
Software Safety: Where’s the Evidence?

John A McDermid
Department of Computer Science

University of York
Heslington, York, YO10 5DD, UK

John.McDermid@cs.york.ac.uk

Abstract
Standards for safety critical software usually either mandate or
recommend development and assessment techniques which are
deemed appropriate to reduce the risk of flaws in the software
contributing to accidents. These recommendations are usually
broken down into a number of “levels” of rigour, with the
highest levels being applied where the consequences of failure,
or risk, are most severe. The paper discusses the extent to which
it is possible to find evidence that there is a genuine variation in
risk with level, i.e. that the principles in the standards are sound,
and questions some of the assumptions underlying these
standards.

The paper then goes on to discuss the potential advantages of
using product-based evidence to demonstrate safety of software,
as opposed to relying on process prescription. It outlines current
work on developing and applying “evidence frameworks” as
alternatives to the process-based approach, and identifies some
of the challenges in gaining widespread acceptance of such
approaches.

Finally the paper discusses the ALARP principle, and what
would be necessary to show that risks associated with safety-
critical software have been reduced ALARP. The paper
concludes that there are some fundamental difficulties with
applying the ALARP principle to software, which neither the
process nor evidence-based approaches to demonstrating
software safety can readily resolve..

Keywords: Safety critical software, software safety evidence,
the ALARP principle.

1 Introduction

This paper presents a brief review of “accepted wisdom”
in the development of software for safety critical systems
then poses two questions about evidence. First, it
questions whether or not there is evidence that the
accepted “wisdom” is actually effective. Second, it asks
what would constitute effective of evidence of software
safety. The paper then goes on to question how the
ALARP principle can be applied to software.

The aim of the paper is to stimulate debate on a number
of key issues in dealing with the safety of software, and
does not purport to present “all the answers”. The paper
will have served its purpose if it leads people to question
the basis of existing standards and practices.

Copyright © 2001, Australian Computer Society, Inc. This
paper appeared at the 6th Australian Workshop on Industrial
Experience with Safety Critical Systems and Software (SCS
’01), Brisbane. Conferences in Research and Practice in
Information Technology, Vol. 3 P Lindsay, Ed. Reproduction
for academic, not-for profit purposes permitted provided this
text is included.

2 Evidence for Process Based Standards

There is a large range of standards for safety critical
software, and the interested reader is referred to Hermann
(1999) for an extensive review. These standards vary in
their details, but most adopt a similar approach to dealing
with safety – by recommending or prescribing
development processes and methods.

2.1 Approach of the Standards

Software safety standards do not normally define a
“single” software development process, but recommend
processes and practices to be used to achieve different
“levels” of safety. Most standards base their guidance on
Safety Integrity Levels (SILs) (IEC 1999, MoD 1996,
ADoD 1998), although the practice in civil aerospace is
to refer to Development Assurance Levels (DALs)
(RTCA 1992).

Most of the standards present, in tabular form or
equivalent, lists of mandated or recommended techniques
for each stage of the process. The details vary, for
example, in UK Defence Standard (DS) 00-55 (MoD
1997) identifies methods as mandatory (M) or allows two
different, but reasonably well-defined, forms of
justification (J1 and J2) for not using particular
techniques or classes of technique. In contrast, IEC 61508
uses the three primary classifications: highly
recommended (HR), recommended (R) or not
recommended (NR). Failure to use a HR method has to
be justified – but no idea is given as to what is a valid
justification. DO178B allows flexibility, although in a
rather different form, by accepting alternative techniques
with the justification that they are as effective as those
they are replacing.

At the level of methods there are some commonalities,
and some variation. DS 00-55 and DefAust 5679 place
significant emphasis on formal methods. IEC 61508
identifies a large range of techniques, including formal
methods. In contrast DO178B stresses human reviews
and rigorous testing.

The idea of prescribing or proscribing methods based on
SIL or DAL is now quite widespread, and has to be
viewed as the “accepted wisdom”. However there is a
growing concern about this “wisdom”. Several authors
have queried the rules for allocating SILs, and even
whether or not the concept is meaningful (Lindsay and
McDermid 1997, Fowler 2000, Redmill 2000). Our aim
here is not to extend this debate, but to consider whether
or not the process pre-/proscriptions yield better, i.e.
safer, software in practice.

2.2 Evidence for the Standards

The rationale for defining processes is complex, but there
are two key assumptions:

• the processes for the higher SILs or DALs produce
“better” software;

• the processes for the higher SILs or DALs are more
expensive, hence it is inappropriate to use them
unless the consequences of failure are severe.

