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Abstract

Highly distributed data management platforms (e.g.,
PNUTS, Dynamo, Cassandra, and BigTable) are
rapidly becoming the favorite choice for hosting mod-
ern web applications in the cloud. Among other fea-
tures, these platforms rely on data partitioning, repli-
cation and relaxed consistency to achieve high levels
of performance and scalability. However, these de-
sign choices often exhibit a trade-off between perfor-
mance and data freshness. In this paper, in addition
to performance SLAs, we also perceive an application
tolerance to data staleness as another requirement de-
termining the end-user satisfaction and our goal is to
strike a fine balance between both the quality of ser-
vice (QoS) and quality of data (QoD) perceived by
the end-user. Towards that, we propose scheduling
policies and mechanisms for efficiently allocating the
recourses at each replica node so that to meet the con-
flicting requirements of user queries and replica up-
dates. Our experimental results show that employing
our scheduling strategies for resource allocation can
provide significant improvements in the overall sys-
tem utility when compared to the existing ones.

Keywords: Web Database, Distributed Database,
Cloud Computing, Scheduling, Consistency, SLA,
Quality of Data, Quality of Service.

1 Introduction

In modern web applications, user satisfaction or pos-
itive experience determines the applications’ suc-
cess (and keeps the competitors “more than a click
away” [17]). A fundamental requirement in such web
applications is to consistently meet the user’s expec-
tations for page load time as expressed by a Service
Level Agreement (SLA). An example of a simple SLA
is a web application guaranteeing that it will provide
a response within 300ms for 99.9% of its requests for
a peak client load of 500 requests per second [8].
Clearly, application SLAs place stringent response
time requirements on data management platforms de-
manding a near realtime performance. Towards this,
several data management techniques have been con-
tinuously improved in order to maximize the SLA
satisfaction of web database transactions. Exam-
ples of such techniques include data caching[19],
data prefetching [6], adaptive transaction schedul-
ing [9, 17], etc. However, the continuous growth in
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database-driven web applications as well as the com-
plexity of user requirements required re-thinking the
traditional database solutions and resulted in a new
generation of highly distributed database platforms
especially designed to meet the ever stringent per-
formance requirements expected by today’s end user.
Examples of such platforms include PNUTS [7], Dy-
namo [8], Cassandra [15], and BigTable [5].

Such platforms are expected to meet strict opera-
tional requirements in terms of performance, reliabil-
ity and efficiency, and to support continuous growth
the platform needs to be highly scalable [8]. How-
ever, the design choices for these platforms often ex-
hibit a trade-off between perceived performance and
data freshness, which is the focus of this paper. In
particular, most of such modern platforms share the
following key design choices:

e Data Partitioning and Replication: Dynamically
partitioning data across the available storage
nodes allows the system to incrementally scale
out, where adding capacity becomes as simple as
adding new servers [7]. Further, in a large-scale
web application, users are scattered across the
globe which makes it critical to have data repli-
cas on multiple continents for low-latency access
[7]. For instance, Dynamo uses a synthesis of
well known techniques for data partitioning us-
ing consistent hashing as well as data replication.

o Key-Value Data Model: Presents a simplified
data model to the user based on a key-value data
store motivated by the observation that the big
majority of web applications only need primary-
key data access manipulating one record at a
time. For example, Dynamo provides simple
get() and put() operations for the read and
write to a data item that is uniquely identified
by a key, while no operation can span multiple
data items.

Clearly, the above features directly contribute to
improving the performance of web applications and
meeting the pre-specified SLA requirements. How-
ever, achieving serializability for web transactions
over a globally-replicated and distributed system is
very expensive and often unnecessary [7]. In particu-
lar, web applications expect and tolerate weaker levels
of consistency. For instance, Dynamo is designed to
be an eventually consistent data store; that is all up-
dates reach all replicas eventually. Similarly, PNUTS
provides a consistency model that is between general
serializability and eventual consistency.

While providing weaker levels of consistency al-
low for high availability, this often comes at the ex-
pense of data freshness where user queries might ac-
cess stale data. This is typically accepted by most



web applications only if the perceived staleness is
bounded within some pre-specified staleness tolerance
[10]. Meanwhile, current platforms cannot guarantee
such bounds on data staleness while still satisfying
the stringent performance SLAs. For instance, in the
Dynamo platform, replica synchronization tasks are
executed in the background at low priority so that
to allow enough resources for running the foreground
queries and meeting their SLAs.

In this paper, in addition to a query SLA, we also
perceive an application tolerance to data staleness as
another requirement determining the end-user satis-
faction, and in turn the success of a web application.
Towards this, our goal is to balance the trade-off be-
tween the perceived Quality of Service (QoS) as ex-
pressed by performance SLA and the Quality of Data
(QoD) as expressed by freshness. Our approach to-
wards achieving that goal relies on efficiently allocat-
ing the resources at each node so that to meet the con-
flicting requirements of the foreground user transac-
tions and the background replica updates. In particu-
lar, in this paper we propose new schemes for schedul-
ing the execution of both user transactions and replica
updates for database-driven web applications in the
cloud.

