
Safety Assurance Contracts for Integrated Modular Avionics 

Philippa Conmy, Mark Nicholson, John McDermid 
Department of Computer Science 

University of York 
Heslington 

YO10, 5DD 
United Kingdom 

{philippa.conmy, mark.nicholson, john.mcdermid}@cs.york.ac.uk 

 

Abstract 
This paper describes a method for performing safety 
analysis on an Integrated Modular Avionics system in a 
manner which supports the incremental development and 
change of system components. This is achieved by 
analysing each component in the context of the overall 
system design and then finding derived safety 
requirements. Each IMA component (hardware, software 
or both) is then examined to determine how these safety 
requirements are met, and a contract is formed which 
captures the rely/guarantee conditions between that 
component and any component which relies on it. This 
contract captures the behaviour which must be preserved 
by a component following incremental change.    

Keywords:  Integrated Modular Avionics, Safety, 
Contracts. 

1 Introduction 
The aviation industry, both in the military and civil 
domains, is moving towards widespread use of distributed 
computing networks. This is commonly known as 
Integrated Modular Avionics (IMA). Within IMA 
systems, avionics applications are supported by generic 
resource management software (such as Operating 
Systems (OS’s)) which control access to computing 
resources such as processor time and memory by 
applications. The supporting software also enforces strict 
partitioning of resources to prevent interference between 
applications, e.g. to prevent a misbehaving low integrity 
application from interfering with the operation of a high 
integrity, safety critical application. 

The components of an IMA system are often purchased 
and developed incrementally. For example, the 
supporting OS may be developed first in order to provide 
a realistic environment for the development of 
applications later. To ensure interoperability, IMA 
systems use common interface standards between 
software and hardware components. The use of standard 
interfaces means that components can be altered or 
inserted into an existing system without requiring 

                                                           
 Copyright © 2003, Australian Computer Society, Inc. This 
paper appeared at the 8th Australian Workshop on Safety 
Critical Systems and Software (SCS'03), Canberra. Conferences 
in Research and Practice in Information Technology, Vol. 33. P. 
Lindsay & T. Cant, Eds. Reproduction for academic, not-for 
profit purposes permitted provided this text is included. 

additional alteration of the original components. Whilst 
these interfaces capture syntactic requirements (such as 
range and types of variables), behavioural details (such as 
response to failure) are not always as well defined. In 
addition the internal behaviour of many components, such 
as operating systems which manipulate other components 
without requiring a direct software call or 
communication, is not well defined. 

It is important to understand how components can affect 
one another if system safety is to be assured. In addition, 
a modular approach to capturing safety requirements is 
needed to support the incremental development and 
incremental change of components. Existing techniques 
are not well suited to capturing safety dependencies in a 
format which supports incremental change. This paper 
describes a modular technique, looking at how the 
supporting software of an IMA system meets one of its 
safety requirements: memory protection. This technique 
captures behaviour of the software when meeting its 
safety requirements, and examines how this may affect 
the safe operation of another component. Each of the 
other components designers can then either assess 
whether this is acceptable, or negotiate until it is 
acceptable - forming a "contract". This approach supports 
both the incremental development approach and 
incremental change by capturing the behaviour that must 
be preserved when a component is altered. If the 
behaviour is still assured (and no new behaviour 
introduced), system safety is retained. 

The next section of this paper describes the architecture 
of a proposed industrial IMA supported navigational 
display system. This section also describes the problems 
encountered when analysing components independently 
of one another. The third section describes how system 
safety requirements may be derived, and then describes in 
detail how to examine each component to assess how 
they meet their requirements. The fourth section describes 
some software designed for use in an IMA module. The 
fifth section demonstrates how a contract may be derived 
for this software, particularly for memory partitioning. 
The following section discusses how to resolve 
outstanding issues in the contract. Finally, discussion, 
conclusions and acknowledgements are presented. 

2 System Description 
There are two main designs used for Integrated Modular 
Avionics. In the civil domain the ARINC 653 standard is 
used (ARINC 1997). In the military domain the ASAAC 
standard is used (Multedo et al. 1999). The system 



examined for this paper was a proposed navigational 
display system with a single application to be embedded 
on a computing platform based on the military ASAAC 
style IMA. 

The generic IMA architecture is shown in Figure 1. Each 
box within the diagram represents an individual IMA 
component. The top layer of application software is 
divided into a number of partitions of single integrity. 
This software is aircraft dependent and hardware 
independent. The next layer undertakes all requests for 
processing or communications. This is the Operating 
System (OS) Layer (OSL) which contains three main 
sections. The OS, which manages tasks such as 
communications requests, the General System Manager 
(GSM) which provides data such as which 
communications are permitted, and the blueprint (BP) 
manager which controls the layout of partitions. The OSL 
is both aircraft and hardware independent. 

