Proceedings of the Twenty-Fourth Australasian Database Conference (ADC 2013), Adelaide, Australia

Semantic-based Construction of Content and Structure XML Index

Norah Saleh Alghamdi'*?

Wenny Rahayu?

Eric Pardede*

Department of Computer Science and Computer Engineering,
La Trobe University, Australia
Email: ' nalghamdi@students.latrobe.edu.au

2
3
4

Abstract

Content And Structure (CAS) index for XML data
is an important index type that has not been widely
researched, even though its role is important espe-
cially in multi domain applications. Most existing re-
searches in XML Queries Optimization focus on struc-
ture index alone. Few have utilized the rich semantic
of XML data to support CAS index and querying. In
this paper, we propose two indexes namely Structural
index and Content index, whose construction utilizes
XML data semantics and schema. These indexes con-
tribute to a better CAS queries performance. The ex-
periments prove that our method improves the per-
formance of CAS queries by reducing the cost of CPU
time and the total number of scanned elements com-
pared to a standard method.

Keywords: Twig, Path, Index, Semantics, Objects,
Value predicates, Content constraints, Structural
predicates

1 Introduction

Most research on XML Queries is based on utilization
of structural constraints for optimization (Liang et al.
2006, Haw et al. 2009, Ling et al. 2011). The use of
structural constraints to improve XML queries per-
formance is undeniable in report-based queries. On
the other hand, for target-based queries, semantics
constraints contribute to the query performance.

An example of a target-based query against Pur-
chase Order XML data, in Fig. 2, is Q1 = “find all
customers who sent item by shipment to Melbourne,
Victoria”. This query is also called CAS since it re-
quires a combination of content and structural con-
straints for its processing. A particular customer will
be retrieved using structural constraints of the query
and only a specific part of the customer’s informa-
tion will be finally retrieved utilizing the content con-
straints, which is also known as a value predicate.
Without having value predicate, the query will list
all customers information and generate a report which

The first author would like to express her gratitude to the Taif
University in Saudi Arabia, for supporting her with a PhD
scholarship.

Copyright (©2013, Australian Computer Society, Inc. This pa-
per appeared at the 24th Australasian Database Conference
(ADC 2013), Adelaide, South Australia, January-February
2013. Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 137, Hua Wang and Rui Zhang, Ed.
Reproduction for academic, not-for-profit purposes permitted
provided this text is included.

n.alghamdi@tu.edu.sa
w.rahayu@latrobe.edu.au
e.pardede@latrobe.edu.au

is out of the paper scope and target. Consequently,
it is not practical to query without value predicates
for transactional queries over large collection of data
where each collection goes up to million or more of
kilobytes. Therefore, an efficient method to index
content or value is necessary to improve the perfor-
mance of XML queries with value predicates.

To address queries with value predicates, content
constraint alone is not enough. The knowledge of the
whole path query is also required since the value pred-
icate will not be standing alone without the existence
of the whole path query.

Consider query @1 above in XPath format
“/purchaseOrder/ShipTo [city=‘Melbourne’ and
state=‘VIC’] /name/Fname” . The significant charac-
teristics are embedded within the query: (i) the un-
derlying semantic structure between a set of intercon-
nected nodes, (ii) the path connectivity between each
of the nodes and (iii) the content constraints of the
predicates. Therefore, it is important to take advan-
tage from these query characteristics in optimizing
the query performance. Because the nature of XML
data and schema structure are rich in semantics, iden-
tifying and leveraging the semantic connectivity from
the data and schema in process such query are bene-
ficial in improving the query performance.

A nalve query processing by scanning the entire
XML data in top-down or bottom-up fashion will
cause significant performance degradation in most
cases (Li et al. 2001). Indexing schemes have been de-
veloped in recent years to overcome this issue. How-
ever, most index schemes are capable at a certain
phase of processing a query such as processing a sim-
ple path query without branches (Goldman et al.
1997) whereas others support a limited set of queries
such as supporting only the structural queries with-
out considering the value predicates (Haw et al. 2009,
Liang et al. 2006). To the best of our knowledge, very
few works have considered CAS queries in their index-
ing schemes. However, they do not utilize the seman-
tics of XML data because they identified the XML
nodes by global IDs which do not carry any seman-
tic meaning (Li et al. 2001, Rizzolo et al. 2001, Zou
et al. 2004, Monjurul et al. 2009, Chen et al. 2007).
Therefore, exploiting the semantics of XML data to
build an index scheme for CAS query processing is
an ideal solution which has not been proposed in the
past literatures yet. In this paper, we propose new
indices which exploit the semantics of XML data and
schema in their construction for efficient CAS query
processing.

Our goal of this paper to achieve the following con-
tributions:

e Pruning the search space : based on the se-
mantic knowledge gained from XML Schema.

61

CRPIT Volume 137 - Database Technologies 2013

e Building CAS index : improving the query
performance by loading merely the relevant por-
tion of data during a query processing due to
taking an advantage of the semantic nature of
XML data in designing the value index.

e Optimization producing the final results
without the need to traverse the document lead-
ing to I/O cost safe.

The organization of this paper is as follows. Firstly
in section 2, related works are discussed. In section
3, the preliminary knowledge for XML schema, data
and query model is described. Section 4 describes our
proposed index. Section 5 is the evaluation. Finally
in section 6, the conclusion and future work are pre-
sented.

2 Related Work

Several indexing schemes have been proposed in order
to improve XML path queries performance. However,
despite the past efforts, the focus was in utilizing an
index to assist in processing the structural part in
twig queries effectively. However, these methods do
not distinguish between the structural and content
search. Leaf nodes with values and internal nodes
without values in XML data have different charac-
teristics, thus, processing the content in the same
way as processing the structure will lead to expen-
sive structural joins to search for contents. Add to
this shortcoming, the semantic information of XML
data has been ignored in the most previous studies
for either value or non-value nodes. Therefore, this
causes scanning unrelated portion of data that related
to the query semantically.

