
University of Southern Queensland

Faculty of Engineering & Surveying

Stereo Vision for Webcams

A dissertation submitted by

Adam G Cox

in fulfilment of the requirements of

Courses ENG4111 and ENG4112 Research Project

towards the degree of

Bachelor of Engineering - Computer Systems

Submitted: October, 2011

Abstract

This project describes the developmental process of creating and testing a webcam

based image capture platform and library for determining the suitability of using web-

cams for stereo vision. Research and development has taken place in the field of stereo

vision for many years, however the costs involved with capture devices and computer

hardware has limited the access to the field. This has led to the requirement of a

low-cost image capture system that is capable of operating multiple capture devices

simultaneously for the application of stereo vision.

The image capture software was developed in the Microsoft Windows operating system

environment using the Microsoft DirectShow application programming interface to ac-

cess and capture video frames. The Camera Calibration Toolbox was used to perform

webcam calibration and image rectification to the captured images. Stereo process-

ing was then applied with the Dense Stereo algorithm developed by Abhijit Ogale.

The stereo disparity results were analysed for accuracy and precision to determine the

suitability of the webcam for stereo vision applications.

The outcome of the development and testing does confirm that webcams can be op-

erated simultaneously and that they can provide a suitable platform for stereo vision.

This outcome will increase the accessibility into the research of stereo vision, without

the excessive costs that have previously been associated in this field.

University of Southern Queensland

Faculty of Engineering and Surveying

ENG4111/2 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Engineering and

Surveying, and the staff of the University of Southern Queensland, do not accept any

responsibility for the truth, accuracy or completeness of material contained within or

associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the

risk of the Council of the University of Southern Queensland, its Faculty of Engineering

and Surveying or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond

this exercise. The sole purpose of the course pair entitled “Research Project” is to

contribute to the overall education within the student’s chosen degree program. This

document, the associated hardware, software, drawings, and other material set out in

the associated appendices should not be used for any other purpose: if they are so used,

it is entirely at the risk of the user.

Prof F Bullen

Dean

Faculty of Engineering and Surveying

Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and conclusions

set out in this dissertation are entirely my own effort, except where otherwise indicated

and acknowledged.

I further certify that the work is original and has not been previously submitted for

assessment in any other course or institution, except where specifically stated.

Adam G Cox

0050040075

Signature

Date

Acknowledgments

I would like to acknowledge and thank Dr. John Leis for his guidance and support

throughout this project. I would also like this opportunity to thank the Faculty of

Engineering and Surveying and all the lecturers that have assisted me over the duration

of my program.

Adam G Cox

University of Southern Queensland

October 2011

Contents

Abstract i

Acknowledgments iv

List of Figures xiii

List of Tables xv

Glossary of Terms xvii

Chapter 1 The Utilisation of Webcams for Stereo Vision 1

1.1 Project Aim . 2

1.2 Project Objectives . 2

1.3 Overview of the Dissertation Structure 3

Chapter 2 Literature Review 5

2.1 Chapter Overview . 5

2.2 Computer Based Stereo Vision . 5

CONTENTS vi

2.2.1 Camera Calibration and Image Rectification 7

2.2.2 Occlusion Reduction . 9

2.3 Current Computer Based Stereo Vision Systems 10

2.4 Operation of Multiple Webcams . 11

2.4.1 USB Interface Capabilities . 11

2.4.2 Application Programming Interface 11

2.4.3 Microsoft Windows API’s . 11

2.4.4 Linux and Apple API’s . 12

2.5 Infrared Based Game Controllers for Stereo Vision Systems 13

2.5.1 Nintendo Wii . 13

2.5.2 Xbox Kinect . 14

2.6 Chapter Summary . 14

Chapter 3 Methodology for Software Development and Stereo Vision

Evaluation 16

3.1 Chapter Overview . 16

3.1.1 Project Methodology . 16

3.2 Task Breakdown . 18

3.3 System Operation . 18

3.4 Task Analysis . 19

3.4.1 Stereo Webcam Mounting . 19

CONTENTS vii

3.4.2 Webcam Interfacing in Both Hardware and Software 20

3.4.3 Development of the Multiple Camera Access Platform 20

3.4.4 Webcam Image Capture . 21

3.4.5 Webcam Calibration for the Correction of Intrinsic and Extrinsic

Parameters . 21

3.4.6 Image Pair Rectification and Edge Detection 21

3.4.7 Stereo Processing and Disparity Mapping 22

3.4.8 Software Library Development for Webcam Access 22

3.5 Consequential Effects . 23

3.5.1 Sustainability . 23

3.5.2 Safety . 23

3.5.3 Ethical Dimensions . 23

3.6 Risk Assessment . 24

3.6.1 Risk During the Execution of the Project 24

3.6.2 Risk Beyond the Completion of the Project 25

3.6.3 Risk Summary . 27

3.7 Research Timeline . 27

3.8 Chapter Summary . 27

Chapter 4 Test Platform and Webcam Selection 28

4.1 Chapter Overview . 28

CONTENTS viii

4.2 Test platform Requirements . 28

4.2.1 USB Connectivity and Interfacing Requirements 29

4.2.2 Processor Configuration . 29

4.2.3 Operating System . 29

4.3 Webcam Requirements . 29

4.3.1 Webcam Costs . 30

4.3.2 Webcam Compatibility . 30

4.3.3 Webcam Build Quality and Properties 30

4.4 Selected Test Platforms . 31

4.5 Selected Webcams . 32

4.6 Chapter Summary . 33

Chapter 5 Image Capture Platform and Library Development 34

5.1 Chapter Overview . 34

5.2 Software Requirements and Selection . 34

5.2.1 Programming Language . 35

5.2.2 Integrated Development Environment 35

5.2.3 Application Programming Interface 36

5.2.4 Microsoft DirectShow Operation 36

5.3 Image Capture Platform Requirements 38

5.3.1 Review of Provided Code Example 39

CONTENTS ix

5.3.2 GUI Layout . 39

5.3.3 Enumeration and Selection of Available Webcams 41

5.3.4 Control of Webcam Properties 42

5.3.5 Simultaneous Webcam Access . 43

5.3.6 Real-Time Edge Detection . 46

5.3.7 Image Acquisition . 47

5.3.8 Releasing DirectShow Objects . 48

5.4 Library Development . 49

5.5 Chapter Summary . 50

Chapter 6 Experimental Approach and Testing of Image Capture and

Processing 51

6.1 Chapter Overview . 51

6.2 Image Capture Platform GUI Operation 52

6.2.1 Edge Detection Processing . 52

6.3 Image Capture Library Operation . 53

6.3.1 Access Through MATLAB . 53

6.3.2 Access Through C . 54

6.4 Scene Capture and Stereo Processing . 55

6.4.1 Object Position and Scene Type 56

6.4.2 Scene 1 - The Bookshelf . 57

CONTENTS x

6.4.3 Scene 2 - The Living Room . 57

6.4.4 Webcam Mounting . 58

6.4.5 Webcam Calibration . 58

6.4.6 Image Rectification . 61

6.4.7 Stereo Processing . 63

6.5 Chapter Summary . 64

Chapter 7 Results and Discussion 65

7.1 Chapter Overview . 65

7.2 Image Capture Platform Operation . 65

7.2.1 Enumeration of Devices . 66

7.2.2 Access and Operation of Devices 66

7.2.3 Image Capture and Image Output 68

7.2.4 Edge Detection Processing . 69

7.3 Image Capture Library Operation . 70

7.3.1 Access Through MATLAB . 70

7.3.2 Access Through C . 71

7.4 Scene Capture and Stereo Processing . 71

7.4.1 Webcam Comparison and Image Resolution 72

7.4.2 Object Position and Scene Type 73

7.4.3 The Effects of Webcam Mounting Configurations 75

CONTENTS xi

7.4.4 Webcam Calibration and Image Rectification Effects on Stereo

Processing . 77

7.5 Chapter Summary . 78

Chapter 8 Conclusions 79

8.1 Chapter Overview . 79

8.2 Achievement of Project Objectives . 79

8.3 Shortcomings and Possible Improvements 82

8.4 Further Work . 83

8.5 Final Conclusion . 83

References 84

Appendix A Project Specification 88

Appendix B Project Timeline 91

Appendix C Source Code Listings 92

C.1 Source - dshow webcam.c . 93

C.2 Source - calldll.c . 133

C.3 Source - directshow webcam.c . 150

C.4 Script - matdll.m . 153

C.5 Script - runlrc905640r150.m . 154

C.6 Script - runlrc905640r.m . 155

CONTENTS xii

C.7 Script - runlrc905640nr150.m . 156

C.8 Script - runlrc905640nr.m . 157

C.9 Script - runbsc905640r150.m . 158

C.10 Script - runbsc905640r.m . 159

C.11 Script - runbsc905640nr150.m . 160

C.12 Script - runbsc905640nr.m . 161

C.13 Script - runbsc200640r.m . 162

C.14 Script - runbsc200640nr.m . 163

C.15 Script - runbsc200320r.m . 164

C.16 Script - runbsc200320nr.m . 165

C.17 Script - runbenchmark.m . 166

List of Figures

2.1 Overview of a stereo vision system . 6

2.2 Pinhole camera model . 7

3.1 Overview of the system operation . 19

5.1 Pins attached to filter of the C905 webcam 37

5.2 Overview of the Microsoft DirectShow operation 38

5.3 Final image capture platform GUI . 40

6.1 Testing of pixel threshold for edge detection processing 53

6.2 Testing of image capture library in MATLAB 54

6.3 Testing of image capture library in C . 55

6.4 Book shelf scene with points of interest for stereo processing 57

6.5 Living room scene with points of interest for stereo processing 58

6.6 Webcam mounting configuration with a 50 mm baseline value 59

6.7 Collection of the left set of images for calibration 59

LIST OF FIGURES xiv

6.8 Manual selection of checkerboard corners 60

6.9 Lens distortion of the C200 webcam . 61

6.10 Stereo calibration result and extrinsic representation 62

6.11 Image pair after removal of distortion and rectification applied 62

6.12 Test of the Middelbury benchmark image pair with the Dense Stereo

algorithm . 63

7.1 Bookshelf scene - C200 webcam at 320 x 240 pixels, non-rectified and

rectified . 73

7.2 Bookshelf scene - C905 webcam at 640 x 480 pixels, non-rectified and

rectified . 74

7.3 Living Room scene captured with the C905 webcam at 640 x 480 pixels,

non-rectified and rectified . 74

7.4 Bookshelf scene - C200 webcam at 640 x 480 pixels, non-rectified and

rectified . 75

7.5 Living Room scene - C905 webcam at 640 x 480 pixels, non-rectified and

rectified and with a baseline of 150 mm 76

7.6 Book shelf scene - C905 webcam at 640 x 480 pixels, non-rectified and

rectified and with a baseline of 150 mm 77

List of Tables

3.1 Hazard Likelihood . 26

3.2 Hazard Consequence . 26

3.3 Risk Matrix . 26

3.4 Risk Analysis . 27

4.1 Test Platform 1: Properties . 31

4.2 Test Platform 2: Properties . 31

4.3 Test Platform 3: Properties . 32

4.4 C200 Webcam Properties . 32

4.5 C905 Webcam Properties . 33

6.1 Image capture platform webcam configuration for testing 52

6.2 Stereo processing configurations for experimentation 64

7.1 Test Platform 1 and 3 access and operation results and configuration . . 67

7.2 Test Platform 2 access and operation results and configuration 68

LIST OF TABLES xvi

7.3 Frame rate for the three test platforms 69

7.4 Comparison of processing times and disparity 72

Glossary of Terms

API Application Programming Interface

CCD Charged Coupled Device

CMOS Complementary Metal Oxide Semiconductor

COM Component Object Model

CPU Central Processing Unit

DLL Dynamic Linked Library

EA Engineers Australia

FPGA Field-programmable Gate Array

GPU Graphical Processing Unit

GUI Graphical User Interface

HD High Definition

IDE Integrated Development Environment

JPEG Joint Photographic Experts Group

LED Light Emitting Diode

LIDAR Light Detection and Ranging

OS Operating System

OTS Off The Shelf

PCI Peripheral Component Interconnect

SDK Software Development Kit

USB Universal Serial Bus

UVC USB Video Class

VFW Video For Windows

V4L Video4Linux

VMR Video Mixing Renderer

Chapter 1

The Utilisation of Webcams for

Stereo Vision

Stereo vision research and development has been carried out for almost half a century.