To this end, several research efforts have lever-
aged scheduling as a method for balancing the trade-
off between QoS and QoD in contexts such as web
databases [16], realtime databases [1, 13], and real-
time data warehouses [2, 20, 12]. Those approaches
adopt various high-level mechanisms as well as differ-
ent low-level scheduling policies.

For instance, the On-Demand (OD) [1] mechanism
couples the execution of pending replica updates with
the arriving user requests, where all the data items
read by a certain query are refreshed on demand be-
fore the execution of that query. This strategy has
been shown to be beneficial in saving system resources
[11]. However, the OD mechanism employs simple
low-level policies for scheduling queries (and in turn
updates) which fall short in meeting the requirements
of modern web applications.

On the other hand, the QUTS [16] approach con-
siders both the QoS and QoD requirements of web
applications under a unified Quality Contracts [14]
model. However, QUTS decouples the execution of
queries from that of replica updates, where it allocates
to each a separate time quota of the system resources.
This allows QUTS to target general database trans-
actions where it is not easy to determine the data
objects read by a query beforehand. But at the same
time, this decoupling might waste significant system
resources.

To the contrary, our scheduling approach pre-
sented in this paper leverages the specific character-
istics of modern key-value data stores towards satis-
fying the QoS and QoD specifications of web appli-
cations. In particular, we propose high-level mecha-
nisms together with low-level scheduling policies that
consider the “cost” and “benefit” of executing back-
ground replica updates in conjunction with the fore-
ground user requests so that to improve both perfor-
mance and freshness.

Moreover, between the two extremes of coupling
or decoupling the scheduling of user reads and replica
updates, we propose a new hybrid mechanism called
FIT, which integrates the advantages of both in oder
to maximize the system gains. Our experimental re-
sults show that employing our scheduling schemes for
resource allocation can provide significant improve-
ments in the overall system utility when compared to
existing policies.

The rest part of this paper is organized as follows.
Section 2 describes the system model. Our proposed
scheduling policies are presented in section 3. Section
4 describes the evaluation environment. Section 5
presents our experimental results. Section 6 finalizes
this paper with conclusions and future work.

2 System Model

We consider a distributed data management platform
where data is partitioned and replicated across mul-
tiple nodes. The data replication model we adopt
in this paper is very close to the one currently em-
ployed by the Yahoo! PNUTS [7]. Specifically, we
assume that each data record has one master copy
and multiple replicas. All the write operations on a
certain record are directed to its master copy, then
later propagated to the replicas. This propagation
takes place in a lazy or asynchronous fashion, where
a write is installed at the master first and updates
are propagated in the background. This model al-
lows for timeline consistency where all replicas will go
through the same sequence of updates such that they
will eventually converge to the latest update made by
the application. Hence, a record read by an applica-
tion might be stale unless it is the master copy or it is
a replica that has already applied the latest update.

Under the model described above, a node in our
system receives 3 types of record operations: 1) write
to a master, 2) read to a master or replica, or 3) up-
date to a replica. Our proposed policies operate at
the node-level where they are responsible for schedul-
ing the execution of those operations so that to max-
imize both QoS and QoD. Next, we describe the de-
tails of our model together with our metrics for QoS
and QoD.

2.1 Database Replica

Each node typically stores a set of master records as
well as another set of replica records. As described
above, a master record is accessed by foreground read
and write requests and it is always fresh. Whereas, a
replica record is accessed by either a foreground read
request (i.e., query) or a background refresh request
(i.e., update) and it might be stale. In the rest of this
discussion, we will focus on the latter set of records
(i.e., replicas) since accessing these records leads to a
trade-off between performance and freshness. In par-
ticular, we assume that a database replica B consists
of M data records (or objects) {O1,Oa,...,Op} that
are accessed simultaneously by both user queries and
system updates.

As in [10], we use the term replica broadly to in-
clude saved data derived from some underlying source
tables. As such, it could be a replica in the ordinary
sense as in the distributed data management plat-
forms described above. But also a replica could be a
materialized view internal to the web application for
efficient query processing. For instance, to support
social networking applications, PNUTS stores materi-
alized views as regular tables that are asynchronously
maintained by the system [18].

Finally, a replica could be a web database which
represents a portal updated aperiodically by external
sources. For example, in a stock information applica-
tion, external databases such as the New York Stock
Exchange store the history of updates, whereas the
web database corresponds to a snapshot view reflect-
ing the most recent stock information as propagated
by that external database [16, 1].



2.2 Updates

Updates to a data replica are queued internally in
the node’s update queue until they are scheduled for
execution. Each update U; has a timestamp ¢; repre-
senting the time when it was generated at the master
copy. Further, each update modifies the value of a
single record at a time using an operation such as
set () or put () to set the value of a replica record to
the same value committed at the master copy at time
t;.

Finally, each update U; is characterized by a cost
Ciy, which reflects the time required for processing
the update and installing it onto the replica. This
processing time incorporates both CPU and I/0 costs
and is typically determined by monitoring the pro-
cessing of previous updates over a reasonable time
window.

2.3 Queries

In our model, each query @Q; represents a get() op-
eration to the key-value data store. Rendering a web
page in modern web applications typically fires a large
number of such operations. For example, a page re-
quest to an e-commerce sites typically requires the
rendering engine to construct its response by sending
over 150 get () operations [8].