Adjustable indices (Chung et al. 2002, Liang et al.
2006) group data nodes based on local similarity.
However, since they keep track of the forward and
backward paths, their size tends to be huge. Haw
and Lee Haw et al. (2009) label each node of an
XML document and then join them. However, their
joining process becomes aggressive especially when
the query has only ancestor-descendant relationships.
ViST (Wang et al. 2003) and LCS-Trim (Tatikonda
et al. 2007) transform both XML data and queries
into sequences and then evaluate the queries based
on sequence matching. The drawback of these meth-
ods is the occurrence of sequence matching.

XISS (Li et al. 2001) indexes XML data based
on a pre-order numbering scheme to fastly deter-
mine ancestor-descendant relationship between ele-
ments. It consists of five components namely, ele-
ment, attribute, structure, name indices and value
table. XISS collects all distinct name strings in the
name index implemented as B+-tree with “nid” as a
name identifier. “nid” is used as a key for element
index, attribute index and structure index. The main
drawback of XISS is its nodes joining process, which
can produce large intermediate results and in some
cases may lead to query performance delay.

ToXin (Rizzolo et al. 2001) also collects values
of XML data in a value index beside summarizing
all forward and backward paths of XML graph in a
path index. The value index contains of values and
its corresponding nodes. The path index consists of
the index tree corresponding to Dataguide (Goldman
et al. 1997) and an instance function for each edge of
the tree index. ToXin navigates down, navigates up
and filters an XML query to produce a set of nodes
that match a set of query nodes and relationships over
value predicates. An obvious shortcoming is the lack-
ing of support for range predicates since all values are

62

treated as string. Since this approach uses Dataguide
and uses edge approach to joining paths, it does not
keep the hierarchy information to answer a complex
twig queries.

Unlike ToXin, CTree (Zou et al. 2004) does not
provide only path summaries at XML document level
but also at the group level. It also provides details
of child-parent links at element-level. In addition,
CTree has multiple value indices per each data type
of XML data including (List, Number, DTime). All
the value indices support a search (value, gid, in-
put parameter) operation where gid indicates a cer-
tain group of CTree. By determining gid, irrelevant
groups are eliminated in order to evaluate value pred-
icates. Therefore, I/O cost is low. CTree can handle
XML documents having only regular groups more ef-
ficiently. However, in the case of an XML document
containing lots of irregular groups, the index space
will rapidly rise, due to the need to element-level links
for each element.

RootPath and DataPath index (Chen et al. 2007)
can evaluate XML twig queries with value predicates
to be tightly integrated with a relational database
query processor. In RootPath index, the prefixes of
the root-to-leaf paths are indexed. It is a concate-
nation of leaf value and the reverse of schema path,
and it returns the complete node ID List. In con-
trast, DataPath index stores all sub-paths of root-
to-leaf paths. In fact, the DataPath index is bigger
than RootPath, due to the duplication of the schema
paths and the node ID of its structure. The increase
size of the index tends to rise accordingly with the
increase of XML documents size. To overcome this
shortcoming, (Chen et al. 2007) explored lossless and
lossy compression techniques for reducing the index
sizes.

To evaluate twig queries, TwigTable stores values
in semantic-based relational tables whereas the inter-
nal structure of XML document is stored in inverted
lists (Ling et al. 2011). In this approach, Structural
join algorithm is used to maintain the inverted list
while relational database processor maintains the ta-
bles. Semantic-based design of the tables brings per-
formance advantages of TwigTable. On the other
hand, the limitation of this approach is when a query
does not have value predicates, no semantics will be
applied and merely a structural join algorithm is per-
formed.

3 Preliminary Knowledge

Schema and Data model: Practically, both XML
schema and data are modelled as large, ordered node-
labelled tree T(N,E) where each node neN corre-
sponds to an XML element and each edge between
the nodes (n;,n;)eE is used to identify the contain-
ment of node n; under n; in 7. However, each leaf
node In; of XML data contains a value denoted by
value(ln;).

In Fig. 1, there is a purchase order schema which
describes a purchase order generated by home prod-
ucts ordering and billing application (W3C 2004). In
Fig. 2, there is the XML data tree corresponding to
the schema in the Fig. 1. Each of them has elements
connected by edges but the data has values in each
leaf node.

Query Model: The focus of our work is on CAS
XML query either a simple path or with branches.
An XML query @ consists of nodes, labelled edges,
and query predicate Q(Nq, Eqg, Pg) where each node
q;eNg represents a query tag that adheres to a
set of an XML document’s elements. A labelled

Proceedings of the Twenty-Fourth Australasian Database Conference (ADC 2013), Adelaide, Australia

eT0(S,1)
purchaseOrder
eT1(S,2) eT1(S,4)
bhlpTO billTo
eT2(5,3) eT5 eT6 eT7 eT8 eT2(S,3) eTH eT6 eT7 eT8
name street postcode city state name street postcode city state
eT3 eT eT3 eT4
Fname Lname Fname Lname
p1(S61,5,2,5,3) p2(S01,5,4) p3(S01,5,4,5,3) p4(S,1,5,4)
Figure 1: Purchase Order XML Schema
eT0(Do1)
/ 0 \
eTl(D 2) eT1(D eTl(D 6)
9
eT2 4 chEﬁ eT2 {5 CT >CT8 eT2 4 CT6 chS
(D 3) 5 (Do5) 13 16 (Do7) 21 23
‘ ‘ : ‘ ‘ ; ‘
/ \ Waterdale 3081 Melbourne VIC / \ King St. 1234 Sydney NSW / \ Fox St. 2367 Melbourne VIC
el3 eTd "Rpa yma w15 w63 T4 yro wTi0 vrir vl €Tt ris yTie vTir vTIs
3 4 11 12 19 20
vT3 ‘
Norah Al- Jack Smith Zoe Hunt
vT1lghamdi vT7 vT8 vT13 vT14
vT2
pl:dpl1(D,1,D,2,D,3) p2:dp2(D,1,D,2) pl:dp3(Dy1,D04,D,5) p2:dp4(Dy1,Do4) p3:dp5(D,1,D,6,D,7) p4:dp6(D,1,D,6)