Hardware Interface Layer
(including computer processor and device drivers)

Operating System

Application
Partition

API

Data bus

API

Application
Partition

Application
Partition

GSM

BP

 

Figure 1 IMA Module Architecture 

The bottom layer is the Hardware Interface Layer (HIL) 
which contains low level software which interfaces with 
the computer processor. This manages memory and 
access to processing facilities. This layer is hardware 
dependent and aircraft independent. Function calls are 
made between each layer using a standard Application 
Programming Interface (API). This three-layered 
approach allows incremental change in one component to 
be supported with minimal impact on other components. 
For example, the use of the HIL means that the computer 
processor can be upgraded without affecting the software 
of the other components (although performance details 
such as execution times may change). This helps combat 
the ongoing problem of hardware obsolescence within the 
aviation industry. Another example is the alteration of an 
application partition to fix a software bug. As long as the 
applications scheduling requirements can be met then no 
alteration is required to the other components in the 
system. 

The navigational system design consists of a number of 
input sensors, a number of application partitions (which 
calculate display data such as attitude and altitude), a 
small network and a display device. The supporting IMA 
platform is being purchased prior to the full development 
of the navigation application. This means the application 
can be developed using its execution environment. In 

order to ensure that system safety can be achieved once 
the components are integrated, however, some safety 
analysis needs to be performed on the HIL by system 
designers, and the resulting safety requirements included 
in the HIL requirements documentation. 

Analysing the components independently of one another 
is not enough to assure system safety due to the highly 
integrated nature of IMA. A failure which manifests itself 
in one component may have actually been caused by 
another (for example the HIL may detect an application 
attempting to divide by zero or an application may 
attempt to use a communications channel which it does 
not have permission to use). In addition, it may not be 
appropriate for the component which detects a failure to 
take action to resolve it.  

As stated previously, the HIL is designed to be aircraft 
independent. This means it can be used in many different 
IMA systems on the same or different aircraft. There are 
a number of software products already available which 
can be used to provide the HIL functionality. In each case 
the software’s suitability needs to be assessed for a 
particular context. 

The HIL manipulates all the applications by copying 
them in and out of memory for scheduling purposes, and 
by managing data interchange during execution. It does 
not, however, directly make a call to any application, 
therefore, any behavioural side effects which may affect 
an application, such as responses to misbehaviour, need 
to be captured. The next section summarises a process 
which can be used to capture and summarise this 
information. 

3 Analysis Process 
The proposed IMA safety process is divided into two 
main phases. In the first phase, system analysis provides 
the high level safety requirements for each of the 
components. In the second phase, each component is 
examined to see how these requirements are met. The 
first phase has been applied to the design of the 
navigational system, identifying a number of key 
requirements for the HIL. The second phase has been 
applied to a version of the L4 microkernel (Heiser 2001), 
adapted specifically for use as a HIL for IMA. By 
applying the safety requirements from the system design, 
the suitability of this software for purpose can be 
assessed. 

3.1 Identification of dependencies 
The first phase in the safety process involves the 
identification of safety dependencies between 
components. This phase is divided into three parts. First, 
some high-level system analysis is undertaken, including 
identification of system level hazards, production of an 
architectural structure diagram, and summarising the role 
played by each component in the structure. Second, each 
component is analysed individually to see how failures 
within that component could impact system safety, and to 
derive appropriate mitigation strategies (known as 
derived safety requirements (DSRs)).  



System Analysis -
1) Assess system

hazards
2) Determine system
decomposition and

sequences of events
3) Assess individual

component roles
4) State Assumptions

Component 1
analysis

Component 2
analysis

Component N
analysis

Component 1
requirements
Internal and

dependencies with
component 2 to N

Component 2
requirements - internal
and dependencies with

component 1, 3 to N

Component N
requirements - internal
and dependencies with
component 1 to N - 1

Phase 1 - Stage 1 -
System decomposition

Phase 1 - Stage 2 -
component analysis

Phase 1 - Stage 3 -
safety requirements

consolidation

Constraints on
component reuse

Constraints on
component upgrade

Further
Component

Analysis

Component 1
contract generation
and negotiation with
components 2 to N

Component 2
contract generation
and negotiation with

components 1, 3 to N

Component N
contract generation
and negotiation with

components 1 to N -1

N
eg

ot
ia

tio
n

Phase 2
Generation of

Contracts

Further
Component

Analysis

 

Figure 2 Summary of Overall Safety Process 

 

Performing this component analysis within the context of 
system level analysis can mean that components require 
re-evaluation when being re-used within a different 
scenario. The need to provide assurance of the safety of 
the current system generally outweighs the need to 
consider future deployment of components. 

Finally, a consolidation process is undertaken to ensure 
the DSRs are consistent. Three types of requirement are 
found: 

• Requirements from the components analysis 
which address internal failures 

• Requirements on the component which address 
external failures (in other components) 

• Requirements on the component which are the 
results of another components analysis. 

Additionally, there may be "if - then" requirements where 
the results depend on behaviour of another component. 
Where one component mitigates against a failure in 
another component, or protects another component from a 
failure, a safety contract is formed.  

An overview of this phase is on the left hand side in 
Figure 2. (A full description can be found in (Conmy et 
al. August 2003)). 