It has been the objective of researchers to provide a system that is capable of robust,

precise and accurate stereo vision for a large range of applications. While the most

common applications for stereo vision have involved robotics and machine vision, new

applications have been emerging in remote machine access and personal entertainment.

Accessibility has long been a limitation in the filed of stereo vision research and devel-

opment, as the cost involved with purchasing professional image capture devices has not

been feasible. The requirement has existed for a low-cost image capture platform ca-

pable of simultaneous image capture that can be used for computer vision applications

including stereo and multiple camera vision processing.

A solution to the accessibility issue will be investigated that includes the implementa-

tion of low-cost and off-the-shelf consumer webcams. The consumer webcam has been

selected as it has evolved over the years to become a highly capable video and image

capture device.

Existing approaches in developing an image capture platform have been limited by

the lack of functionality for operating two or more webcams and allowing image cap-

1.1 Project Aim 2

ture simultaneously. The developer has usually had the task of creating the software

from scratch, as existing packages are either too expensive or are produced for a niche

application and for specific hardware.

By developing an image capture platform it will be possible to determine the suitability

of the webcam for high demanding tasks, such as stereo vision. This will involve the

investigation and application of calibration, image rectification and disparity mapping

processes for the analysis of stereo vision suitability.

Combining webcams with the increasingly powerful desktop personal computer may

provide the potential for a low-cost capture platform for research and development ap-

plications in the field of stereo vision. The requirement for a robust, accurate, economic

and accessible system still exists and this project suggests that a solution is achievable.

1.1 Project Aim

The project aims at providing a solution for the simultaneous operation and image

capture from consumer webcams and investigating the suitability of webcams for stereo

vision applications. The project will involve the creation of a software solution for an

image capture platform that can be used as a stand-alone application or implemented

into a library for use by other applications. It is also intended that the capture platform

will be used in further research projects.

The suitability of using webcams for stereo vision applications will be researched and

tested to identify any limitations that may exists. The research will not only cover

stereo processing, but will include calibration and image rectification techniques and

processes, that will be included in the testing stages for the project.

1.2 Project Objectives

The overall project has been assessed and broken into key objectives for completion:

1.3 Overview of the Dissertation Structure 3

• Research stereo and multiple camera vision systems including occlusion reduction

and depth extraction techniques.

• Research the feasibility of operating two or more USB webcam devices simulta-

neously on a single personal computer.

• Design of a software access and control system for multiple webcam image acqui-

sition and edge detection.

• Research calibration and stereo disparity processing techniques and the feasibility

of applying them to the image acquisition system.

• Analyse captured image data for edge detection and surface processing accuracy.

• Design and implement image acquisition library into Dynamic-link library format

for access by other applications.

Additional objectives will be commenced if time and resources permit:

• Investigate the feasibility of implementing the software system on multiple OS

platforms.

• Extend application research into infrared cameras and game based controllers.

• Design of software functions for multiple webcam calibration and stereo disparity

processing.

1.3 Overview of the Dissertation Structure

The dissertation is organised as follows:

• Chapter 1 - Provide an introduction for the project and detail on the aim and

objectives.

• Chapter 2 - The existing literature and approaches will be reviewed to determine

the projects feasibility and methodology. Basic concepts related to the project

will also be discussed.

1.3 Overview of the Dissertation Structure 4

• Chapter 3 - The methodology and approaches for the project will covered and

provide an overview of how the project will be completed. Risk assessment and

sustainable practices will be detailed in relation to the project.

• Chapter 4 - The selection of the necessary hardware for both the webcams and

computer testing platforms will detailed.

• Chapter 5 - The overall development stage for the image capture platform and

library will be outlined. The development stage will provide information on key

areas that are critical for the successful operation of the software.

• Chapter 6 - The processes involved with testing the image capture platform,

library and stereo vision processing will be discussed.

• Chapter 7 - The chapter will discuss the findings and results from testing stage.

• Chapter 8 - The research conclusions will be covered and the identification of

further research opportunities discussed.

Chapter 2

Literature Review

2.1 Chapter Overview

Stereo vision systems have been research and developed for over 40 years (Narasimha

2010). Early research was limited however to the technology and computing power at

the time. This led to much research being carried out with low resolution random dot

stereograms (Julesz 1964, p. 357). Current computer systems and capture devices have

the potential for high resolution and real-time stereo vision processing for applications

requiring 3-dimensional environment information.

This chapter investigates and reviews the existing literature and approaches for devel-

oping a computer based stereo vision system. This includes investigating the feasibility

of implementing OTS webcams into a stereo vision system.

2.2 Computer Based Stereo Vision

Single image and video capture devices obtain two-dimensional images, thus it is nec-

essary to recover the third dimension from multiple images captured of the same scene

from two or more devices (Mubarak 1997, p. 111). Stereo vision is able to achieve the

recovery of the third dimension through stereo correspondence and triangulation.

2.2 Computer Based Stereo Vision 6

Figure 2.1: Overview of a stereo vision system

The basic stereo configuration is detailed in Figure 2.1, which depicts the relationship

of the two camera system with the object of interest.

Where:

• Image Matrix = xL, xR

• Disparity (D) = xLxR = bf/Z

• Depth (Z) = bf/(xLxR)

Numerous stereo algorithms have been developed, evaluated and documented over the

years (Scharstein & Szeliski 2001) that continuously aim at retrieving accurate and

reliable 3-Dimensional data. Common stereo algorithms including Banard’s Stereo

(Mubarak 1997, p. 117), Marr-Poggio cooperative stereo (Forsyth & Ponce 2002,

p. 330) and the Horn and Ikeuchi algorithms (Forsyth & Ponce 2002) are widely

documented in computer vision literature.

Each algorithm performs differently depending on the image data, for example it was

found (Forsyth & Ponce 2002) that the Marr-Poggio approach works well on random

dot stereograms, but not on natural images. A gross simplification is that these algo-

rithms complete disparity calculations in a similar method by finding correlating points

2.2 Computer Based Stereo Vision 7

Figure 2.2: Pinhole camera model

of uniqueness between the left and right images.

2.2.1 Camera Calibration and Image Rectification

Camera calibration is an important process for the retrieval of accurate 3-Dimensional

data from images (Davies 2004). The function of camera calibration in a stereo vision

system is to retrieve the intrinsic and extrinsic parameters of the each individual camera

and then the combined camera system. Intrinsic parameters are used to model the

imaging process, and extrinsic parameters are used to model the cameras location in

its environment (House & Nickels 2006).

Zhang (2000) describes the common conventions used for the describing the calibra-

tion approach by using the pinhole camera model in Figure 2.2, which describes the

relationship between the image plane and the coordinates of a 3-Dimensional point

where:

• Denoting a 2D point as a vector m = [u, v]T .

• Denoting a 3D point as a vector M = [X,Y, Z]T .

2.2 Computer Based Stereo Vision 8

• The augmented vector is defined by x̃ and an additional 1 is added to the last

vector element m = [u, v, 1]T and M = [X,Y, Z, 1]T .

• When an image is taken, the 3D point M, denoted by m is formed by an optical

ray from M intersecting the image plane and passing through the optical center of

the camera C.

• The three points M, m and C are collinear.

The relationship between the real world 3D point M and the captured projection point

m is determined by:

sm̃ = A[R, t]M̃ = PM̃ (2.1)

A =

∣∣∣∣∣∣∣∣∣∣
α γ u0

0 β − e v0

0 0 1

∣∣∣∣∣∣∣∣∣∣
.

P = A[R, t] (2.2)

Where:

• s is an arbitrary scale factor.

• [R, t] is the extrinsic parameters, which represent the rotation and translation

relating the world coordinate system to the camera coordinate system.

• A is called the camera intrinsic matrix with (u0, v0) the coordinates of the

principal point.

• α and β are the scale factors with regards to the image u and v axes,

• γ represents the parameter describing the skew of the two image axes.

2.2 Computer Based Stereo Vision 9

The resulting 3 X 4 matrix P is defined as the camera projection matrix. This matrix

combines both the intrinsic and extrinsic properties that can be applied to rectification

of the captured image pairs.

Medioni and Kang (2004) describes a popular technique that consist of using a checker-

board pattern for calibration. The steps involved are:

• Detecting the corners of the checker pattern in each captured image.

• Estimating the Camera projection matrix P.

• Recovering the intrinsic and extrinsic parameters A, R and t from the projection

matrix P.

Camera calibration is necessary before the image pairs can be rectified, as the cali-

bration process determines the image transformational information (R. Guerchouche

2008). The rectification process provides corrections for radial lens distortion, the prin-

cipal point and focal lengths. Guerchouche (2008) reports that rectification errors are

usually a result of poor placement of the calibrating image pattern, which leads to

blurred images and reduces edge or corner detection accuracy.

2.2.2 Occlusion Reduction

Stereo vision systems are usually developed with two cameras that create a stereo pair

of images. This has limitations due to occlusion where pixels from one image do not

have a match in the correlating stereo pair image (Zitnick & Kanade 1999, p. 675).

This can be caused by foreground objects blocking background objects in a scene. It

has been documented (Zitnick & Kanade 1999) that a typical approach to deal with

occlusion is bidirectional matching that uses disparity mapping interpolation to improve

accuracy.

Research has also been carried out into other occlusion reducing methods. It has been

reported (Chen & Davis 2000) that limited success was achieved through varying the

camera placement. This has resulted in a trade-off between resolution and robustness

2.3 Current Computer Based Stereo Vision Systems 10

of the system. Using trinocular vision, where three cameras are used has been shown to

achieve good results. Asensio and Montano report that this method has the advantage

of improved accuracy with stereo matching; however it requires greater resources to

achieve.

2.3 Current Computer Based Stereo Vision Systems

Current stereo vision systems tend to be designed around a specific niche application

with a strong emphasis on machine vision. This results in a system that has software

and hardware dependencies unique to the niche application. Attempts to create user

friendly and accessible GUI’s or software packages still tend to be bounded to a single

OS platform being either Windows or Linux with no cross compatibility (Castejon

2009).

Other alternatives including the OpenCV library only provide C and C++ libraries for

stereo vision systems (Bradski & Kaehler 2008). MATLAB has also been used as a

software interfacing package; however this results in a dependency to MATLAB and

does not provide a stand-alone user interface.

It has been identified that the necessity for a system to be low-cost is usually overshad-

owed by the requirement of accuracy and robustness. It has been reported (Murphy,

Lindquist, Rynning, Cecil, Leavitt & Chang 2007) that this has resulted in a cost pro-

hibitive technology and limits access for future research and development. The USB

webcam can provide a platform that can capture Full HD resolution video at 30 frames

per second. The USB webcam also provides this functionality at a cost $10 - $150 per

unit, which is an attractive option when compared to existing systems such as LIDAR

that can cost $7,000 - $20,000 (Murphy et al. 2007, p. 333). FPGA devices provide

another alternative, but low cost configurations require development, interfacing and

housing.

2.4 Operation of Multiple Webcams 11

2.4 Operation of Multiple Webcams

It is necessary to operate two or more webcams simultaneously and to capture video

frame data for further processing. In order to achieve this objective it will be necessary

to determine the feasibility of webcam operation in relation to both the hardware and

software components.

2.4.1 USB Interface Capabilities

The use of two or more webcam devices places increased strain on transfer methods

between the webcams and computer system. All current webcams and computer sys-

tems provide USB connectivity of version 2.0 to meet the bandwidth requirement of

streaming video data.

USB 2.0 provides suitable transfer speeds of 480 Mbps (Axelson 2009, p. 12), with the

release of USB 3.0 it is likely that hardware manufactures will start adopting the newer

standard in both webcams and computer systems that can provide transfers of up to 5

Gbps (Axelson 2009, p. 13).

2.4.2 Application Programming Interface

The interface between the webcam device drivers and the OS requires compatibility

with new and old webcam devices while also being able to stream from two or more

webcams. This project will involve the development of an image capture platform

capable of running on Microsoft Windows OS’s, however non-Windows OS’s will be

researched for the potential of future work.

2.4.3 Microsoft Windows API’s

Microsoft has developed many multimedia APIs to operate on their Windows based

OSs. The first notable API was Video For Windows (VFW), which was provided

with the release of Windows 3.1 and the later Windows 95 OS. VFW provides limited

2.4 Operation of Multiple Webcams 12

format and device support (Microsoft 2011a) due to it’s early development and release.

Subsequently VFW has been superseded by the DirectShow API (Microsoft 2011b).