As these are assumptions, and at least some of the
standards have been used for a number of years, it is
interesting to seek information to try to confirm these
assumptions. Although these seem to be reasonable
assumptions, the facts do not necessarily bear them out.
Unfortunately, as cost and other data is sensitive, much of
what we report is necessarily anecdotal.

There is some evidence (Shooman 1996) that airborne
software developed according to DO178B and using its
predecessor DO178A has a hazardous failure rate of
about 10-7 per flying hour. This not enough for the most
critical applications, i.e. level A, but is acceptable for
level B. Note that this is hazardous failures – there is a
rather higher level of nuisance failures. This suggests that
the techniques are effective – or does it?

A more detailed analysis (some of which is contained in
Shooman’s paper) suggests little correlation with the
“obvious” process factors. For example the programming
language seems to have little bearing on the failure rate –
indeed the author is aware of one system written in
assembler which has had over 20,000,000 flying hours
without hazardous failures. In general, there is little
evidence that software of different SILs or DALs does
have failures rates in “SIL/DAL order”. Indeed what
evidence there is (albeit mostly anecdotal) suggests that
the most significant factor in achieving low hazardous
failure rates is domain knowledge. This should be
unsurprising as there is considerable evidence that the
major factor in operational failures is requirements errors,
and these are more likely to be removed by people who
understand the domain.

Such a limited assessment cannot be taken as conclusive,
but the evidence does not support the assumptions that
the processes for the higher SILs/DALs produce software
with lower failure rates. At minimum the assumption
seems questionable.

There is also the issue of cost. Some recent data for Ada
projects (Ada UK 2000) shows no significant cost
variations between SILs 0, 2 and 3. In these cases the
software was produced at around 5 LoC per person day,
measured from software requirements to the end of unit
test (the system independent part of the process). Also the
author is aware of projects where “restrictive” practices
of the higher SIL developments were migrated to lower
levels, reducing the high in-process error rates being seen
in the lower SIL developments. In effect the “restrictions”
removed opportunities for error more than they slowed
down the work. Of course there are all sorts of factors
which influence such figures, e.g. were there more
competent staff working on the more critical code?

Again, this assessment cannot be taken to be definitive,
but is does challenge the assumption that the higher SIL
processes are more costly, and thus the basis for using
SILs or DALs in the first place.

This discussion has deliberately been at a high level. It
would be possible to discuss the merits and demerits of
particular techniques, e.g. the MC/DC testing criterion in
DO178B. However considering these issues would
detract from the main aim of the paper, but the interested
reader is referred to McDermid and Pumfrey (2001).

2.3 Observations

Taken to its logical conclusion the above might seem to
be implying that the standards are worthless, and we
should have a “free for all” in software development. This
is not the right conclusion to draw.

The standards do contain a lot of sensible advice and
guidance (although some parts are questionable) albeit
not really about safety. The standards are effectively
concerned with quality and repeatability – both laudable
aims. However the interested reader should try reading,
say DS 00-55 and Part 3 of IEC 61508, and try to identify
the techniques that focus on safety – or even the word
safety! It seems to the author, and others (Leveson 2001)
that there is poor correlation between standards and
observed hazardous failure rates simply because the
standards do not address safety issues. This, of course,
raises the question of how to produce standards which are
more concerned with safety.

3 Evidence based approaches

The approach proposed here is to seek explicit evidence
of safety, with respect to potentially hazardous failure
modes of the software, rather than make a “general
appeal” to the quality of the process.

We outline the principles of such an approach, then
discuss current work on development of “evidence based”
software safety standards, as an alternative to process
based standards.

3.1 Concept of software safety evidence

The principle of using software safety evidence is simple.
First, identify the potential failure modes of software
which can give rise to, or contribute to, hazards in the
system context. Second, provide evidence that these
failure modes:

• Cannot occur, or

• Are acceptably unlikely to occur, or

• Are detected and mitigated so that their effects
are acceptable.

It other words software should be treated like any other
“component” of a system, at least in principle. We briefly
amplify on what this concept means and implies in
principle, then consider one of the key practical issues in
having an “evidence based” software safety process.

To treat software like other technologies, it is necessary
to identify and allocate safety requirements and targets to
software. Civil aerospace documents such as ARP 4761
(SAE 1996) require the use of fault trees to allocate
requirements to sub-systems. Fault trees are constructed
for each hazard, and the allocated requirements reflect the
acceptable probability of sub-system (or component)
failure modes as they contribute to that hazard. However
ARP 4761 does not apply this principle to software
(indeed it just allocates a DAL to a software system and
places a failure probability of 0 in the tree!). All that is
being suggested is that this principle is extended to
software. However, to do this, it is necessary to determine
the potential failure modes of the software.