3.2 Development of the contract 
The second phase (shown on the right in Figure 2) 
involves the development of a contract for each of the 
consolidated DSRs. There are many computing fields 
which use the concept of a contract to capture the 
relationship between two entities, e.g. Object Oriented 
Programming (Meyer 1992) and Formal Methods (Jones 
1983). A contract is a set of rules constraining the 
interactions between a supplier of services and all its 
clients. The rules state the benefits and obligations of 
each party when participating in a relationship. These 
rules are divided into: 

• pre-conditions (which every client using the 
service must adhere before the supplier can 
function),  

• post-conditions (the state of the system after 
execution), 

• rely conditions (what assumptions are made 
about the rest of the system), and 

• guarantee conditions (what the supplier provides 
during its execution). 

The idea of a safety assurance contract is to identify the 
constraints on a key safety requirement which is 
guaranteed by one component to another. This involves 



first identifying the supplier component which meets that 
guarantee, then examining how the supplier meets that 
guarantee in order to find the conditions under which it 
can be upheld. Whereas a traditional software contract 
applies at the interface of a single software function, this 
type of contract is often met by more than one function 
within a component, and may rely on software normally 
outside of the control of the client. For example, the 
context switching software of an OS copies application 
software in and out of memory at the beginning and end 
of a scheduling slot. This software is not normally visible 
to a client application; however, the application must rely 
on its correct function in order to meet its safety and 
reliability requirements. 

The contract provides the framework within which the 
client and/or supplier can be upgraded. As long as the 
guarantee conditions are still met by the altered 
component then system safety should still be assured. 
This helps support the modular approach of IMA.  

Once the first phase of the safety process has been 
completed, the contract needs to be developed to examine 
how a component meets its DSRs. It should be noted that 
simply developing the components individually to meet 
the DSRs will not guarantee safe interoperability; there 
may be side effects and constraints generated by the way 
a component deals with the failure conditions identified 
(pre-conditions). For example, if an OS must halt an 
application following a processing hardware failure the 
application designer must make adjustments in order to 
handle the situation e.g. using backup lanes.  

The contract can be developed at different levels of 
abstraction. This paper proposes the following four levels 
for IMA: 

1. The high level requirements from the first phase 

2. Architectural constraints covering, for example, 
any hardware choices made which will impact 
on the structural design of other component 

3. Behavioural constraints, looking at the 
functionality of component  

4. Quantifiable details such as syntactic 
requirements, performance or reliability 
requirements  

The constraints identified at each level form a set of 
guarantees in that the client, supplier or both must agree 
to meet them. 

These levels have been chosen to provide a separation of 
concerns which support incremental change within the 
IMA architecture. The idea is that following a change 
only certain levels of the contract require re-analysis or 
re-examination. For example, if a new processor is used 
then only the performance and reliability requirements 
are likely to change. The HIL software which supports 
the processor may be altered, but it can be written so that 
it preserves the properties captured in the behavioural 
layer. The architectural constraints do not change in these 
circumstances. If the OSL is altered, again its 
performance may alter but it should preserve (or possibly 

strengthen) the guarantees made at the behavioural level. 
Once again, the architectural concerns do not change. 

At each stage the client component designer may need to 
agree to any identified constraints before further system 
development. To this end each constraint should be 
assessed as to whether it is deemed acceptable by both 
client and supplier designers. The suggested categories 
for this process are: proposed, obligation, accepted, 
accepted obligation, and challenged. The proposed 
category indicates that this constraint is flexible and the 
client or supplier designers may be able alter it. The 
accepted category indicates that a proposed constraint has 
been accepted. The obligation category indicates that the 
constraint cannot be altered and that there is a 
requirement on the designer of the affected component(s) 
to design accordingly. The accepted obligation category 
indicates that an obligation has been assessed as 
acceptable. The challenged category can be used after an 
incremental change, and indicates that the listed 
constraint may have been broken. Note that in the case 
where an obligation is not acceptable the supplier may 
require an alternative design strategy. The use of these 
categories is demonstrated in sections 5 and 6. 

3.2.1 Contract Development Process 
To derive a contract the following process should be 
undertaken for each DSR which forms a contract between 
two or more components. The analysis process is 
described for each of the four levels of abstraction. 

1) At the requirements level list all client components 
which rely on the supplier in order to determine the range 
of impact of development. 

2) Perform Architectural Level Analysis as follows: 

• Determine architectural decisions made which 
impact on the high level requirement  

• Summarise into a set of "guarantee” conditions 
for the supplier.  

• Assess whether these guarantees impact on 
clients. If so, express impact as "rely" 
conditions. Mark flexible conditions as 
"proposed", inflexible conditions as 
"obligation", and conditions with no impact on 
clients as "accepted". 

• Assess acceptability of "rely" conditions with 
client designer. If flexible conditions are 
acceptable then mark as "accepted", if not then 
some negotiation with supplier is required. If 
obligations are acceptable then mark as 
"accepted obligation", otherwise assess possible 
client changes which could be made to ensure 
compatibility or consider whether client can be 
used in the system. 

