is also more dynamic than the last.

The static annotations of status bar URL, ToolTip, and
Pop-up, were created using various combinations of
HTML, JavaScript, and browsers (IE5 and Netscape 4.7).
Results from the Kanoodle (Kanoodle 2000) search
engine, which was chosen for the lack of information it
presents to users, are used to illustrate the techniques.
Other search engines present more information with their
results, but are mostly limited to keyword highlighting,
file size, and relevancy scores. Moreover, each search
engine provides a different level of detail. HvU may still
prove useful with other search engines, by providing moe
detail and a consistent interface to the user.

The dynamic annotations required additional tools. WBI
(IBM 2000) is a proxy implemented in Java, and is

expandable through creating plug-ins, HyperScout being
one such plug-in. HyperScout itself requires the MySQL
database software and the ADC (1998) HTML parser
package. The Java 2 development kit was needed to
modify HyperScout.

5.1 Status Bar

The status bar value is set through the wi ndow. st at us
attribute. Resetting the wi ndow. st at us value on an
onmouseover event achieves the usual status bar
behaviour, but with an author-specified value.

<a hr ef =” …” onmouseover =“ wi ndow. st at us
=‘ ht t p: / / www. aubur n. edu/ ~vest mon/ r obot
i cs. ht ml ’ ; r et ur n t r ue; ” >

The above code fragment replaces the default status bar
value (a particularly complex URL, Figure 1) with a more
meaningful value (the eventual destination of the link,
Figure 2).

5.2 ToolTip

With HTML version 4.0, web page authors can enhance
link anchors by applying the generic attribute t i t l e to
the anchor element a. Netscape 4.7 ignores the title
attribute, thus IE5 or Netscape 6 is required to benefit
from this feature. Figure 3 shows the appearance of the
title ToolTip in IE5 (MacOS implementation). The
Windows ToolTip is an elongated rectangle.

5.3 Pop-ups

JavaScript, in addition to HTML, was required to
implement pop-ups. A JavaScript ‘pop-up’ is
implemented as a table cell, whose visibility is toggled
between visible and hidden. The toggle is triggered by
onmouseover (visible) and onmouseout (hidden)
events. An HTML table is defined for each link. As any
HTML code may appear in a table cell, the amount of
information that is displayable in the pop-up is not
limited. This technique also has the advantage of working
in both IE5 and Netscape.

Figure 1: Or iginal Status Bar

Figure 2: Improved Status Bar

Figure 3: ToolTip

Figure 4: Pop-up

Figure 5: HyperScout Architecture — Client (Weinreich 2000)

There are two possible pop-up implementations. The
simplest implementation inserts the table immediately
following the anchor tag. To avoid the shortcomings of
this approach, a second, more complex, solution is
possible. This captures mouse events and binds the
location of the pop-up to the mouse coordinates. The
latter approach is used in HyperScout. Figure 4 illustrates
the pop-up.

5.4 HyperScout

This section describes the implementation of Hyperscout.
First a brief summary of the concepts behind WBI are
discussed, followed by a detailed description of
Hyperscout proper.

WBI has four modules, Monitor, (Document) Editor,
Request Editor, and Generator, collectively known as
MEGs. Request Editors receive a request and may
modify the request before passing it along. Generators
receive a request and produce a corresponding response
(i.e. a document). Editors receive a response and may
modify the response before passing it along. When all the
steps are completed, the response is sent to the originating
client. A Monitor can be designated to receive a copy of
the request and response but cannot otherwise modify the
data flow (WBI 2000). A collection of MEGs fulfilling
some new functionality is called a plug-in. More detailed
information is available from the WBI web site.

The client side implementation of HyperScout processes
requests and responses in the following sequence. The
browser request is sent directly to the Internet, i.e.
HyperScout does not have a Request Editor. HyperScout
intercepts the response, which is parsed by the Monitor
and Document Editor 1. The page is forwarded to
Document Editor 2 and Generator 2. Document Editor 2
passes the response onto the browser, while Generator 2
continues to append information to it. Generator 1 is
responsible for some file transfers. Figure 5 describes the
architecture of HyperScout.

The Monitor stores in the database the attributes for a
retrieved page. Document Editor 1 inserts two links in
the <head> of the page.

The first link is to a Cascading Style Sheet (CSS), and the
second, a link to a JavaScript file. The CSS controls the
appearance of the pop-ups. The JavaScript file contains
the functions that control the actions of the pop-ups.
Generator 1 transfers these files from the proxy’s hard
disk to the browser.