The Directshow API was released in 1996 under the name ActiveMovie, however it

was renamed to DirectShow in 1998 to distinguish it’s link with the DirectX API.

DirectShow has had many revisions since release with the notable inclusion of the

Video Mixing Renderer (VMR) filter (Microsoft 2011a). The VMR allows the mixing

of multiple video sources into a single video stream.

DirectShow provides flexibility and high quality capture when working with multime-

dia streams (Microsoft 2011a). DirectShow applies filters for the control of capture

devices. Multiple filters are able to be accessed simultaneously and are managed by

the DirectShow filtergraph. This capability will allow multiple webcams to operate

simultaneously.

DirectShow is still supported in the latest Windows OS - Windows 7, however it will be

superseded by the Microsoft Media Foundation API. Media Foundation was released

in 2007 with the Windows Vista OS and is currently supported alongside DirectShow

(Microsoft 2011c). Media Foundation will include support for emerging high definition

devices and formats.

The support and documentation for both VFW and Media Foundation is limited due

VFW being superseded and the relatively short period that Media Foundation has

been in use. DirectShow provides the compatibility, functionality and support that the

alternative API’s lack.

2.4.4 Linux and Apple API’s

Non Microsoft OS’s have a substantially smaller market share with Microsoft controlling

over 90% of the market (Net Market Share 2011). Both Linux and Apple Mac OS

distributions also include some form of multimedia API for video capture.

Linux OS distributions can access and manipulate multimedia streams with the Video4Linux

(V4L) API. The V4L API provides similar capability to DirectShow by allowing the op-

2.5 Infrared Based Game Controllers for Stereo Vision Systems 13

eration of multiple devices and supporting common image and video formats (LinuxTV

2009).

A limitation of V4L is the small number of supported hardware devices, as some man-

ufactures do not provide device drivers for Linux. To provide improved device support

Linux provides a default USB Video Class (UVC) driver (Ubuntu 2011).

Apple provides the QuickTime API for both Windows and Mac OS. The API pro-

vides over 2500 multimedia functions for manipulating and controlling video and audio

data (Appple 2011). The Quicktime API supports numerous languages including C,

C++, C#, Java and supports Component Object Model (COM) and .Net frameworks.

Quicktime allows multiple media sources to operate simultaneously and to allow image

capture.

2.5 Infrared Based Game Controllers for Stereo Vision

Systems

The method for controlling actions and movement inside a video game environment has

changed in recent years with the release of the Nintendo Wii gaming console in 2006

and with the Xbox Kinect gaming controller in 2010. The controllers provide a wireless

and infrared method of object tracking. Both the Wii and Xbox controllers provide a

feasible alternatives for stereo vision systems.

2.5.1 Nintendo Wii

The Wii controller contains conventional buttons along with an infrared camera. A sen-

sor bar containing two clusters of infrared LEDs is positioned near the output display.

The controller works by detecting the two cluster points and calculates the relative

position and direction of movement of the controller with respect to the display (Hay,

Newman & Harle 2008).

The controllers optical sensor consists of a CCD capable of a resolution of 1024x768

2.6 Chapter Summary 14

combined with an infrared filter capable of sensing up to four infrared points at a speed

of 100 Hz (Cuypers n.d.).

(Lee 2008) reports that it is feasible to create an inexpensive stereo vision system with

Wii controllers, while using more then two controllers may reduce occlusion issues.

Existing research has also concluded that a level of precision under 3 mm is possible

with a calibrated Wii-based system (Cuypers n.d.).

2.5.2 Xbox Kinect

The Kinect controller is gaining popularity in the development community, with the

official support and release of a software development kit by Microsoft.

The operation of the kinect controller involves an infrared projector and camera in-

corporated into the same piece of hardware. The infrared projector projects a known,

near-random pattern of infrared dots onto its field of view. The dots are captured by

the infrared camera that is offset by 25 mm from the projector on its epipolar axis.

The depth of an object is determined by the level of dot disparity between the known

projection pattern and the dot pattern captured by the camera (Ball & Taschuk 2011).

The Kinect controller provides advantages over existing stereo vision systems, as it can

handle ambient lighting condition as it does not register light in the visible spectrum

(Carmody 2010) and (Ball & Taschuk 2011) found that it is feasible to develop a vision

system with a single capture device capable of depth estimation.

2.6 Chapter Summary

From the conducted research it has been determined that the requirement does exist

for an accessible and low cost image capture system implemented from OTS hardware,

capable of collecting image data for stereo processing.

There has been a wide range of research into the field of stereo vision; however a large

proportion of research has focused on machine vision or other niche applications. Cam-

2.6 Chapter Summary 15

era calibration and image rectification has been researched thoroughly an its importance

appreciated for the successful implementation of a stereo vision system capable of depth

estimation.

The use of infrared gaming controllers for an economical and alternative stereo vision

system is feasible and development is relatively new and progressing rapidly.

From the determined feasibility this project aims at implementing multiple USB web-

cams via an API into an image capture platform. The capture platform will provide the

capability of simultaneous image capture that will be used for further stereo processing

and the extraction of environmental depth information.

Chapter 3

Methodology for Software

Development and Stereo Vision

Evaluation

3.1 Chapter Overview

This chapter covers the methodology and approach taken for the development of the

multiple camera platform and stereo vision evaluation. This chapter also provides

information on the risks and consequential effects involved with the research and de-

velopment.

3.1.1 Project Methodology

To determine the methodology of the project it was necessary to develop an under-

standing of how the objectives would be achieved and therefore a logical breakdown of

the main tasks.

The tasks involve creating an image capture platform and library for webcams that can

be used to capture images from streaming video. The captured images can be used for

3.1 Chapter Overview 17

further stereo processing for depth estimation. For this to be achieved it is important

that the correct interactions between the systems software and hardware layers are

implemented.

The system will require at least two webcams for stereo vision processing. The webcams

will require a physical mounting, so that they share a common scene of interest during

the image capture process. The webcams need to be interfaced with the desktop system,

so that the video streams can be accessed and image data retrieved from video frames.

A software platform with an intuitive GUI will need to be developed to allow the user

to operate the webcams and capture image data for later processing. The GUI will

need to provide the user with enough control to add or remove webcams and to adjust

the webcam properties.

Calibration of the webcams will be required to correct any variation in physical orienta-

tion and location. This process will have to retrieve the cameras intrinsic and extrinsic

parameters for accurate stereo processing.

A software process will need to be applied that is able to perform image rectification

and edge detection. This is necessary to align the image pair planes and to identify

points of correlation between the images, which will result in a higher level of stereo

vision processing accuracy.

The next software process will apply the stereo processing that will result in disparity

mapping. The generated disparity maps will be evaluated for accuracy and suitability

to real world applications.

The development of a webcam access software library will be carried out for testing in

other programming applications or existing software packages. The outlined method-

ology requires that all the necessary tools, such as IDEs have been configured and that

all necessary resources obtained.

3.2 Task Breakdown 18

3.2 Task Breakdown

The project methodology can be refined into eight major tasks:

1. Stereo webcam mounting

2. Webcam Interfacing in both hardware and software

3. Development of the multiple camera access platform

4. Software library development for webcam access

5. Webcam image capture

6. Webcam calibration to correct intrinsic and extrinsic parameters

7. Image pair rectification and edge detection

8. Stereo processing and disparity mapping

These tasks are identified as being key milestones for development and as and indication

of the projects progression.

3.3 System Operation

The overall system in Figure 3.1 consists of two key components:

1. Webcam access and capture through the GUI platform or software library

2. Stereo processing of captured image pair data.

The operation of the system is reflected in the developmental task breakdown and how

the software components interact.

3.4 Task Analysis 19

Figure 3.1: Overview of the system operation

3.4 Task Analysis

The methodology for the eight major tasks defined for this project will be analysed to

determine the approach to be taken and the resources required.

3.4.1 Stereo Webcam Mounting

The webcams will require mounting during the image capture and stereo processing

stages of the project. The selected mount must provide a solid foundation for the

webcams to reduce any unwanted webcam movement or vibrations. The mount must

also accept different webcam models and configurations. The mount will be situated

in an office environment and will also be limited to the physical space available.

Resources Required:

• Physical mounting for webcams.

3.4 Task Analysis 20

3.4.2 Webcam Interfacing in Both Hardware and Software

The hardware interfacing for the webcam should be straight forward as completed

research has found that the USB interface is common amongst all webcam and mother-

board manufactures. The software interfacing will be more challenging, as code needs

to be developed that will allow the webcam to interact with the OS, image capture plat-

form and library. The software interface will have to include a suitable API that allows

multiple webcams to operate simultaneously on a single desktop computer system.

Resources Required:

• Webcams with USB connectivity.

• Desktop computer system(s) for testing that include USB connectivity.

• API for software interfacing.

3.4.3 Development of the Multiple Camera Access Platform

The image capture platform will require a functional and easy to use GUI for user

interaction. This will involve writing a Windows application that provides functionality

for webcam selection, playback, edge detection and image capture. The user should be

able to control the operation of all the functionality components, which would provide

a better user experience. The platform should allow access of at least three webcams

for image capture and streaming. This will be a capability that has not been found

in other webcam applications that limit the number of webcams and image capture to

only one or two devices.

Resources Required:

• Webcams

• Selection of programming language.

• IDE for software development.

3.4 Task Analysis 21

3.4.4 Webcam Image Capture

This will also involve the creation of software that is capable of capturing the video

frames from the streaming webcam video. The captured images should be able to be

stored in a common image format that is supported by most applications. The capture

will need to be simultaneous with little time separating each webcam capture.

Resources Required:

• Webcams

• Selection of programming language.

• IDE for software development.

3.4.5 Webcam Calibration for the Correction of Intrinsic and Extrin-

sic Parameters

A calibration process will need to be acquired that can be applied to the captured

images from the image capture platform or library. The calibration must be able to

determine the intrinsic and extrinsic parameters of the webcams and environment. The

calibration data must be able to be collected and stored for further processing including

image rectification.

Resources Required:

• Existing calibration software package.

3.4.6 Image Pair Rectification and Edge Detection

The image rectification process must operate similarly to the calibration process, where

the process can be applied to the captured images from the platform. This will involve

writing a software process, modifying provided code by Dr John Leis or using an avail-

able software package.

3.4 Task Analysis 22

Resources Required:

• Existing software package capable of handling imported images and calibration

data.

3.4.7 Stereo Processing and Disparity Mapping

The suitability of using webcams for image capture and stereo vision is a major objective

in the project. The approach for applying stereo processing to the captured images must

be robust and accurate. Since numerous stereo algorithms exist it will be necessary to

research and select one capable of handling the image format and selected scene type.

It may be necessary to save captured images in a format that can be accessed by the

stereo vision processing package.

Resources Required:

• Existing Stereo Vision Processing software package.

• Suitable scene for testing.

3.4.8 Software Library Development for Webcam Access

The image capture library development will require a programming approach that

includes the required DLL commands. The DLL format will need researching before

development can begin. The Library should be able to be tested in both a third party

application such as MATLAB; and through a developed program. The library will

provide similar functionality to the image capture platform.

Resources Required:

• Selection of programming language.

• IDE for software development.

3.5 Consequential Effects 23

3.5 Consequential Effects

The possible consequences of introducing a new system into the public have been in-

vestigated to ensure the impact is sustainable, safe and ethical (USQ 2011).

3.5.1 Sustainability

EA has provided guidelines for evaluating the sustainability on the environmental,

social and economical systems over its full life cycle (Engineers Australia 2011b).

The proposed stereo vision system will have a minimal impact during its lifecycle.

The manufacture of the device and the energy consumption does contribute to the

usage of energy and materials developed through non-renewable processes. These issues

involving the manufacturers processes are outside of the scope of this project.

3.5.2 Safety

The system will consist of OTS webcams and desktop computer systems that must

meet the required Australian Safety Standards.

3.5.3 Ethical Dimensions

EA provides a code of ethics to be related to engineering practices (Engineers Australia

2011a). The code of ethics covers integrity, competence, leadership and sustainability.

In undertaking this project it is important to incorporate the code of ethics in all

areas, to ensure that the final outcome of the project will reflect the best interests of

the community.

3.6 Risk Assessment 24

3.6 Risk Assessment

The risks and possible hazards associated with this project are similar to those involved

in any IT environment. It is important to identify and reduce the likelihood of risk

associated with the project and its use by both the operator and future users.