Similar to updates, in a key-value data store, each
query @; will have a timestamp representing its ar-
rival time A; and will access a single record or data
object O;. Meanwhile, operations that touch mul-
tiple records simply require a component that gen-
erates multiple requests to individually access each
record. Finally, Cj, denotes the cost for retrieving
and processing that data record. Like update pro-
cessing, query processing time incorporates both CPU
and I/O costs and is statistically estimated over time.

2.4 QoS and QoD Metrics

There are several metrics for capturing the user per-
ceived QoS as well as QoD. In this paper, we focus
on QoS in terms of minimizing tardiness and QoD in
terms of minimizing staleness and our goal is to strike
a fine balance between both metrics across all the user
queries submitted to the system.

Ideally, if a query @; finishes execution at time Fj,
then F; should be within the QoS tolerance of Q;.
Similarly, the staleness of a record O; accessed by the
query should be within its QoD tolerance. However,
in the presence of multiple queries and updates com-
peting for the system resources, (); might experience
queuing delays or access stale data that fall beyond
its tolerance.

The natural way to capture those deviations is to
define for each query @; two deadlines: 1) Tardiness
Deadline (D;), and 2) Staleness Deadline (.5;). In our
model, those two deadlines represent the QoS and
QoD requirements of a query and violating either in-
curs a penalty to be paid by the system. In particular,
to specify the QoS and QoD requirements, each query
is associated with the following parameters:

e Weight (WW;): the weight assigned to query Q,
which represents its importance to the system.

e QoS Factor (ays): the fraction of the weight as-
signed to QoS, which represents the QoS impor-
tance to the application.

e QoD Factor (a;q): the fraction of the weight as-
signed to QoD (= 1.0 — «;), which represents
the QoD importance to the application.

Table 1: Model Parameters

Parameter Symbol
Database B

Objects in Database {01,..,0p}
Write-only Transaction: Update U;
Timestamp of First Unapplied Updates R;

Read-only Transaction: Query Qi

Arrive Time of Query A;

Finish Time of Query F;

Weight of each query w;

QoS Factor Qs

QoD Factor e 7%}

QoS Tolerance Yis

QoD Tolerance Yid

Tardiness Deadline D; = A; +vis
Staleness deadline Si = Ri + via

e QoS Tolerance (v;5): the tolerance of query Q;
to tardiness in time units.

e QoD Tolerance (7;4): the tolerance of query Q;
to staleness in time units.

2.4.1 Query Perceived Tardiness
The tardiness Deadline (D;) is defined as:

Di = A; +is (1)

where A; is the arrival time of query @; and ~;; is its
tolerance as described above.

if @; cannot meet its deadline, the system will still
execute it but it will be “penalized” for the delay
beyond the deadline D;. This penalty per query is
known as tardiness which is formally defined as:

Definition 1 Tardiness, T;, for query Q; is the total
amount of time spent by Q; in the system beyond its
deadline D;. That is, T; = 0 if F; < Dy, and T; =
F; — D; otherwise.

2.4.2 Query Perceived Staleness
The staleness deadline (S;) is defined as:

Si = Ri + Vi (2)

where R; is the timestamp of the first unapplied up-
date to data object O; and ;4 is the tolerance of @Q;
to staleness as described above.

In particular, at time R;, a replica record O; is ren-
dered stale because of the generation of a new update
at the master copy. If that update is still unapplied
until the time @; is scheduled for execution, then the
system will still execute the query but it will be pe-
nalized for the staleness beyond the deadline S;. This
penalty per query is known as staleness (or age [3])
which is formally defined as:

Definition 2 Staleness, L;, for query Q; is the total
amount of staleness accumulated by O; beyond Q;’s
staleness deadline S;. That is, L; =0 if F; < S;, and
L; = F; — S; otherwise.

2.5 Problem Definition

Given the above definitions of tardiness and staleness,
our goal is to minimize the total combined penalty
incurred by the system. This combined penalty per
query (); is simply the sum of weighted staleness and
weighted tardiness (as shown in Figures 1, 2, and 3)
and is computed as follows:
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Figure 1: Weighted Tardiness

P; = Wi[(ais X T;) + (g % Ly)]
Or equivalently,

Py = Wil(ew x T3) + (1 — o) X Ly)] (3)

where o; = ;5 and W; is the weight of query @Q; as
defined above.

Hence, the system objective is to minimize the av-
erage penalty which is defined as:

Definition 3 The average penalty for N queries is:
1 N
N Zi:l F;.

In the next section, we will discuss several query
and update scheduling strategies for achieving the ob-
jective defined above.

3 Scheduling Strategies

In this section, we present several strategies for the
scheduling of both pending queries and updates at
each node in the system. For each strategy, we make
the distinction between the high-level general mecha-
nism specifying the dependency between queries and
updates (e.g., coupled, decoupled, etc.) and the low-
level scheduling policy used for ordering the execu-
tion of those queries and updates (e.g., FCFS, EDF,
etc.). Specifically, we first propose low-level schedul-
ing policies that extend the On-Demand mechanism
[1] by considering query characteristics (Sections 3.1)
as well as update characteristics (Section 3.2). Then,
we propose our new FIT mechanism together with
low-level scheduling policies that further enable bal-
anc)ing the trade-off between QoS and QoD (Section
3.3).