There are various ways of identifying potential failure
modes of software including application of functional
failure analysis (FFA) (SAE 1996) and adaptations of
HAZOP, e.g. SHARD (McDermid and Pumfrey 1994).
These techniques identify potential failure modes and
required failure mitigation mechanisms some of which
will be implemented in software, i.e. the give rise to
derived software safety requirements. Acceptable rates of
occurrence of such failure events can be calculated from
the fault trees (Lindsay et al 2000). This process defines
the software safety requirements – but what of the
evidence that the software meets these requirements?

Techniques such as SHARD define classes of potentially
hazardous failure modes, e.g. omission, late. Evidence
can be provided in terms of these classes – for example,
evidence that there is no omission of a function in some
schedulable item of software would comprise:

• The results of control flow analysis to show that
the function is always called (under the relevant
conditions);

• The results of schedulability analysis to show
that the scheduable item is always run called
(under the relevant conditions);

• The results of integrity analysis to show that the
software in questions, and the scheduler data
structures cannot be corrupted by other software.

In practice the details of the evidence would vary with the
system design, e.g. the third point might be addressed by
static analysis of the other application code, or analysis of
the hardware and operating system if there is hardware
supported memory partitioning.

This idea can be expanded to all the evidence types,
although there is not sufficient space to do that here (a
Doctoral student in York is working on a complete
characterisation of such evidence types).

There is one practical point which takes us right back to
the SIL/DAL debate – how much evidence, of what type,
is needed. Again there is a simple answer in principle –
for safety related code, a single item of evidence is
required for each failure mode of concern. For safety
critical code, two diverse items of evidence are needed,
e.g. from test and from static analysis.

The concepts are quite straightforward, but it becomes
rather more complex when one tries to put the ideas into
practice. It is thus instructive to consider current attempts
to produce evidence-based software safety standards, and
to validate the approach.

3.2 Current work

The author’s initial ideas on an evidence-based approach
were developed whilst trying to develop a safety case for
a legacy air traffic control system. At one level this work
was satisfactory, i.e. a workable safety case resulted, but
it became clear that a more detailed consideration of the
principles was required. Fortunately the opportunity to do
this arose in two different areas.

The UK Civil Aviation Authority (CAA) contributed to
the development of DO178B, but does not believe it
appropriate to use that standard for ground based systems.
Instead they built on the work mentioned above to
develop new guidelines for assessing software safety.
These guidelines, known as SW01, are part of CAP 670
(CAA 1998) which deals with the design and assessment
of ground based services including air traffic control
systems. The first serious trial of this material is on the
New en route Centre (NERC) at Swanwick, although it is
too early to say whether or not the ideas are effective.

More recently, the author has been working for the
European Space Agency (ESA) trying to find systematic
ways of combining techniques to show the dependability
of space systems (McDermid, Wills and Henry 2000).
This work has enabled some of the ideas to be refined,
and there is the possibility of being able to conduct some
experiments to compare the cost and effectiveness of a
number of different combinations of technique, in the
foreseeable future (although this depends on ESA being
prepared to fund the next stage of work).

Thus the ideas of an evidence based approach are still in
their infancy, but there is some substantive work being
undertaken and there is a reasonable change of getting
some feedback on the viability of the approach in the near
future.

3.3 Observations

The concept of an evidence based approach seems to be
sound – after all, it is only saying that we should work out
requirements on the software and provide evidence that
we have met the requirements. However there are a lot of
“implementation details” to address to establish a method
of assessment based on these ideas. Also, we cannot
completely escape process-based evidence.

The evidence-based approach relies on some (a minimum
amount) of process evidence. For example, it is necessary
to know what the installed system configuration is, that
the test results correspond to that configuration, and so
on. More technically, there are issues of requirements
validity which require judgements about the rigour of the
process. However the process requirements are simpler
and more defensible than in standards such as IEC 61508.

There is inevitably still some judgement about what
constitutes an acceptable set of evidence for different
types of software requirement. However the approach of
linking evidence to software failure mode classes makes
this much less contentious. For example, static control
flow analysis tells us about omission failures, but not
about value domain failures – so it is useful evidence in
the former case but not the latter. By focussing on failure
modes we are able to determine much more clearly what
the evidence is for, which is a welcome change to the
long lists of techniques in standards such as IEC 61508.