3.6.1 Risk During the Execution of the Project

The following hazards have been identified as those possibly encountered during the

execution of the project:

1. Occupational Overuse Syndrome:

• Evaluation - These types of injuries occur after prolonged use of computer

peripherals including the mouse and keyboard. Injuries include tendonitis

and carpel tunnel syndrome.

• Control Take regular breaks from prolonged usage. Make sure breaks include

standing and walking for several minutes.

2. Lighting:

• Evaluation - Poor lighting including glare can cause eye strain and headaches

for the operator.

• Control Correctly position monitors so they are adjacent to windows. Close

blinds or curtains if necessary and possibly use a screen filter.

3. Stress:

• Evaluation - Long hours and insufficient breaks can cause stress to the op-

erator and therefore increase the likelihood of other conditions.

• Control Healthy diet, exercise and break up large tasks into smaller and

more manageable tasks and take regular break.

4. Radiation:

3.6 Risk Assessment 25

• Evaluation - Radiation from electrical devices such as wireless routers pro-

duce low levels of radiation and operate without risk unless the device has

become damaged.

• Control Do not used damaged electrical devices, place any wireless emitters

away from users or disable when not in use.

5. Noise:

• Evaluation - Office equipment produces low levels of noise that is harmful to

human hearing; however damaged equipment may increase the level of noise

and should be investigated.

• Control Correct placement of noise producing devices, so there is a physical

distance between the user and device.

6. Electrocution:

• Evaluation - All mains power equipment in commercial use is to be tested

and tagged to reduce the use of damage equipment. It is possible that

damage equipment can be used, which

• can cause serious risk to the user. Control Avoid using food or drinks around

electrical equipment, never dismantle equipment unless qualified and do not

place power chords in areas of high traffic.

7. Heavy Lifting:

• Evaluation Some computer systems and monitors can be heavy and cause

injuries.

• Control Follow correct lifting instructions provided by manufactures, always

lift with a straight back and if necessary get assistance from others.

3.6.2 Risk Beyond the Completion of the Project

The same hazards found during the execution of the project apply to the future users

of the stereo vision system.

3.6 Risk Assessment 26

Level Code Description

1 Rare Event may occur only in exceptional circumstances

2 Unlikely The event may occur at some time, once in 10 years

3 Moderate The event should occur at some time, once in 3 years

4 Likely The event will probably occur in most circumstances, once

a year

5 Almost Certain The event is expected to occur in most circumstances, many

times a month

Table 3.1: Hazard Likelihood

Level Code Description

1 Insignificant First Aid and/or Minor Equipment Damage

2 Minor First Aid and/or Major Destruction of Equipment

3 Moderate Moderate Injury or Illness requiring examination

4 Major Major illness or temporary disability requiring hospitalisa-

tion

5 Catastrophic Death or permanent disability

Table 3.2: Hazard Consequence

Consequence 5, Almost Certain 4, Likely 3, Moderate 2, Unlikely 1, Rare

5, Catastrophic 25 24 23 22 18

4, Major 21 20 17 16 11

3, Moderate 19 15 14 10 7

2, Minor 13 12 9 6 5

1, Insignificant 8 4 3 2 1

Table 3.3: Risk Matrix

3.7 Research Timeline 27

Hazard Likelihood Consequence Rating

Occupational Overuse Syndrome 3 3 14

Lighting 4 1 4

Stress 4 2 12

Radiation 1 2 6

Noise 4 1 4

Electrocution 2 5 22

Heavy Lifting 4 3 15

Table 3.4: Risk Analysis

3.6.3 Risk Summary

Overall the project will involve a low to medium level of risk. It is important to be

aware of the risks and take steps to reduce any consequences associated with them.

3.7 Research Timeline

The project timeline outlining the managment of tasks and achievement of milestones

is located in Appendix B.

3.8 Chapter Summary

The methodology and approaches for the major project tasks have been discussed in

this chapter. The task analysis outcomes will be implemented throughout the projects

progression.

The size and background of this project results in a low risk and sustainable outcome.

There are a small amount of hardware and software resources required, however most

have already been obtained or are freely available.

Chapter 4

Test Platform and Webcam

Selection

4.1 Chapter Overview

This chapter provides information on the hardware selection criteria for the desktop

test platform and webcam selection. The selection of webcams and the test platform

is important, as it is a project requirement to utilise low-cost and OTS hardware for

the test PC and webcams.

4.2 Test platform Requirements

It is an important requirement that the image capture platform and stereo processing

can be operated on a commonly found desktop PC. The term common referring to a

desktop system of approximately five years of age. This is necessary to allow a greater

level of accessibility for potential users.

4.3 Webcam Requirements 29

4.2.1 USB Connectivity and Interfacing Requirements

The test platforms will require at least two available USB 2.0 ports for webcam connec-

tion. Two ports will be required for testing the stereo abilities of the captured image

pairs, while up to five ports will be required when testing the webcam enumeration and

detection process.

The USB 2.0 standard was released in 2000 and provides transfer speeds of 480 Mbit/s,

which is necessary for simultaneous video streams and image capture.

4.2.2 Processor Configuration

The video streaming, image capture and stereo processing will all be handled by the

system CPU. There is no utilisation of multi core processors during testing, which will

reflect the capabilities of some older desktop computers.

CPU’s manufactured by both Intel and AMD will be selected, as each processor provides

a different architectural design and features.

4.2.3 Operating System

Testing will be based on the Microsoft Windows OS. This will also increase the acces-

sibility of the software. The image capture platform has been designed to operate on

the Microsoft Windows XP, and Windows 7 OS’s in both 32 and 64 bit configurations.

Other OS exists from alternative manufactures, however Microsoft has the largest OS

market share, which results in a high level of accessability.

4.3 Webcam Requirements

The most important requirement in selecting webcams for this project is the unit price.

The objective exists that the end user be able to use low-cost and commonly available

4.3 Webcam Requirements 30

consumer webcams for operation.

Considerations of less importance include the webcam mounting and USB cable length.

4.3.1 Webcam Costs

Commercially available webcam products are priced between $10 - $150 depending on

certain features and manufacture. It is therefore necessary that the user can install an

operate webcams that have been selected from the low end of the price spectrum.

4.3.2 Webcam Compatibility

There are two important areas to investigate for webcam compatibility:

• The software layer

• The hardware layer

On the software layer, Webcams interface with the OS through device specific drivers

and an API. Ensuring that a high level of compatibility exists has been covered by using

the Microsoft Windows OS and the Microsoft Directshow API, which is discussed in

Chapter 5.

The physical connection on almost all webcams is via the USB 2.0 interface. This

provides a capable interfacing technique as discussed in Section 4.2.1.

4.3.3 Webcam Build Quality and Properties

Webcam construction and build quality varies amongst manufacturers, webcam models

and even between two identical webcams. The lower cost webcams commonly utilise a

CMOS based image sensor and plastic optics, where as the more expensive webcams

utilise a CCD sensor and higher quality optics.

4.4 Selected Test Platforms 31

These differences in construction will be analysed and evaluated for image quality and

the affects had on stereo processing.

4.4 Selected Test Platforms

Three test platforms were selected for the testing of the image capture platform and

software library, while a single system was selected for the stereo processing. The

systems were selected based on there high level of accessibility and configuration. Test

Platform 2 will be used for testing the stereo processing, as it has the lowest system

performance out of the three platforms.

The system specifications for each system are detailed in Table 4.1, Table 4.2 and

Table 4.3.

Test Platform: 1

Operating System Windows 7, 64 bit

CPU Model Intel Q6600

CPU Speed Quad Core @ 2.4 GHz

Memory 4 Gb

USB Standard 2.0

Table 4.1: Test Platform 1: Properties

Test Platform: 2

Operating System Windows 7, 32 bit

CPU Model AMD 9650

CPU Speed Quad Core @ 2.3 GHz

Memory 2 Gb

USB Standard 2.0

Table 4.2: Test Platform 2: Properties

This selection of test platforms ensures a good representation of common desktop com-

puter system configurations.

4.5 Selected Webcams 32

Test Platform: 3

Operating System Windows XP, 32 bit

CPU Model Intel Q6600

CPU Speed Quad Core @ 2.4 GHz

Memory 4 Gb

USB Standard 2.0

Table 4.3: Test Platform 3: Properties

4.5 Selected Webcams

Two pairs of webcams were selected for operation and testing. These include the Log-

itech C200 and Logitech C905. The webcams provide a good comparison of differently

priced and constructed webcams that are currently available on the market.

The webcam specifications are listed in Table 4.4 and Table 4.5.

C200 Webcam

Manufacturer Logitech

Sensor CMOS

Max Video Resolution 640 x 480 Pixels

Frames Per Seconds 30

Connection Interface USB 2.0

Price $10.00

Table 4.4: C200 Webcam Properties

The manufacturer Logitech was selected due to their large market share and availability.

4.6 Chapter Summary 33

C905 Webcam

Manufacturer Logitech

Sensor CCD

Max Video Resolution 1600 x 1200 Pixels

Frames Per Seconds 30

Connection Interface USB 2.0

Price $55.00

Table 4.5: C905 Webcam Properties

4.6 Chapter Summary

The hardware requirements and selection were discussed for the project. Suitable desk-

top computer test platforms were selected to provide a good range of hardware config-

urations during testing.

The requirements and selection of the webcams was completed, which consists of two

webcam pairs based on the Logitech C905 and C200 webcams.

Chapter 5

Image Capture Platform and

Library Development

5.1 Chapter Overview

This chapter discusses the developmental process involved with the project. Develop-

ment involved two main tasks; the image capture platform GUI and the image capture

library. Each task required different knowledge and resources for successful execution.

The software requirements and selection for development are also discussed to provide

details on how they impacted on development process.

5.2 Software Requirements and Selection

The development tasks involved with the project focus on providing a software solution

for webcam access and image capture. This required the selection of:

• A suitable programming language

• An Integrated Development Environment

5.2 Software Requirements and Selection 35

• An Application Programming Interface

Each software requirement had to be solved based on, existing familiarity, functionality,

accessibility and time required for competent operation.

5.2.1 Programming Language

Both the image capture platform and library had to be programmed in a language

that could be compiled and operated on the Microsoft Windows OS. It also had to be

suitable for developing the DLL format library.

Other considerations for the selection of the programming language included speed of

execution and cross-platform portability. This project will not involve the develop-

ment of a software solution for non Windows based OS’s, however it maybe a task

in future projects. The potential for future project work was therefore an important

consideration when selecting a programming language.

The most suitable language that fulfilled the requirements was C. Other languages

would also be able to achieve the same outcome, however the C language has been in

use for almost 40 years and is well documented, supported, efficient and portable.

5.2.2 Integrated Development Environment

For a more efficient development approach it was necessary to select an IDE capable

of editing and compiling C source code.

After investigation and recommendation, the Wedit IDE was selected. Wedit is a simple

editor interface capable of syntax highlighting, which includes the lcc-win32 Compiler

system for Windows by Jacob Navia

The included library is capable of developing basic Windows and console applications.

This produced some limitations, as additional libraries had to be accessed and linked

during development.

5.2 Software Requirements and Selection 36

5.2.3 Application Programming Interface

The API is required to link the webcam device drivers and the OS together, so webcam

access can be achieved. The API must provide the abilities of operating multiple

webcams simultaneously and allow for image capture from the multiple video stream.

The Microsoft DirectShow API was selected for this task for the following reasons:

• DirectShow provides improved compatibility and support over VFW and Media

Foundation for the selected test OS’s.

• The DirectShow architecture provides full manipulation and handling of multi-

media tasks.

• Source code examples developed by Dr John Leis have been provided that use the

DirectShow API to access a single webcam and provide edge detection processing.

Specific requirements for the DirectShow API are a Windows XP - Service Pack 1

or Windows 7 OS. These OS’s include the Microsoft DirectX 9.0 or later API, that

incorporates the DirectShow API libraries.

5.2.4 Microsoft DirectShow Operation

DirectShow is able to handle multimedia by using two types of object classes:

• Filters which are the atomic entities and control the media devices attached to

the system.

• Filtergraphs control multiple filters connected together.

To access media from a device, the filter uses pins that can either receive an input

stream or send an output stream. The number of pins is determined by the device.

Figure 5.1 provides an overview of the filter and pins applied to the C905 webcam.

5.2 Software Requirements and Selection 37

Figure 5.1: Pins attached to filter of the C905 webcam

DirectShow is also based on the Component Object Model (COM), which allows de-

velopers to create binary based code components that are re-usable, can be created in

multiple languages and accessed by different applications.

