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Abstract  
This paper reports on an evaluation of the Block model 

for the measurement of code comprehension questions in 

a first semester programming examination. A set of exam 

questions is classified using the Block model and two 

commonly employed taxonomies, SOLO and Bloom. We 

found that some of the problems inherent in the 

application of Bloom and SOLO taxonomies also exist in 

the Block model. Some of the difficulties associated with 

SOLO and Bloom’s taxonomy are due to the wide breadth 

of the dimensions. These difficulties are to some degree 

mitigated by the limited breadth of the Block model 

dimensions and we found that the Block model provided a 

better way of describing novice programming code 

comprehension tasks because of the increased granularity 

that it provides.  
Keywords: code comprehension, novice programmers, 

Block model, SOLO, Bloom’s taxonomy. 
 
1     Introduction   
Teachers of computer programming have experienced 

difficulty in judging the cognitive complexity of learning 

tasks and test items. A relatively accurate and simple way 

is required for determining the difficulty inherent in our 

teaching and assessment programs: “...we as educators 

are continually underestimating the difficulty of the tasks 

that we are asking students to undertake” (Whalley, Clear 

and Lister 2007).  
Computer science educators have attempted to apply 

models and taxonomies of human conceptualisation to 

aspects of the teaching and learning of computer 

programming with varying degrees of success. The most 

widely adopted taxonomies to date have been the Bloom 

(Bloom 1956) and SOLO (Biggs and Collis 1982) 

taxonomies. Recently a new taxonomy has been 

developed specifically for application to the design of 

tasks for computer programming. This paper reports on 

an investigation of the use of that model to determine the 

difficulty of a set of test questions. 
 
2     Background   
In 1956, Bloom produced a taxonomy that consisted of a 

hierarchy of learning objectives ranked according to their 
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expected cognitive complexity  (Figure 1). The taxonomy is 

a behavioural classification system of educational objectives. 

Many variants of the taxonomy have been proposed but the 

most widely accepted  (Figure 1) is the revised Bloom’s 

taxonomy (Anderson et al. 2001). This version of the 

taxonomy adds a knowledge dimension, which specifies the 

type of information that is processed, to a revised version of 

the original cognitive process dimension. Traditionally a 

strict inclusive hierarchy has been assumed for the cognitive 

process dimension where each category is assumed to 

include lower ones. 
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Figure 1: The cognitive process dimension; (left) 

Bloom’s and, (right) revised Bloom’s taxonomy 
 

Bloom’s taxonomy has been applied to computer 

science for course design and evaluation (Scott 2003), 

structuring assessments (Lister and Leaney 2003, Lister 

2001), specifying learning outcomes (Starr, Manaris and 

Stavely 2008) and comparing the cognitive difficulty of 

computer science courses (Oliver et al. 2004).  
The revised and the original Bloom’s taxonomy have 

been used in attempts to improve the instruction and 

assessment of programming courses (e.g., Abran et al. 

2004, Shneider and Gladkikh, 2006, Thompson et al. 

2008, Khairuddin and Hashim 2008, Alaoutinen and 

Smolander 2010, Whalley et al. 2006, Whalley et al. 

2007, Shuhidan, Hamilton and D’Souza 2009).  
The use and interpretation of Bloom and the revised 

Bloom’s taxonomy for describing computer science tasks 

has been found to be problematic (Fuller et al. 2007, 

Thompson et al. 2008, Shuhidan, Hamilton and D’Souza 

2009, Meerbaum-Salant, Armoni and Ben-Ari 2010). 

Much of the research shows that it can be difficult to 

reach a consensus on an interpretation for the computer 

programming education domain (Johnson and Fuller 

2006). In a recent study Gluga et al. (2012) confirmed 

that many of the ambiguities in the application of 

Bloom’s taxonomy to the assessment of computer 

programming are due to the necessity to have a deep 

understanding of the learning context in order to achieve 

an accurate classification. They also noted that the 

classifiers often had preconceived misunderstandings of 

the categories  and  differing  views on the  complexity of 
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tasks and the sophistication of the cognitive processes 

required to solve them. This may be due to the difficulty 

that the educators have remembering the cognitive 

complexity of such a task when they were learning to 

program. A much higher cognitive load exists for a 

novice programmer writing a simple function than for an 

experienced programmer. Additionally it has been 

reported that the ordering of cognitive tasks in Bloom’s 

taxonomy does not readily map to the learning 

trajectories of many novice programmers (Lahtinen 

2007).  
As a result of these difficulties, several variants of 

Bloom’s taxonomy have been proposed specifically for 

computer programming education (e.g., Schneider and 

Gladkikh 2006, Fuller et al. 2007, Bower 2008). These 

variants have not been widely adopted by computer 

science educators and researchers. Perhaps this is 

partially due to the fact that the appropriateness of 

Bloom’s taxonomy for the design of learning activities 

and assessments has been disputed. The presupposition 

that there is a necessary relationship between the 

questions asked and the responses elicited is not a valid 

one because a question could potentially elicit responses 

at different levels (Hattie and Purdie 1998).  
Biggs and Collis (1982) surmised that Bloom levels 