Figure 2: Purchase

edge between two nodes (g;, gj)eEg indicates a struc-
tural constraint, which involves operators “/” and
“//” denoting “PC” parent-child relationship and
“AD” ancestor-descendant relationship respectively.
A query predicate is held between brackets “[]” in
the query @ including other structural constrains and
a filter of content constraints. The filter of content
constraints evaluates true based on the correspond-
ing XML document nodes. A list of N-ary tuples is
generated to produce a final result of matching @ to
the XML document D, where N is the number of
query tags and each tuple (n1,ng, ..., ng) contains the
XML document nodes ni, ns, ..., ng which identify the
matched results of @ in T'.

Query Predicate: A query predicate
Py is a combination of all or some of
(No, EQ)|(Ng, Eq. Vro)l(Ng, Eq, Vrg, Pq) where
each ¢q;eNg 1s a query tag within the predicate
brackets , each e;eEg is an edge between two query
tags, and each v;eVpg is a value that can match a
value of leaf node In; at the data model and Py is
another predicate representing a branching point.

Consider a CAS query @2 “//-

Order XML Data

shipTo[/state=‘VIC’[/name” where shipTo, state,
name, /, // are structural constraints and ‘VIC’
is a content constraint. “//state=‘VIC’]” in Q2 is
called a predicate which is a content constraint in
this query and can be a combination of content and
structural constraints.

4 Object-based Content and Structure XML
Indexing

This section pays attention to utilizing the semantics
of the structure and the content of XML data and
schema during the index construction phase. Struc-
tural index is introduced first to maintain the struc-
tural constraints of XML queries. Thereafter, we rep-
resent the Content index which is proposed to im-
prove the performance of querying constant values
within XML data. Our methodology takes into ac-
count exploiting the semantic nature of XML data to
improve the query performance. In order to achieve
this goal, we adopt object-based XML data partition-
ing technique, called OXDP(Alghamdi et al. 2011),
as pre-processing phase ahead of constructing the in-

63

CRPIT Volume 137 - Database Technologies 2013

dex. In particular, OXDP is semantic rich rules that
can discover useful semantic information and iden-
tify objects within an XML schema. In this paper,
we utilize such rules in determining XML document’s
objects and then partitioning the data based on the
discovered objects. (refer to (Alghamdi et al. 2011)
for more details). Indeed, the semantics term is used
as everyday terminology by researchers across differ-
ent concepts and application fields. However, to be
precise, XML Semantics basically is envisioned in our
work as an XML feature that enables us to identify
XML data based on the meaning of their tags beside
relationships between the tags. Such identification
facilitates grouping and partitioning relevant data in
order to provide semantically structured data.

Definition 1. (Object) An object of an XML
document is defined as a compler element type of
XML schema associated with that document. In other
words, an object is a non-leaf element that consists of
simple or other complex elements.

Definition 2. (Object-based Partition
(Opart))An Object-based Partition 1is a parti-
tion of XML schema and XML data that consists of
a single object or multiple or nested objects.

In Fig. 1 & Fig. 2, shipTo and its descendants are
considered Opartl in our example and billTo and its
descendants are considered Opart2.

Afterwards, tokenising all distinct elements of
XML schema as well as tokenising all distinct value
inside XML data is taking the first place of construct-
ing our indices. In a schema or a data, attributes and
their associated values are treated as simple elements
with values.

Definition 3. (Element Token (eT)) An Element
token is an identifier that encodes each distinct ele-
ment’s tag name of XML schema.

Definition 4. (Value Token (vT)) A value token
s an identifier that indicates each distinct leaf ele-
ment’s value of XML data.

In Fig. 1, each element of the schema is to-
kenised. For instance, the schema elements: “pur-
chaseOrder”, “shipTo” , “state” and “postcode” have
“eT0” ,“eT1”, “eT8” and “eT6” as their tokens re-
spectively. Element Tokens represent all elements in
the schema or the data. However, Value Tokens are
created only from the data with values.. In Fig. 2,
the values “Waterdale road”, “3081” and “VIC” are
tokenised to “’vT3”, “vT4” and “vT6”. Both eT and
vT are implemented as integers to eliminate the com-
putational overhead caused by the string comparisons
but we use the symbolic eT and vT for a clear demon-
stration. The following subsections show the Struc-
tural indexing and the Content indexing.

4.1 Structural Indexing

Structural indices composing of Schema index and
Data index are proposed mainly to cope with the
structural part of XML queries in efficient way. These
indices can evaluate arbitrary query structures includ-
ing “/” or “//” as well as branching queries. The
components of each index will be presented as follow:

Definition 5. (Schema index) Schema index con-
sists of element Tokens of the schema associated with
a set of pairs consisting of Path of schema Object and
ID of the Object-based partitions. Schema index can
be represented as “(eT, (p, Opart))” where “eT” is
the element token, “p” is Path of Schema Object and

64

“Opart” is the partition ID where the element exists.
The definitions of eT, p, and Opart are Definition. 3,
8 and 2 respectively.

Definition 6. (Data index) Data index consists of
two indices. In the first index (Data indexl), each
Path of Schema Object is associated with all its corre-
sponding of Path of Data Object. It can be represented
as a pair as “(p, dp)” as following the Definitions 8
and 10. The second index (Data index2) consists of
all Data Objects “D,” grouped by each object parti-
tions defined in 9.

