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Abstract

We present a simple construction and analysis
of an Ω(log logN) integrality gap for the well-
known Sparsest Cut semi-definite program (SDP).
This holds for the uniform demands version (i.e.
edge expansion). The same quantitative gap was
proved earlier by Devanur, Khot, Saket, and Vish-
noi [STOC 2006], following an integrality gap for
non-uniform demands due to Khot and Vishnoi
[FOCS 2005]. These previous constructions in-
volve a complicated SDP solution and analysis,
while our gap instance, vector solution, and anal-
ysis are somewhat simpler and more intuitive.

Furthermore, our approach is rather general,
and provides a variety of different gap exam-
ples derived from quotients of the hypercube. It
also illustrates why the lower bound is stuck at
Ω(log logN), and why new ideas are needed in or-
der to derive stronger examples.
Keywords: sparsest cut, semidefinite program-
ming, integrality gap

1 Introduction

Certainly the notion of graph expansion plays a
central role in the modern theory of computation.
Moreover, given an input graph G = (V,E), the
computational problem of computing the least ex-
panding set in G, or the extent to which G is an
expander, is a fundamental one in algorithm de-
sign. If we let E(S, S̄) denote the set of edges
between S ⊆ V and its complement and define

Φ(G) = min

{
|E(S, S̄)|
|S||S̄|

: S ⊆ V
}
,

then calculating Φ(G) (and the set which achieves
the minimum) if the well-known uniform Sparsest
Cut problem. Since the problem is NP-hard, much
recent work has focused on approximating Φ(G).
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The first such algorithm, due to Leighton and
Rao [10], achieved an O(logN)-approximation,
where N = |V |, and was based on a linear pro-
gramming relaxation that computes an all-pairs
multi-commodity flow in G. Later, Linial, Lon-
don, and Rabinovich [12], and Aumann and Ra-
bani [3], found a connection between rounding this
linear programming (and its generalizations) and
the problem of embedding finite metric spaces into
L1.

Around this time, a natural semi-definite pro-
gramming (SDP) relaxation was proposed. This
relaxation can be written succinctly as

SDP(G) = min{
∑
uv∈E ‖xu − xv‖2∑
u,v∈V ‖xu − xv‖2

:

‖xu − xv‖2 ≤ ‖xu − xw‖2 + ‖xw − xv‖2 ∀u, v, w ∈ V }

where the minimum ranges over all vectors
{xu}u∈V ⊆ RN−1. The latter constraints are re-
ferred to alternatively as the “negative-type in-
equalities,” the “`22 inequalities,” or the “squared
triangle inequalities,” and the geometric con-
straints they place on the solution are still poorly
understood.

In fact, Goemans and Linial [5, 11] conjectured
that the integrality gap of this relaxation is only
O(1) (in fact, they conjectured that a more gen-
eral “non-uniform” version of the problem satis-
fied this bound). In a seminal work of Arora, Rao,
and Vazirani [2], it was shown that the integral-
ity gap is at most O(

√
logN), but the question

of lower bounds on the integrality gap remained
open, largely because of the difficulty of produc-
ing interesting systems of vectors that satisfied the
`22 inequalities.

Finally, in a remarkable paper, Khot and Vish-
noi [9] disproved the non-uniform Goemans-Linial
conjecture using a connection with the Unique
Games conjecture [7]. A year later, Devanur,
Khot, Saket, and Vishnoi [4] showed how one can
obtain a gap for the uniform version defined above.
Their quantitative lower bound is Ω(log logN),
and the exponential gap between this and the
O(
√

logN) upper bound still remains.

Problematically, both the constructions of [9]
and [4] are shrouded in mystery. The construction



and analysis have often been referred to as “diffi-
cult,” “impenetrable,” “extremely technical,” and
“magic” (the last description coming from the au-
thors themselves). The goal of the present work
is to present a simple, self-contained construction
and analysis of an Ω(log logN) integrality gap.
Our inputs instances, vector solutions, and anal-
ysis are all simpler and more intuitive than their
counterparts in [9] and [4].
We note that in a recent paper, Raghavendra and
Steurer [13] independently showed how to obtain
integrality gaps for a certain hierarchy of SDP re-
laxations for the Sparsest Cut problem with uni-
form demands. While their integrality gap con-
struction is similar to ours, their analysis and pa-
rameters are substantially different.

It is difficult to overestimate the importance
of the Sparsest Cut problem, the preceding SDP,
and its place in the larger theory of approxima-
tion algorithms. We mention, first of all, that the
algorithm and analysis of [2] drove a huge wave
of new results in approximation algorithms. Fur-
thermore, the Sparsest Cut problem and the anal-
ysis of this SDP were some of the primary driving
forces in the field of metric embeddings, and led
to a number of beautiful results and connections.
The SDP combines the flow-based constraints of
the Leighton-Rao LP, together with the second
(Laplacian) eigenvalue bound used in spectral par-
titioning (see [2] and also Section 7), and in this
sense represents a new frontier in algorithm design.

Finally, we mention that the uniform Spars-
est Cut problem is still very poorly understood
from the standpoint of approximation algorithms.
It is known to be hard to approximate within
1 + ε0, for some small constant ε0 > 0, unless
NP has subexponential-time algorithms [1], but
no better lower bound is known, even assuming
the unique games conjecture. On the other hand,
as we previously mentioned, the best upper bound
is O(

√
logN).

1.1 Outline, and an intuitive overview

Our gap instances are simply quotients of the
standard hypercube—which we will represent by
Qn = {−1√

n
, 1√

n
}n—under some action by permu-

tations of the coordinates. The sparsity of cuts in
these graphs was studied by Khot and Naor [8],
and those authors also suggested them as a possi-
ble source for integrality gaps.

For instance, consider the cyclic shift operator
σ(x1, x2, . . . , xn) = (x2, . . . , xn, x1), and define the
quotient metric

d(u, v) = min
{
‖u− σiv‖1 : i = 0, 1, . . . , n− 1

}
,

which is clearly σ-invariant, i.e. d(u, v) =
d(σu, v) = d(u, σv), and hence actually a metric
on the orbits of Qn under the action of σ. It is
straightforward to verify that d satisfies the trian-
gle inequality.

Our approach is simply to define vectors
{xu}u∈Qn such that ‖xu − xv‖2 ≈ d(u, v) holds

for all u, v ∈ P, where P is a certain “pseudoran-
dom” subset of Qn, and |Qn \ P| = o(|Qn|). We
use this connection (and the fact that d is a metric)
to prove the triangle inequalities for {xu}u∈P . We
then map all the points of Qn\P to some fixed xu0

for u0 ∈ P. Being such a small fraction of points,
their contribution to the SDP is inconsequential.