reflect a teacher imposed view of what it means to have 

achieved full mastery whereas SOLO levels come from 

an understanding of the student learning process. The 

focus of Bloom is to assist in the development of 

educational objectives, while the SOLO taxonomy 

focuses on the cognitive process used to solve problems. 

SOLO, unlike Bloom, does not assume a relationship 

between the task and the outcome so outcomes to a 

specific task may be at different levels for different 

students. Additionally, while Bloom separates knowledge 

from the intellectual processes that operate on this 

'knowledge', the SOLO taxonomy is primarily based on 

the processes of understanding used by the students when 

solving problems. Therefore, knowledge is inferred in all 

levels of the SOLO taxonomy. It may be due to these 

differences that educators and researchers have had 

greater success in using SOLO to describe programming 

tasks (code comprehension and code writing), to classify 

student responses to those tasks and to gain some insight 

into the students’ cognitive processes (e.g., Lister et al., 

2006, Philpott, Robbins and Whalley 2007, Sheard et al. 

2008, Clear et al. 2008).  
Both taxonomies have been used, independently, to 

analyse the same set of programming assessment 

questions and responses (Whalley et al. 2006). Thompson 

et al. (2008) noted that the Bloom category for a 

programming task can be meaningfully mapped to a 

number of categories in the SOLO taxonomy and that a 

combined version of these taxonomies may provide a 

richer model with which to design and describe 

programming tasks. Inspired by Thompson’s observation 

a hybrid taxonomy was proposed that combines aspects 

of the Bloom and SOLO taxonomies (Meerbaum-Salant, 

Armoni   and   Ben-Ari 2010).  The  combined  taxonomy 

 
consists of the SOLO categories of unistructural, 

multistructural and relational and three Bloom categories 

understand (U), apply (A) and create (C). The taxonomy 

was structured so that the three SOLO levels formed 

super-categories each containing the three Bloom levels 

as subcategories  (Figure 2) . This taxonomy was then 

used to analyse the correlation between student 

performance on a task and the relative complexity of the 

task as defined by the classification of the task using the 

combined taxonomy. The authors believe that their 

“findings suggest that the combined taxonomy captures 

the cognitive characteristics of CS practice”. They also 

recommend this integration of taxonomies as a research 

framework that is applicable to the specific needs of CS 

education research. However, they also note that the 

taxonomy requires further investigation and validation. 

To date this work has not been reported in the literature. 
 

Unistructural Multistructural Relational 
U A C A A C U A C 

 
Figure 2: The combined taxonomy 

 
The Block model (Schulte 2008) is an educational 

model of program comprehension. It is structured as a 

table consisting of three knowledge dimensions and four 

hierarchical levels of comprehension. The table consists 

of 12 blocks (cells) and each block is designed to 

highlight one aspect of the program comprehension 

process  (Figure 3). The conceptualisation of the 

hierarchical levels takes inspiration from Kintsch’s 

expanded text comprehension theory (1998). 
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Figure 3: The Block model (Schulte 2008) 
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Question Type 
Revised Bloom’s  Block Model 

SOLO % correct  

 

cognitive   

comprehension  

 

level 
 answers  

      

   

dimension  

dimension   

       

        

2 Basics  Remember Atom  Text surface U 50% 
 

4 Syntactic errors A   Remember Atom  Text surface U 68% 
 

  B   Understand Block  Text surface M 53% 
 

  C   Understand Relations  Text surface M 31% 
 

7A Tracing   Apply Block  Execution M 77% 
 

7B Tracing   Apply Block  Execution M 64% 
 

7C 
Tracing   

Apply Block 
 

Execution M 81%  

(with selection)    
 

          

7D 
Tracing   

Apply Relations 
 

Execution M 22%  

(with iteration)    
 

          

7E 
Tracing   

Apply Relations 
 

Execution M 27%  

(with iteration)    
 

          