Definition 7. (Schema Object (S,)) a Schema
Object is a set of tokens including an element token
of a parent element tag, which is a complex element of
XML schema, alongside the element tokens of its chil-
dren tags. Consider S, as the set of element tokens S,
(eTparent s eTchz’ld(l) s "')eT(:hild(k))7 where eTparent is
the element token of the parent node, €T,pi1q(:) is the
element token of the parent associated children within
the schema and k is the number of the parent’s chil-
dren.

Definition 8. (Path of Schema Object (p)) Path
of Schema Object is a set of S, located on the same
path from the root to a leaf node of the XML schema.

In Fig. 1, Schema Objects and Path of Schema
Object have been added to the schema diagram. For
instance, S,2 is an Schema Object which its to-
kens is “eT1 eT2 eT5 eT6 eT7 eT8” of the elements
“shipTo”, “name”, “street”, “postcode”, “city” and
“state” respectively. It is important to highlight that
in the Schema Object, we represent the object as a
parent and its direct children tags and not its de-
scendants. For instance, “name” has “Fname” and
“Lname” as its children which have not been included
in S,2. In the same figure, the Path of Schema “p1”
is a set of the Schema Objects S,1, 5,2, 5,3 located
in the same path from the root to the leaf.

Definition 9. (Data Object D,)) a Data Object is
a pair of a set of element tokens associated with a set
of those element positions inside XML data. Consider
D, (eTparent ’ eTchild(l) 3 ey eTchild(k) ’ Posparent ’
Poschitacy, ---» Poschia)) where eTparent is the
element token of the parent node, €Topiac) is the el-
ement token of the parent associated children and k
is the number of the parent’s children within XML
data. The positions of XML data are generated dur-
ing a depth-first traversal of the tree and sequentially
assigning a number at each visit.

Definition 10. (Path of Data Object (dp)) a
Path of Data Objects is a set of D, located on the
same path from the root to a leaf node of the XML
data.

In Fig. 2, Data Objects and Path of Data Objects
have been add to the XML data tree. For instance,
D,2 is an Data Object which its tokens is “eT1 eT2
eTh eT6 eT7 eT8” with their position “1 2 5 6 7
8”. In the same figure, “p1” consisting of “S,1, 5,2,
S,3” in Schema index is corresponding to two Paths of
Data Objects “dpl” and “dp3” containing “Dol Do2
Do3” and “D,1 D,4 D,5” as a set of Data Objects
respectively.

4.2 Content Indexing

To index the content of XML data, Value index is
proposed. Firstly, the values are tokenised and stored

Proceedings of the Twenty-Fourth Australasian Database Conference (ADC 2013), Adelaide, Australia

N N
AN ANRVARANVANVAN

Figure 3: Value Index

according to their schema design. Secondly, the index
stores all the value tokens with their corresponding
Data Objects according to their data context.

The Value index is built from the Schema index,
Data index and XML data. It keeps the semantic con-
nectivity between the nodes of XML data to produce
an efficient performance for a query with value predi-
cates. It consists of all the object partition identifiers
associated with a set of Paths of Schema Object. For
each path, there are all the element tokens of only
the leaf nodes. The value tokens of the corresponding
element token are associated with their Data Objects.

Definition 11. (Value index) Consider a Value
index as VI = Oparty,..., Oparty, where Opart; is
an object partition identifier and k is the number of
object partitions. Consider for each object partition
identifier of VI as Opart; = Leaf(p1),..., Leaf(pm)
where each Leaf(pj) is a Path of Schema Object
exists in Opart; and m is the number of Path of
Schema Object. Let Leaf(pj)= eTt,..., €T, is a Path
of Schema Object consisting of a set of tokens of
leaf elements in the XML data and n is the total
number of element tokens. For each eT;, there is a
set of value token associated with its corresponding
Data Objects eT;= <vTi,{Do1,...,.Don}>,... , <vTy
ADo1;---sDon}> where y is the number of value to-
kens and n is the number of Data objects per each
value tokens.

Figure 3 depicts the Value index in only “Opart1”,
the rest of the partitions will have similar represen-
tation. “Opartl” has “pl” and “p2” as its Path of
Schema Object where each of them has the tokens
of the leaf elements “eT3, eT4” and “eT5, eT6, eT7,
eT8” respectively. It can be seen that “eT2” in “p2”
was not considered since it is an element token of
non-leaf node. The last level of this index is the as-
sociation of the value tokens and its associated Data
Objects <vT1,D,3> and <vT7, D,5> depicted in the
same figure.

The redundancy of the data within an XML docu-
ment increases the index size in most of the previous
works. In our index, this issue have been taken into
consideration as shown by Remark 1.

Remark 1. There is a single value token for all
matched values located in the same object partition,
same Path of Schema Object and having the same el-
ement tokens.

From Remark 1, we can see that the memory can
be saved thus, the searching time will be reduced as
well. Considering this remark will be more practi-
cal for the data that often has a redundancy. For

instance, in a small scale, let say the purchaseOrder
XML data has 10 shippers living in the same shipTo
address, it is more precise to ignore the redundant
data of the address and record the address only once.
In the large scale, this redundancy will affect the per-
formance of a query processed over the index nega-
tively. It is important to highlight that Data Objects
associated with each value token will assign the posi-
tion of that value’s parent node within the data as the
Definition 9. This feature will improve the efficiency
of processing the query by trimming the search space
in the Data index later.