For cyclic shifts, our vector solution is essen-
tially the following,

xu =
1√
n

n−1∑
i=0

(σiu)⊗t, (1)

for some small t = O(1) (see Section 3 for a more
detailed overview). In general, we simply average
over the action of a group, and take small tensor
powers (see Section 2 for a review of tensor prod-
ucts).

Now, our P is essentially the set of points
whose orbits are not too self-correlated, e.g. points
u ∈ Qn with 〈u, σiu〉 ≤ n−1/3, say, for every i ∈
{1, 2, . . . , n−1}. To show that d(u, v) ≈ ‖xu−xv‖2
for u, v ∈ P, we will assume that ‖xu‖ = 1 for ev-
ery u ∈ P (this is almost true, by virtue of the
definition of P). In this case, it suffices to prove
that 1− 〈xu, xv〉 ≈ 1− λ(u, v), where

λ(u, v) = max
{
〈u, σiv〉 : i = 0, 1, . . . , n− 1

}
is the associated “quotient inner product.”

To see that this holds, we write

〈xu, xv〉 =

n−1∑
i=0

〈u, σiv〉t. (2)

Now, if λ(u, v) ≥ 1− δ, then 〈xu, xv〉 ≥ (1− δ)t ≥
1− δt. On the other hand, if 〈xu, xv〉 ≥ 1− δ, we
need to find a single i ∈ [n] for which 〈u, σiv〉 ≈
〈xu, xv〉. Since we are taking tth powers in (2),
any small inner products 〈u, σjv〉 are dampened
out. But if there were two distinct indices i, j for
which 〈u, σiv〉 and 〈u, σjv〉 were both moderately
large, then 〈u, σi−ju〉 would also be large, which
doesn’t happen because u ∈ P. Hence 〈xu, xv〉 can
only be close to 1 if the contribution comes almost
entirely from one shift. This matching property is
precisely what yields the triangle inequalities.

Outline. A more precise version of this argument
for cyclic shifts is presented in Section 3, while the
full argument (and for general quotients) is given
in Section 4. In Section ??, we discuss why vector
solutions like (1) are probably insufficient for go-
ing beyond a gap of Ω(log logN). It is suggested
that the reader first review Section 2 for some def-
initions and terminology.

In Section 6, we consider group actions where
the groups are quite large (e.g. exp(

√
n)) so that

(1) will no longer work, but a different embedding
succeeds in giving a valid vector solution. Unfortu-
nately, it is also fairly easy to see that this is exam-
ple has an integrality gap of O(log logN), but the
technique may be useful for future constructions.
Finally, in Section 7, we discuss the SDP dual and
give some open questions whose resolution would
further simplify integrality gap constructions.



2 Preliminaries

We first discuss some preliminary notions and the-
orems that will be used throughout the paper.
Asymptotic notation. For expressions A and
B, we will use the notation A . B to denote A =
O(B), and A ≈ B to denote the conjunction of
A . B and A & B.

Sparsity of graphs. We will consider undirected
graphs G = (V,E) where every edge (u, v) has a
non-negative weight w(u, v). For any subset E′ ⊆
E of edges, we write w(E′) =

∑
e∈E′ w(e). For

two sets S, T ⊆ V , we write E(S, T ) for the set of
edges with one endpoint in S and one in T .

For a subset S ⊆ V , we use

Φ(S) =
w(E(S, S̄))

|S||S̄|

to denote the sparsity of S. We then write Φ(G) =
minS⊆V Φ(S) for the sparsest cut value of G.

We will be particularly interested in graphs de-
rived from the (unweighted) n-dimensional hyper-

cube Qn =
{
−1√
n
, 1√

n

}n
. We will use Qn to de-

note the set of vertices in the n-cube, and E(Qn)
to denote the set of edges. The classical discrete
isoperimetric inequality shows that if we write
Si = {x ∈ Qn : xi < 0}, then for every i ∈ [n],

Φ(Qn) = Φ(Si) =
4|E(Si, S̄i)|
|Qn|2

≈ |Qn|−1.

A well-known theorem of Kahn, Kalai, and
Linial [6] then asserts the following.

Theorem 2.1 (KKL Theorem). For any S ⊆ Qn,
there exists an i ∈ [n] for which

|E(S, S̄) ∩ E(Si, S̄i)|
|S||S̄|

&
log n

n
Φ(Qn).

Weighted “quotients” of the cube. Let Γ be
any group acting on [n] = {1, 2, . . . , n} by per-
mutations. We can naturally extend Γ to act on
Qn via π(x1, . . . , xn) = (xπ(1), . . . , xπ(n)) for any
π ∈ Γ. For an element u ∈ Qn, we use Γu to de-
note the Γ-orbit of u. We refer to a subset S ⊆ Qn
as Γ-invariant if ΓS = S.

We define a weighted graph Qn/Γ as follows.
The vertices are simply those of Qn, and the edges
are E(Qn) ∪E′, where E′ = {(u, v) : u ∈ Γv}. We
define

w(e) =

{
1 e ∈ E(Qn)
22n e ∈ E′.

The point of this choice is to ensure that
Φ(Qn/Γ) = Φ(S) is always achieved by a Γ-
invariant set S, since separating any Γ-orbit in-
volves cutting an edge of very large value. (Note
that, because we are only using weights which are
polynomial in the graph size, our gap examples
can easily be made unweighted.)

We recall that Γ is said to act transitively on [n]
if for every i, j ∈ [n], there exists a permutation
π ∈ Γ with π(i) = j. From Theorem 2.1, one can
easily derive the following.

Theorem 2.2 (Transitive actions). If Γ acts tran-
sitively on [n], then Φ(Qn/Γ) & Φ(Qn) log n.

Proof. We know that Φ(Qn/Γ) = Φ(S) for some
Γ-invariant set S. By Theorem 2.1, there exists an
i ∈ [n] for which

|E(S, S̄) ∩ E(Si, S̄i)|
|S||S̄|

&
log n

n
Φ(Qn).

But for any other j ∈ [n], there exists an action
π ∈ Γ with π(i) = j, hence

|E(π(S), π(S̄)) ∩ E(Sj , S̄j)|
|π(S)||π(S̄)|

=
|E(S, S̄) ∩ E(Si, S̄i)|

|S||S̄|
,

implying that

Φ(S) =

n∑
j=1

|E(S, S̄) ∩ E(Sj , S̄j)|
|S||S̄|

= n · |E(S, S̄) ∩ E(Si, S̄i)|
|S||S̄|

& Φ(Qn) log n

The Sparsest Cut SDP. Given a weighted graph
G = (V,E), we recall the standard SDP relaxation
of Sparsest Cut,

SDP(G) = min
{∑

uv∈E w(u, v)‖xu − xv‖2∑
u,v∈V ‖xu − xv‖2

:

‖xu − xv‖2 ≤ ‖xu − xw‖2 + ‖xw − xv‖2 ∀u, v, w ∈ V
}
,

where the minimum is taken over all choices of
vectors {xu}u∈V lying in some finite-dimensional
Euclidean space. It is well-known that SDP(Qn) =
Φ(Qn) ≈ |Qn|−1.