Document Editor 2 appends JavaScript commands to all a
and ar ea tags. A link is given a unique identifier. Calls
to JavaScript functions are inserted after the hr ef
attribute, according to mouse events. That is,
onmouseover calls hs_act i vat e, while
onmouseout and oncl i ck call hs_deact i vat e.

If a link has existing JavaScript calls for these events,
Document Editor 2 inserts the new calls before the
existing ones.

Generator 2 is the MEG that dynamically creates a pop-
up. An HTML table will eventually hold all the available
attribute icons, attribute names, and their values. The
following example call to a JavaScript function is inserted
at the end of the page, the function’s definition having
been inserted at the beginning by Document Editor 1.
The function hs_newPopup is responsible for creating a
division with l i nk i d1 as its id attribute, and a table to
hold the string of table rows and table data elements.

The server side HyperScout was not the focus of this
study, but its architecture is presented here for
completeness. The server side intermediary contains one
MEG, a Document Editor that inserts additional attributes
into anchor tags. These attributes are taken from the
database maintained by the intermediary’s robot.

5.4.1 HyperScout Extensions

HvU includes two additional attributes, the thumbtack
metaphor, and a user configuration system. Two
additional attributes Country and Domain are
implemented with a new set of Java functions. The
get Count r y method extracts the two-letter country
code (if it exists) from the target URL, and accesses the
hash table count r yTabl e for the corresponding
country name. The get Domai nType method extracts
the three-letter domain code, and accesses the hash table
domai nTabl e for the corresponding domain type.

5.4.2 Thumbtacks

Initially, the thumbtack was implemented to function with
the simple static pop-ups created earlier. The modified
hi de function tests the tack status of a pop-up. If the
link’s id is found in the tacked array, the pop-up remains
visible, otherwise it is hidden. A pop-up is tacked by
clicking the tack image in the top right corner of the pop-
up. This calls the JavaScript function t ack , which
inserts the link’s id into the array. Clicking the tack
image again removes the id from the array.

Figure 6: Over lapping HyperScout Pop-ups

Implementing the thumbtack for HvU was more
complicated. Clicking the tack image requires a user to
move the mouse into the pop-up table area. Doing so
triggers the mouseout event, thus deactivating the pop-
up before the tack can be clicked. In order for the user to
move into the pop-up, the call to hs_deact i vat e was
removed from the onmouseout event. Tracking the
mouse coordinates caused the next difficulty. The mouse-
move event was assigned to the function
hs_checkMouseMove. Moving the mouse into the
pop-up area caused the pop-up to move with the mouse.
Thus, it is impossible to ‘catch’ the pop-up. However,
this bug could later be used to implement drag-and-drop,
allowing the user to re-locate a pop-up. A successful
implementation would need to determine the area of the
screen a pop-up occupied, and allow the mouse to be
moved into this area without triggering a mouse-out
event. Figure 6 shows two HvU pop-ups, the lower one
having been tacked open before the upper pop-up was
activated.

5.4.3 User Configuration System

The user configuration system is implemented by
including a condition test for each link attribute. If an
attribute is set to ON, the attribute is included in the pop-
up. If an attribute is set to OFF, the attribute is ignored.
A new method, get User Opt i ons , controls the
appearance of icons and attribute names within a pop-up.
This method tests the status of the user’s icon and name
configuration, and calls the appropriate method. Two
new methods handle the cases when: no icon or name is
required (only the value); only the icon (and value) is
required. An existing method was sufficient for the case
of only the name and value displayed.

The user configuration system also includes a graphical
user interface. While not an essential component of the
HvU model, it is nonetheless helpful in modifying the
hyper scout . pr oper t i es file.

6 Evaluation

This section consists of an academic review of HvU. It
was found that the link annotations work in principle, and
can be implemented through a number of methods.
Naturally, the degree of usability must be established
through useability testing.

During the implementation stage, it was discovered that
the methodology had two further progressions that
resonated with the static to dynamic development. The
number of tools required was proportional to the dynamic
level being implemented. Implementing the static status
bar required only a browser and HTML, but
implementing dynamic pop-ups required HTML,
JavaScript, a proxy (WBI), mySQL database, and an
HTML parser.

The other correlation was between the dynamic level, and
the amount and accuracy of information presented.
Consider the modification date of a node. Included
statically by the author of a referencing page, this datum

is likely to become obsolete quickly without frequent
checks by the author. Contrastingly, a dynamic inclusion
of this datum ensures its correctness.