4.3 Discussion

With both Schema index and Data index, ei-
ther single-path queries and branching queries
can be answered. For instance, consider
Q3 =“/purchaseOrder/shipTo [/street][/state]”,
the elements tokens of the query are “eT0” ,“eT1”,
“eT5” and “eT8®”. From the Schema index,* eT0”
is associated with (pl, Opartl), (p2, Opartl),
(p3, Opart2), (p4, Opart2), (p5, Opart3), eT1 is
associated with (pl, Opartl), (p2, Opartl) and eT5
and eT8 are associated with (p2, Opartl). To trim
the search space, we do an intersection based on
Opart between “eT0” and “eT1”, then between the
intersected result and each child of “eT1” separately
ie. “eT5” and “eT8”. The final result will be (p2,
Opartl). From the Data index, “dp2” and “dp4” are
retrieved based on the “p2” of the Schema index.
Since “dp2” and “dp4” consist of a set of Data
objects, the position of the query elements will be
retrieved from the Data Objects, which are located
in Opartl, by matching the element tokens of the
query with the element tokens of the Data objects.
The final results of the query would be “0, 1, 5, 8"
and “0, 9, 13, 16”.

The Value index in conjunction with Structural in-
dices can be used to evaluate arbitrary queries with
different predicates such as a value predicate, sin-
gle path ended with value predicates or a branched
path ended with value predicate. The functional-
ity of Value index will be discussed using this part
“shipTo[/street= "Waterdale Rd’ ” of the query Q3.
Since the Value index groups values of an XML doc-
ument within objects. By apply this semantic-based
technique, the search will be trimmed semantically
based on each objects. In the given query, the Schema
index of "street” is eT8 associated with (p2, Opartl).
This means that only Opartl is required. In addi-
tion, the index adds the Path of Schema Objects as
identifiers that assist in decreasing the search space

65

CRPIT Volume 137 - Database Technologies 2013

of the values. In our example, the search space will
be trimmed to those that have ”p2” within the par-
tition ”Opartl”. Another advantage is that instead
of preceding an aggressive string search looking for
matching values to the query condition, element to-
kens will eliminate irrelevant values. Thus, the condi-
tion "Waterdale Rd’ will be mapped to its value token
and then the token will be looked at from eT8 with-
out the need to scan all the value tokens within the
path ”p2”. The output of this index is the value to-
ken, which is "vT3” in the query, leading us to the
right Data Object which is D,2. The interest of find-
ing the Data Objects, i.e.” D,2”, is that only related
Data Objects will visit in the Data index to produce
the final results.

The design of the proposed indices has three fea-
tures to facilitate the evaluation of twig queries in
an optimum execution time. The indices are able
to: (i) preserve the details of parent-children elements
through the objects, (ii) preserve the details of all ob-
jects located in each path of the schema and data as in
Path of Schema Object and Path of Data Object, and
(ii) partition and keep links between interconnected
data based on object based semantics as stated in
Definition 2.

4.4 Algorithms

Our algorithm “ProcessQuery” is a recursive function
building decomposing a branched path into multiple
single paths. It applies the intersection based on the
objects from the Schema index of all query nodes “qN-
ode” located on the same query path. This process
will end up with intersected Schema index i_SI among
all the query nodes within the path to help us to use
the information of the Path of Schema Objects “p”
and the object “OPart” where the search will be done
on.
Then, it evaluates the path ending with a value
predicate using the function “EvaluateContent” and
the path without a value predicate is evaluated by “
EvaluateStructure”. Both EvaluateContent and Eval-
uateStructure are used in finding the XML node po-
sitions within the data. They are similar in their in-
dependent evaluation of each other, i.e. the whole
path can be processed completely by only one of them
without the need to the other. The only difference
between them is that EvaluateContent utilizes the
Value index for finding the candidate Data Objects
which hold the condition of the value predicate be-
fore the proceeding the structural search. Thus, we
can say that EvaluateStructure can do only the struc-
tural search whereas EvaluateContent can do both
structural and content search. The main advantage
of EvaluateContent is its capability to trim the search
space of scanned elements. The details of Evaluate-
Content will be shown later. After evaluating the
content and structure of the query and getting the
XML nodes positions, the result will merged through
MergeResult which keep the structural order of the
node and produce fine results. The function Eval-
uateContent can do two main functionalities. The
first is the content search which starts from line 1
and then embeds the structural search from line 8.
The content search uses Value index to retrieve only
participated Data Objects by filtering the value pred-
icate using the information coming from the Schema
index as “p” and “OPart” . After that, the struc-
tural search will be done on those XML nodes that
exist within the participated Data Objects. At line 8,
it goes through the related portion of the first Data
index that matches “p” to check the last D, of the

66

Input: qNode, ¢_SI ”current Schema index”,
path, depth
Output: Query nodes position within the data

1 if =gNode. Children then

2 path.Add(qNode);
i.SI « Intersect(c_SI,Schemalndex[qNode]);
foreach p of i_SI do

4 if gNode. ValuePredicate then

xNums <

EvaluateContent (p,path,Opart)

6 else

xNums <
EvaluateStructure(p,path,Opart);
8 end

9 res.Add(xNums);
10 end
11 return res;
12 end

13 1_ST <« Intersect(c_SI, Schemalndex[qNode]);
14 firstOccurrence < true;

15 path.Add(qNode);

16 foreach c in ¢Node.Children do

17 temp < ProcessQuery(c, i-SI, path,
depth+1); if firstOccurrence then

18 | result < temp; firstOccurrence <— false;

19 else

20 result < MergeResult(result, temp,

depth);
21 end
22 end

23 return result;

Algorithm 1: ProcessQuery

dp if it is matched with D, coming from Value in-
dex as line 10. The search space is narrowed to those
dp that end with thatD, of Value index. Then, at
line 21, each D, of Data index 2 will be visited with
regarding to D, of Data indexl as in line 22. As
its know that each D, consists of the tokens of the
nodes within that D, associated with their positions.
Lines 24-25, if a query node token is matched with a
node token of D, its position is added to the tempo-
ral result collection. Once the leaf node of the query
is reached as at line 38, the temporal result will be
added to the list of the final results.

5 Experiments

5.1 Environment set up

In order to study the improvement in CAS query pro-
cessing by our proposed indices, a series of experi-
ments was carried out. Our Value index performance
is compared with the standard value index with the
focus on the value predicates. The structural part of
the query in both methods is the same. We use our
Structure index including Schema index and Data in-
dex to process the structural part of the query and
the content part processing is done by both our Value
index and the standard value index.