We say that a vector solution {xu}u∈Qn is Γ-
invariant if xu = xπ(u) for all u ∈ Qn and π ∈ Γ.
Observe that a Γ-invariant solution for the Spars-
est Cut SDP on Qn/Γ has value∑

uv∈E(Qn) ‖xu − xv‖2∑
u,v∈Qn ‖xu − xv‖

2
,

since all elements of a Γ-orbit are mapped to the
same vector.

Weak triangle inequalities and pseudomet-
rics. For the sake of exposition, we will also de-
fine an “SDP value” for solutions satisfying a weak
form of the triangle inequalities. We recall that
for any set X, a non-negative, symmetric func-
tion d : V × V → R is called a pseudometric
on V if it satisfies the triangle inequalities, i.e.
d(u, v) ≤ d(u,w) + d(w, v) for all u, v, w ∈ V , and
additionally d(u, u) = 0 for all u ∈ V .

For any β ≥ 1, let

SDPβ(G) = min{
∑
uv∈E w(u, v)‖xu − xv‖2∑

u,v∈V ‖xu − xv‖2
:

d(u, v) ≤ ‖xu − xv‖2 ≤ βd(u, v)},



where the minimum is over all choices of vectors
{xu}u∈V , and additionally over all pseudometrics
d on V . Observe that SDP(G) = SDP1(G). One
might also note that the Arora-Rao-Vazirani algo-
rithm [2], and all known analyses derived from it,
only use the weaker SDPO(1) inequalities.

Tensoring. We recall that for two vectors x, y ∈
Rk and t ∈ N, we have the tensored vectors

x⊗t, y⊗t ∈ Rkt which satisfy 〈x⊗t, y⊗t〉 = 〈x, y〉t.
Finally, we need the following tail inequality.

Lemma 2.3 (Hoeffding bound). Let
X1, X2, . . . , Xn be independent random vari-
ables with EXi = 0 for every i ∈ [n]. Then,

Pr

[∣∣∣∣∣
n∑
i=1

Xi

∣∣∣∣∣ ≥ L
]
≤ 2 exp

(
−L2

2
∑n
i=1 ‖Xi‖2∞

)
.

3 A simple example: Cyclic shifts

Consider the cyclic shift operator σ : [n] →
[n] defined by σ(i) = (i + 1) mod n, and let
Γ = {σ0, σ1, . . . , σn−1} be the group of permuta-
tions generated by σ. By Theorem 2.2, we have
Φ(Qn/Γ) & Φ(Qn) log n. On the other hand,
we will now show that the “weak” SDP value of
Qn/Γ is approximately SDP(Qn), thus exhibiting
a (weak) SDP gap of Ω(log n) = Ω(log log |Qn|).
This will illustrate the main ideas behind our proof
for general quotients, and the true SDP value will
be analyzed in the next section.

Theorem 3.1. For n ∈ N, SDP16(Qn/Γ) .
SDP(Qn).

Proof. For every u ∈ Qn, we define the vector

xu =
1√
n

n−1∑
i=0

(σiu)⊗8,

and put x̃u = xu/‖xu‖. Observe that

〈xu, xv〉 =
1

n

n−1∑
i,j=0

|〈σiu, σjv〉|8 =

n−1∑
i=0

|〈u, σiv〉|8.

(3)
We now define a subset of “pseudorandom” ver-
tices of Qn whose orbits under Γ are not too self-
correlated,

P =

{
u ∈ Qn :

n−1∑
i=0

|〈u, σiu〉|6 ≤ 1 +
1

4n

}
.

Note that, by Cauchy-Schwarz, for u, v ∈ P, we
have

n−1∑
i=0

|〈u, σiv〉|6 ≤

√√√√n−1∑
i=0

|〈u, σiu〉|6

√√√√n−1∑
i=0

|〈v, σiv〉|6

(4)

≤ 1 +
1

4n

(To see this, observe that
∑n−1
i=0 |〈u, σiv〉|6 is an

inner product, as in (3).)

Most vertices are pseudorandom. For any
u ∈ Qn, we can write

〈u, σu〉 =
∑

1≤i≤n
i even

uiuσ(i) +
∑

1≤i≤n
i odd

uiuσ(i) = T + T ′,

where each ui appears exactly once in each of
the sums T and T ′. It is easy to see that a
similar decomposition holds for 〈u, σiu〉 for any
i ∈ {1, 2, . . . , n− 1}.

Therefore by Lemma 2.3, we have

Pr
u∈Qn

[
|〈u, σiu〉| ≥ 2t/

√
n
]
≤ (5)

≤ Pr
[
|T | ≥ t/

√
n
]

+ Pr
[
|T ′| ≥ t/

√
n
]
≤ 4e−t

2/2,

since each of T and T ′ is a sum of i.i.d. uniform
elements of {± 1

n}. Setting t = n1/3/2 and taking
a union bound over i = 1, 2, . . . , n− 1 yields

Pr
u∈Qn

[
n−1∑
i=0

|〈u, σiv〉|6 > 1 +
1

4n

]
≤ 4ne−n

2/3/8 ≤ n−2,

(6)
for n sufficiently large, hence |P| ≥ |Qn|(1−n−2).

The SDP value. Fix some u0 ∈ P. Our final
SDP solution will consist of the vectors {x′u}u∈Qn
with x′u = x̃u for u ∈ P and x′u = x̃u0

otherwise.
Thus we will only need to verify the weak trian-
gle inequalities for {x̃u}u∈P . It is clear that our
proposed SDP solution is Γ-invariant.

For an edge (u, v) ∈ E(Qn), using (3), we have

〈xu, xv〉 ≥ |〈u, v〉|8 =

(
1− 2

n

)8

≥ 1− 16

n
.

Hence for u, v ∈ P with (u, v) ∈ E(Qn), we have
‖x̃u − x̃v‖2 = O(1/n). In particular,∑
(u,v)∈E(Qn)

‖x′u − x′v‖2 .
|E(Qn)|

n
+ 4|E(Qn \ P)|

(7)

.
|E(Qn)|

n
,

since |Qn \ P| ≤ |Qn|/n2.
On the other hand, if we choose u, v ∈ Qn at

random, then for any i ∈ [n], using Lemma 2.3,

Pr
u,v∈Qn

[
|〈u, σiv〉| ≥ t/

√
n
]
≤ 2e−t

2/2.