3.1 Query-aware On-Demand Scheduling

Recall that the On-Demand (OD) [1] mechanism cou-
ples the execution of the pending replica updates with
the arriving user requests, where all the data items
read by a certain query are refreshed on demand be-
fore the execution of that query. This mechanism is
well suited for key-value data stores where each record
is accessed by its key leading to a simple coupling be-
tween queries and updates.

Further, the OD mechanism also allows for mini-
mizing the system resources needed to install replica
updates in a timeline consistency system like PNUTS.
To explain this, recall that in a key-value data store,

Figure 2: Weighted Staleness
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Figure 3: Total Penalty

updates are blind operations that do not require read-
ing the current value of a record before updating it.
Hence, in a single-master system like PNUTS, all
replicas will go through the same sequence of blind
updates such that they will eventually converge to
the latest update made by the application. Accord-
ingly, the arrival of a new update to a certain record
will make any pending update to that same record
worthless as in the Thomas Write Rule [21]. That is,
a replica can converge simply by applying the newest
update skipping any intermediate ones.

Given the advantages of the OD mechanism, we
have decided to further investigate its underlying
scheduling policies. In general, under OD, queries
are always given precedence over updates. However,
when a query @); encounters a stale data object O,
the update queue will first be checked if there is a
pending update to O; (i.e., U;). If an update is found,
it is applied before executing the query. This provides
an attractive property which is maximizing the fresh-
ness of data by applying any pending relevant updates
first, which results in almost no penalty for data stal-
eness in our system. However, in terms of QoS, the
On-Demand mechanism suffers from a major draw-
back as it employs a basic First-Come-First-Served
(FCFS) policy where the arrival time of query @; de-
termines its priority. FCFS has been shown to per-
form very poorly under deadline-based metrics such
as tardiness [4], which leads to high QoS penalties
for our system that are expected to overweight the
gains from improving QoD provided by the OD mech-
anism. Hence, we propose extending OD with a set of
priority-based scheduling policies that are well known
for performing reasonably well under deadlines.

For all of those policies, for each pending query Q;
we compute a priority V; based on some of the prop-
erties of @);. For the query with the highest priority,
we first apply the pending update (if any) to the data
item O;, then execute the query as in the On-Demand
mechanism. We first start with the FCFS-Q policy.

FCFS-Q: First-Come-First-Served (FCFS) has been
proposed as the scheduling policy under the OD
mechanism [1]. Under FCFS, each query Q; is as-
signed a priority V; = A%_, where A; is the arrival
time of query @; as described in Section 2. FCFS is
a fair scheduling policy since it bounds the waiting
time of a query in the system queue. However, this
is often at odds with minimizing system performance
metrics such as response time or tardiness.

EDF-Q: Earliest Deadline First (EDF) is one clear
alternative for replacing FCFS under the OD mech-



anism. Under EDF, each query @); is assigned a pri-
ority V; = D%, where D; is the tardiness deadline
of query Q; as described in Section 2. It has been
shown that EDF provides a close to zero tardiness
under low to medium system utilization which makes
it attractive for web database during periods of light
workload.

WSJF-Q: Weighted Shortest Job First (WSJF) is
another alternative under the OD mechanism as it
considers both the query processing time and its
weight. Here, we only need to consider the fraction of
weight pertaining to QoS (i.e., o;W;) since the QoD
component of weight is already maximized under the
OD mechanism. Hence, under WSJF-Q, each query

Q; is assigned a priority V; = O‘CZ , where o; W; is the
QoS weight component and Cj, is processing of query
Q; as described in Section 2. It has been shown that
WSJF minimizes the weighted tardiness under high
system utilization as opposed to EDF which might
exhibit a ”domino effect” [9]. This makes WSJF es-
pecially attractive for web database during periods of
high workload which is expected to be the norm for
the applications we are considering in this work.

Density-Q: The density policy is very similar to the
WSJF-Q except that it considers the query benefit (or
penalty) at the current time rather than its weight
[12]. As in WSJF-Q, we only need to consider the
fraction of penalty to pertaining QoS since the QoD
component of penalty is already minimized under the
OD mechanism. Hence, under Density-Q, each query
—Wiaix(1+Ciq—Di) "

Qi is assigned a priority where

k3

7 is the current time where a scheduling decision is
to be made and 7 + Cjyq is the time where the query
finishes execution and (7 + Cjy — D;)™" is the positive
value of the term, i.e., maz(0,7 + Ciy — D;).

If 7+ Ciq < Dy, then Q; will finish before its dead-
line and the system incurred penalty is 0. However,
if 7+ Cyq > D;, then @; will miss its deadline and
the system incurred penalty is the weighted tardiness
Wi x (1 + Ciq — D;) or equivalently, the system
benefit is the negative of that value as reflected in the
priority function. Note that in comparison to WSJF-
Q, as a result of considering current penalty rather
than just weight, Density-Q recognizes the tardiness
deadline as a critical point where a query starts accu-
mulating tardiness leading to system penalty.