5 Skeleton Code   Analyse Relations  Functions R 42% 
 

6 Parsons Puzzle   Apply Block  Functions M 60% 
 

10A Code Intent  Understand Macro  Functions R 36% 
 

10B Code Intent  Understand Macro  Functions R 9% 
 

10C Code Intent  Understand Macro  Functions R 6% 
 

 
Table 1: Classification of exam questions 

 
The intention behind the Block model’s development 

was to provide a relatively simple model, compared with 

other existing taxonomies and models, to support 

research into the teaching of computer programming. The 

model was evaluated as a tool for the planning and 

evaluation of lessons about algorithm design (Schulte 

2008). It was found that the Block model was simple, 

constructive and communicative. However the model has 

not yet been used as a framework for research into the 

teaching and learning of computer programming. 
In a recent paper the Block model was used to map a 

variety of selected models of program comprehension in 

order to assist in the conceptualisation of those models 

(Schulte et al. 2010). As a result of this comparative 

analysis of models the authors suggest that the process of 

knowledge acquisition by novice programmers described 

in terms of the Block model might be represented as a 

holey patchwork quilt and that the Block model might 

help us identify what holes (empty cells) exist and why a 

student’s knowledge is “fragile”. We were interested in 

investigating the usefulness of the Block model for 

measuring and evaluating programming tasks and also for 

investigating the cognitive processes employed by 

students to solve the problems.  
In this preliminary study we employed a set of 

programming comprehension questions, from a first 

semester programming examination, in order to analyse 

the similarities and differences of the Block model with 

other models. 
 
3     Analysis and Discussion   
What follows is a discussion of the analysis of a small set 

of program comprehension questions, given in the same 

pen and paper examination, collated by question type.  

Table 1 gives an overview of the classification of the 

questions. The revised Bloom classification was carried 

out using the vignettes and principles described by 

Thompson et al. (2008) and Whalley et al. (2006) . In 

accordance with this set of guidelines we classified the 

cognitive process dimension at the category level rather 

than the sub category level. In classifying the questions 

using the SOLO taxonomy we applied  the principles and 

 
guidelines provided by Biggs and Collis (1982) and from 

the SOLO categories established by the BRACElet 

project for ‘code intent’ comprehension tasks (Clear et al. 

2008) . The Block model classification was carried out 

using the cell descriptions shown in  Figure 3.  
One challenge we faced was in determining exactly 

what an atom or a block is. It could be argued that this is 

dependent on the stage of development that the individual 

learner has reached. This observation has been previously 

made with respect to salient elements in novice 

programming tasks (Whalley et al., 2010). Here in 

assigning classifications we have assumed a norm for all 

students based on our experiences in teaching novice 

programmers. We have taken the notion of an atom to be 

the simplest salient element (for example a variable 

declaration and assignment) and a block to be a single 

method, loop or selection statement. Therefore at the 

relations level we consider a relationship to be a 

reference between blocks or between a block and an 

atom. 
For each question the student performance on that 

question was also analysed. In our analysis we are 

interested in what skills, knowledge base and cognitive 

processes are required to successfully answer the 

question. Finally we then compared the actual relative 

difficulty of the questions in the context of the 

examination (as indicated by the percentage of students 

who gave a fully correct answer) with the levels of 

difficulty of those questions as indicated by the 

taxonomies and models. 
 
Question 2: Matching Terms to Code  
Question 2 presented students with a class definition that 

had ten lines of code underlined and each annotated with 

a letter. Students were asked to match 7 definitions to the 

appropriate line of code. This question required students 

to recall factual knowledge and was classified as 

remember. In terms of SOLO this question requires 

students to focus on a single language construct and is 

therefore a unistructural question.  
Because students are focusing on a single language 

element this question is considered to be at the atom level 
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in the Block model. The text surface dimension of the 

Block model is associated with the external 

representation of the program, “it is the code a person 

reads in order to comprehend the program” (Schulte et 

al. 2010). In order to answer question 2 the students do 

not need to go beyond understanding the rules of 

discourse (grammar) of the program code. They certainly 

do not need to understand or have knowledge of the data 

and control flow or goal of the atom of code in order to 

answer this question correctly. Therefore this question is 

an atom level, text surface question. 
 
Question 4: Syntax Errors  
In question 4 (see Appendix) students were asked to find 

8 of 11 syntax errors in a complete class. The type of 

syntax error had a great affect on the number of students 

who were able to correctly locate and identify the error. It 

seems, not unexpectedly, that the difficulty of the task (as 

measured by student performance on the task) is related 

to the type of knowledge that is required which in turn is 

directly related to the type of bug or error to be identified. 