Setting t ≈
√

log n and taking a union bound
over all i ∈ [n] shows that for n sufficiently large,
Pru,v∈Qn [|〈xu, xv〉| ≥ 1

4 ] ≤ 1
2 . In particular,∑

u,v∈Qn

‖x′u − x′v‖2 ≥
∑
u,v∈P

‖x̃u − x̃v‖2

≈
∑
u,v∈P

‖xu − xv‖2 & |P|2 & |Qn|2.



Combining the preceding line with (7) shows that
the value of the potential SDP solution {x′u}u∈Qn
is O(|Qn|−1) = O(SDP(Qn)).

Verifying the weak triangle inequalities. We
are thus left to verify the weak triangle inequalities
for {x̃u}u∈P . To this end, we will define a cyclic
shift-invariant metric d on Qn and then show that
for u, v ∈ P, we have d(u, v) ≈ ‖x̃u − x̃v‖2.

Let λ(u, v) = max{|〈u, σiv〉| : i ∈ [n]} and put
d(u, v) = 1 − λ(u, v)8. It is clear that d(u, v) =
d(σu, v) = d(u, σv). Next, observe that for any
u, v, w ∈ Qn, we have

1 + 〈u, v〉 ≥ 〈u,w〉+ 〈v, w〉,
since the inequality 1 + xy ≥ xz + yz for x, y, z ∈
{−1, 1} is straightforward to verify. Observing
that u⊗8, v⊗8, w⊗8 ∈ Qn8 , it follows that

1 + |〈u, v〉|8 ≥ |〈u,w〉|8 + |〈v, w〉|8. (8)

Now suppose that i, j ∈ N are such that λ(u,w) =
|〈σiu,w〉| and λ(v, w) = |〈σjv, w〉|. In that case,
we have

1 + λ(u, v)8 ≥ 1 + |〈σiu, σjv〉|8

≥ |〈σiu,w〉|8 + |〈σjv, w〉|8

= λ(u,w)8 + λ(v, w)8,

where the second inequality is simply (8). Re-
arranging shows that the preceding inequality is
precisely d(u, v) ≤ d(u,w) + d(v, w), i.e. that d
satisfies the triangle inequality.

We are thus left to show that 1 − λ(u, v)8 ≈
1 − 〈x̃u, x̃v〉 for u, v ∈ P. If λ(u, v) = 1, then
both expressions are 0, so we may assume that
λ(u, v) 6= 1. One direction is easy: Using the fact
that if λ(u, v) 6= 1, then λ(u, v)8 ≤ λ(u, v) ≤ 1− 2

n ,
we have

1− 〈x̃u, x̃v〉 ≤ 1− (1 + 1
4n )−1〈xu, xv〉

≤ 1− (1 + 1
4n )−1λ(u, v)8

≤ 1− (1− 1
4n )λ(u, v)8

≤ 2
[
1− λ(u, v)8

]
.

Now, the key to satisfying the (weak) triangle
inequalities is the following simple calculation:

〈x̃u, x̃v〉 ≤ 〈xu, xv〉 =

n−1∑
i=0

|〈u, σiv〉|8 ≤

λ(u, v)2
n−1∑
i=0

|〈u, σiv〉|6 ≤ (1 + 1
4n )λ(u, v)2,

where in the last inequality, we have used u, v ∈ P.
Thus assuming 〈x̃u, x̃v〉 = 1− δ, we get

λ(u, v)8 ≥
(

(1− δ)
(

1− 1

4n

))4

≥ 1−4

(
δ +

1

4n

)
,

but λ(u, v) ≤ 1 − 2
n , hence δ ≥ 1

4n so that

λ(u, v)8 ≥ 1 − 8δ, implying 1 − λ(u, v)8 ≤ 8(1 −
〈x̃u, x̃v〉).

4 General quotients

In the present section, we derive SDP solutions for
“pseudorandom” subsets of general quotient con-
structions. Unlike the previous section, we will
ensure that these solutions satisfy the full triangle
inequalities.

4.1 Metrics and kernels

Fix a subgroup Γ acting on [n] by permutations.
We let ψΓ = max {|Γu| : u ∈ Qn} be the maximum
size of any Γ-orbit. For u, v ∈ Qn, we define

λ(u, v) = max
π∈Γ
|〈u, πv〉|,

and for every t ∈ N,

αt(u, v) =
∑
π∈Γ

|〈u, πv〉|2t,

and

αt(u, v) =
αt(u, v)√

αt(u, u)αt(v, v)
.

Finally, we define two distance functions on Qn
corresponding to λ and αt, respectively. For s, t ∈
N, define

ρs,t(u, v) = 1−
(

1

2
+

1

2
λ(u, v)2t

)s
Ks,t(u, v) = 1−

(
1

2
+

1

2
αt(u, v)

)s
.

Lemma 4.1. For every t ∈ N, both αt and αt are
positive semi-definite kernels on Qn. For every s ∈
N, the same is true for (u, v) 7→

(
1
2 + 1

2αt(u, v)
)s

.

Proof. If we define f : Qn → Rn2t

by f(u) =
|Γ|−1/2

∑
π∈Γ(πu)⊗2t then αt(u, v) = 〈f(u), f(v)〉

and αt(u, v) =
〈

f(u)
‖f(u)‖2 ,

f(v)
‖f(v)‖2

〉
. For the final im-

plication, note that the sum of two PSD kernels is
PSD, and also a positive integer power of a PSD
kernel is PSD.

From Lemma 4.1 and the fact that 0 ≤
αt(u, v) ≤ 1 for all u, v ∈ Qn, one verifies that
Ks,t is a negative-definite kernel on Qn, i.e. there
exists a system of (unit) vectors {xu}u∈Qn such
that ‖xu − xv‖2 = Ks,t(u, v).

It is clear that both functions ρs,t and Ks,t are
Γ-invariant in both coordinates. We will now show
that ρs,t is a metric. In Section 4.2, we will show
that Ks,t(u, v) ≈ ρs,t(u, v) for “pseudorandom”
u, v ∈ Qn. This will motivate our analysis of the
metrical properties of Ks,t in Section 5.

Lemma 4.2. If 0 ≤ a ≤ b ≤ c ≤ 1 and 1 + a ≥
b+ c, then for any r ≥ 1, ar − br − cr ≥ a− b− c.
In particular, for any a, b, c ∈ [0, 1], 1 + a ≥ b+ c
implies 1 + ar ≥ br + cr.



Proof. We may assume that a 6= 1. In this case,
write b and c as a convex combination of a and 1 as
follows: b = 1−b

1−aa+(1− 1−b
1−a ) and c = 1−c

1−aa+(1−
1−c
1−a ). Now, using the fact that x − xr is concave

for x ∈ [0, 1] and r ≥ 1, write

(b− br) + (c− cr) ≥ 1− b
1− a

(a− ar) +

+
1− c
1− a

(a− ar) ≥ 2− b− c
1− a

(a− ar) ≥ a− ar,

where the final inequality follows from 1+a ≥ b+c.
To verify the second claim of the lemma, note that
if a > b or a > c, then 1 + ar ≥ br + cr holds
trivially.