It may be felt that the evidence based approach has lost
much of what is “good practice”. This needn’t be so. The
requirement to demonstrate safety should constrain the
development process as little as possible. This should
therefore allow project managers to use best practice, and
to develop software cost-effectively – so long as they do
so in such a way that safety evidence can be obtained in a
trustworthy manner. Indeed there is much in the existing
standards which would be of value in a good practice
guide for high integrity software – it just has little to do
with demonstrating safety.

It might also be thought that the evidence based approach
might weaken standards. This needn’t be so. The use of
static analysis, high levels of test coverage, and so on are
still relevant – where they provide safety evidence. If
anything the approach might strengthen standards as the
reason for using the technique is more obvious. It may
also shed light on some of the COTS issues. If the
evidence can be found then it is reasonable to use COTS
software; if not, then there is a judgement to be made
whether or not the risk is acceptable – which brings us to
the ALARP principle.

4 Software and the ALARP principle

The principle of reducing risks as low as reasonably
practicable (ALARP) is enshrined in UK Law, and has
been adopted as a risk acceptance principle by various
other groups, e.g. the Swedish Defence Materiel Agency.
The question is how does this apply to software and relate
to evidence based approaches to software safety.

4.1 The ALARP principle

The ALARP principle arose out of a judgement made by
Lord Asquith in 1949. It is worth quoting the judgement
as it makes the concept clear:

 “Reasonably practicable is a narrower term than
physically possible because it seems to imply that a
computation must be made in which the quantum of
risk is placed on one scale and the sacrifice involved in
the measures necessary for averting the risk (whether in
money, time or trouble) is placed on the other. If it be
shown that there is a gross disproportion between them
– the risk be insignificant in relation to the sacrifice –
the defendants discharge the onus upon them”

This is simply a cost-benefit argument – if the cost of an
action greatly outweighs the benefit, then there is no need
to undertake it. This seems obvious and unarguable.

In practice the concept is refined, and distinctions are
made between scenarios where the cost merely has to be
disproportionate, rather than grossly disproportionate, for
the risk reduction action to be unnecessary. The concept
of ALARP has been formalised using patterns in the goal
structuring notation (GSN) and the interested reader is
referred to Kelly (1999) for a more complete exposition
of the ideas, and a discussion of ways of articulating
ALARP safety arguments in GSN patterns.

4.2 ALARP and software

At one level the ALARP principle seems like common
sense, and would be expected to be broadly applicable.
However people have found difficulty in applying it to
software (and in some other circumstances, e.g. ordnance
and explosives). Why should this be?

There seem to be three related issues which make it
difficult to apply the ALARP principle to software:

1. Most of the techniques we are interested in, e.g.
rigorous testing, provide information about risk,
they do not reduce risk (in this sense ALARP
simply doesn’t apply);

2. Even if we assume we will remove faults we
find by carrying out some analysis we cannot
predict what these faults will be in advance – so
we cannot know the benefit of applying the
technique in advance so there is no prior basis to
make the judgement whether or not application
of the technique complies with ALARP;

3. Less obviously, there is an implicit assumption
behind the ALARP principle that determining
risk is cheap, but that reducing risk is expensive.
This is not the case for software – finding the
problems through testing, etc. is the expensive
part of the process, and writing the code is only
5-10% of the cost.

The above suggests that not only is it hard to apply
ALARP to software, it may not be sensible. This is
awkward, as (at least in the UK) there is a legal obligation
to do so!

Perhaps more realistically, the above says that we cannot
apply ALARP in a quantified manner and we should
instead look for qualitative arguments to decide when risk
has been reduced ALARP. In other areas which have
similar problems the issue is usually resolved by appeal
to standards, e.g. for design of pressure vessels whose
probability of rupture cannot be predicted. Note that, in
this case, we are appealing to a product standard, not the
sort of standard which we discussed in section 2!

4.3 Observations

It is not obvious how to resolve the “ALARP dilemma”
for software. It is unlikely that we could produce product-
specific standards as is done in other disciplines, as there
are too many products, and technology moves to fast.

The evidence based approach may provide a suitable way
out of the dilemma but there will still be judgements
about what is an appropriate level (depth) of evidence.

However, there may be a simpler resolution – which is to
forget about ALARP! Lord Asquith’s judgement, and
ALARP, applies in criminal law. Civil law will normally
impose more stringent requirements, e.g. to employ “all
due diligence”, which will typically mean doing that
which is possible, not “merely” that which is reasonably
practicable. This would suggest a much more “absolutist”
view, and again the evidence based approach might be a
way of reaching a consensus on such standards.

5 Conclusions

There is growing concern that the current set of software
safety standards are inadequate or inappropriate. This
paper has highlighted some fundamental issues, but it
could also have considered problems of dealing with
legacy and COTS code, and many more.