COM components are created using Globally Unique Identifiers (GUID) or Universally

Unique Identifiers (UUID), which provide an identification method for the software

components. An an example of this is:

CoCreateInstance(&CLSID_FilterGraph, //Class ID for COM object

NULL,

CLSCTX_INPROC_SERVER,

&IID_IGraphBuilder, // Interface ID

(void **)&pGraphBuilder1); // Filter Pointer

pGraphBuilder1->AddFilter(pSrc1, L"Video Capture");

The code example creates a filtergraph pGraphBuilder1 and attaches the filter pSrc1.

The filtergraph is encapsulated in the COM CLSID FilterGraph.

The capabilities of the DirectShow API can be broken into three areas, which are based

on the types of filter operation:

1. Capture of both audio and video from a live camera device, in this project web-

cams. This also includes the ability to open a file and treat it as if it were a live

multimedia source.

2. When a multimedia source has been selected and the video or audio stream cap-

tured, DirectShow filters can transform the media. This includes colour conver-

5.3 Image Capture Platform Requirements 38

sion or splitting the media and sending it to multiple filters for further processing.

3. The third capability is rendering of the media to an output device. This includes

speakers, monitor display, writing to a disk or outputting to another device.

The three filter types and their relationship with the filtergraph and devices is shown

in Figure 5.2.

Figure 5.2: Overview of the Microsoft DirectShow operation

5.3 Image Capture Platform Requirements

The image capture platform will provide the user with a stand-alone GUI package that

is easy to operate and provides a high level of functionality. The key requirements of

the platform include:

• Design of an easy to use GUI with webcam controls.

• List all the available webcams on the desktop system.

• Control the selected webcams properties.

5.3 Image Capture Platform Requirements 39

• Provide the user with the option of selecting the webcams they require.

• Display a live video stream from the selected webcams.

• Apply real-time edge detection to the webcam video if selected by the user.

• Capture video frames from the webcam video streams and store them to disk in

*.BMP format.

• Upon closing the image capture platform application close all DirectShow objects.

Each of the listed requirements must be addressed during the development stage of the

project to ensure that a suitable solution is achieved.

5.3.1 Review of Provided Code Example

An existing code example was provided by Dr John Leis of the University of South-

ern Queensland. The code allowed the user to access a single webcam and provided

playback controls and real-time edge detection to the video stream.

The code provided a working method for accessing a webcam through the DirectShow

API on a Windows based OS. Components of the code have been modified and included

into the development of the image capture platform.

5.3.2 GUI Layout

It is an important requirement that the user be able to easily work with and operate

the platform. This requires a user-friendly and intuitive GUI design that provides quick

access to user operated controls.

The overall layout for the platform is comprised of six video windows in a 2x3 con-

figuration. Each window is 320 pixels wide and 240 pixels high. These dimensions

were used to conserve the amount of desktop space required during operation. The

top row contains three windows for real-time video streams from the selected webcams.

5.3 Image Capture Platform Requirements 40

The bottom row displays the captured webcam video with the edge detection process

applied. Figure 5.3 shows the final image capture platform GUI.

Figure 5.3: Final image capture platform GUI

The GUI is designed to operate up to three webcams simultaneously. It is possible to

operate more devices with the DirectShow API, however this limitation was decided

upon to conserve desktop space. Each video window is provided with a drop down

menu for the individual webcam selection from up to five available webcams.

The GUI provides the user with a selection of controls for the webcam playback, image

capture and edge detection function. These controls were implemented as Windows

buttons in the left hand side of the GUI by using the CreateWindowEx command. An

example of this is the stop button:

CreateWindowEx(BS_PUSHBUTTON,

"button", // window class name

"Stop",

WS_CHILD | WS_VISIBLE | BS_PUSHBUTTON,

20, 55, 100, 20,

hWnd, (HMENU)IDB_STOPBUTTON,

hInstance, (LPVOID)NULL);

5.3 Image Capture Platform Requirements 41

The playback controls included Start, Stop, Pause and Resume. Playback buttons were

linked to the DirectShow pMediaControl1 command when activated by the user. This

resulted in:

• pMediaControl1->Run() for Start and Resume controls.

• pMediaControl1->Pause() for the Pause control

• pMediaControl1->Stop() for the Stop control. DirectShow objects are also re-

leased when the Stop control is selected

Image capture button controls were implemented into the GUI for each individual

webcam or a single control can be used to grab a simultaneous frame from all running

webcams. The operation behind the controls is detailed in Image Acquisition section

of this chapter.

The provided edge detection code can be operated by selecting the Edge Detection

button control option on the GUI. This enables or disables the edge detection func-

tionality of the platform. The operation behind the edge detection control is detailed

in Real-Time Edge Detection section of this chapter.

5.3.3 Enumeration and Selection of Available Webcams

It was necessary to find and enumerate all the available webcams attached to the

system when the platform was started. This allows the user to easily select the required

webcams for streaming or capture.

The FindCaptureDevice() function was developed for the process of enumerating all

available webcams. The enumeration of devices was achieved by using the Direct-

Show command; CreateClassEnumerator. The CreateClassEnumerator command

was defined for video devices by using the CLSID VideoInputDeviceCategory com-

mand, which returned a collection device monikers. A device moniker is a COM object

that contains information about the enumerated device.

5.3 Image Capture Platform Requirements 42

The overall enumeration process operates in a loop structure, outputting the device

information into monikers and then assigning the moniker to a filter. In the simplified

section of code from the platform development below, the device moniker pMoniker is

binded to the filter object pEnumSrc1:

while (pClassEnum->Next(1, &pMoniker, NULL) == S_OK)

pMoniker->BindToStorage(0, 0, &IID_IPropertyBag, (void **)&pPropBag);

pMoniker->BindToObject(0,0,&IID_IBaseFilter, (void**)&pEnumSrc1);

The filter object is then used for other operations including the rendering of the video to

screen and for configuring the webcam properties. These other operations are detailed

throughout this chapter.

5.3.4 Control of Webcam Properties

When the user selects a webcam from the drop down menu, they will have the option

to modify the webcams properties. These properties include:

• Webcam image format

• Video resolution

• Frames per second for video streaming

The webcam video resolution can be adjusted by the user, however the webcam video

windows are restricted to the dimensions, 320 pixels wide and 240 pixels high. This

results in a scaled video been shown in the GUI. The captured image size will be the

same as the user selected resolution.

The webcam properties are accessed by querying the pins attached to the device filter.

This is detailed in the platform code below:

5.3 Image Capture Platform Requirements 43

// Enumerate pins from Capture filter.

pSrc1->EnumPins(&pEnum1);

pEnum1->Reset();

pEnum1->Next(1, &m_pCamOutPin1, NULL);

// Pin Properties.

hr = m_pCamOutPin1->QueryInterface(&IID_ISpecifyPropertyPages,

(void **)&pSpecPropPage1);

if (SUCCEEDED(hr))

{

// Code for Property Window

}

The code operates by enumerating the pins from the filter object pSrc1 and assigning

the pin object to m pCamOutPin1, which is queried by the command:

IID ISpecifyPropertyPages.

The webcam property window is then displayed for user interaction.

The code developed for the configuration of webcam properties is included in the

InitWebCamCapture’x’() where ’x’ denotes a webcam number from 1-3.

5.3.5 Simultaneous Webcam Access

The requirement to operate multiple webcams simultaneously resulted in the develop-

ment of three individual DirectShow filter graph managers that manage each of the

three webcam filters.

The main webcam access functions that define and manage the filters are:

InitWebCamCapture’x’()

5.3 Image Capture Platform Requirements 44

while calls are made from within InitWebCamCapture’x’() to the:

InitializeWindowlessVMR’x’() and InitVideoWindow’x’() functions for the con-

trol of the video windows.

NOTE: ’x’ denotes a webcam number from 1-3.

The filter graph manager controls the webcam filter objects along with synchronization

and event notification. The filter graph manager is created by defining an instance of

the filter graph manager class CLSID FilterGraph:

CoCreateInstance(&CLSID_FilterGraph,

CLSCTX_INPROC_SERVER,

&IID_IGraphBuilder,

(void **)&pGraphBuilder’x’);

After the filter graph manager pGraphBuilder’x’ was created it was necessary to use

the Video Mixing Renderer (VMR) to control the output of the video. By default

DirectShow outputs the video to a separate ActiveMovie window. It was necessary for

this project to confine the video to one of the defined video windows on the GUI.

The InitializeWindowlessVMR’x’() function is called within InitWebCamCapture’x’()

to establish the type of video output rendering for the webcam. To use the ren-

dering features of VMR it was necessary to define an instance of the VMR class

CLSID VideoMixingRenderer:

CoCreateInstance(&CLSID_VideoMixingRenderer, NULL,

CLSCTX_INPROC, &IID_IBaseFilter, (void**)&pVmr’x’);

It was necessary to create a VMR filter object pVmr and attach it to the filter graph

manager pGraphBuilder’x’ to allow the video output to render:

pGraphBuilder’x’->AddFilter(pVmr’x’, L"Video Mixing Renderer");

5.3 Image Capture Platform Requirements 45

The video output was required to be windowless and fixed to the defined video windows

in the GUI, therefore it was necessary to select the VMRMode Windowless rendering

mode offered by the VMR class:

pVmr’x’->QueryInterface(&IID_IVMRFilterConfig, (void**)&pConfig’x’);

pConfig’x’->SetRenderingMode(VMRMode_Windowless);

pVmr’x’->QueryInterface(&IID_IVMRWindowlessControl, (void**)&VMRpVidWin’x’);

After the VMR class was created and video rendering style was selected, it was neces-

sary to create the IID IMediaControl and IID IMediaEventEx. IID IMediaControl

controls video streaming and contains methods for stopping and starting the graph.

IID IMediaEventEx provides methods for managing events from the Filter Graph Man-

ager:

pGraphBuilder’x’->QueryInterface(&IID_IMediaControl,

(void **)&pMediaControl’x’);

pGraphBuilder’x’->QueryInterface(&IID_IMediaEventEx,

(void **)&pMediaEvent’x’);

The capture graph is used for video capture filters graphs and provides easier graph

implementation. The CaptureGraphBuilder2 class was created to control and build the

capture graph, which is assigned back to the filter graph manager pGraphBuilder’x’:

CoCreateInstance(&CLSID_CaptureGraphBuilder2,

NULL,

CLSCTX_INPROC,

&IID_ICaptureGraphBuilder2,

(void **)&pCaptureGraphBuilder’x’);

pCaptureGraphBuilder’x’->SetFiltergraph(pGraphBuilder’x’);

The webcam filter pSrc’x’ is added to the filter graph manager pGraphBuilder’x’

and the webcam filter pins are enumerated, so the output pin can be located for

5.3 Image Capture Platform Requirements 46

rendering. Before rendering the function InitVideoWindow’x’() is called and the

video window dimensions are defined. The video can now be displayed by using the

pMediaControl’x’->Run() command:

pGraphBuilder’x’->AddFilter(pSrc’x’, L"Video Capture");

pSrc’x’->EnumPins(&pEnum’x’);

pEnum1->Reset();

pEnum1->Next(1, &m_pCamOutPin’x’, NULL);

if(! InitVideoWindow3(hVidWnd3, pWidth, pHeight))

pGraphBuilder’x’->Render(m_pCamOutPin’x’);

pMediaControl’x’->Run();

This process is completed for each webcam selected by the user.

5.3.6 Real-Time Edge Detection

The edge detection process was implemented from the code provided by Dr John Leis.

The entire edged detection process has been compiled into a single header file (*.h),

which is included in the main C source code.

The code is called when the user selects the Edge Detection button on the GUI. When

enabled the function ProcessFrame’x’() is called and the current contents of the

image buffers, ImageBuffer and ImageBuffer1 are passed as arguments along with

the image dimensions:

ProcessFrame’x’(ImageBuffer,ImageBuffer1,WebcamImageWidth,WebcamImageHeight);

The image data is converted into grayscale in the ProcessFrameGrayscale() function

by extracting the red, green and blue components and scaling the individual colour

channels:

BlueByte = *(pByteIn+0);

5.3 Image Capture Platform Requirements 47

GreenByte = *(pByteIn+1);

RedByte = *(pByteIn+2);

The image is inverted and edges detected in both horizontal and vertical directions. The

edge detection is achieved in the ProcessFrameHorizEdge() and ProcessFrameVertEdge()

functions by scanning the pixel values for significatnt value changes:

ByteOut = 0;

if(abs(PixelValue - PrevPixelValue) > PixelThreshold)

{

ByteOut = 255;

}

The user has the ability to adjust the Pixel Threshold value from 0 to 30 to increase

or decrease the edged detection criteria.