Corollary 4.3. Let X be any set, U : X ×X →
[0, 1], and s ≥ 1. If D′(x, y) = 1− ( 1

2 + 1
2U(x, y))s

is a pseudometric on X, then so is D(x, y) = 1−
( 1

2 + 1
2U(x, y))s

′
for any s′ ≥ s.

Proof. The triangle inequality for D on x, y, z ∈ X
reduces to verifying

1+( 1
2+ 1

2U(x, y))s
′
≥ ( 1

2+ 1
2U(x, z))s

′
+( 1

2+ 1
2U(y, z))s

′
.

Since s′ ≥ s, Lemma 4.2 implies that this reduces
to the triangle inequality for D′.

Lemma 4.4. For every s, t ∈ N, ρs,t is a pseudo-
metric on Qn.

Proof. By Corollary 4.3, it suffices to prove this for
ρ1,t. It’s clear that for any u ∈ Qn, ρ1,t(u, u) = 0
because λ(u, u) = 1. Now fix u, v, w ∈ Qn.
The triangle inequality ρ1,t(u, v) ≤ ρ1,t(u,w) +
ρ1,t(v, w) reduces to verifying

1 + λ(u, v)2t ≥ λ(u,w)2t + λ(v, w)2t. (9)

Suppose that λ(u,w) = |〈πu,w〉| and λ(v, w) =
|〈v, π′w〉|. Then,

λ(u, v)2t ≥ |〈πu, π′v〉|2t

≥ |〈πu,w〉|2t + |〈π′v, w〉|2t − 1(10)

= λ(u,w)2t + λ(v, w)2t − 1,

where (10) follows just as in (8).

Before turning to the precise relationship be-
tween Ks,t and ρs,t, we calculate ρs,t(u, v) for
edges and for random pairs in Qn.

Lemma 4.5 (Edges). If u, v ∈ E(Qn), then
ρs,t(u, v) ≤ 2st

n .

Proof. Observe that

λ(u, v)2t ≥
(

1− 2

n

)2t

≥ 1− 4t

n
,

hence ρs,t(u, v) ≤ 1− (1− 2t
n )s ≤ 2st

n .

The next lemma is a straightforward applica-
tion of Lemma 2.3 and a union bound.

Lemma 4.6 (Random pairs). Suppose that u, v ∈
Qn are chosen independently and uniformly at ran-
dom. Then,

Pr
[
λ(u, v)2t ≥ L

]
≤ 2ψG exp

(
−L1/tn

2

)
.

In particular, for any s, t ∈ N, if ψΓ ≤ 20.1n, then

Pr[ρs,t(u, v) ≥ 1
4 ] ≥ Pr[λ(u, v)2t ≤ 1

2 ] ≥ 1
2 .

4.2 Pseudorandom orbits and ρs,t ≈ Ks,t

For r ∈ N, define

Pr(η) = {u ∈ Qn : αr(u, u) ≤ 1 + η}

as the set of all elements whose Γ-orbits are
not too self-correlated. Note that, by Cauchy-
Schwarz, u, v ∈ Pr(η) implies αr(u, v) ≤√
αr(u, u)αr(v, v) ≤ 1 + η.
The next lemma is central. It says that if

αt(u, v) is large and u, v are pseudorandom, then
the contribution to αt(u, v) comes mainly from a
single large “matching” term, i.e. u is strongly
correlated with some element of Γv.

Lemma 4.7. Let t > r and δ ∈ [0, 1]. If u, v ∈
Pr(η) and αt(u, v) ≥ 1− δ, then

λ(u, v)2(t−r) ≥ 1− δ − η.

Proof. We have,

αt(u, v) ≤ λ(u, v)2t−2r
∑
π∈Γ

|〈u, πv〉|2r

= λ(u, v)2(t−r)αr(u, v) ≤ (1 + η)λ(u, v)2(t−r).

It follows that λ(u, v)2(t−r) ≥ 1−δ
1+η ≥ 1− δ−η.

Theorem 4.8 (Weak triangle inequality for Ks,t).
For every r, s ∈ N and u, v ∈ Pr( 1

4n ),

ρs,2r(u, v) ≈ Ks,2r(u, v),

where the implicit constant is independent of the
given parameters.

Proof. Let η = 1
4n and t = 2r, and suppose that

u, v ∈ Pr(η). If λ(u, v) = 1, then αt(u, v) = 1 as
well, hence ρs,t(u, v) = Ks,t(u, v).

Now suppose that λ(u, v) 6= 1. In that case,

λ(u, v)2t ≤
(
1− 2

n

)2t ≤ 1− 2
n . (11)

Assume that αt(u, v) = 1 − δ for some δ ∈ [0, 1].
Then, αt(u, v) ≥ αt(u, v) ≥ 1 − δ, so Lemma 4.7
implies that λ(u, v)2t ≥ (1−δ−η)2 ≥ 1−2(δ+η),
and from (11), we conclude that δ ≥ 3

4n . This, in



turn, implies that η ≤ δ/3, which gives λ(u, v)2t ≥
1− 3δ.

Finally, we observe that

αt(u, v) ≥ (1− η)αt(u, v) ≥ (1− δ/3)αt(u, v)

≥ (1− δ/3)λ(u, v)2t,

hence λ(u, v)2t ≤ (1 − δ)(1 + δ/3) ≤ 1 − 2δ
3 . We

have thus shown that 1−λ(u, v)2t and 1−αt(u, v)
are within an O(1) factor for all u, v ∈ Pr(η).

Verification of the full triangle inequalities oc-
curs in the next section.

5 Triangle inequalities

In this section, we verify thatK22,t is a pseudomet-
ric on Pr( 1

(4n)2 ) for t = O(r). In other words, the

corresponding vectors form a valid SDP solution.

Theorem 5.1. For some t = O(r), K22,t is a
pseudometric on Pr( 1

(4n)2 ).

Proof. Let η = 1
(4n)2 , and fix u, v, w ∈ Pr(η).

To prove triangle inequality for Ks,t, it suffices to
show that

1+( 1
2+ 1

2αt(u, v))s ≥ ( 1
2+ 1

2αt(u,w))s+( 1
2+ 1

2αt(v, w))s.

If both αt(u,w), αt(v, w) ≤ 15
16 , then for s = 22,

both terms are the right hand side are at most
1
2 , and the inequality is trivially satisfied. So we

assume that αt(u,w) ≥ 15
16 for the remainder of

the proof.
By Corollary 4.3, to prove triangle inequality

for K22,t, it suffices to prove the same inequality
for K1,t or K2,t, i.e. one of the following inequali-
ties.