3) Perform Behavioural Level Analysis as follows: 

• Analyse the behaviour of the supplier 
component which can impact on the high level 
requirement including failure behaviours of the 
component. 



• Summarise into a set of "guarantee” conditions 
for the supplier.  

• Assess whether these guarantees impact on 
clients. If so, express impact as "rely" 
conditions. Mark flexible conditions as 
"proposed", inflexible conditions as 
"obligation", and conditions with no impact on 
clients as "accepted".  

• Assess acceptability of "rely" conditions with 
client designers. If flexible conditions are 
acceptable then mark as "accepted", if not then 
some negotiation with supplier is required. If 
obligations are acceptable then mark as 
"accepted obligation", otherwise assess possible 
client changes which could be made to ensure 
compatibility or consider whether client can be 
used in the system. 

4) Perform Quantification Level Analysis as follows: 

• Analyse the syntactic requirements of the 
supplier component which impact on the high 
level requirement. These are unlikely to be 
flexible, and it will merely be a case of ensuring 
the client component meets any specified 
function interface requirements. 

• Analyse the performance requirements of the 
client component which impact on the high level 
requirements. This information is largely client 
driven, as the supplier is providing something 
for the client. Using ranges rather than absolute 
values for the requirements gives flexibility, not 
only during design and implementation, but also 
for incremental change of components. 

• Analyse the reliability requirements of the client 
component which impact on the first level 
requirement. This information is largely client 
driven, as it is a failure mode being addressed 
for the client.  

Note that the reliability requirements are difficult to 
assess particularly if there are multiple clients relying on 
the same feature. In addition, a purely software 
component will have no specific reliability values 
associated with it.  

A suggested technique for deriving performance data in 
the quantifiable level is reservation based timing analysis 
(RBA) (Grigg and Audsley 1999) in which timing 
budgets are allocated for each component in a system. As 
it is developed these budgets are gradually made concrete 
and as long as each component is within its budget the 
overall timing constraints can be met. 

The results of the analysis should be summarised within a 
table (such as that given in Table 1). It should be noted 
that although the derivation of constraints at each level 
has been presented in a stepwise order, some flexibility 
might be required when actually undertaking the analysis, 
and each of the levels may be examined any stage of 
development.  

4 Introduction to the Hardware Interface 
Layer 

This section first summarises analysis undertaken on the 
HIL design, then describes the proposed HIL software.  

4.1 Safety Requirements 
The first phase of the safety process examined the 
navigation system design in order to provide the context 
for analysis of the HIL design. The suppliers and 
designers of the IMA system met together to perform the 
first stage of this analysis to avoid misunderstandings 
about the design. A simplified architectural system design 
diagram was constructed, overlaid with arrows indicating 
data flow. The suppliers specified the function of each 
component in the system. The HIL design was then 
analysed. 

The HIL directly controls the scheduling of both the 
applications and the OSL. API calls are only made to the 
HIL by the OSL; the applications are not allowed to make 
direct calls to the HIL. The HIL is responsible for 
copying data between application partitions and also for 
managing the applications access to the processor and 
memory. The HIL is also responsible for passing data on 
to the navigational display following calculation by the 
application. This means that data corruption by the HIL 
can directly lead to incorrect data displayed to the pilot, 
therefore one of the derived safety requirements for the 
HIL concerns preventing corruption of data sent to the 
network. This DSR demonstrates the need to consider the 
operating environment of the HIL, as although the 
requirement might be predictable, the reliability required 
will depend on the consequences of failure within a 
specific system.  

A number of DSRs for the HIL were found, and a more 
extensive description of the HIL analysis can be found in 
(Conmy, Nicholson et al. August 2003). One of the key 
DSRs is that the HIL must prevent memory writes outside 
of an application’s designated area. This helps prevent a 
number of failures including context switches to the 
wrong application and corruption of data to be sent to the 
pilot display. This requirement is also commonly known 
as "memory partitioning". This feature is now examined 
in order to develop the contract. 

4.2 HIL Description 
The HIL analysed was a version of the L4 microkernel 
(Heiser 2001) developed specifically for the IMA 
environment (Bennett and Audsley 2001). The L4 
microkernel specification describes a small set of 
functions for Inter-Process Communication (IPC) and 
scheduling. This core functionality supports access to the 
processing resources and hides the underlying hardware. 
It does not limit access to these resources but instead 
provides support for the OSL to implement its own 
security and management policies. This makes it ideal for 
use in an IMA system where the OSL and applications 
may be differently configured for each IMA module.   

The kernel examined provides strict partitioning of 
memory spaces for the applications and OSL. The kernel 



has been written for the PowerPC 603e using a 
combination of the C programming language and 
assembler code. Whilst this means the code is not 
portable, it is necessary in order to achieve the 
performance required for a real-time system. The version 
analysed for this paper was a partial implementation of 
the full L4 function set, which meant that there was some 
room for negotiability when deriving the contract. The 
full source code was available for inspection during the 
second phase of analysis. 