It is worth mentioning that under all the policies
above, the execution order of updates is determined
by the execution order of queries. Hence, there is no
need for an update scheduling policy and the schedul-
ing decision is solely based on the query characteris-
tics. Thus, we will call such strategy Query-aware
and we denote the policies using “-Q” such as FCFS-
Q. Also note that during intervals of light load where
queries are more sporadic, updates could be sched-
uled independently. Specifically, if the query queue
is empty, the system starts executing updates until a
new query arrives. To schedule those updates we use

the basic Shortest Job First (SJF) policy where each
update is assigned a priority V; = CL In the next
section, we propose policies that further integrates
the characteristics of the pending updates under the
OD mechanism.

3.2 Update-aware On-Demand Scheduling

In the previous section, we have applied two features
of the On-Demand approach, namely:

1. Applied any pending update to a data object be-
fore it is accessed by a query, and

2. Employed scheduling policies that only consider
the properties of pending queries.

The first feature above enforces the On-Demand
mechanism where updates are applied when an ob-
ject is accessed leading to fresh data. Meanwhile, the
second feature simplifies the scheduling decision by
restricting the priority functions to only the query
parameters. However, exploiting only the query pa-
rameters in scheduling might have a serious negative
impact on the system performance.

In particular, all the policies presented above are
oblivious to the properties of updates which might be
in conflict with the properties of the corresponding
query. For instance, under the WSJF-Q), if a query
@; has the lowest processing cost then it might be
selected for execution first regardless of the cost for
refreshing data object O; (i.e., Cj,). If that cost of
installing the update happened to be very high, then
all pending queries will be delayed and accumulating
tardiness resulting in a poor overall system perfor-
mance.

To avoid such conflict, we propose an Update-
aware strategy, which works like the original On-
Demand but employs scheduling policies that con-
sider the characteristics of updates in addition to
those of queries. Before explaining those policies, note
that the negative impact of an update on the system
is restricted to the QoS perceived by other queries but
not on the perceived QoD. In particular, processing
a certain update U; with cost Cj, leads to delaying
the processing of other queries and might lead to an
increase in tardiness if those queries are close to their
deadlines. However, it has no impact on the QoD un-
der the On-Demand mechanism since data objects are
always refreshed before accessed by a query leading
to maximum freshness.

Hence, under the Update-aware version, we only
need to modify those scheduling policies that con-
sider processing cost, to include the cost of processing
an update in addition to that of processing a query.
Specifically, the EDF and FCFS policies will remain
the same under update-aware, whereas we need new
versions of WSJF and Density. For those two policies,
for each pending query @Q; we compute a priority V;
based on some of the properties of @); and its corre-
sponding U; (if any). For the query-update pair with
the highest priority, we first apply the pending up-
date (if any) to the data item O;, then execute the
query as in the On-Demand mechanism.

WSJF-QU: Under the update-aware WSJF-QU,
each query Q); is assigned a priority

a; W
Vi= ————— 4
! Ciq + Ciy ( )
where o; W; is the QoS weight component, Cjq is the
cost of processing query @Q; and Cj, is the cost of
refreshing data object O; by applying the pending
update U;.

Density-QU: Under the update-aware Density-QU,
each query Q); is assigned a priority
—W;a; x (7‘ +Ciq +Ciu — .Di)Jr (5)
Oiq + Ciu

where 7 is the current time where a scheduling deci-
sion is to be made.




Intuitively, the two policies above consider the neg-
ative impact of applying an update in terms of delay-
ing other queries by an amount of time equal to the
update cost Cj,,. Further, the Density-QU policy also
considers the negative impact of an update U; on its
own query @; since waiting until an update is installed
might lead to (); missing it tardiness deadline, which
results in QoS penalty to the system.

3.3 FIT Scheduling

The On-Demand mechanism for scheduling asyn-
chronous updates defers applying an update as much
as possible (i.e., until a query request is about to ac-
cess a stale data object). For “blind” updates, this al-
lows for saving system resources that otherwise would
have been unnecessarily wasted on installing interme-
diate updates. However, it is often the case that ap-
plying the most recent update is not that necessary.
This occurs under different conditions such as when
the staleness of a data object is within the query’s tol-
erance or in the extreme case when a query actually
does not assign any weight to the QoD.

Even when the staleness violates the query require-
ment, applying an update might require high process-
ing cost that will have a negative impact on the tar-
diness of that query and all the other pending queries
on that node leading to an overall lower QoS. Towards
this, we propose a new Freshness/Tardiness aware
mechanism called FIT for the scheduling of queries
and updates.

FIT, like OD, defers refreshing an object until it
is requested by a query. However, under FIT, the
scheduling policy reasons about the global impact of
applying the update in terms of the utility of process-
ing that update to the query under consideration as
well as the other queries in the system. Before de-
scribing the details of our scheduling policies under
FIT, we first introduce the general mechanism shared
by all those policies. Specifically, under FIT, for each
pending query @Q;, we compute two priorities:

1. v;r : The priority of @Q; if it is executed together
with the latest corresponding update U; (if any),
and

2. v;: The priority of @; if it is executed while
“skipping” U;.