A prototype system was implemented using
C#.Net. All XML indices in this paper were loaded
into RAM before running the queries, thus 10 cost of
reading the index data are not required. All the ex-
periments were conducted on an Intel Core 3.2 GHz
PC with 6.00 G RAM running Windows 7.

Proceedings of the Twenty-Fourth Australasian Database Conference (ADC 2013), Adelaide, Australia

Table 1: Different characteristics of each dataset

N

© ® N o »

10

12
13

14
15

16
17
18
19

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37
38
39
40
41
42
43

44
45
46
47

Input: p:”Path Of Schema Objcet”, quP:

"query path”, Opart: ”Object
partitions”

Output: XML nodes positions
foreach viObject in Valuelndex[OPart] do

viPath = viObject[p];
viToken =
viPath[quP[quP.Count-1].Token];
if liToken[quP[quP.Count-1].vPred] then
continue;
¢y= quP[quP.Count-1].vPred;
for vT; e viToken[q,] do
d = viToken|g,][i];
PathsOfDo = Datalndex1[p];
foreach dp in PathsOfDo do
if dp[dp.Count-1] != d then
continue;
TmpR = new List (); k = 0;
for D, € dp do
(find matched element tokens
continue from line 20 to 47);
end
if (R;.Count=quP.Count)
Result.Add(R;);
end
end

end
return Result;

object=Datalndex2[viObject];
foreach d.e object/D,,;] do

for eT; e d,.Tokens & k < quP.Count do
if eT;=quP[k]. Token then
R;.Add(d,.Pos[eT;]);
if £ > 0 then
if quP[k].Tag[0] != "/’ then
yp=nDepth|R;[R;.Count-1]];
yo.=nDepth[R;[R;.Count-2];
if y, /= y.+1 then
R;.Remove(R;.Count-1);
continue;
end
end
end
k++;
if k=quP.Count& quP[k-1].leaf
then
if R;.Count=quP.Count then
| R.Add(new (R;));
en
R;.RemoveAt(R;.Count-1);
k- -
end
if k=quP.Count || quP[k].leaf then
break;
end
if lquP[k].leaf then break;
end

end

Parameter DBLP Auction SigmodRecords
#Nodes 3332131 157 11527

Depth max. 6 5 6

#Fan-out 22 5 4

#Distinct Elements 36 32 11

Opart 8 2 2

Algorithm 2: EvaluateContent

5.2 Standard Value Indexing

In most past research, the standard indexing method
for values when value predicates exist in the CAS
queries is to index each value with its node position
id. When performing joins, a small amount of node
ids will be returned for further joins. We compare our
proposed value index with the standard value index.

5.3 Experiment Datasets

DBLP, Auction Data, and SigmodRecords were used
in our experiments and were obtained from XML
repository of University of Washington University of
Washington XML Repository (2002). Different char-
acteristics of each dataset is shown in Table 1.

5.4 Experiment Metrics

To evaluate the performance of our proposed algo-
rithms, two metrics were used. The first metric is
obtaining CPU cost by calculating the average exe-
cution times of a query. Secondly, the total number
of scanned elements is measured during a joining pro-
cess. This metric will provide a good reflection about
the ability of our algorithms to trim search space and
to skip portion of the data.

5.5 Experiment Criteria

Since the focus of this paper is the performance
of CAS queries, the evaluation considers the use of
both structural and content index on the queries.
To examine the structural part, we vary the type
of relationships Parent-Child (PC) or hybrid of PC
and Ancestor-Descendant (AD), and the number of
branches. To evaluate the content part, we con-
sider value predicates composing of numeric or string.
Added to these criteria, we included simple paths and
branch paths with values in the predicates.

5.6 Experiment Queries

Table 2 presents the evaluation queries. Each query
is coded “QXN”, where ‘X’ represents ‘S’ (Sigmod-
Records), ‘D’ (DBLP), or ‘A’ (Auction Data), and
‘N’ is the query number within the respective dataset.
The queries were selected to cover most combinations
of the evaluation criteria, thus, the sensitivity of the
query performance can be indicated to each criteria.
QD9 and QD11 are simple path queries whereas the
rest are branch queries. QD6 and QS5 contain only
PC relationship, while the rest contain hybrid edges
of PC and AD. We have a variety of branches number
in the branched queries. For example, QS1 and QS2
have two branches whilst QD3, QD4, and QD5 have
3,4,5 branches respectively. The type of value pred-
icates is also different among the queries, QA9 and
QS5 have path-value predicates while QA10, QS4,
and QS5 have path-branch-value predicates and the
rest are merely value predicates.

67

CRPIT Volume 137 - Database Technologies 2013

Table 2: Experiment of Queries

QXN Query pattern

QA1 //auction_info[/current_bid=* $620.00”|/time_left

QA2 /root/ /auction_info[/location=“ LOS ANGELES, CA”]/high_bidder/bidder_name

QA3 /root/listing[//location=% LOS ANGELES, CA”]/auction_info/time_left

QA4 //auction_info[/current_bid=* $620.00][/num_items=*“1”]/time_left

QA5 //auction_info[/current_bid=“$610.00"][/num_items=“1"][/started_at="* $100.00”]/time_left

QA6 //auction_info[/current_bid=“$610.00"][/num_items=“1"][/started_at=“$100.00"]
[/num_bids=“16"]/time_left

QA7 //auction_info[/current_bid=“$610.00][/num_items=“1"][/started_at=“$100.00"]
[/num_bids=“16"][/location=“Allentown, PA 18109 ”]/time_left

QA8 //listing[/seller_info/seller_name="* cubsfantony”]/auction_info/current_bid

QA9 //listing[/auction_info[/current_bid=“$620.00"][/num-items=“1"]] /bid_history/quantity