4.2.1 Memory partitioning 
This section discusses how a Memory Management Unit 
(MMU) can be used to provide memory partitioning 
functionality. This information provides background and 
context for the analysis results presented in section 0 The 
L4 microkernel examined uses the MMU on the Power 
PC processor.  

Computer memory is divided into sections known as 
pages or segments which contain either data or 
instructions (for execution). These are swapped in and out 
of secondary storage to physical memory as and when 
they are required during an application’s execution. Pages 
have a fixed size whereas segments can have a variable 
size, the advantage of the latter being that more efficient 
use of memory can be made. However, pages are simpler 
to analyse. The kernel examined used pages only for 
simplicity. Software accesses a specific memory location 
using a page identifier and an offset from this identifier. 
This is known as an address (see Figure 3). 

Page identifier Offset

Pages

Virtual Address

 

Figure 3 Virtual Address Mapping to Physical 
Memory 

A MMUs function is to translate a virtual memory 
address into a physical memory address. This allows a 
computer application to use more memory than 
physically exists by allocating physical memory only 
when it is required, and de-allocating memory as an 
application no longer requires it (i.e. removing 
instructions/data that are not being used at present). 
Various memory attributes and settings can be utilised to 
limit access to memory areas, and the MMU (sometimes 
supported by software) will raise an exception when an 
attempt is made to access data in an area which would 
violate the access permissions. This functionality is used 
by the microkernel to provide a memory partitioning 
system.  

The MMU keeps a list of recently accessed (virtual) 
pages in a Translation Lookaside Buffer (TLB). A full list 
of pages for an application is kept in a page table, 

however this is often large and awkward to search, hence 
the use of the TLB to reduce average case look up time. 
When application code uses a virtual address to access 
memory the MMU looks for a match in the TLB. If there 
is none, an exception is generated. The HIL will intercept 
this in order to examine the page table. If the page is 
found in the table then it is inserted into the TLB, if not a 
page fault exception is raised. An exception handler, part 
of the HIL, processes this event. 

One form of memory protection uses multiple levels of 
security, commonly supervisor and user levels, to limit 
access. The Power PC processor has these two levels and 
the L4 microkernel runs in the supervisor mode and can 
access all memory areas. The applications run in user 
mode and can only access a restricted set of memory 
areas. This means the microkernel must be trusted not to 
alter the application’s memory space. The applications 
cannot alter the microkernel code. 

Each applications virtual address space starts at 0. This 
means that different applications use the same virtual 
addresses to access memory (it is the mapping to physical 
memory that changes). If, after a context switch (where 
one application becomes active and another inactive) an 
entry is left in the page table from the last application, the 
new application could potentially access the old 
applications data. Therefore, a mechanism is required to 
ensure that the different user applications do not access 
each other’s memory space. This is achieved using an 
Address Space IDentifier (ASID). This ASID is included 
with the virtual address. When an attempt is made to 
access an address, the ASID of the requesting application 
is checked against the ASID of the address in the memory 
map and an exception raised if they don't match.  

In addition the microkernel empties the TLB to ensure 
that no entries are left before switching between 
applications. This has an impact on overall performance, 
but helps prevent accidental partition violation (see 
section 0).  

The memory partitioning functionality in this microkernel 
uses normal virtual addressing for applications with soft 
or no real time requirements. In addition, the microkernel 
makes special provision for applications with hard real 
time requirements by taking advantage of the Power PCs 
Block Address Translation (BAT) registers. These allow 
areas of memory to be ring-fenced, with direct translation 
of addresses via the BAT registers rather than the TLB. 
This means that the conversion time from virtual address 
to physical address is bounded and predictable, with the 
application never suffering a page miss. This is useful 
when calculating the Worst Case Execution Time 
(WCET) of an application. However, the ring fenced 
areas have a limited size of 256K meaning the application 
running in these areas must have a memory footprint of 
this size or less (note that is part of the quantifiable level 
of the contract). 

It should be noted that as a side effect of the 
implementation it is not possible to tell if an application 
using a normal address space (not ring-fenced) has 
deliberately tried to violate it’s boundaries, as an attempt 
to access a page table entry that doesn’t have a matching 



ASID may simply be a result of stale data. Therefore no 
action will be taken against such an application. Whilst 
this is not a problem as the access is denied, it does mean 
that no information can be gathered on misbehaving 
applications in normal address spaces. In contrast, if one 
of the ring fenced applications has a page miss, this can 
be viewed as an attempted partition violation. This is due 
to the fact that all page mappings are pre defined in these 
areas; therefore no page miss should ever occur. It can be 
assumed, therefore, that the application is either 
deliberately misbehaving or is faulty. At present the 
microkernel performs a fail stop in this situation (see 
section 0).  

5 Deriving the Contract for the HIL 
This section examines how the bottom three levels of the 
contract can be derived. The first level of the contract as 
described in section 4.1states that the HIL should prevent 
corruption of an applications memory space. The HIL is 
the supplier of this service and the applications and OSL 
are clients. Note that this guarantee looks only at how 
partitioning may be broken, not at other features of 
memory provision such as speed of access; this would be 
a different contract. 