Finally, Q}s priority V; is computed as:

V; = max(v; ,v]")

For the query with the highest priority V;, if v;r >
v; , then first apply the pending update (if any) to the
data object O;, then execute the query. Otherwise,
the query will directly access the stale data object O;
and the pending update U; will not be removed from
the updates queue.

In order to understand the intuition underlying
each of the next scheduling policies, recall that the

priority vj corresponds to only a QoS penalty as

represented in Figure 1, whereas a priority v; corre-
sponds to a combined QoS and QoD penalty as rep-
resented in Figure 3. Hence, the U;" priority under all
scheduling policies is the same as their counterparts
under the update-aware mechanisms, whereas the v,
priority should reflect the impact of skipping an up-
date in those cases where it is more beneficial than
applying it (i.e., v;” > v;").

Finally, note that measuring the impact of skip-
ping or applying an update pertains only to those
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Figure 4: General Penalty Function under FIT

scheduling policies with priority functions that can
capture that impact, namely, WSJF and Density, but
not the EDF or FCFS policy.

In order to compute v; , we need to consider the
impact of an update on both QoS and QoD. From Fig-
ure 3, we notice that combined penalty is a function
in time with two critical points: 1) tardiness dead-
line, and 2) staleness deadline. In particular, assume
the case in Figure 3 where D; < S;, then the penalty
is zero up to time 7 = D; then it increases linearly
with slope «; x W; reflecting the penalty incurred
by the system for not meeting the tardiness dead-
line. This slope stays the same up until time 7 = S;
where the slope increases to be W; reflecting the com-
bined penalty for both staleness and tardiness. This
slope remains constant until the query is eventually
answered. In the opposite case where D; > S;, the
penalty function will have the same general shape ex-
cept that the first slope will be (1 — ;) x W.

In general, we can represent the penalty as a func-
tion (Figure 4) with two deadlines: D;;1, and D;s and
three segments with slopes that have the following
values: (a) 0, if 7 < D1, (b) Wim, if Djp <7< Da,
and (¢) Wi, if 7 > Djs. Wy, is the intermediate
weight when the query misses one of its deadlines but
not both. As such, if D; < S;, then W,,, = a; x W;
and if D; > S;, then W,,, = (1—q;) x W;, whereas W;
is the weight when a query misses both its deadline
as described in Section 2.

WSJF-FIT: Under WSJF-FIT, v; is computed sim-

ilar to the update-aware counterpart, whereas v; is
computed based on Figure 4 as explained above.

+ a; Wi _ Vg;: T < Dy (©)
v, = —m—, V. = i
Y Cig+ Gl T - 7>Da

By considering the query cost Cj, in v; , WSJF-
FIT, Like WSJF-Q, also captures the negative impact
of running a certain query ); on the other pending
queries on the node. Similarly, it also captures the
system loss in QoS if @); were to miss its tardiness
deadline, which is expressed by the QoS portion of its
weight. But in addition to that, it also captures the
system loss in QoD if @); were to access a stale data
object, which is expressed by the QoD portion of its
weight.

To reflect the loss in QoS and QoD in v; , we

7 7

simply extended the basic WSJF policy to consider



two deadlines (Figure 4) instead of one deadline (Fig-
ure 1). In general, we can argue that WSJF sets the
weights according to the slope of the next critical
point. Hence, under WSJF-Q and WSJF-QU (Fig-
ure 1), at any time 7 the weight will have only one
value because there is only one critical point. How-
ever, under WSJF-FIT (Figure 4), after crossing the
first critical point (i.e., D;1) the weight is updated
to reflect the future penalty incurred by the system
if the query were to be delayed further, where that
penalty is expressed by the slope at the next critical
point (i.e., D;2).

Density-FIT: Under Density-FIT, vj is computed

similar to the update-aware counterpart, whereas v,
is computed to reflect the impact of having two dead-
lines as defined below:

’U;_ _ —Wiai X (7’ + Oiq + Cw — Di)+, (7)
Ciq + Ciu

- T im (T + Ciq — Di1)T — (Wi — Wim ) (7 + Ciqg — Di2)

Table 2: Simulation Parameters

Parameter value
Number of Data Objects 100
Number of Queries 5000

Data Object Access Cost Uniform over[10, 50]
Update Cost Zipf over [10, Crmaz]
Query Arrival Rate 5-50
Update Arrival Rate 50
Query Deadline Parameter kmaz =5
Importance Weight Uniform over [1, 10]
QoS fraction « Uniform over [0.1, 1.0]

Table 3: Mechanisms and Policies

Query-aware | Update-aware FIT
FCFS FCFS-Q
EDF EDF-Q
WSJF WSJF-Q WSJF-QU WSJF-FIT
Density Density-Q Density-QU Density-FIT

i C;

By balancing the trade-off between the “cost” and
“benefit” of applying a replica update, FIT is able
to strike a fine balance between QoS and QoD as we
show in the next sections.