5.3.7 Image Acquisition

Functionality was developed for the user to either independently or simultaneously

grab video frames from the webcam video and store them disk in the Bitmap (*.BMP)

format. The capture process was developed into the functions GrabWebCamFrame’x’()

for each webcam.

VMR was required to capture the frame data from the streaming video by using the

GetCurrentImage command that accessed the VMR video stream:

if(SUCCEEDED(hr = VMRpVidWin’x’->GetCurrentImage(&lpCurrImage)))

Each captured frame was processed and the necessary data collected to create a Bitmap

file. The naming convention of Left, Centre and Right was selected for the three video

windows. When the application is executed the numbering of images starts at ’0’ and

5.3 Image Capture Platform Requirements 48

increments each time an image is captured, i.e. ’right0.bmp’, ’right1.bmp’. If the

program is closed and re-opened then the numbering is restarted at ’0’.

The CreateFile and WriteFile calls were used for the creation and storage of the

Bitmap file:

HANDLE WebcamFrame’x’ = CreateFile(centerFileName, GENERIC_WRITE,

FILE_SHARE_READ, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, 0);

if (WebcamFrame’x’ == INVALID_HANDLE_VALUE)

return 0;

dwSize = DibSize(pdib);

hdr.bfType = BFT_BITMAP;

hdr.bfSize = dwSize + sizeof(BITMAPFILEHEADER);

hdr.bfReserved2 = 0;

hdr.bfReserved2 = 0;

hdr.bfOffBits = (DWORD)sizeof(BITMAPFILEHEADER) +

pdib->biSize + DibPaletteSize(pdib);

WriteFile(WebcamFrame’x’, (LPCVOID) &hdr, sizeof(BITMAPFILEHEADER),

&dwWritten, 0);

WriteFile(WebcamFrame’x’, (LPCVOID) pdib, dwSize, &dwWritten, 0);

CloseHandle(WebcamFrame’x’);

The images are stored in the same directory as the image capture platform.

5.3.8 Releasing DirectShow Objects

When the application is terminated it was necessary to correctly release all of the

DirectShow objects in use. If this was not completed then other applications would not

be able to access the webcams that were in use by the image capture platform.

5.4 Library Development 49

The CloseWebCamCapture() function was created and includes all the necessary objects

for disconnection or release. The function is called when the Stop button is selected

or when the program is terminated by the Exit button or the windows close icon. The

platform code below details the necessary objects that need to be handled for each

webcam:

pMediaControl’x’->Stop();

m_pCamOutPin’x’->Disconnect();

m_pCamOutPin’x’->Release();

pSrc’x’->Release();

pMediaControl’x’->Release();

pMediaEvent’x’->Release();

InvalidateRect(hVidWnd’x’, NULL, TRUE);

InvalidateRect(hGraWnd’x’, NULL, TRUE);

The InvalidateRect() functions are included for clearing the video windows for the

webcam and edge detection when the user selects the Stop button.

5.4 Library Development

The image capture library would allow additional accessibility through other applica-

tions or for developers working on projects requiring webcam access and image capture

functionality. It was necessary then to develop the library in a suitable format that is

widely compatible and easily accessed.

The Microsoft Windows DLL format was selected, as it would provide the greatest level

of compatibility and support in the Microsoft Windows OS environment.

The task of developing the library was simplified due to the design requirements of:

• Access of up to two webcams for possible stereo processing.

• No GUI.

5.5 Chapter Summary 50

• No edge detection processing would be included.

The justification for the removal of the edge detection and GUI is that the application

calling the library would be responsible for the interface and image processing.

The library was designed to ’wrap’ the existing DirectShow components already devel-

oped as part of the image capture platform. The main requirement was a WINAPI entry

point for other applications to reference. This was achieved with the DllEntryPoint

function:

WINAPI DllEntryPoint();

The method and code for accessing the webcams and storing the captured images is

identical to that in the image capture platform and described throughout this chapter.

5.5 Chapter Summary

The development stage for the image capture platform and library was the largest

component of the project in regards to the skills and time required.

The image capture platform and library was developed in relation to the project objec-

tives and allows for multiple webcams to operate and capture images. The interfacing

process through the DirectShow API provided the largest developmental challenge, as

the literature on the subject is loosely covered across numerous sources.

The coded examples provided by Dr John Leis provided a good explanation of the

webcam access process through DirectShow.

Chapter 6

Experimental Approach and

Testing of Image Capture and

Processing

6.1 Chapter Overview

Two key stages of experimentation and testing are necessary to evaluate the suitability

of webcams for stereo vision. This chapter will discuss the approaches taken for image

capture and stereo processing.

The first stage involves testing the operation and functionality of the image capture

platform in both binary and library form. This also involves the simultaneous capture

of images from the connected webcams.

The second stage focuses on the image and stereo processing experimentation. This

involves the application of algorithms from the Camera Calibration Toolbox for MAT-

LAB for calibration and rectification, while the Dense Stereo Algorithm will be applied

to the calibrated image pairs for stereo disparity mapping.

6.2 Image Capture Platform GUI Operation 52

6.2 Image Capture Platform GUI Operation

The image capture platform GUI is designed to enumerate the first five devices con-

nected to the computer system via the USB 2.0 interface. Testing was carried out on

both test platforms with the same webcam configurations for consistency. The final

design of the GUI can be seen in Figure 5.3.

An additional webcam was used for testing the device enumeration process, as the

platform was designed to enumerate up to five devices. The image capture platform

was tested with the webcam configurations in Table 6.1.

Test Input

Number of webcams 1 - 5

Frames per second 10, 15, 20, 25, 30

Resolution 160 x 120, 320 x 240, 640 x 480, 800 x 600*, 1600 x 1200*

Format RGB24, I420, YUY2 and MJPG

*Note: The C200 webcam is limited to 640 x 480.

Table 6.1: Image capture platform webcam configuration for testing

Image capture was completed on the three selected devices. The output files have

been predefined to output in bitmap (*.BMP) format. The captured images were then

compared and evaluated for correct naming, format and resolution.

6.2.1 Edge Detection Processing

The edge detection processing was tested for correct operation. Edge detection operates

on all connected devices with the option to disable the processing, as it can be processor

intensive. Edge detection testing also included the adjustment of the pixel threshold (

Figure 6.1) setting that influences the rate of change between pixels and therefore how

an edge is determined.

6.3 Image Capture Library Operation 53

Figure 6.1: Testing of pixel threshold for edge detection processing

6.3 Image Capture Library Operation

The image capture solftware library was compiled into the DLL format supported by

the Microsoft Windows OS. The testing process of the library involved:

• Access through MATLAB

• Access through a test program written in C

The library was designed to support up to two devices for streaming and image capture.

6.3.1 Access Through MATLAB

MATLAB was selected for a testing platform, as it is widely used and provides a large

selection of processing operations for further image processing.

The testing process involved:

1. Loading the DLL file with the loadlibrary(dll name) command.

2. Accsss to the DLL functions was through the calllib(dll name, library function

name) command.

3. The Webcam1 and Webcam2 functions were called to access the webcams.

6.3 Image Capture Library Operation 54

4. The GrabWebCamFrame1 and GrabWebCamFrame2 functions were called to capture

images from the video stream.

5. Access of the captured images was tested by loading and showing the image in

the MATLAB workspace, by using the imread(image name) and imshow(image

name) functions.

6. The library was unloaded once access was no longer required.

This testing process was completed on a single and dual webcam configurations. Figure

6.2 provides a screenshot of library output with dual webcams and a single captured

image.

Figure 6.2: Testing of image capture library in MATLAB

6.3.2 Access Through C

The library is required to be accessed by other development projects and applications.

A test program was written in C to evaluate and test the image capture library func-

tionality.

The testing process involved:

6.4 Scene Capture and Stereo Processing 55

1. Creating a basic Win32 application.

2. Loading the DLL file with the LoadLibrary(dll name) WINAPI command.

3. The required functions were called.

4. The Webcam1 and Webcam2 functions were called to access the webcams.

5. The GrabWebCamFrame1 and GrabWebCamFrame2 functions were called to capture

images from the video stream and to save them to disk.

6. The library was unloaded unsing the FreeLibrary WINAPI command once access

was no longer required.

This testing process was completed on a single and dual webcam configurations. Figure

6.3 provides a screenshot of library output with dual webcams.

Figure 6.3: Testing of image capture library in C

6.4 Scene Capture and Stereo Processing

Experimentation of the stereo processing involved numerous considerations to ensure

reliable results could be obtained. Considerations were made for:

6.4 Scene Capture and Stereo Processing 56

• The type of scene and objects to be captured

• Physical webcam mounting

• Pre-processing of images including calibration and image rectification

Once these considerations were addressed, the stereo processing of image pairs could

be completed for disparity mapping generation. The Camera Calibration Toolbox for

MATLAB was used for the image processing stages, which included the calibration and

image rectification, while the Dense Stereo algorithm developed by Abhijit Ogale was

used for stereo processing.

6.4.1 Object Position and Scene Type

In order to provide a reliable set of output data for analysis, it was a necessity to

experiment with scenes containing:

• Differences in object distance relative to the webcams

• A selection of objects that provide differences in shape, colour and texture.

• Shadows and object occlusions.

• Surfaces of a single colour or tone.

• Objects that provide horizontal and vertical edges.

From these requirements two scenes were selected that would include all of the preferred

requirements:

• The Bookshelf

• The Living Room

6.4 Scene Capture and Stereo Processing 57

6.4.2 Scene 1 - The Bookshelf

The Bookshelf scene was selected, as it provides object and edge variety over a relative

short distance of 3.0 m . This reflects a common office based application of the webcam

system and ensures a good level of disparity between the images.

Figure 6.4: Book shelf scene with points of interest for stereo processing

The points of interest in the scene include:

• A - Light Stand approximately 0.75 m from the webcam pair that provides a good

vertical edge and partial occlusion of the ladder in the background.

• B - Book on stand approximately 1.2 m from the webcam pair.

• C - Partly occluded ladder and object leaning on ladder at a distance of 2.5 m

from the webcam pair.

• D - Bookshelf containing sections of shadow above books.

• E - Poster on wall containing little surface change at distance of 3.0 m.

6.4.3 Scene 2 - The Living Room

The Living Room scene was selected for experimentation as it provides a longer overall

distance of approximately 12.0 m from the webcams to the far wall. This will allow the

stereo processing to be applied on image pairs that include small levels of disparity.

6.4 Scene Capture and Stereo Processing 58

Figure 6.5: Living room scene with points of interest for stereo processing

The points of interest in the scene include:

• A - The large amount of surfaces with little change in geometry or tone.

• B - The even distribution of furniture over the scene length.

• C - High concentration points of light from the ceiling lights.

6.4.4 Webcam Mounting

The baseline distance while mounting the webcams (Figure 6.6) was tested for both

webcam pairs at 50 - 150 mm. This value range was selected to provide a variation

of disparity during testing, that also would allow the analysis of processor usage and

stereo processing time.

During the mounting stage, care was taken to align the webcams accurately. This was

achieved by viewing the live video stream of the scene and adjusting the alignment.

6.4.5 Webcam Calibration

Image pairs were captured from both pairs of webcams for the calibration process. A

checkerboard pattern with a 30 mm grid spacing was used during the capture process

to provide orientation and distance parameters for the Camera Calibration Toolbox. A

6.4 Scene Capture and Stereo Processing 59

Figure 6.6: Webcam mounting configuration with a 50 mm baseline value

set of 10 and 20 image pairs (Figure 6.7) was taken for the comparison of calibration

accuracy.

Figure 6.7: Collection of the left set of images for calibration

Calibration involved running the calibration module of the Camera Calibration Tool-

box. This required the loading of the left and right image sets into MATLAB. Once

the images were loaded, corner detection was carried out by manually selecting the

checkerboard corners (Figure 6.8) for each image.

Once the corner detection process was completed for the left and right webcams the

6.4 Scene Capture and Stereo Processing 60

Figure 6.8: Manual selection of checkerboard corners

individual webcams were calibrated to compensate for any intrinsic defects that were

found. These defects include:

• Radial lens distortion.

• Focal length compensation.

• Principal point compensation.

An example of the level of distortion in one of the Logitech C200 webcams can be seen

in Figure 6.9.