3 + αt(u, v)[2 + αt(u, v)]

≥ αt(u,w)[2 + αt(u,w)] + +αt(v, w)[2 + αt(v, w)]

1 + αt(u, v) ≥ αt(u,w) + αt(v, w).

Clearly both of these hold if λ(u,w) = 1 or if
λ(w, v) = 1, so we assume this is not the case,
and we are left to prove one of the following.

3 + αt(u, v)[2 + αt(u, v)] ≥ (12)

αt(u,w)[2 +αt(u,w)] +αt(v, w)[2 +αt(v, w)] + 5η

1 + αt(u, v) ≥ αt(u,w) + αt(v, w) + 2η, (13)

recalling that αt(u, v) ≤ αt(u, v) ≤ (1 + η)αt(u, v)
for all u, v ∈ Pr(η). We remark that this loss in η
will be acceptable beacuse when two points u, v ∈
Qn are distinct, they have |〈u, v〉| ≤ 1− 4

n , giving

us ≈ 1
n slack when the orbits of u, v, and w are

distinct.

Case I (Strong matching): λ(u,w), λ(v, w) ≥
1− 1

2t .

Let λ(v, w) = 1 − δ, λ(u,w) = 1 − ε, and ob-
serve that λ(u, v) ≥ 1− (δ+ ε) by (9). Also, since
λ(u,w) 6= 1 and λ(w, v) 6= 1, we have δ, ε ≥ 4

n , and
in particular η ≤ εδ. We will verify (13). Write,

αt(v, w) ≤ (1− δ)2t +
(
αr(v, w)− (1− δ)2r

)t/r
(14)

≤ (1− δ)2t + (η + 2rδ)t/r,

and similarly αt(u,w) ≤ (1− ε)2t + (η + 2rε)t/r.
Using the preceding inequalities, to prove (13),

it suffices to show that

1 + (1− (δ + ε))2t − (1− δ)2t − (1− ε)2t ≥(15)

(η + 2rδ)t/r + (η + 2rε)t/r + 5η. (16)

But we have,

1 + (1− (δ + ε))2t − (1− δ)2t − (1− ε)2t

=

2t∑
i=2

(−1)i
(

2t

i

)i−1∑
j=1

(
i

j

)
δjεi−j


≥ 2

(
2t

2

)
δε−

(
2t

3

)
3δε(δ + ε)

= t(2t− 1)δε ([1− 2(t− 1)δ] + [1− 2(t− 1)ε])

≥ 2t(2t− 1)δε

(
1− 2(t− 1)

2t

)
= (2t− 1)δε

≥ ((2r + 1)δ)t/r + ((2r + 1)ε)t/r + 5εδ,

where the final inequality holds for some t = O(r)
chosen large enough. This proves (15), recalling
that η ≤ εδ.

Case II (Weak matching): λ(v, w) ≤ 1− 1
2t .

Suppose that αt(u,w) = 1 − δ. Our aim is to
prove (12), which we write as

2 (αt(v, w)− αt(u, v)) + (17)

(αt(v, w)− αt(u, v)) (αt(v, w) + αt(u, v))

≤ δ(4− δ)− 2η.

Note that since αt(u,w) ≥ 15
16 , we have δ ≤ 1

16 .
Furthermore, by Lemma 4.7, we have λ(u,w) ≥
1− δ+η

2(t−r) . In particular, for t = O(r) chosen large

enough, we have λ(u,w) ≥ 1− 1
2t , which explains

why cases I and II are exhaustive.
Now, if αt(v, w) ≥ 0.65, then Lemma 4.7 im-

plies λ(v, w) ≥ 1 − 0.35+η
2(t−r) ≥ 1 − 0.45

t for t ≥ 2r,

which contradicts our assumption. We conclude
that αt(v, w) ≤ 0.65. In this case, we may assume
that αt(u, v) ≤ 0.7, since otherwise (13) is trivially
satisfied, thus we have αt(u, v), αt(v, w) ≤ 0.7.

The main idea in the “weak matching” case is
to show that αt(u, v) & αt(v, w), but we cannot
rely on a single “matched pair” (i.e. the triangle



inqualities for λ) to do this. Instead, we argue that
αt(u, v) receives a large contribution on average.

To this end, write λ(u,w) = 1 − β, and let
π0 ∈ Γ be such that |〈π0u,w〉| = λ(u,w). Then,

αt(u, v) =
∑
π∈Γ

|〈π0u, πv〉|2t

≥
∑
π∈Γ

[max(0, |〈π0u,w〉|+ |〈w, πv〉| − 1)]
2t

≥
∑
π∈Γ

[max(0, |〈w, πv〉| − β)]
2t
.

Let I = {π ∈ Γ : |〈w, πv〉| ≥ β}, and observe
that ∑

π/∈I

|〈w, πv〉|2t ≤ β2t−2r
∑
π/∈I

|〈w, πv〉|2r

≤ β2(t−r)αr(w, v) ≤ β2(t−r)(1 + η).

Therefore,

αt(u, v) ≥
∑
π∈I

(|〈w, πv〉| − β)2t

≥
∑
π∈I
|〈w, πv〉|2t

(
1− β

|〈w, πv〉|2t

)2t

≥
∑
π∈I
|〈w, πv〉|2t

(
1− 2βt

|〈w, πv〉|2t

)

≥

(∑
π∈Γ

|〈w, πv〉|2t
)
− (1 + η)

[
β2(t−r) − 2βt

]
≥ αt(w, v)− (1 + η)

[
δ2(t−r) − (δ + η)

t

t− r

]
.

Plugging this into (17) and using
αt(u, v), αt(v, w) ≤ 0.7 yields,

3.4(1+η)

(
δ2(t−r) + (δ + η)

t

t− r

)
≤ δ(4−δ2)−2η.

Now, since λ(u,w) 6= 1, we have λ(u,w) ≤ 1− 4
n ,

and using Lemma 4.7 gives δ ≥ 2t
n ; in particular,

η ≤ δ/16. Combining this with δ ≤ 1
16 , it suffices

to prove

3.7

(
2δ2(t−r) + δ

t

t− r

)
≤ 3.8δ,

which certainly holds for some choice of t = O(r).

6 Larger orbits: Permutations of the rows

In this section, we discuss m × n sign matrices
with m = poly(n), where Γ includes all permuta-
tions of the rows, meaning that our previous SDP
solutions would not be adequate (as the orbits

are now huge). Still, we give a (weak) SDP so-
lution with SDPO(1)(Qmn/Γ) ≈ SDP(Qn). Unfor-
tunately, it is not difficult to see that Φ(Qmn/Γ) ≈
Φ(Qn) log n, meaning that we again achieve only
an Ω(log logN) integrality gap. It is possible that
a hierarchical version of this construction could
give larger gaps.