QS1 //issue[/volume=“11"]/number

QS2 //article[/title=“Architecture of Future Data Base Systems.”]//authors

QS3 /SigmodRecord|/issue[/volume=*“11"][/number=*“1”]/articles/ /title]

QsS4 /SigmodRecord/issue//article[/initPage=“30"][/endPage=“44"] /title

QS5 /SigmodRecord/issue[/articles/article[/endPage=“44"][/initPage=“30"]] /volume

QD1 //article[/author=“Frank Manola”]/title

QD2 //article[/editor=“Paul R. McJones”]/title

QD3 //article[/editor=“Paul R. McJones”|[/volume=“SRC1997-018"]/title

QD4 //article[/editor=“Paul R. McJones”][/journal=“Digital System Research Center Re-
port”]/year

QD5 //article[/editor=“Paul R. McJones”][/journal=“Digital System Research Center
Report”][/volume=“SRC1997-018”] /year

QD6 /dblp/article[/author="“Tor Helleseth”]/year

QD7 /dblp/inproceedings[/author=“Tor Helleseth”]/title//sub

QD8 /dblp/inproceedings/title[/i=%“C”]/sub

QD9 /dblp/inproceedings/title[/sub=“INF"]

QD10 /dblp/inproceedings/title[/sub=“INEF"]//sub

QD11 /dblp/inproceedings//i[/sub=“n, n”]

5.7 Performance Evaluation

In this section, the efficiency of the Value index which
is based on the objects has been studied. As men-
tioned above, the system supports search by content
and structure. To achieve this goal, our index pro- WStandard W Value Index
vides mechanisms to process the content and struc- 300
ture efficiently. Structure and Content Indexes are
combined to answer regular path queries with predi-
cates over values. 200 -

We rely on our indices in finding the value predi-
cates before finding and matching the node position.
The rationale is that content search normally results
in high selectivity. By performing content search first,
we can reduce the complexity of structural joins. A

=
=
I

L
=
I

content search based on the specified value predicates 04
comparison works as a filter prior to the structural QA1 QA2 QA3 QA4 QAS QA6 QAT QAS QA9
search.
(a) Auction data (Time is in microseconds)

5'7'1 CPU Time' WStandard ©Value Index
We compare the time performance of our object-based 150
value index with the standard value index. In Fig- L2
ure 4(a), the experiments run on Auction data set. 140
The queries represent a combination of different cri- 20
teria as mentioned in Section 5.6. 100

Our index is 2 to 4 orders of magnitude more ef- 20
ficient than the standard one in all queries. For in- i
stance, while our index takes about 0.1735 millisec- 2+
onds to retrieve one answer of QA7, the standard 22l :I 1
index, when querying data of the same size, takes 0 e ' s
almost 0.2518 milliseconds. The standard index per- et e e ®
forms well since it uses our structural index to search (b) SigmodRecords data (Time is in millisec-
the structural part of the query. However, our method onds)

performs better by combining the strength of object-
based structural index with the strength of object-
based Value index. The objects in our Value index
carry semantic meaning and in each value is stored
based on their paths and tokens within an object to
provide fast access to right values that match to the

Figure 4: The elapsed time for datasets

68

Proceedings of the Twenty-Fourth Australasian Database Conference (ADC 2013), Adelaide, Australia

WStandard ©Value Index

1600
1400
1200
1000
800
600 -
400
200

QD1 QD2 QD3 QD4 QD3 QD6 QD7

(a)

M Standard ©Value Index
45
40
35
30 -
25
20
15
10 + F————
0 4 T T T

QD8 QD9 QD10 QD11

(b)

Figure 5: The elapsed time for DBLP data set (in
milliseconds)

value predicates. This is in contrast to using the stan-
dard value which does not carry any semantic mean-
ing leading to consume the search time for finding the
right matched values.

Figures 5(a) and 5(b), show the execution time of
the queries evaluated over DBLP data set. Our exper-
iments reveal that our Value index outperforms the
standard value index. For example, QD6 retrieves 15
results from data of 3332131 node. Our index needs
about 600 milliseconds to produce the results while
the standard requires around 900 milliseconds. Since
the standard value index is node based index, it im-
plies that increasing the total number of nodes in-
creases the size of the data to scan and check. This is
because it does not have a specific technique assists
in skipping irrelevant portion of data which exists in
ours. Our Value index trims the search space based on
the objects. For instance, in QD6, our method needs
to access only the part of the data that related to “ar-
ticle node. However, the standard method searches
based on the node and needs to access many nodes
which do not participate in the final results.

The results of Figure 4(b) support the earlier ex-
periment outcomes. Our index took less time to eval-
uate the queries over SigmodRecords dataset. We can
notice that QS5 has a significant performance because
all the relationships between the query nodes are P-C
while other queries are hybrid of P-C and A-D. We
can observed a big difference in the performance be-
cause of the type of relationships. Our method gains
more benefits in improving the query performance
from P-C relationship than the standard does.

5.7.2 The total number of scanned elements.

The main purpose of this experiment is to indicate the
capability of our index to avoid scanning irrelevant
portion of the data.

Figure 6 is the total number of visited elements
during the evaluation of Auction data. The total
number in our index is reduced by 68% compared
to the standard index. As the same outcome, Fig-

ures. 7(a) and 7(b) shows that the total number of
visited elements are decreased by 59.6% and 77.7%
for DBLP and SigmodRecords respectively. This is
an evidence of the efficiency of exploiting the seman-
tics of XML data in constructing the Value index.
Since all the query nodes has a semantic connectiv-
ity between them that has a similar representation
with the data, our Value index utilizes this signifi-
cant which effect in the reduction the search space.