After the webcams are individually calibrated for the correction of intrinsic properties,

they then require stereo calibration to determine the extrinsic properties that relate to:

• The webcam to webcam relationship.

• Relationship between the webcams and the scene of interest.

6.4 Scene Capture and Stereo Processing 61

Figure 6.9: Lens distortion of the C200 webcam

The stereo calibration process involves analysing the individual webcam calibration

properties and providing an estimate for the extrinsic parameters and the relative

location of the right webcam with respect to the left webcam.

The left and right webcam checkerboard reference frames are then related to each other

through rigid motion transformation. The final stereo calibration can be seen in Figure

6.10.

6.4.6 Image Rectification

The relationship between the two webcams was determined through the stereo calibra-

tion process in the Camera Calibration Toolbox. This allowed image rectification to

be applied to the image pairs that had captured the test scenes. The image rectifi-

cation removed any distortion and aligned each of the images from the pair along the

horizontal image plane.

6.4 Scene Capture and Stereo Processing 62

Figure 6.10: Stereo calibration result and extrinsic representation

This was necessary as the stereo processing was applied by scanning pixels along the

horizontal image axis. Therefore any minor misalignment would result in less accurate

disparity mapping.

Figure 6.11: Image pair after removal of distortion and rectification applied

The alignment and removal of distortion during the rectification process is evident in

Figure 6.11.

6.4 Scene Capture and Stereo Processing 63

6.4.7 Stereo Processing

Stereo processing was applied to the calibrated image pairs for the generation of dis-

parity maps. The Dense Stereo algorithm developed by Abhijit Ogale was selected for

the experimentation, as it provides a robust and easy to use MATLAB operation.

The algorithm was first applied to the Tsukuba, Middlebury image set to enusre that

the algorithm was operating correctly. The resulting disparity map can be seen in

Figure 6.12.

Figure 6.12: Test of the Middelbury benchmark image pair with the Dense Stereo algorithm

Stereo processing was then applied to the different test scenes with a set of differ-

ent configurations. The configurations detailed in Table 6.2 ensured that a range of

controlled experimental data could be collected and analysed.

The maximum selected resolution for stereo processing was 640 x 480. This was due

the increase in stereo processing time, project time restraints and that the resolution

is the most commonly supported with webcams.

The stereo processing was applied and results will be discussed in the next chapter.

6.5 Chapter Summary 64

Experiment Configuration

Book shelf scene (calibrated) C200 pair and C905 pair @ 640 x 480 resolution

Book shelf scene (un-calibrated) C200 pair and C905 pair @ 640 x 480 resolution

Book shelf scene (calibrated) C200 pair a@ 320 x 240 resolution

Living room scene C905 pair @ 640 x 480 resolution

Table 6.2: Stereo processing configurations for experimentation

6.5 Chapter Summary

The experimental and testing approach has been discussed for both the image capture

platform and stereo processing. The range of functionality testing on the image capture

platform has provided a method for assessing the objective compliance and reviewing

the overall platform design outcome.

The image processing testing and experimentation has covered the key aspects of stereo

processing. The findings and results will be discussed in the next chapter.

Chapter 7

Results and Discussion

7.1 Chapter Overview

The results collected throughout the testing stage will be analysed to identify any

problems and to determine the success of the project. The results will also be discussed

in relation to the project objectives.

The functionality testing of the image capture platform and image capture library will

be evaluated for correct operation. The image calibration, rectification and stereo pro-

cessing testing will be analysed to determine the suitability of using consumer webcams

for stereo vision.

7.2 Image Capture Platform Operation

Testing was completed on the image capture platform to evaluate the functionality and

operation of the user controls and webcam access.

As detailed in Chapter 6, the image capture platform was tested on all three test

platforms to ensure reliability and accessibility is achieved.

7.2 Image Capture Platform Operation 66

7.2.1 Enumeration of Devices

On execution the image capture platform was able to enumerate and list the first five

webcams attached the test platform. This provided an easy method for selecting the

preferred webcams. The first five webcams are identified and ordered by the Windows

OS.

A minor issue was identified when operating multiple webcams of the same model, as

the manufacturer identifies each webcam model identically. DirectShow collects this

information during enumeration and displays it in the GUI drop down menus. This

may require the user to run the selection process more than once to achieve the correct

order of webcams. This issue does not impact on the operation of the platform.

7.2.2 Access and Operation of Devices

After the webcams were selected the webcam property dialog window was displayed for

each selected device. The dialog window provides three properties for configuration,

that vary depending on the webcam and driver in use:

• Frame Rate - in Frames Per Second.

• Color Space / Compression - YUY2, MJPG, RGB24 or I420.

• Output Size - resolution in pixels.

A combination of the three properties were selected during testing. Test platforms 1

and 3 operated the webcams through the Windows default UVC driver. This provided

YUY2 and MJPG color space / compression options.

When using the YUY2 option the image capture platform was unable to operate more

than two webcams simultaneously using the webcams default resolution and frame

rate of 640 x 480 pixels and 30 FPS. By reducing the resolution or frame rate, it was

possible to operate all three webcams. This issue was not webcam specific, instead it

was determined to be driver based.

7.2 Image Capture Platform Operation 67

There were no issues in operating all three webcams with the MJPG mode. The

webcams operated at all resolutions and allowable frame rates. The frame rates were

limited on the C905 webcam, when a resolution greater than 1280 x 720 was selected.

This limitation could not be removed.

The results for the test platforms 1 and 3 are provided in Table 7.1.

Test Platform 1 and 3

Mode: YUY2

Webcam 1 Webcam 2 Webcam 3

Resolution 640 x 480 640 x 480 640 x 480

Frame Rate 30 30 30

Operating Y Y N

Resolution 320 x 240 320 x 240 320 x 240

Frame Rate 30 30 30

Operating Y Y Y

Resolution 640 x 480 640 x 480 640 x 480

Frame Rate 15 15 15

Operating Y Y Y

Resolution 160 x 120 320 x 240 640 x 480

Frame Rate 15 15 15

Operating Y Y Y

Mode: MJPG

Resolution ALL ALL ALL

Frame Rate ALL ALL ALL

Operating Y Y Y

Table 7.1: Test Platform 1 and 3 access and operation results and configuration

Test platform 2 used the manufactures driver for operation. This provided the color

space / compression options of RGB24 and I420. An identical problem occurred in

these modes, as did occur when YUY2 was selected on test platforms 1 and 3. The

solution also required modifying the resolutions and frame rates.

7.2 Image Capture Platform Operation 68

The manufacture webcam driver was removed and testing completed with the Microsoft

webcam driver. This provided correct operation in the MJPG mode.

The results for test platform 2 are provided in Table 7.2.

Test Platform 2

Mode: RGB24 and I420

Webcam 1 Webcam 2 Webcam 3

Resolution 640 x 480 640 x 480 640 x 480

Frame Rate 30 30 30

Operating Y Y N

Resolution 320 x 240 320 x 240 320 x 240

Frame Rate 30 30 30

Operating Y Y Y

Resolution 640 x 480 640 x 480 640 x 480

Frame Rate 15 15 15

Operating Y Y Y

Resolution 160 x 120 320 x 240 640 x 480

Frame Rate 15 15 15

Operating Y Y Y

Mode: MJPG

Resolution ALL ALL ALL

Frame Rate ALL ALL ALL

Operating Y Y Y

Table 7.2: Test Platform 2 access and operation results and configuration

7.2.3 Image Capture and Image Output

The ”Grab” function for the capture of image frames operated correctly on all the test

platforms. At 30 FPS and at a resolution of 640 x 480 pixels, the worst case of time

difference between the three simultaneous captures was 62 ms. At 30 fps it is possible

to have up to 33 ms of difference between webcams, while additional time is required

to capture and write the three images.

7.2 Image Capture Platform Operation 69

The writing to disk of the bitmap images operated correctly with the correct naming

conventions and numbering used. On examining the images captured with the different

color space / compression modes, there was no considerable difference in image quality.

7.2.4 Edge Detection Processing

The built-in edge detection processing was tested for operation and performance. The

user control for enabling and disabling the detection process operated correctly. This

functionality was included, so performance could be increased if the edge detection was

not required.

Performance of the edge detection was evaluated on all three test platforms. Test

platform 2 tested all four color space / compression modes, while platforms 1 and

3 tested only the YUY2 and MJPG modes, as only the Windows webcam driver was

installed. Two common resolutions of 640 x 480 and 320 x 240 were chosen to determine

the frame rate. The frame rate was calculated by monitoring the number of edge

detection frames over a 60 second period and determining the second average.

The results for the edge detection performance are provided in Table 7.3.

Test Platform 2 - Frames Per Second

Mode: YUY2 MJPG RGB24 I420

640 x 480 1.6 1.4 1.5 1.5

320 x 240 4.3 3.7 4.3 4.8

Test Platform 1 - Frames Per Second

Mode: YUY2 MJPG

640 x 480 1.7 1.8

320 x 240 4.2 3.7

Test Platform 3 - Frames Per Second

Mode: YUY2 MJPG

640 x 480 1.6 1.7

320 x 240 4.2 3.6

Table 7.3: Frame rate for the three test platforms

7.3 Image Capture Library Operation 70

There was no significant difference in performance between the test platforms and

compression modes.

7.3 Image Capture Library Operation

The image capture library DLL was tested in both the MATLAB and C environments.

The methods for testing in each environment have been described in chapter 6. The

test have provided confirmation that the library implementation is possible.

7.3.1 Access Through MATLAB

The DLL was loaded successfully into the MATLAB work environment. This allowed

access to the Webcam() and GrabWebcamFrame() functions. The installed webcams

were detected and enumerated, with the first two being used for the image capture

process.

As only the first two installed webcams are used, it was necessary that the webcams

were correctly installed in the corresponding USB ports. This was achieved by trial

and error.

The webcam property dialog box was displayed for each selected device. As with the

image caputre platform, the dialog window provides three properties for configuration,

that vary depending on the webcam and driver in use:

• Frame Rate - in Frames Per Second.

• Color Space / Compression - YUY2, MJPG, RGB24 or I420.

• Output Size - resolution in pixels.

Testing was completed in the same manner as the image capture platform, however

as only two webcams were used there was no issue with Color Space / Compression

7.4 Scene Capture and Stereo Processing 71

modes. The webcams were also able to successfully run simultaneously at all supported

resolutions and frame rates.

The images were correctly written to disk and were retrievable with imread(image

name) and imshow (image name) functions (Figure 6.2).

7.3.2 Access Through C

Accessing the DLL through a C based application was completed with LoadLibrary(dll

name) WINAPI commands. The process of selecting webcam properties and captur-

ing images was identical to that used in the MATLAB environment, with the use of

Webcam() and GrabWebcamFrame() functions.

Each webcam operated correctly and images were written to disk for further access and

processing, depending on the developers requirements(Figure 6.3).

7.4 Scene Capture and Stereo Processing

The two selected scenes; The Bookshelf (Figure 6.4) and the Living Room (Figure

6.5) were processed in MATLAB with the Camera Calibration Toolbox and the Dense

Stereo algorithm. The two scenes were tested with both pairs of webcams and with

different configurations described in Chapter 6. The comparison of processing times

and disparity values is provided in Table 7.4.

The benchmark refers to the Middlebury benchmark in Figure 6.12 that was used

to determine that the algorithm was operating correctly. The disparity values were

required for the stereo processing and relate to the estimated pixel disparity between

both images in an image pair.

7.4 Scene Capture and Stereo Processing 72

Webcam Scene Resolution Calibrated/ Processing Disparity

Rectified Time (sec) Value

C200 Bookshelf 640 x 480 Y 7.6 100

C200 Bookshelf 640 x 480 N 14.2 100

C200 Bookshelf 320 x 240 Y 1.2 100

C200 Bookshelf 320 x 240 N 1.8 100

C905 Living Room 640 x 480 Y 4.2 50

C905 Living Room 640 x 480 N 6.0 50

C905 Living Room 640 x 480 Y 1.8 10

C905 Living Room 640 x 480 N 2.6 10

C905 Bookshelf 640 x 480 Y 4.2 50

C905 Bookshelf 640 x 480 N 6.3 50

C905 Bookshelf 640 x 480 Y 14.2 200

C905 Bookshelf 640 x 480 N 33.5 200

Benchmark N/A N/A N/A 0.9 10

Table 7.4: Comparison of processing times and disparity

7.4.1 Webcam Comparison and Image Resolution

Testing was carried out on the Bookshelf scene to evaluate the differences between the

two webcam pairs. Each webcam pair has a difference in the field of view and therefore

the amount of data captured is different. The C905 has an increased field of view

(Figure 7.2) compared to the C200 (Figure 7.4).