6.1 The metric

For every m,n ∈ N, let Xm,n =(
1√
n
{−1, 1}n

)m
⊆ Rmn be the space of sequences

(A1, A2, . . . , Am) with each Ai ∈ {−1√
n
, 1√

n
}n.

The symmetric group Sm acts in a natu-
ral way on Xm,n: For π ∈ Sm, we have
π(A) = π(A1, . . . , Am) = (Aπ(1), . . . , Aπ(m)). Let
Xm,n be the set of orbits of Xm,n under the Sm
action. We define

λt(A,B) =
1

m
max

π:[m]→[m]

m∑
i=1

|〈Ai, Bπ(i)〉|2t,

where the maximum is over all bijections π.

Lemma 6.1. For any A,B,C ∈ Xm,n and any
t ∈ N, we have

λt(A,B) ≥ λt(A,C) + λt(B,C)− 1.

Proof. Let π, π′ : [m] → [m] be such that
λt(A,C) = 1

m

∑m
i=1 |〈Ai, Cπ(i)〉|2t and λt(B,C) =

1
m

∑m
i=1 |〈Bi, Cπ′(i)〉|2t. Then letting σ = (π′)−1 ◦

π, we have

λt(A,B) ≥ 1

m

m∑
i=1

|〈Ai, Bσ(i)〉|2t

≥ −1 +
1

m

m∑
i=1

|〈Ai, Cπ(i)〉|2t + (18)

+
1

m

m∑
i=1

|〈Bσ(i), Cπ(i)〉|2t (19)

= −1 + λt(A,C) + λt(B,C).

Next we define, for every s, t ∈ N, the distance
function ρs,t(A,B) = 1− ( 1

2 + 1
2λt(A,B))s.

Claim 6.2. For every s, t ∈ N, ρs,t is a metric on
Xm,n.

Proof. First, it’s clear that ρs,t(A,B) =
ρs,t(πA,B) for all π ∈ Sm and A,B ∈ Xm,n.
Also, ρs,t(A,A) = 0 because λt(A,A) = 1.

Now, consider A,B,C ∈ Xm,n. The triangle
inequality ρs,t(A,B) ≤ ρs,t(A,C) + ρs,t(B,C) re-
duces to verifying

1+( 1
2+ 1

2λt(A,B))s ≥ ( 1
2+ 1

2λt(A,C))s+( 1
2+ 1

2λt(B,C))s.



Write this as

1 + xs ≥ ys + zs. (20)

Then x, y, z ∈ [0, 1] since λt(A,B) ∈ [0, 1] for all
A,B ∈ Xm,n. Combining this with the fact that
1 + x ≥ y + z from Lemma 6.1, we conclude that
(20) holds.

Finally, we analyze the behavior of ρs,t on
“edges” of Xm,n and on random pairs. If A,A′ ∈
Xm,n, we write A ∼ A′ if ‖A−A′‖22 = 4

n (i.e. the
hamming distance between A and A′ is one).

Lemma 6.3 (Edges). If A,A′ ∈ Xm,n with A ∼
A′, then ρs,t(A,A

′) ≤ 2st
mn .

Proof. Observe that

λt(A,A
′) ≥ 1

m

m∑
i=1

|〈Ai, A′i〉|2t =

1

m

(
m− 1 +

(
1− 2

n

)2t
)
≥ 1− 4t

mn
.

hence ρs,t(A,A
′) = 1− (1− 2t

mn )s ≤ 2st
mn .

Lemma 6.4 (Random pairs). Suppose that
A,B ∈ Xm,n are chosen independently and uni-
formly at random. Then

Pr
[
λt(A,B) ≥ Ln−t

]
≤ 2me−

1
2L

1/t

.

In particular, for any s, t ∈ N, we have
Pr[ρs,t(A,B) ≥ 1

4 ] ≥ Pr[λt(A,B) ≤ 1
2 ] ≥ 1

2 .

6.2 An equivalent negative-definite kernel

We now define, for any t ∈ N, two kernels. For
A,B ∈ Xm,n, let

αt(A,B) =
1

m

m∑
i=1

m∑
j=1

|〈Ai, Bj〉|2t,

and

αt(A,B) =
αt(A,B)√

αt(A,A)αt(B,B)
.

Lemma 6.5. For every t ∈ N, αt and αt are both
positive semi-definite kernels on Xm,n.

Proof. Define maps f, f : Xm,n → Rnt by f(A) =
1√
m

∑m
i=1A

⊗2t
i and f(A) = f(A)/‖f(A)‖2. Then

〈f(A), f(B)〉 = αt(A,B) and 〈f(A), f(B)〉 =
αt(A,B). Clearly f is invariant under the Sm ac-
tion on Xm,n.

For every s, t ∈ N, define a negative-definite
kernel on Xm,n by

Ks,t(A,B) = 1−
(

1

2
+
αt(A,B)

2

)s
.

For r ∈ N, let

Nr(η) =
{
A ∈ Xm,n : |〈Ai, Aj〉|2r ≤

η

m
∀i 6= j ∈ [m]

}
be the set of elements in Xm,n with small self-
correlation. In particular, A ∈ Nr(η) implies
that αr(A,A) ≤ 1 + η. Using Cauchy-Schwarz,

we have αr(A,B) ≤
√
αr(A,A)αr(B,B), hence

A,B ∈ Nr(η) implies αr(A,B) ≤ 1 + η as well.

Lemma 6.6 (Heavy matchings). Suppose that t ≥
2r, η ≤ 1

16 , δ ∈ [0, 1], and A,B ∈ Nr(η). Then
αt(A,B) ≥ 1− δ implies that

λt(A,B) ≥ 1− (10δ + 2η)

Proof. Define αi = 1−
∑m
j=1 |〈Ai, Bj〉|2t and βi =

maxj∈[m] |〈Ai, Bj〉|. Then,

1− αi ≤ β2t−2r
i

m∑
j=1

|〈Ai, Bj〉|2r

≤ β2(t−r)
i

√
‖Ai‖2 · αr(B,B)

≤ β2(t−r)
i (1 + η),

so we have

β2t
i ≥

(
1− αi
1 + η

) t
t−r

≥ 1− t

t− r
(αi+η) ≥ 1−2(αi+η).

(21)
Now suppose that

αt(A,B) =
1

m

m∑
i=1

(1− αi) ≥ 1− δ.