We found that when we mapped each error identification 

question to the Block model clear groupings emerged 

based on the level of comprehension required to reach the 

correct answer. The lowest level of syntactic errors, 

which we grouped together as 4A, consisted of errors 

such as missing semicolons, a missing bracket in a 

method declaration and typographical errors such as 

Return rather than the correct r eturn keyword. All of 

these errors can be found without reference to the rest of 

the program structure. They focus on a language element 

and therefore with respect to the level of student program 

comprehension required to answer the question they can 

be classified as text surface at the atom level. Identifying 

these types of errors can also be considered to be a 

unistructural task and in terms of Bloom they require the 

students to recognise an error that they would have seen 

repeatedly during their course of study.  
The syntactic errors that we grouped as question 4B 

consist of mismatches either between the return data type 

of a method and the data type of the value returned or 

between a parameter identifier in the method declaration 

and the identifier used to represent that method parameter 

in the method body. These errors are all located within a 

block of code and consist of a sequence of atoms. One 

error was positioned in a selection statement. In order to 

locate these errors the students must understand the 

syntactic structure of the block so these error 

identification tasks were classified as requiring text 

surface knowledge at the block level. It is not necessary 

to operate at the relations level in order to identify these 

errors. We classified the 4B errors to the SOLO 

multistructural category because they focus on more than 

one language construct but to answer correctly them does 

not require the students to understand the relationship 

between the constructs and the problem can be solved by 

knowing the required structure of the code rather than the 

purpose or goal of the code. In order to identify this type 

of error students must not only recall basic syntax rules 

but also identify where there is an incorrect application of 

the rule. In order to do this the students must understand 

(Bloom’s category) the rule. 

 
Finally, syntactic errors that were grouped together as 

4C consisted of bugs such as an incorrect method call or a 

data type mismatch for a global variable. In order to 

recognize this type of error, the students need to be aware 

of the relationships between various blocks in the code 

and therefore required comprehension of relations. In 

order to identify these bugs the students are still operating 

at the text surface where an understanding does not need 

to extend beyond the application of their knowledge of 

the ‘grammar’ of the code. 
While the different forms of question (4A, 4B, 4C) 

were classified into three separate categories in the Block 

model they were classified into only two different 

categories when Bloom and SOLO classifications were 

applied. The Block model was the only classification 

system to put the three different types of questions into 

separate categories. 
 
Question 7: Code Tracing  
Tracing questions are solved by tracking data through the 

code line by line. This question type has not been 

previously classified using the SOLO taxonomy. 

However, in a study that analysed student answers to 

‘code intent’ questions it was noted that “a student may 

hand execute code and arrive at a ... [correct]... final 

value but ... the student may not manifest an 

understanding of what the code does”. Such student 

responses were classified as multistructural (Lister et al. 

2006). Extrapolating this to tracing questions it is clear 

that it is not necessary to understand the purpose of the 

code to reach the correct answer and question 7 A-E 

should be classified as multistructural.  
These questions require the students to apply a known 

process or strategy and are therefore classified as apply in 

the revised Bloom’s cognitive dimension.  
The students need to have knowledge of the data flow 

and in some cases control flow of a simple Java method 

in order to answer code tracing questions. In order to 

operate at the program execution level they must also 

operate at the lower text surface level. They do not need 

to extend to the functions domain of the Block model. 

Therefore, the tracing questions in this exam are all posed 

within the program execution knowledge dimension of 

the Block model.  
The aspect in which these questions differ is the level 

of the task when classifying the questions using the Block 

model. The Block model was the only system that 

differentiated amongst these tracing questions. The 

questions were classified into two different levels within 

the Block model. For these questions code that contained 

iteration were classified at the relations level whereas 

code without iteration were classified as block level 

questions. 
 
Question 5: Skeleton Code (with scaffolding)  
The skeleton code for question 5 is a class definition, 

taking up a page and a half, containing two private data 

members (one of which is an ArrayList), a single 

constructor, and three methods, which add to, delete 

from, and print the contents of the ArrayList. After the 

code, the students are set the following task for 

refactoring the code: “The table below shows the missing 

lines of code, but not necessarily in the correct order. It 

also has one extra line of  code that is not needed. Identify 
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which line of code should go where …” In-line comments 

are provided as a scaffold to help the students identify the 

appropriate lines of code. The scaffolding means that it is 

not necessary for the students to identify the overall goal 

of the missing lines and the blocks in which the line must 

be placed because this is provided. It does still, however, 

require them to understand the various relationships 

between lines of code in order for them to select the 

correct missing line. For example see  Figure 4 where 

there is a need to understand the connections between 

fields as parameters to an external constructor method for 

a Lot object and the Lot object and an ArrayList method 

call as well as the sub-goals of these method calls. 