While a modification date is either correct or incorrect,
other data such as keywords and file size have degrees of
accuracy. For example, consider a set of keywords Y that
describes a recently modified page (not the recorded set
of keywords), and a recorded set of keywords X
applicable to either the previous version/s or the current
version of the page. An author modifies a page and
neglects to update the set of keywords. X is the set the
author forgot to update, and Y is the set of keywords that
actually describe the page. Y differs from X such that:

• Y includes new keyword elements y ∈ Y, y ∉ X
• Y does not include some old elements x ∈ X, x ∉ Y
• Y retains some of the same elements z ∈ X, z ∈ Y.

Thus, X is an accurate set of keywords if it is equivalent
to Y

 X ⊆ Y and X ⊇ Y (i.e. X = Y).

X is inaccurate if some of the keywords in X are in Y and
some of the keywords in X are not in Y (or vice versa).
Such that X ∩ Y = Z, where

Z ≠ ∅, and

Z ⊆ X and Z ⊂ Y, or

Z ⊆ Y and Z ⊂ X.

X is completely incorrect if none of the keywords in X are
in Y

X ∩ Y = ∅.

If an author always updates the keyword list whenever a
change is made, then the keyword set X is always
equivalent to Y, meaning the recorded keyword set is
completely accurate. If the author alters a page without
updating the keywords X to match Y, the recorded
keywords are either partially incorrect or completely
incorrect.

Given a completely dynamic implementation, X will
always be equal to Y, thus producing the highest level of
accuracy. As the determination of attributes becomes less
dynamic, X ∩ Y becomes smaller. Thus, a dynamic
implementation is the only way to guarantee accuracy.

The different annotation techniques were useful to
varying degrees of success. A brief criticism is offered of
each technique.

6.1 Status bar

Manipulating the status bar is the simplest technique that
works in both Netscape and IE5. It is therefore available
to all web authors and web users. Applying this technique
to the Kanoodle search engine, the benefits of this
technique are clear. The URLs returned by Kanoodle are
quite complex (they pass through a portal before arriving
at the real target page). Figure 1 shows the status bar
display for one of these links. By setting the status bar to

the real target, Figure 2, the user has a better
understanding of where they are going.

However, the annotation is affected by the size of the
window. Much of a long annotation will not be visible
when the window is very small. Even if the window is
full-size, an annotation may contain more characters than
can be displayed.

This problem is overcome by coding a scroll mechanism.
The annotation appears at the right end of the status bar
and appears to scroll left. The implementation essentially
concatenates a string of spaces with the annotation,
forcing the annotation to the right. Then, the status bar
value is continually replaced by the previous string minus
the first character, making the annotation scroll left.
While allowing the entire annotation to be displayed,
users may miss the beginning. Even if it is looped,
information presented in the annotation will be difficult to
synthesise, especially if the scrolling is too fast.

6.2 ToolTip

A ToolTip is superior to the status bar in that the
information is displayed at the point of the users attention.
Also, the amount of text that can be displayed is not
limited. The ToolTip adjusts its size to cater for the text.

Unfortunately, the content of the title attribute cannot be
formatted, nor can it include graphics, both of which an
author may wish to use when annotating their links.
Moreover, only users with IE5 or Netscape 6 benefit from
this technique. Another disadvantage is the inconsistent
appearance across platforms. On MacOS, a ToolTip
appears as a balloon (or speech-bubble), while on
Windows it is a rectangle.

6.3 Pop-up

Pop-ups have several advantages over ToolTips. Pop-ups
can contain images and formatted text; have a consistent
appearance across platforms; and they work in both
browsers.

However, the simple implementation of pop-ups does not
behave as a user might expect. The pop-up table is
defined within the link itself, between the <a> tags.
When its visibility is toggled, the pop-up appears in the
same location where it is defined. That is, it is fixed to
appear at the end of the link anchor text. Figure 4 shows
the mouse at the far left of the link while the pop-up
appears at the far right. Additionally, this implementation
does not detect the edge of the window, so part of the
pop-up is hidden from view.

The major disadvantage of pop-ups is their increased size.
The more information contained in a pop-up, the larger
the area surrounding the link is obscured.

6.4 HyperScout

HyperScout detects the edge of the window and
repositions the pop-up accordingly. This is necessary, as
HyperScout pop-ups can be quite large. Unlike pop-ups,
this effect is minimised in HvU by incorporating the user

configuration system. Users can chose a minimal number
of attributes to be displayed, as well as turning off the
space consuming icons and attribute names.