An alternative strategy for enforcing memory partitioning 
is to use Software Fault Isolation (SFI) (Wahbe et al. 
1993). This technique alters the compiled code of any 
application which is deemed a potential risk, forcing each 
memory access to be within a specified memory area by 
inserting object code which sets the page identifier. If this 
technique were used the architectural level contract 
would be similar, although the supplier would be 
different. The behavioural and quantifiable levels would 
be very different and would examine the side effects and 
performance of the inserted object code. 

5.1 Architectural Level 
For the architectural level of the contract, the decision 
about the type of mechanism to be used to protect the 
application’s memory space is examined. In this case the 
MMU from the PowerPC is to be used meaning that each 
application will need to be constructed from one or more 
single integrity partitions.  

Architectural level constraints 

Potential 
Failure 

HIL Guarantee 
(supplier) 

P/A Application(s)/OSL 
rely (client) 

P/A

Memory space 
alteration by 
external source 

Will provide 
mechanism 
which supports 
single integrity 
level partitions 

A Demonstrate that 
application is 
acceptably safe 
divided into 
multiple single 
integrity partitions 

A 

Table 1 Architectural Level Contract 

The application provider needs to design and examine 
their system to ensure that this constraint will be 
acceptable. As shown earlier, the IMA concept demands 
that applications be partitioned, therefore this method can 

be marked as accepted by both supplier and client. This 
level of the contract is shown in Table 1. 

5.2 Behavioural Level 
This section presents the results of the behavioural level 
analysis, and puts it into the proposed contract format. 
The summarised contract is shown in Table 2.  

In order to develop the behavioural level of the contract 
the microkernel code (C, and assembler) has been 
examined to see how the code upholds this guarantee, and 
also to see whether the guarantee could be broken. The 
sections examined were the context switching code, the 
TLB event handling code (for storing, reading and 
flushing), and the page miss handling code. The context 
switching code is significant not only because it must call 
a number of TLB functions, but also because it sets the 
security from supervisor to user and vice versa. Using the 
background information from section 4.2.1 Failure Modes 
and Effects Analysis (FMEA) was undertaken on the 
code, looking in particular for any loopholes which would 
allow one partition to gain access to another partitions 
physical memory, either accidentally or deliberately. The 
results of this analysis are summarised in the text below.  

One of the first considerations is the MMU protection 
mechanisms used. Firstly, although unique ASIDs are 
used for both applications and the HIL there is a potential 
loophole which could break the partitioning. The HIL 
does not check the ASID unless there is a page miss. In 
other words, if a request is made for an address, and there 
is a match in the TLB then the memory is accessed 
directly. This means that after a context switch from one 
application to a new application, there may potentially be 
mappings to the previous applications address space left 
in the TLB. The new application could then access this 
memory space accidentally. To ensure this doesn't occur, 
all parts of the HIL code which perform a context switch 
has been examined to check that the TLB is emptied 
(known as flushing). 

These mechanisms prevent any memory violation for all 
applications using normal memory space and have no 
side effects on the applications. They are therefore 
marked as "accepted" in the contract. As discussed in 
section 4.2.1 the HIL does not attempt to detect whether 
these applications have attempted to violate partitions, 
rather it prevents any violation from occurring.  

The next consideration is the special ring fenced areas. As 
discussed earlier the code in these areas should be fully 
mapped prior to execution and any page miss can be 
viewed as an attempted partition violation. The version of 
the kernel analysed for this paper at present fails silent 
(within an infinite loop) if this situation occurs. If this 
action is chosen for the final version of the kernel then 
each application supplier must provide evidence that fail 
silent is an acceptable failure condition. Clearly, a better 
strategy is that the HIL only closes down the offending 
partition. In either case the action taken places a safety 
constraint on one or more client applications. This 
information is captured in the contract and marked as 
"proposed" in order to show that the alternatives should 
be examined further. 



Behavioural level constraints 
Potential 
Failure 

HIL Guarantee 
(supplier) 

P/A Application(s)/ 
OSL rely 
(client) 

P/A

Applications 
with identical 
virtual address 
space 
numbering 
access each 
others memory 
space 

Unique identifier 
is used for each 
application.  

Flushing TLB 
prevents stale 
data being 
accessed 

A   

Ring fenced 
application 
violate 
boundaries 

Kernel assumes 
all page misses in 
ring fenced areas 
are violations. 
Performs fail 
silent in the event 
of a memory 
violation in one 
of the ring-fenced 
areas 

P Ensure the ring 
fenced 
applications do 
not violate their 
boundaries using 
static analysis 
OR All 
applications need 
to ensure fail 
silent is 
acceptably safe. 

P 

Applications 
change their 
identifier 

Address space 
identifiers 
protected using 
supervisor 
privilege  

A   

Applications 
gain supervisor 
privilege 

HIL ensures 
application ID in 
place when 
application is 
executing 

A   

The HIL alters 
the applications 
memory space 

HIL uses unique 
ID  

A   

Application 
gains direct 
access to 
another address 
space via IPC 

Either – 
implementation 
does not allow 
memory sharing 
OR HIL supplier 
provides 
restriction rules 
for set of IPC 
functions  

P Ensure IPC 
instructions 
adhered to. 