Question 5 was therefore classified as a SOLO relational 

question and in the relations-functions of the Block 

model. This question requires the students to differentiate 

the relevant from the irrelevant lines of code and to focus 

on the sections of code within the class that are relevant 

to the differentiation task. Therefore this question was 

classified as analyse. A similar skeleton code question 

has been reported previously and was also classified at 

the analyse level of Blooms cognitive process dimension 

(Whalley et al. 2006). 
 
private ArrayList<Lot> lstLots; 

private int nextLotNumber;  
.... 
/**  
* A  simple  model  of  an  auction   
* @author David J. Barnes and Michael 

Kolling */  

public  void  enterLot(String  description)  
{ 

//create  new  Lot  
Lot  lot  =  new  Lot(nextLotNum,description); 
//store  it  in  the  ArrayList  
<missing code> 

nextLotNumber++;  
} 

 
Figure 4: Part of question 5 code (adapted 

from Barnes and Kölling 2006) 
 
Question 6: Parsons puzzle (with structure)  
Question 6 is a Parsons puzzle (Parsons and Haden 2006) 

where students are presented with jumbled lines of code 

for a Java method (see Appendix). They are provided 

with the purpose of the method which is to count the 

number of occurrences of a character in a string and a 

structure for the method defined by a set of nested braces 

and blank lines. The students are required to place the 

lines of code into the correct order.  
Classifying this question using SOLO is difficult. It 

could be argued that even though the students are 

provided with the overall purpose of the code they still 

have to understand the code as a whole in order to reach 

the correct answer. Therefore it should be considered to 

be a relational question. Additionally if we take this 

viewpoint the revised Bloom’s cognitive level of the 

question must be analyse because the students are 

determining how the lines of code fit within the overall 

structure and purpose of the code. However research 

using these puzzles points to the fact that students 

typically apply a set of heuristics to solve the problem 

(Denny et al. 2008). For example, the final line of the 

method must be the return statement and the first line the 

method  header. Even  in determining the position of  the

loop in relation to the selection statement the variable i is 

defined in the loop and then used in the ‘if statement’. 

Understanding the relationship between the two lines of 

code and the variable i can be seen as applying a more 

sophisticated heuristic. On the other hand it could be seen 

as manifesting an understanding of the purpose of the 

variable i. Either way in terms of SOLO, the question is 

multistructural because although connections between 

parts of the code must be made, the question does not 

require meta-connections to be made.  
The Parsons puzzle examined here is classified at the 

apply level, in the revised Bloom’s cognitive dimension, 

because it is possible to solve this problem correctly by 

applying known heuristics.  
This question requires students to operate at the block 

level. It is not necessary for them to be able to understand 

the connections between the blocks to solve the problem 

because they can use heuristics. Although the students are 

given the overall goal of the method it is possible to solve 

this Parsons puzzle without understanding the overall 

goal. However it seems that the students must at least 

understand the sub-goals of the constituent blocks and 

atoms in order to solve this puzzle correctly. Therefore 

we have classified this puzzle in the functions knowledge 

domain. It should be noted that a more complex puzzle, 

without scaffolding, may require a deeper understanding 

of the logic and flow of the algorithm and be at the 

relations level of the functions domain. Therefore, unlike 

tracing questions, we cannot claim that all Parsons 

puzzles have a predetermined classification. 
 
Question 10: Code Intent  
Questions 10 A, B and C all required the students to 

explain the purpose or goal of a single method. It is clear 

that such a question moves beyond the structure of the 

code, data flow and control flow, and is within the 

Function cognitive dimension of the Block model. As an 

example we will consider question 10B  (Figure 5). To 

solve this question the students need to understand the 

connections between the three blocks of code in order to 

infer an overall purpose. 
 
public  void  method10B(int  iNum)  

Block 1 
 

 

{     
 

       

 for(int  iX  =  0;  iX  <  iNum;  iX++)Block 2    
 

 {       
 

  for(int  iY  =  0;  iY  <  iNum;  iY++)     
 

  { 
Block 3 

    
 

  System.out.print(“*”);     
 

  }      
 

 } System.out.println();     
 

       

}      
 

 
Figure 5: Question 10B and its constituent blocks 

 
There are a number of possible ways that a student 

might solve this problem. They might apply a top-down 

comprehension strategy by identifying the sub-goal of 

Block 3 before trying to understand the function of Block 

2. When considering Block 2 they see Block 3 as an atom 

(which prints a line of iNum stars) and that Block 2 

executes Block 3 followed by a carriage return iNum 

times. The outer block might be processed in a similar 

way in order to arrive at the purpose of the method. In 

this way it can be  argued  that  a  student  is  reaching  an
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understanding of the relationship between the three 

blocks and then inferring an overall purpose. The same 

outcome might be achieved by tracing the code, a 

bottom-up strategy, in order to try to see the relationships 

between the blocks and arrive at a conclusion as to the 

purpose of the code. Or they may apply a combination of 

both. Regardless of the strategy they apply, to reach a 

correct answer the student is operating at the highest level 

within the functions dimension because an 

“understanding the goal or function of the program” is 

required. ‘Code intent’ questions, similar to the ones in 

this examination have been consistently classified as 

SOLO relational (see Clear et. al 2008) and this gives 

weight to our classification of questions 10A-C as 

relational. In past work ‘code intent’ questions have been 

classified as understand (Thompson et al. 2008, Whalley 

et al. 2006). Our initial classification was at this level. 