Let S = {i ∈ [m] : αi ≤ 1
8}. Clearly |S| ≥

(1− 8δ)m since
∑m
i=1 αi ≤ δm. Define a mapping

π : S → [m] by π(i) = argmaxj∈[m]|〈Ai, Bj〉|2t.
We claim that π is injective. Observe that for

i ∈ S, (21) implies that β2t
i ≥ 1 − 2

(
1
8 + η

)
≥ 5

8 .
So if π(i) = π(j) for i 6= j ∈ S, then we have

|〈Ai, Aj〉|2t ≥ |〈Ai, Bπ(i)〉|2t+|〈Aj , Bπ(i)〉|2t−1 ≥ 1

4
,

which contradicts the fact that for A ∈ Nr(η), we
have |〈Ai, Aj〉|2t ≤ |〈Ai, Aj〉|2r ≤ η

m ≤
1
16 .

Since π is injective, it follows that

λt(A,B) ≥ 1

m

∑
i∈S

β2t
i

≥ 1

m

∑
i∈S

(1− 2(αi + η))

≥ |S|
m
− 2(δ + η) ≥ 1− (10δ + 2η).



Even though Ks,t may not be a metric, we show
that it is always close to ρs,t.

Theorem 6.7 (Bi-lipschitz equivalence). There
exists a universal constant C ≥ 1 such that for
any t ≥ 2r, the distance functions Ks,t and
ρs,t are C-bi-lipschitz equivalent when restricted to
Nr( 1

20mn ).

Proof. If A = π(B) for some π ∈ Sm, then clearly
λt(A,B) = αt(A,B) = 1, hence ρs,t(A,B) =
Ks,t(A,B) = 0. Let η = 1

20mn .
Consider A,B ∈ Nr(η) where A and B are in

different equivalence classes of Xm,n. Then clearly
we have

λt(A,B) ≤ 1

m

(
m− 1 +

(
1− 2

n

)2t
)
≤ 1− 2

mn
.

(22)
Now suppose that αt(A,B) = 1−δ for some δ ∈

[0, 1]. In that case, αt(A,B) ≥ αt(A,B) ≥ 1−δ, so
Lemma 6.6 implies that λt(A,B) ≥ 1− (10δ+2η).
From (22), we conclude that δ ≥ 1

6mn . This, in
turn, implies that η ≤ δ/3, which gives λt(A,B) ≥
1− 11δ.

Finally, we observe that

αt(A,B) ≥ (1− η)αt(A,B)

≥ (1− δ/3)αt(A,B) ≥ (1− δ/3)λt(A,B),

hence λt(A,B) ≤ (1 − δ)(1 + δ/3) ≤ 1 − 2δ
3 . We

conclude that 1 − λt(A,B) and 1 − αt(A,B) are
within an O(1) factor of each other for all A,B ∈
Nr(η). This immediately implies that Ks,t(A,B)
and ρs,t(A,B) are within an O(1) multiplicative
factor.

The final result of this section concerns how
large one needs to choose r (and hence t) so that
Nr( 1

20mn ) contains most of the points of Xm,n.

Lemma 6.8. Let η = 1
20mn , and consider A ∈

Xm,n chosen uniformly at random. For any τ =

τ(m,n), there exists a choice of r ≈ logm
logn−log log m

τ

for which
Pr [A /∈ Nr(η)] ≤ τ.

Proof. Let Ai, Aj ∈ {−1√
n
, 1√

n
}n be chosen inde-

pendently at random, then

Pr [A /∈ Nr(η)]

≤ m2 Pr

[
|〈Ai, Aj〉| ≥

(
1

20m2n

)1/2r
]

≤ 2m2 exp

(
−n

2(20m2n)1/r

)
.

Simplifying yields the desired conclusion.

The point is that we can choose any m =

poly(n) and τ = 2−n
0.1

, and we still only need
r = O(1).

7 PSD flows and triangle inequalities

In this section, we discuss the question of whether
SDPO(1)(G) ≈ SDP(G) for every graph G, i.e.
whether the weak triangle inequalities can always
be converted to strong triangle inequalities with
only an O(1) loss. This is most nicely stated in
the setting of the SDP dual.

Let G = (V,E) be a finite, undirected graph,
and for every pair u, v ∈ V , let Puv be the set of all
paths between u and v in G. Let P =

⋃
u,v∈V Puv.

A flow in G is a mapping F : P → R≥0. We
define, for every vertex (u, v) ∈ E, the congestion
on (u, v) as

CF (u, v) =
∑

p∈P:(u,v)∈p

F (p).

For any u, v ∈ V , let F [u, v] =
∑
p∈Puv F (p) be

the amount of flow sent between u and v.
The standard “maximum concurrent flow”

problem is simply

mcf(G) = maximize {D : ∀u, v, F [u, v] ≥ D
and ∀(u, v) ∈ E,CF (u, v) ≤ 1}

If we define the symmetric matrix

Au,v = F [u, v]−D + 1{(u,v)∈E} − CF (u, v),

then certainly every feasible flow of value D sat-
isfies Au,v ≥ 0 for all u, v ∈ V . In fact, we
can combine the two types of flow constraints
(demand/congestion) together, and get the same
thing:

Exercise: mcf(G) = max{D : Au,v ≥ 0 ∀u, v}
Now, the dual of the Sparsest Cut SDP is pre-

cisely the same thing, but with a global constraint
on A, instead of having a constraint per entry:

SDP(G) = max{D : L(A) � 0}.

Here, L(A) denotes the Laplacian of A, i.e.

L(A)i,j =

{∑
k 6=iAi,k i = j

−Ai,j otherwise.

and we write L(A) � 0 to denote that L(A) is
positive semi-definite.

Now, if we write, for some κ ≥ 1,

A(κ)
u,v = F [u, v]−D + κ · 1{(u,v)∈E} − CF (u, v),

then clearly

max{D : A(κ)
u,v ≥ 0 ∀u, v} ≥ max{D : Au,v ≥ 0∀u, v}

because we have bumped up the edge capacities.
On the other hand, given an A(κ)-feasible flow of
value D, we can always get an actual feasible flow
with value D/κ by simply scaling down the flow
by factor 1/κ, i.e.

max{D : A(κ)
u,v ≥ 0 ∀u, v} = κ·max{D : Au,v ≥ 0 ∀u, v}.



Question 1. Is the same kind of thing true for
“PSD-flows”? In other words, are

max{D : L(A) � 0} and max{D : L(A(κ)) � 0}

related by a factor depending only on κ?

If this question has a positive answer, then it
makes integrality gaps for the Sparsest Cut SDP
much easier to understand, because SDP duality
shows that SDP(G) = max{D : L(A) � 0} while
SDPκ(G) = max{D : L(A(κ)) � 0}.

The answer to this question is affirmative if we
can decouple the L(A) � 0 constraint into two
constraints, i.e. let Xu,v = F [u, v] − D for u 6= v
and let Yu,v = 1(u,v)∈E − CF (u, v).

Question 2. Can we relate (e.g. within constant
factors) max{D : L(A) � 0} to max{D : L(X) �
0 and L(Y ) � 0} as we can for normal flows? It
is easy to check that this would give an affirmative
answer to Question 1.
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