P 

Memory areas 
are initialised 
incorrectly 

HIL performs 
check on start up  

A   

Changes made 
to memory 
permissions 
during execution 
allow access to 
another’s 
memory space 

No changes 
made.  

A   

The HIL is 
altered by 
applications 

HIL is protected 
using supervisor 
privilege.  

A   

Table 2 Behavioural Level Contract 

An additional concern might be that an application could 
alter its ASID somehow. In order to prevent this, the 
ASID is only ever stored in a supervisor controlled area 
of memory which the applications and OSL have no 

access to. The HIL cannot access the applications areas as 
it has a unique ASID which is not altered. 

The other potential partitioning problem is that, according 
to the L4 standard (Heiser 2001), some IPC calls allow 
memory areas to be shared between applications. This is a 
more efficient way to share data between applications 
rather than via a third party. This approach is not 
necessarily suitable for an IMA environment, however. 
Firstly, it potentially allows the partitioning to be broken. 
Secondly, if two partitions directly share memory with 
one another they must be located on the same processor, 
placing a restriction on the configurations of the system. 
Clearly, there may be a situation where the only way to 
achieve the performance required to meet a hard deadline 
is by sharing memory. It is therefore proposed that the 
implementation either does not allow memory sharing, or 
that if it does a set of clear restrictions on how the IPC 
may be used is provided to the application designers so 
that they can avoid any potential problems. Again, this 
information is marked as "proposed" within the contract. 

The rest of the table summarises the last few potential 
failure modes. Firstly, the initialisation of the memory 
areas must be correct. The microkernel performs a check 
on start up that the BAT registers are correct. All other 
areas are swapped in and out as necessary with the 
protection described above. Secondly, memory 
permissions for read, write and execute on pages can be 
altered on the Power PC, potentially allowing partition 
breaches. No changes are made by the microkernel so this 
failure mode does not arise. Finally, the HIL needs to be 
protected from alteration by the applications. This is 
achieved by running all HIL software in the supervisor 
mode on the processor, thus protecting it from all the 
other software which is run in user mode.  

Deriving the contract has revealed two side effects which 
can impact the applications (those marked “P” for 
Proposed.) The application designers need to be aware of 
these issues during their own development process in 
order to design their software within the constraints. 
Section 6 discusses how these issues can be resolved for 
the navigation system. 

5.3 Quantifiable Level 
Finally, the quantifiable aspects of the contract are 
examined. At this stage only the type of evidence 
required and how it could be generated is discussed as 
there was not enough system information available to 
make a more detailed assessment. This level of the 
contract is shown in Table 3. 

The memory partitioning mechanism does not require any 
specific API calls to be made; therefore no syntactic 
requirements are needed. 

In terms of performance, the relevant information is that 
the real time address space areas have a size limitation of 
256K. This limitation is a property of the processor and, 
thus, cannot be altered. It is marked as O for “obligation” 
in the contract. 

In order to determine the reliability requirements, the 
supplier would need to know the full range of 



applications executing on the IMA system in order to 
determine the worst case failure. This means examining 
all the components in the system which it relies on. 
Unfortunately this data is was not available at the time of 
writing the paper, therefore a reliability requirement of 
10-9 per flight hour has been proposed. This requirement 
can be examined later on in the development process. 

Quantifiable level constraints 

Quantifiable 
feature 

HIL Guarantee 
(supplier) 

P/A Application(s) 
/OSL rely 

(client) 

P/A

Application 
require real time 
memory spaces  

HIL provides 
real-time spaces 
of size 256 K 

O Applications 
memory 
footprint must be 
no greater than 
256K.  

P 

Number of 
partition failures 
per flight hour 

MMU fails with 
probability of 10-9 

P Applications 
have not greater 
reliability 
requirement (in 
combination) 
than 10 -9 

P 

Table 3 Quantifiable Level Contract 

6 Consolidating Applications and OSL to the 
Contract 

This section examines the open issues from section 5, by 
comparing the application and OSL designs against the 
contract, looking those rows marked as "P" for proposed 
and “O” for obligation. 

There are no open issues at the architectural level of the 
contract. 

The behavioural level of the contract has two rows 
marked as proposed. Firstly, the response to detection of 
a page miss in one of the real time address spaces is to 
cause the whole processing module to fail silent. The 
navigation system has both a backup lane for the main 
calculation application and an independent backup 
system. This row can, therefore, be marked as “accepted”. 

The other open issue at this level is whether IPC allows 
memory to be shared. According to the IMA philosophy 
only the OSL is allowed to make direct calls to the HIL. 
As the OSL in this design does not require IPC the option 
of not implementing memory sharing in the final version 
can be taken, and the row marked as “accepted” for both 
client and supplier. 1 

At the quantifiable level two issues remain. As previously 
discussed the issue of reliability cannot currently be 
resolved. This leaves the constraint that the applications 
in the real time address spaces are limited to a 256K size. 
As the final design, and partition layout, of the 
application is not yet finalised, the application can be 

                                                           
1 Note that this judgement has been made based on this 
specific system design, and it may be the case that the 
lack of memory sharing facilities means the HIL is not 
suitable for another IMA system. 

divided up such that this limitation is acceptable. This 
row can therefore be marked as “AO” for “accepted 
obligation”. 