It has been suggested that an evidence based approach
may be better than the use of the current “accepted
wisdom” in process based standards. Whilst, in this
paper, it has only been possible to sketch the basic ideas,
there are several more complete expositions of the ideas
being developed and experimentally evaluated. It is
hoped that this might, in time, become the basis for a
consensus on software safety (McDermid and Pumfrey
2001).

There are legal requirements in some countries to apply
the ALARP principle. However there is considerable
difficulty in seeing how the principle applies to software.
Almost undoubtedly any application of the principle will
involve judgements about what constitutes “good
practice” rather than quantified assessments of risk and
benefit. However it may be simpler to avoid the
difficulties and to think in terms of “best practice” as
typically required by civil law. Put another way, it may be
helpful to take a legal standpoint, rather than a technical
risk perspective, when trying to determine what are
appropriate methods for designing or assessing safety-
critical software. There is some reason for believing that
the evidence based approach might be a better basis for
gaining consensus on such techniques, but it will be some
time before this hypothesis can be validated.

6 References

ADA UK (2000): The Contribution of the Ada Language
to System Development A Market Survey, available
from www.adauk.org.uk.

ADOD (1998):, Australian Defence Standard Def(Aust)
5679: Procurement of Computer-based Safety
Critical Systems,. Australian Department of Defence.

CAA (1998): CAP670: Air Traffic Services Safety
Requirements, Civil Aviation Authority.

FOWLER, D. (2000): Application of IEC61508 to Air
Traffic Management and Similar Complex Critical
Systems - Methods and Mythology. in Lessons in
System Safety: Proceedings of the Eighth Safety-
Critical Systems Symposium, 226-245 REDMILL F.
and ANDERSON A. (eds) Southampton, UK,
Springer Verlag

HERMANN D.S. (1999): Software Safety and
Reliability, IEEE Computer Society Press.

IEC (1999): IEC 61508: Fundamental Safety of Electrical
/Electronic/Programmable Electronic Safety Related
Systems. International Electrotechnical Commission.

KELLY T.P. (1999): Arguing Safety – A Systematic
Approach to Managing Safety Cases, DPhil Thesis,
Department of Computer Science, University of
York.

LEVESON N.G. (2001): Private Communication.

LINDSAY, P.A. and MCDERMID, J.A. (1997): A
Systematic Approach to Software Safety Integrity
Levels. in Proceedings of the 16th International
Conference on Computer Safety (SAFECOMP 97),
York, 70-82, DANEIL P (ed), Springer Verlag.

LINDSAY, P., McDERMID, J. A. and TOMBS, D.
(2000) Deriving quantified safety requirements in
complex systems. In Proc 19th Int Conf on Computer
Safety, Reliability and Security (SAFECOMP 2000),
Rotterdam. 117-130. KOORNNEEF, F. (ed). LNCS
1943. Springer Verlag.

MCDERMID, J.A and PUMFREY D.J. (1994): A
Development of Hazard Analysis to aid Software
Design. in COMPASS '94: Proceedings of the Ninth
Annual Conference on Computer Assurance, NIST
Gaithersburg MD, IEEE Computer Society Press.

MCDERMID, J.A and PUMFREY D.J. (2001): Software
Safety: Why is there no Consensus?, In Proc. of
ISSC 2001, Huntsville, System Safety Society.

MCDERMID J.A WILLS S.C.B. and HENRY G.K.
(2000): Combining Various Approaches for the
Development of Critical Software in Space Systems,
European Space Agency.

MOD (1996) Defence Standard 00-56 Issue 2: Safety
Management Requirements for Defence Systems. UK
Ministry of Defence.

MOD (1997): Defence Standard 00-55: Requirements for
Safety Related Software in Defence Equipment, UK
Ministry of Defence.

REDMILL, F. (2000): Safety Integrity Levels - Theory
and Problems. in Lessons in System Safety:
Proceedings of the Eighth Safety-Critical Systems
Symposium, Southampton, 1-20 REDMILL F. and
ANDERSON A. (eds) Southampton, UK, Springer
Verlag

RTCA (1992): Software Considerations in Airborne
Systems and Equipment Certification, RTCA/DO-
178B, Radio Technical Commission for Aeronautics.

SAE (1996): ARP 4761: Guidelines and Methods for
Conducting the Safety Assessment Process on Civil
Airborne Systems and Equipment, Society of
Automotive Engineers, Inc.

SHOOMAN, M.L. (1996): Avionics Software Problem
Occurrence Rates. 53-64, IEEE Computer Society
Press.