4 Experimental Evaluation

Testbed: We have created a simulator that imple-
ments the different mechanisms and policies discussed
in this paper. The simulator takes as an input the sys-
tem parameters, and generates the queries and up-
dates based on these parameters such as deadlines,
processing cost, etc. We have varied the parameters
settings and conducted several experiments to test the
performance of our proposed mechanisms and policies
and compared them to other existing approaches.

Queries: For each simulated point, we generated
5000 queries where the data object accessed by each
query is generated according to uniform distribution
over the range[l, 100]. The processing cost Cy; for
each query @; depends on the accessed data object
and is generated according to a uniform distribution
over the range [10, 50] mSec. Each query Q; is as-
signed a tardiness tolerance v;s = k; * Cjq, where k; is
generated uniformly over the range [1, kynq.]. Hence,
the tardiness deadline D; = A; + k; * Cjq, where we
set ke = D in our experiments.

Each query @; is also assigned a staleness dead-
line S;, which is related to the tardiness deadline of
the query (i.e., D;). This enables us to control the
distance between the 2 deadlines for staleness and
tardiness. In our experiments, S; is generated using
uniform distribution in the range [D; + A;, D; + A.].
In the default setting, \; = —50 and A\, = +50. Note
that if S; < R;, then we set S; = R;. That is, the
staleness deadline has to be at least equal to the ar-
rival time of the last unapplied update but not less so
that to reflect only positive values of tolerance.

To specify the QoS and QoD requirement, each
query is assigned a weight W, uniformly distributed
over the range [1,10] which represents the importance
of that query. The QoS fraction of the weight (i.e.,
«) is set in the range [0.1-unq,] Where in the default
setting aunq: = 1.0 and the skewness for a’s zipf dis-
tribution is 0.0 (i.e., uniform). The arrival of queries
is modeled as a poisson process, where we vary the

arrival rate of queries between 10 to 50 queries/sec.
Given our distribution for processing costs, an arrival
rate of 50 queries/second is equivalent to ~ 100% uti-
lization of the replica node.

Updates: The processing cost C; of each update
U, is also generated according to a Zipf distribution
over the range [10, Cp,q.] mSec. Varying the values
of Cinar and the skewness Zipf allows us to control
the impact of updates on the system load. In the
default setting, C),q. is set to 100 with the default
Zipf parameter for skewness 6, set to 0.5 and skewed
towards the high-end of the cost range. The arrival
of updates is modeled as a poisson process, where we
set the arrival rate to 50 updates/sec.

Table 2 summarizes our simulation parameters
and their default values.

Algorithms: Table 3 summarizes the mechanisms
and policies discussed in this paper and simulated in
our experiments. A blank entry in Table 3 entails
that the corresponding policy is not applicable under
the mechanism.

Additionally, we have also included the QUTS pol-
icy [16]. QUTS prioritizes the scheduling of updates
and queries using a two-level scheduling scheme that
dynamically allocates CPU resources to updates and
queries according to user preferences on QoS (tardi-
ness) and QoD (staleness). To implement QUTS un-
der our model, we have changed the hard deadlines
to be soft deadlines and changed the QoS and QoD
functions to our tardiness and staleness metric. We
have also replaced the user’s preference on QoS and
QoD by «;s and ;4. Finally, we have set the the
atom time 7 to 0.01 and the adaptation period to 1
time unit.

5 Experimental Results

5.1 Impact of Query Arrival Rate

In this experiment, we set all the parameters to the
default values mentioned in the previous section. We
varied the query arrival rate from 5 queries/second
to 50 queries/second. Under our setting for query
processing costs, an arrival rate of 50 queries/second
will bring the node up to a utilization around 100%.

Figure 5 shows the penalty incurred by the sys-
tem when applying different strategies for scheduling
queries and updates. The schedulers included in this
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Figure 6: Comparison of All Mechanisms

figure are the query-aware ones presented in Section 3
in addition to QUTS as described in Section 4. Figure
5 shows that in general, for all schedulers the penalty
increases with increasing the query arrival rate (i.e.,
increasing utilization). However, FCFS (employed by
OD) exhibits the highest penalty. Meanwhile, the
performance of EDF came as expected where it pro-
vided the lowest penalty at low utilization but that
penalty increased significantly at high utilization be-
cause of the mentioned domino effect.

Additionally, Figure 5 also shows that at high
query arrival rate, the performance of QUTS is very
similar to that of Density, whereas WSJF outper-
forms them both. Specifically, at the arrival rate of 50
queries/sec, WSJF-Q reduces the system penalty by
35% compared to QUTS, 33% compared to Density-
Q, and 57% compared to FCFS-Q. Compared to
QUTS, WSJF-Q couples the scheduling of queries and
updates which allows for providing near maximum
QoD, while saving the system resources by applying
the latest updates. Finally, one might be surprised
that WSJF-Q outperforms Density-Q when the lat-
ter considers both the query tardiness deadline and
processing cost. However, the reason for that is that
WSJF-Q considers the slope of the penalty function,
whereas Density-Q considers the instantaneous value
of the penalty function. Hence, Density-Q might fa-
vor a query that seems to currently incur high instan-
taneous penalty over another query that will incur
higher penalty in the future which is expressed via a
high slope and is recognized by the WSJF-Q policy.