Many of the icons used by HyperScout are not
immediately interpretable, for instance, the Language and
Reference icons. In particular, the icons for Author,
Description, and Title, are similar in appearance (Figure
7). These icons need redesigning, and need to undergo
user evaluation before being included in an official
release.

Figure 7: HyperScout icons - Language, Reference,
Author , Descr iption, Title

The thumbtacks are advantageous when users wish to
compare two or more links. In Figure 6, the bottom pop-
up is tacked open before the top pop-up is activated. The
pop-ups are very near to overlapping. If two links are
near each other on a page, the pop-ups are likely to
overlap and one annotation will be obscured. The drag-
and-drop mechanism, discovered in Section 5.4.2, could
be used to alleviate this problem. However, as the user
moves a pop-up away from its link, there is no indication
(other than page title and URL) to which link the pop-up
belongs. Even in its original location, a pop-up is not
actually connected to its link. If many pop-ups are tacked
open, it may become confusing to which links pop-ups
belong. The MacOS ‘balloon’ technique (with its pointer
to the source) would be a useful enhancement to the pop-
up.

Stanyer and Procter (1999) raised the question of how
much information is enough information. The opposite
question, how much is too much, is also relevant when
annotating links. By including a user configuration
system, the user can indicate the level of detail they
require, as they are in the best position to know what they
want.

7 Conclusion

This paper shows that a number of techniques are
available for annotating hyperlinks. It found that
annotations of differing complexity and usefulness are
achievable.

The usefulness of an annotation relies greatly on when it
is created. An annotation created by an author, though
assisting the author in explaining the intention of their
link, is limited to presenting static data, i.e. information
that is unlikely to alter over time (such as the title). Given
the fluctuating nature of the web, a user needs the most
current information available on the changeable aspects of
the web, such as server and page status. The only way to
do this is by dynamically generating annotations.

Thus, priority should be given to the development of
dynamic annotation generators, such as HyperScout.
Given that the ideas presented here were implemented
with existing tools, there seems little reason why current
web servers and browsers cannot incorporate a

mechanism for assisting users in their navigational
experience.

8 References

AKSCYN, R., MCCRACKEN, D. and YODER, E.
(1987): KMS: A Distributed Hypermedia Systems for
Managing Knowledge in Organizations.
Communications of the ACM, 31(7):820-835.

ADC (1998): HtmlStreamTokenizer. [Online] Available :
http://www.do.org/products/parser/ [Accessed 25 July
2000].

CHEN, C. (1999): Visualising semantic spaces and author
co-citation networks in digital libraries. Information
Processing and Management. 35:401-420

CONKLIN, J. (1987): Hypertext: An Introduction and
Survey. IEEE Computer, 20(9):17-41.

IBM (2000): WBI (Web Intermediaries). [Online]
Available : http://www.almaden.ibm.com/cs/WBI/
[Accessed 25 July 2000].

KANOODLE (2000): [Online] Available :
http://www.kanoodle.com/ [Accessed 25 July 2000].

KOPETZKY, T. and MÜHLÄUSER, M. (1999): Visual
Preview for Link Traversal on the WWW. 8th
International World Wide Web Conference, Toronto,
Canada. [Online] Available : http://www8.org/
[Accessed 25 July 2000].

LANDOW, G. (1991): The Rhetoric of Hypermedia:
Some Rules for Authors. In Hypertext, Hypermedia
and Literary Studies. DELANY and LANDOW (eds).
MIT Press.

LOEB, S. (1992): Delivering Interactive Multimedia
Documents over Networks. IEEE Communications
Magazine. May:52-59.

SCHNASE, J., LEGGET, J., HICKS, D. and SZABO, R.
(1993): Semantic Data Modelling of Hypermedia
Associations. ACM Transactions on Information
Systems. 11(1):27-50.

STANYER, D. and PROCTER, R. (1999): Improving
Web Useability with the Link Lens. 8th International
World Wide Web Conference. Toronto, Canada.
[Online] Available : http://www8.org/ [Accessed 25
July 2000].

WBI (2000): The WBI Development Kit Documentation.
[Online] Available:
http://www.almaden.ibm.com/cs/wbi/ [Accessed 25
July 2000]

WEINREICH, H. and LAMERSDORF, W. (2000):
Concepts for Improved Visualisation of Web Link
Attributes. 9th International World Wide Web
Conference. Amsterdam. [Online] Available :
http://www9.org/ [Accessed 25 July 2000].