7 Discussion 
This section discusses a number of issues arising from the 
analysis process. 

One of the advantages of deriving the contract is that it 
can accommodate incremental change. For example, 
when the HIL is upgraded to accommodate new 
hardware, if it adheres to the behaviours within the 
contracts guarantees (and produces no new application 
rely conditions) then there is no need to re-examine the 
applications. Similarly, when an application is altered, as 
long its behaviour is still consistent with the contract then 
no alteration is needed to the HIL. One of the next stages 
of this work is to derive a process for rigorous assessment 
that a contract is still met following a change. 

The discussion in section 6 illustrated areas where there 
was a need for the client and supplier to negotiate. In this 
particular instance negotiation was possible as the kernel 
implementation was not yet complete. However, if a 
Commercial Off The Shelf (COTS) component were to 
be used there would be no room for negotiation (it would 
provide "obligation" constraints). It is still important to 
capture a contract for a COTS product. This helps to 
determine what other, more flexible components need to 
do in order to ensure system safety. 

The specification of the quantification level of the 
contract requires some thought when considering 
incremental change. This level captures details such as 
response times, the restriction on memory size for the 
real-time address spaces, and also the reliability of the 
processing hardware. This sort of data is clearly required 
for any certification process; however, these details are 
extremely hardware specific and non-negotiable. In 
addition, it is unlikely that these details will remain 
consistent should a new processor be used. Where 
possible the details in the quantifiable level can be given 
as ranges rather than specific values. For example, the 
probability in Table 3 could be expressed for the HIL as 
being at least 10-9. This gives scope for incremental 
change minimising the potential impact on the 
applications. 

One potential problem with the contract approach is 
scalability. For a large system with many hazards, a large 
number of contracts may be derived. This is partially 
mitigated by fact that the supplier side of the contract 
(particularly in the case of the HIL) can be re-used by 
different clients. It may be, however, that contracts 
should only be developed for those DSRs which address 
hazards with severe consequences. In order to assess this, 
a thorough approach to traceability is required. This 
approach should allow the path of the breakdown of high 
level system hazards to low level contracts to be easily 
followed. This would also support assessment of the 
impact of changes to high level system requirements at 
the lower levels of the system. 



8 Conclusions 
This paper has described a modularised safety analysis 
process which can be used for IMA systems. This process 
derives a “contract” which can be negotiated between the 
providers of a supplier component and a client 
component. The process has been applied to some HIL 
software proposed for use in an IMA supported 
navigational display system. 

The contract is captured in a manner which supports 
incremental change by separating out supplier and client 
guarantees. The analysis technique is being further 
developed to include guidance for assessing the impact of 
an incremental change. In addition, further work is 
required to provide traceability from high level system 
hazards to low level guarantees. 

9 Acknowledgments  
This work was undertaken as part of the work of the BAE 
SYSTEMS funded Dependable Computer Systems 
Centre (DCSC) by Philippa Conmy and as part of the 
MATISSE project (EPSRC grant no. GR/R70590/01) by 
Mark Nicholson. We would like to thank these 
organizations for their support. 

10 References 

ARINC (1997). Avionics Application Software Standard 
Interface ARINC 653, Aeronautical Radio Inc. 

Bennett, M. and Audsley, N. (2001). Predictable and 
Efficient Virtual Addressing for Safety Critical 
Real-Time Systems. 13th Euromicro Conference 
on Real-Time Systems, Conference, Delft, The 
Netherlands. 

Conmy, P., Nicholson, M. and McDermid, J. (August 
2003). Identifying Safety Dependencies in 
Modular Computer Systems. International 
System Safety Conference, Conference, Ottawa, 
Canada. 

Grigg, A. and Audsley, N. C. (1999). "Towards a 
scheduling and timing analysis solution for 
integrated modular avionics systems." 
Microprocessors and Microsystems 22: 423-431. 

Heiser, G. (2001). Inside L4/MIPS, Anatomy of a High-
Performance Microkernel, UNSW Technical 
Report. 

Jones, C. B. (1983). Specification and Design of 
(Parallel) Programs. IFIP Information 
Processing, Conference, 321-323, Paris, France. 

Meyer, B. (1992). "Applying Design By Contract." IEEE 
Computer May: 40-51. 

Multedo, G., Jibb, D. and Angel, G. (1999). "ASAAC 
Phase II programme progress on the definition 
of standards for the core processing architecture 
of future military aircraft." Microprocessors and 
Microsystems 23: 393-407. 

Wahbe, R., Lucco, S., Anderson, T. E. and Graham, S. L. 
(1993). "Efficient software-based fault 
isolation." ACM SIGOPS Operating Systems 
Review 27(5): 203-216. 

 