However we believe that the cognitive processes used by 

novice programmers when trying to solve ‘code intent’ 

questions are more complex than previously assumed. A 

fuller discussion of this aspect of using Blooms 

taxonomy to classify program comprehension tasks is 

provided in the next section. 
 
3.1    Using Bloom’s taxonomy  
Like many educators in science disciplines we have 

found it difficult to apply the Bloom and the revised 

Bloom taxonomies. There have been several studies that 

indicate that the order of the levels changes depending on 

the task. For example in a test on atomic structure it was 

found that synthesis and evaluation were placed between 

knowledge and comprehension. A test related to glaciers 

found that synthesis lay between knowledge and 

comprehension (Kropp and Stocker 1966). Similarly, we 

believe that the cognitive dimension hierarchy does not 

map comfortably with computer programming tasks.  
In classifying ‘code intent’ questions Thompson et 

al.’s (2008) revised Bloom vignettes and definitions 

indicate that this type of question is at the understand 

level. In the revised Bloom’s taxonomy understand is 

defined as ‘constructing meaning from instructional 

messages’ which is interpreted by Thompson et al. (2008) 

to include “explaining a concept or an algorithm or 

design pattern”. Tracing questions were classified, by 

Thompson et al. (2008) at the higher revised Bloom level 

of apply. Apply is defined as “carrying out or using a 

procedure in a given situation” and clearly hand 

execution of code is a process which students must apply 

in order to answer a code tracing question.  
Past research has shown us that novice programmers 

find ‘code intent’ questions more difficult than tracing 

questions and Parsons puzzles (Lopez et al. 2008). A 

study which examined the approaches of experts vs. 

novices in solving these types of problems also illustrated 

that there is likely to be a higher cognitive load and more 

complex cognitive processes involved in solving a 

previously unseen ‘code intent’ question than for an 

unseen tracing question (Lister et al. 2006). Additionally 

they found that even experts sometimes approach ‘code 

intent’ questions by first partially tracing the code in 

order to discover the code’s purpose. In classifying 

questions to Bloom the highest cognitive process level 

necessary    to    solve   the    problem   should   be    used. 

 
Consequently, at the lowest possible level ‘code intent’ 

questions must be apply. We believe that code intent 

tasks are more complex than has previously been 

assumed. It is likely that students first break down the 

code into manageable chunks and then try to determine 

the goal of each chunk, possibly by using a tracing 

strategy. At this point it is likely that they try to start 

mapping this code to their existing knowledge. 

Subsequently the students try to establish how the parts 

relate to one another and attempt to arrive at an overall 

purpose for the code. If this viewpoint is accepted then it 

is evident that ‘code intent’ questions require the students 

to be thinking at the analyse level. This classification 

would be more in line with the SOLO and Block 

classifications for ‘code intent’ questions and would 

better reflect the level of difficulty of such questions for 

novice programmers. 
 
3.2    Reflections on the Block model  
The Block model classification of this small set of exam 

questions seems to indicate that there is a relationship 

between the Block classification of a question and the 

observed difficulty of a question.  
The average % of fully correct answers for all 

questions classified into a block for each block in the 

Block model is shown in  Figure 6. When compared with 

SOLO and Bloom (see  Table 1) the Block model 

classification levels appear to more accurately match the 

relative difficulties of code comprehension tasks for 

novice programmers. 
 

Macro structure   17% 
    

Relations 31% 24.5% 42% 
Blocks 53% 74% 60% 
Atoms 59%   

    

 Text Execution Functions 
 surface   
 

Figure 6: Average % fully correct answers 
 

This relationship is particularly evident when 

examining the results by question type. For example the 

tracing questions (question 7A – E) become progressively 

more difficult for the students to answer as the block level 

and knowledge dimensions increase (see  Table 1 and  

Figure 6). However the teaching context of the 

knowledge required to successfully solve a question 

affects the difficulty of that question. The students found 

7C was much easier (81% correct answers) than question 

7B (64% correct). On closer examination question 7C 

required students to determine if a number was outside of 

a given range. The selection statement used a logical or. 