The total number of scanned elements is also af-
fected by the type of relationships. In QS5, the aver-
age reduction is 98.5% of the total number scanned by
each method. This leads us to a conclusion that the
high selectivity causing by P-C relationship reduce
the number of elements to check in order to produce
the result.

M Standard @ Value Index

350
300
250
200
150 |
100
50

QA1 QA2 QA3 QA1 QAS QA6 QAT QAS QA

Figure 6: The total number of scanned elements for
Auction data set

B Standard ©Valuemdex

3000000
4000000

3000000
2000000 +
1000000 1

0

QD1 QDX QD3 QD4 QD3 QD6

(a) DBLP dataset

M Standard ®Valueindex

30000
23000
20000
13000 -
10000
53000 +

Q81 Q82 Q83 Q84 Q85

(b) SigmodRecords dataset

Figure 7: The total number of scanned elements

5.7.3 Changing the number of branches.

We select QD5 from DBLP, with four branches and
then varying the number of branches from 2 to 4 as
in Figure 8. The CPU time to process the queries
is shown in Figure 9(a) whereas the total number of
checked elements are shown in Figure 9(b). It can
be seen that the CPU cost of both methods increases
as the number of branches in the queries increases.
However, the cost of standard value index is much
more than the cost of the Value index. This is because
that standard index needs to scan elements more than
ours as shown in Figure 9(b).

69

CRPIT Volume 137 - Database Technologies 2013

//article //article
/ year / year
/editor / /editor /journal /

(a) Two branches (b) Three branches

//article
// volume ear
/editor /journal / 4

(¢) Four branches

Figure 8: The query used in the experiment of chang-
ing the number of branches

1800
1600
1400 /
1200
1000 /4/
800
600
400 — g——

200
0

2 3 4

—#—standard value index

(a) The elapsed time in milliseconds

4500000
4000000
3500000
3000000
2500000
2000000 -
1500000
1000000 ~
500000 —

04

m standard

walue index

2 3 4

(b) The total number of scanned elements

Figure 9: Varying the number of branches

6 Conclusion and Future Work

This paper proposed the Structural index to handle
the structural part of CAS queries and the Content
index to handle the content part. The indices uti-
lized the semantics of XML schema and XML data
in their construction. In addition, this paper intro-
duced the query processing algorithms on the pro-
posed indices. The performance evaluation proves the
benefits gained from applying the semantic-based in-
dices in trimming the search space and avoid unneces-
sary data scanning. The evaluation results on differ-
ent XML datasets indicate that our proposed method
provides a performance improvement by applying the
semantic concepts in its Content index over the non
semantic index. Due to space limitation, we are not
able to describe the accuracy of our proposed index-
ing scheme in details within this paper. However, we
can report that based on the data sets that we have
used in this paper, the accuracy of the query results
is approximately 97%. The details of this accuracy

70

experiments by calculating the precision and recall
will be in the extended version of this paper. Our
future work will include other type of predicates. In
fact, Boolean predicates are an important part of the
query. Since they have not been widely investigated,
in the next work, we would like to focus on this part of
the queries especially when all the Boolean operators,
i.e. AND, OR, NOT, come in a single query.

References

Liang, Z.P Han, J.Y. &Qian, G.(2006)‘A
multiple-depth structural index for branching
query’,Information and Software Technology

12, 928-936.

Haw,S. &Lee, C. (2009)‘Extending path summary
and region encoding for efficient structural query
processing in native XML databases’. JSS, Elsevier
Inc.

Wu, H. Ling, T. W. Chen, B. &Xu,
L.(2011)‘TwigTable: Using Semantics in XML
Twig Pattern Query Processing’, Journal on Data
Semantics XV pp.102-129

Chen, Z. Gehrke, J. Korn, F. Koudas, N. Shanmuga-
sundaram &J. Srivastava, D. (2007)‘Index struc-
tures for matching XML twigs using relational
query processors’, Data & Knowledge Engineering
60, 283-302

Alghamdi, N. S. Rahayu, W. &Pardede, E. (2011),
Object-Based methodology for XML Data Parti-
tioning (OXDP), in ‘The 25th IEEE AINA’, Sin-
gapore, pp. 307-315.

Chung,J.K. Min, C.W. &Shim, K.(2002), APEX: an
adaptive path index for XML data. in ‘Proceedings
of ACM SIGMOD’, pp 121-132.

Goldman, R. &Widom, J.(1997), Dataguides :en-
abling query formulation and optimization in
semistructured databases.in ¢ Proceedings of the
23rd VLDB’, Athens, Greece, pp. 436-445.

Wang, H.S. Park, W. Fan, &P.S. Yu.(2003), ViST: a
dynamic index method for querying XML data by
tree structures.in ¢ ACM SIGMOD’, pp. 110-121.

Tatikonda, S. Parthasarathy, S. &Goyder,M.
(2007)LCS-Trim: Dynamic programming meets
XML indexing and querying. in ¢ VLDB Endow-
ment’, ACM, pp. 63-74.

Quanzhong, Li. &Bongki, M.(2001)Indexing and
querying XML data for regular path expressions.
in ‘Proceedings of 27th VLDB’, Rome, Italy, pp.
361-370.

Rizzolo, F. &Mendelzon, A.O.(2001)Indexing XML
Data with ToXin. in ‘Proceedings of 4th WebDB'’.

Zou, Q. Liu, S. &Chu, W. (2004)Ctree: A Compact
Tree for Indexing XML Data. in ‘WIDMO04’, Wash-
ington, DC, USA.

Monjurul Alom, B.M. Henskens,F. &Hannaford,
M.(2009)Querying Semistructured Data with Com-
pression in Distributed Environments.in ‘the 6th
Int. Conf. on Inf. Tech.: New Generations’.

University of Washington XML Repository, 2002.

http:// www.cs.washington.edu/research/xmldatasets

XML Schema Part 0: Primer Second Edition, 2004.
http:// www.w3.org/TR/xmlschema-0/