In Figure 6, we focus on comparing the perfor-
mance of the different mechanisms discussed in this
paper. In particular, we use the same settings for
the results shown in Figure 5, but we include only
the Density-Q and WSJF-Q policies because they
provided the best performance under the query-ware
mechanism (as illustrated in Figure 5). Additionally,
we have also included their update-aware counter-
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parts (i.e., Density-QU and WSJF-QU) and the FIT
counterparts (i.e., Density-FIT and WSJF-FIT).

Figure 6 shows that for both the Density and
the WSJF, the update-aware version performs better
than the only query-aware version and that the FIT
version performs better than both the query-aware
and the update-aware. For instance, at query arrival
rate of 50 queries/sec, WSJF-FIT reduces the system
penalty by 67% compared to WSFJ-Q and by 22%
compared to WSFJ-QU. These gains are further de-
picted in Figures 7 and 8 where we break down the
penalty incurred by the system into its two compo-
nents: tardiness and staleness.

Figure 7 shows the tardiness penalties (i.e., loss
in QoS) for the WSJF policies. WSJF-FIT exhibits
the lowest loss in tardiness since it might selectively
decide to skip some updates if the benefit of an up-
date does not justify its cost, thus saving resources
that might be needed by other queries and updates.
Figure 7 shows that at 50 queries/sec, WSJF-FIT re-
duces the tardiness penalty by 37% vs. WSJF-Q and
18% vs. WSJF-QU.

As expected, the gains provided by WSJF-FIT in
reducing the tardiness penalty come at the expense
of an increase in the staleness penalty as shown in
Figure 8. The figure shows that by skipping some
updates, WSJF-FIT increased the staleness penalty
compared to both WSJF-Q and WSJF-QU. However,
these losses are countered by higher gains in terms
of reducing the tardiness penalty leading to striking
a fine balance between QoS and QoD as previously
shown in Figure 6.

5.2 Impact of different QoS and QoD prefer-
ences «

To further illustrate the trade-off between QoS (i.e.,
tardiness) and QoD (i.e., staleness), in this experi-
ment we keep the same default values as in the pre-
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vious one except that we increase the skewness of a’s
zipf distribution from 0.0 to 1.7 which is skewed to-
wards high values of a. This leads to more queries
giving higher preference to QoS over QoD, which in
turn results in the system being penalized more for vi-
olating tardiness deadlines than staleness deadlines.
Figure 9 shows our experimental results under that
setting.

Figure 9 clearly highlights the benefits achieved by
the Density and WSJF policies under the FIT mech-
anism vs. their counterpart under both the query-
aware and update-aware mechanisms. For instance,
in Figure 9 at query arrival rate of 50 queries/sec,
WSJF-FIT reduces the system penalty by 59% com-
pared to WSFJ-Q and by 53% compared to WSFJ-
QU (vs. only 37% and 18% under the settings for
Figure 6). This increase in gain (or equivalently re-
ductions in penalty) is due to WSJF-FIT dynamically
skipping updates that correspond to queries with low
weight for QoD and are more interested in QoS as
expressed by the « setting. This trade-off is further
illustrated in Figures 10 and 11, where we break down
the penalty incurred by the system into its two com-
ponents of tardiness and staleness.

5.3 Impact of update cost (6,)

In this experiment, we kept the same default values
as in the first experiment except that we increased
the skewness of the update cost (i.e., Cy, ;) zipf distri-
bution from 0.5 to 1.7 which is skewed towards high
values over the range [10, Cypaz] Where Chpar = 100 .
This leads to more updates being expensive and re-
quiring more system resource to refresh the stale data.
Figure 12 shows our experimental results under that
setting.

Figure 12 illustrates that under this setting,
WSJF-FIT still outperforms all of the other policies.
However, under this setting the reduction in penalty
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provided by WSJF-FIT vs. WSJF-QU is only 31%
(in comparison to 53% in Figure 9). The reason for
that closer gap in performance is that under this set-
ting, WSJF-QU (being update-aware) will also recog-
nize those updates with high processing costs and give
them lower priority to favor queries and updates with
lower costs. Similarly, WSJF-FIT will recognize those
expensive updates and will either skip them (if they
have low benefit) or give them low priority (if they
have high enough benefit to balance the high cost).
This trade-off is further illustrated in Figures 13 and
14, where we break down the penalty incurred by the
system into its two components of tardiness and stal-
eness.

6 Conclusions and Future Work

Motivated by the need for providing guarantees
on both query performance and data currency in
highly distributed data management platforms, we
addressed the problem of scheduling queries and up-
dates to strike a fine balance between QoS and QoD.
Towards this, we presented three mechanisms for the
scheduler implementation together with scheduling
policies that work in conjunction with those mech-
anisms. Our experimental results show the the FIT
mechanism introduced in this paper, together with
the WSJF-FIT policy can efficiently allocate the
available resources across queries and updates to max-
imize the system utility.

While our proposed scheduler is designed to op-
erate at the node-level, in the future we plan to in-
vestigate global solutions that work at the system-
level for achieving further improvements in perfor-
mance. We are also planning to investigate advanced
query/update scheduling policies that dynamically
adapt to the workload and provide the best perfor-
mance under both low and high utilizations.
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