This code had been covered in detail in class using a 

“range doodle” (Whalley et al. 2007). Many of the scripts 

had such doodles on them indicating that although the 

code was presented as the opposite logic of the class 

room example, which checked if values were within a 

range, the teaching had an impact on the learning of the 

students. Question 7B on the other hand was a simple 

remainder operation. The fact that 36% of students could 

not solve this simple problem as well as they could 7C 

suggests that the students lack basic mathematical 

knowledge    that    was   assumed    in   the   teaching   of 
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programming for this cohort. Despite these differences 

overall tracing problems which are program execution 

knowledge domain questions that were posed at the block 

level were easier that those posed at the relations level.  
If we map the SOLO classification of our questions to the 

Block model classification a pattern emerges that shows a 

possible relationship between Block model levels and SOLO  

(Figure 7). 
 

Macro   
Relational  

structure   
 

   
 

Relations Multistructural Multistructural Multistructural 
 

Blocks Multistructural Multistructural Multistructural 
 

Atoms Unistructural   
 

     

 Text surface Execution Functions 
 

      
Figure 7: Mapping of SOLO & Block model 

classifications  
A relationship had been hypothesised by Schulte et al. 

(2010) and while our findings support a mapping we 

propose that the relations level actually maps to the 

SOLO multistructural level and not the relational  

(Figure  8). We found in our exam that questions at the 

relations level across all three knowledge dimensions 

were at the SOLO level of multistructural. It is important 

to note the distinction between relations (references 

between blocks) and ‘thinking’ at a relational level when 

classifying exam questions using the Block model. 
 

Block model SOLO SOLO 
 (Schulte et al. 2008) (revised mapping) 

Macro Relational Relational 
Relations Relational Multistructural 

Block Multistructural Multistructural 
Atom Unistructural Unistructural 

 
Table 2:  Mapping the Block model to SOLO 

 
Figure 8 shows the mapping between the Bloom and 

Block model classifications. As observed for SOLO there 

is a general trend of difficulty as you progress up the 

Block levels and this was also reflected in decreasing 

student achievement. 
There also appears to be a general trend of increasing 

cognitive complexity required to solve the questions as 

you move from text structure to functions across the 

Block model knowledge dimensions. However, this trend 

is not present in the student performance data on the set 

of questions reported in this paper. It is possible that this 

trend was not observed because we do not have sufficient 

data for some of the blocks. For some questions it was 

difficult to determine which block the question should be 

classified to if the question lay on the boundary. It may 

be necessary to further define the blocks and provide 

vignettes to guide the classification process. 
 

Macro structure   Analyse 
    

Relations Understand Apply Analyse 
Blocks Understand Apply Apply 
Atoms Remember   

    

 Text Execution Functions 
 surface   

Figure 8: Mapping Bloom & Block model 

classifications 

4     Conclusion  
It is important to note that many of the limitations that 

exist for the use of Bloom and SOLO also exist for the 

Block model. In particular it is necessary to understand 

the context of learning and what prior exposure students 

have to the information required. In under taking this 

research we have noted that when educators attempt to 

design “better models” they somehow end up with 

models that appear to be revisions of existing taxonomies. 

In this case it appears that the Block model might actually 

be a hybrid of a revised SOLO and a revised Bloom’s 

taxonomy.  
Based on our experience SOLO still seems to the most 

straightforward model to apply but in using SOLO we 

lose the granularity to examine programming exam 

questions because those tasks are largely multistructural. 

A recent survey of first year programming exams found 

that 20% of questions in CS1 courses were tracing 

questions and 9% were explain questions (Simon et al. 

2012). The main advantage of the Block model is that it 

provides us with a way of describing these novice 

programming tasks that gives us a level of granularity 

which allows us to distinguish between similar tasks in a 

way that SOLO or Bloom’s taxonomy cannot.  
The mapping of tasks to the Block model reveals 

‘holes’ in the coverage of our examination of code 

comprehension. We do not have questions that are about 

the execution and functions of atoms or questions that 

require text surface and execution knowledge at the 

macro structure level. Examinations reflect the focus of 

our teaching. The lack of coverage of the Block model 

leads us to question whether or not we have it right. 

Could we be missing key tasks that might enable student 

learning? If we do cover the entire Block model can we 

improve code comprehension? Perhaps an increased 

focus on these missing areas during instruction will help 

students to develop advanced understanding more rapidly.  
The work reported here is a preliminary look at the 

usefulness of the Block model for measuring and 

evaluating programming tasks and also for investigating 

the cognitive processes employed by students to solve the 

problems. In order to explore this further we intend to 

analyse a larger set of examination questions. We also 

plan to use the Block model to design assessment tasks 

and to attempt to establish the level at which the students 

are actually operating by using think-out-loud interviews.  
In our analysis we have omitted code writing tasks, 

largely because the model was originally designed for 

comprehension tasks. But it would be interesting to 

revisit the Block model with a focus on code writing 

tasks. We believe that the Block model, with minor 

refinements, might also provide a useful framework for 

research and teaching of code writing tasks. 
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Appendix      
 

Question 4      
 

import  java.util.ArrayList;    
 

public  SimpleShop{        
 

private  String  sName  A - missing ;    
 

         

private  String  sPhoneNumber;    
 

private  String  aAddress;    
 

private  ArrayList  lstInventory;   
 

private  double  dTotalAmountSold; A - missing  )  
 

public  SimpleShop(String  name,  String  address { 
 

 aAddress  =  address;      
 

 sName  =  name;      
 

 lstInventory  =  new  ArrayList();     
 

} dTotalAmountSold  =  “0.0”; 
B    

 

          

public  String  getAddress(){    
 

} Return  sAddress; A- should be return    
 

      

      

public  int  getPhoneNumber(){  C- wrong return type   
 

} 
return sPhoneNumber;         

        
 

 
B - should be void      

 

     
 

public int setPhoneNumber(String phoneNumber){ 

sPhoneNumber = phoneNumber; 
} 
 
public void addItem(Item item){ 

lstInventory.add(item);  
}  

public  int  numberOfItems(){ 
B - should have 

 

return statement  
 

lstInventory.size();        

}    A    

public  boolean  sell  Item(Item  item){ 
   

    

   
 

boolean  bSold  =  false;    C   
 

if(lstInventory.contains(items){  
 

lstInventory.remove(item);     
 

dTotalAmountSold  +  item.getPrice();  
 

bSold  =  true;       
 

        

} A – should be +=   
 

return  bSold;        

      
 

}      
 

}      
 

 
Question 6  
Here are some lines of code that in the right order would make up 

a method to count the occurrences of a letter in a word. 
 
if(sWord.charAt(i)  ==  c)  
for(int i = 0; i < sWord.length; 

i++) return count;  
int  count  =  0;  
public int countLetter(String sWord, char 

c) count++; 
 
Each box represents a placeholder for the lines of code above. 

Each line of code must be place in only one of the boxes. 
 
{ 
 
 

{ 
 

{ 
 

}  
} 

 
} 
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Question 7A 
What are the values of a, b and c after this code is 
executed? public void int q7A(){ 

int a = 3; 

int b = 6; 

int c; 
 

a += 2; 

b -= 4; 
c  =  b  +  a; 

} 
 
Question 7B  
What will this method return for each pairs of inputs shown? 
 
public void int q7B(int num1, int num2){ 

return num1 % num2;  
} 
 
num1 num2 returns 
17 5  

18 6  

 
Give a value for each of the two input parameters that would  
cause the method to return the value 

5: num1....... num2....... 
 
Questions 7C, 7D and 7C all have the same instruction:  
Complete the table below to show what this method will return 

for the various values shown. 
 
Questions 7C  
public boolean q7C(int iValue){ 

boolean bValid = false; 
 

if(iValue>=FIRST_VAL && 

iVALUE<SECOND_VAL){ bValid = true;  
} 
return  bValid;  

} 
 
iValue FIRST_VAL SECOND_VAL returns 

17 17 2  

18 17 20  

4 3 4  

 
Question 7D  
public boolean q7D(int 

iLimit){ int iIndex = 0;  
int  iResult  =  0; 

 
 while(iIndex  <=  iLimit){   

 

 iResult  +=  iIndex;   
 

 iIndex  ++;   
 

 

} 
  

 

 iLimit returns  

   

 return  iResult; -1  
 

}  3  
 

  0  
 

Question 7E  
public int q7E(int[] numbers){ 

int iResult = 0; 
 

for(int i = 0; idx < numbers.length; 

idx++){ if(numbers[idx] > iResult)  
{ 

iResult  =  numbers[idx];  
}  

} 
 

return  iResult;  
} 
 

numbers returns 
{1,2,3,4,5}  

{20,-10,6,-2,0}  
 
Question 10A  
public double method10A(double[] 

numbers){ double num = 0; 
 

for(int i = 0; i < numbers.length; id++){ 

num += numbers[i];  
} 

 
return  num;  

} 
 
Question 10C  
public double method10C(int[] numbers, int 

val){ int x = 0;  
int y = numbers.length-

1; int z, temp;  
boolean  switch  =  false; 

 
while (!switch && (x <= y){ 

z = (x + y)/2;  
temp  =  numbers[z]; 

if(val  ==  temp){ 

switch  =  true; 
} 
else if(val < temp){ 

y = z -1;  
}else{ 

x  =  z  +  1;  
} 

}  
return  switch;  

} 
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