The processed images with different fields of view do provide some differences in dis-

parity mapping, however they provide similar object identification, edge detection and

same types of errors produced that are discussed in section 7.4.3.

The Bookshelf scene was also captured at a reduced resolution of 320 x 240 pixels to

determine if there is any significant difference in disparity mapping (Figure 7.1). The

processing time (Table 7.4), object clarity and depth estimation was reduced compared

to the larger image pairs captured at a resolution of 640 x 480 pixels.

7.4 Scene Capture and Stereo Processing 73

Figure 7.1: Bookshelf scene - C200 webcam at 320 x 240 pixels, non-rectified and rectified

The reduced accuracy was expected, as the amount of image data has halved. The

disparity maps do still contain adequate information on object identification and depth

estimation.

The use of different webcam models and different resolutions is important, as an out-

come of the project is to provide a high level of accessibility to users.

7.4.2 Object Position and Scene Type

Each scene was selected for its variance in objects, surfaces, occlusions and distances.

This was aimed at providing greater accuracy and precision in the resulting disparity

map.

The Bookshelf scene provides key areas of importance in respect depth estimation and

object detection. The scene includes a number of horizontal and vertical edges, that

were included to test the accuracy of the stereo algorithm. The stereo algorithm scans

the horizontal image axis for correlating points. It can be seen in Figure 7.4 that

errors have been produced on the horizontal edges of the ladder steps and bookshelf.

Opposite to this is the clarity of vertical edges in the scene, which are evident in the

light stand and books in the foreground.

The differences in vertical and horizontal edges is less apparent in the Living Room

scene (Figure 7.3), as it is almost completely composed of edges between 0 and 90

7.4 Scene Capture and Stereo Processing 74

Figure 7.2: Bookshelf scene - C905 webcam at 640 x 480 pixels, non-rectified and rectified

degrees.

The inclusion of large surfaces, such as the far wall in Figure 7.4 provides little gradient

change and has also produced inaccurate disparity mapping. This is a result of the

algorithm not being able to distinguish any points of disparity, as no edges are found.

This is also apparent in the ceiling of the Living Room scene (Figure 7.3). The

difference in this scene is the inclusion of ceiling lights that have provided some disparity

for the stereo algorithm to process.

Figure 7.3: Living Room scene captured with the C905 webcam at 640 x 480 pixels, non-

rectified and rectified

Each scene provides some level of object occlusion, as it is the nature of stereo vision

that for disparity to occur there must be changes in object positions relative to the

observer. The inclusion of the ladder being occluded by the light stand - A (Figure

7.4 Scene Capture and Stereo Processing 75

6.4), provides a means for evaluating the resulting accuracy.

There is a small level of error produced, as the ladder starts to become visible behind

the light stand (Figure 7.2). This has resulted in a small section of the ladder that

appears closer in the foreground then it really is.

Figure 7.4: Bookshelf scene - C200 webcam at 640 x 480 pixels, non-rectified and rectified

Overall depth estimations from both scenes have resulted in a considerable difference

between accuracy. This has occurred as a result of the overall scene distance and level

of disparity between the image pairs. The accuracy of depth estimation is lower in

the Living Room scene (Figure 7.3), as the disparity between the images is low when

compared to the Bookshelf scene.

The relationship between distance and the level of disparity also affects the amount of

processing time required. When the distance is increased, the level of disparity reduces

and the processing time is reduced. The opposite occurs when the disparity increases

as the distance reduces. This is also a contributing factor in the selection of a stereo

baseline, as discussed in the next section.

7.4.3 The Effects of Webcam Mounting Configurations

Differences in disparity were evident between the 50 mm and 150 mm baselines that

were selected for testing. The most significant differences in disparity accuracy were

obtained from the Living Room scene (Figure 7.5). Due to the longer scene distance,

there was a smaller amount of disparity between the left and right images. This provided

7.4 Scene Capture and Stereo Processing 76

less accurate disparity at a baseline of 50 mm, however accuracy improved at 150 mm.

Figure 7.5: Living Room scene - C905 webcam at 640 x 480 pixels, non-rectified and

rectified and with a baseline of 150 mm

The most notable improvement in the Living Room scene with a 150 mm baseline is

the estimation of depth of foreground objects. The ceiling light points still provide an

area of uncertainty when processing, however it has improved with the larger baseline.

The depth estimation in the Bookshelf scene was improved with the 150 mm baseline,

however the level of disparity between the image pairs with a 50 mm baseline was

already significant due to the shorter scene distance. Improvements can be observed

in the detection of foreground objects including the telescope tube (Figure 7.6). The

depth estimation does degrade with background objects, as the ladder and bookshelf

object are apparent in Figure 7.2, but become harder to distinguish in Figure 7.6.

This was not expected, as it was predicted that the increase in disparity would allow

the algorithm to distinguish objects with more clarity and accuracy.

The increased baseline does appear to improve depth information by increasing the

disparity between images. The consequence of this is the increase in processing time

for the image pairs, as the stereo algorithms requires a number of horizontal scans that

is related to the amount of disparity. The processing times are located in Table 7.4 and

show that the processing time has increase by approximately 2.5 times for an increase

from 50 mm to 150 mm.

7.4 Scene Capture and Stereo Processing 77

Figure 7.6: Book shelf scene - C905 webcam at 640 x 480 pixels, non-rectified and rectified

and with a baseline of 150 mm

7.4.4 Webcam Calibration and Image Rectification Effects on Stereo

Processing

The calibration process requires time and patience to achieve accurate and precise

webcam calibration. The checkerboard technique implemented with the Camera Cal-

ibration Toolbox required approximately 20 minutes to obtain 20 image pairs and to

apply corner detection for calibration.

Initial testing was completed with 10 image pairs, however this resulted in image recti-

fication errors and poor disparity mapping. From experimentation it was found that at

least 20 image pairs were required. Best results were obtained when the checkerboard

was located in all four scene corners, at different angles and varying distances (Figure

6.7).

Image rectification was completed after the calibration process was completed, as the

Camera Calibration Toolbox applied the collected calibration data to the image pairs.

The figures (Figure 7.2) - (Figure 7.6) provide a comparison of the non- rectified and

rectified images after stereo processing.

Differences in depth and object estimation can be observed in each scene. Figure 7.2

displays improvements in clarity of the objects in the scene. The detection of the edge

of the bookshelf E (Figure 6.4) in relation to the wall is defined, while the amount of

7.5 Chapter Summary 78

error from the shadows D (Figure 6.4) in the bookshelf have reduced.

The difference is less apparent in Figure 7.1 that provides the disparity map for the

lower resolution image pair. This result is expected, as the amount of image data for

processing has reduced.

The Living Room scene (Figure 7.3) also displays the improvement of depth estimation

and clarity from the calibration and rectification process. Improved object clarity can

be observed in the objects B (Figure 6.5) while the large surfaces A (Figure 6.5) have

less errors.

7.5 Chapter Summary

The image capture platform and image capture library have been tested and results

analysed. Both the image capture techniques have been able to successfully complete

all operation and functionality tasks outlined in the project objectives, with only minor

issues that do not impact the overall operation.

The stereo vision processing and processes of calibration and image rectification have

been evaluated. It has been found that consumer webcams can provide object and

depth estimation with correct calibration and image rectification.

Chapter 8

Conclusions

8.1 Chapter Overview

The aim of this research project was to provide a solution for the simultaneous oper-

ation and image capture from consumer webcams and to investigate the suitability of

webcams for stereo vision applications. The preceding chapters have provided details

and discussion on the methodology and processes required for completing the projects

aim.

After reviewing the work completed in this project it can be stated that the project

aim has been met. The completion of this research project has identified areas of

improvement and the opportunity for further work.

8.2 Achievement of Project Objectives

The project objectives have been assessed for their level of completion:

• Research stereo and multiple camera vision systems including occlusion

reduction and depth extraction techniques - The field of stereo vision has

been heavily researched over the years and therefore there is a large quantity

8.2 Achievement of Project Objectives 80

of existing literature on the subject. Chapter 2 provides information on the

common approaches to applying stereo vision and the associated problems that

occur due to the approaches. The research findings have been further examined

in Chapters 6 and 7 and evaluated in relation to implementation of webcams as

capture devices.

• Research the feasibility of operating two or more USB webcam devices

simultaneously on a single personal computer - The operation of two or

more webcams on a desktop computer system was research and discussed in

Chapter 2. The findings identified that the operation is feasible and that the

DirectShow API would provide the software layer for accessing the webcams.

The implementation of the API is discussed in Chapter 5.

• Design of a software access and control system for multiple webcam

image acquisition and edge detection - The design and development of the

image capture platform and library was achieved. The methodology and approach

to completing this objective was detailed in Chapter 3. The developmental process

was covered in Chapter 5, while testing and results were discussed in Chapters 6

and 7.

• Research calibration and stereo disparity processing techniques and the

feasibility of applying them to the image acquisition system - Existing

literature on the subject was thoroughly researched and discussed in Chapter 2.

It was identified that Camera Calibration Toolbox and Dense Stereo algorithm

would be able to be applied to the captured image data for the evaluation of the

webcams suitability for stereo vision. The testing and results of this are provided

in Chapters 6 and 7.

• Analyse captured image data for edge detection and surface process-

ing accuracy - The analysis of the captured images after stereo processing was

completed and discussed in Chapter 7. The resulting images were examined for

errors that may have occurred during the stereo vision process. It was identified

that the images did contain some of the anomalies associated with stereo vision

processing, including occlusion of objects and incorrect horizontal edge detection.

• Design and implement image acquisition library into Dynamic-link li-

8.2 Achievement of Project Objectives 81

brary format for access by other applications - The developmental and

testing of the image capture library was achieved. The methodology and ap-

proach to completing this objective was detailed in Chapter 3. The development

approach was discussed in Chapter 5, while testing and results are provided in

Chapters 6 and 7.

Additional objectives that would be commenced if time and resources permit:

• Investigate the feasibility of implementing the software system on mul-

tiple OS platforms - Research was completed and discussed in Chapter 2 con-

cerning the feasibility of using the image capture platform and library on other

non-Windows based OS’s. The Linux and Apple OS were investigated and it

was found they can support the operation of multiple webcams through their OS

specific API’s.

• Extend application research into infrared cameras and game based con-

trollers - Existing literature on the subject was researched and discussed in

Chapter 2. Even though the use of infrared gaming controllers for motion track-

ing is a relatively new approach, there already has been a considerable amount

of research and development into the application of stereo vision. The technol-

ogy does appear to be well suited for accurate and robust stereo vision, while

providing a low-cost hardware platform.

• Design of software functions for multiple webcam calibration and stereo

disparity processing - Ideally the image capture platform would include built-

in calibration and stereo processing capabilities similar to the edge detection

capability. This has not been realised, as time limitations did not allow for further

research and development to be undertaken. The scope of developing calibration

and stereo processes is also large enough to be considered as an independent

research project.

8.3 Shortcomings and Possible Improvements 82

8.3 Shortcomings and Possible Improvements

The majority of the outlined objectives were successfully completed; however areas

of improvement have been identified. The impact from the shortcomings have not

impacted heavily on the overall success of the project, instead they would provide

extra functionality and operation to the final image capture platform and library.

The GUI for the image capture platform is capable of enumerating up to five devices,

however only the first three are able to be accessed. The ability for the user to select

more than three webcams and also allowing them to control each output window would

allow greater flexibility in controlling the webcams. A similar approach could also

be applied to the image capture library that would increase the number of webcams

accessible to more than two.

The captured images can only be written to disk in the BMP file format. This function

could be further expanded to support other widely used image formats, including JPEG.

The capture and writing process is also limited to writing the files to the root directory

of the application. Improvements can be made to allow the user to select the storage

location for the captured images, by implementing a basic file manager process.

It would also be of use to store the images into a memory buffer for quick retrieval and

processing, instead of retrieval from the disk location. This capability would allow for

other processing operations to be performed more efficiently and possibly in real-time.

The development of in-built calibration and stereo processing was outlined as an ad-

ditional project objective, however it was not completed. By developing and imple-

menting the processes into the image capture platform, it would provide a stand-alone

application for image capture and stereo processing. This could be achieved by de-

signing new algorithms or implementing existing algorithms for calibration and stereo

processing. The algorithms could then be included in the image capture platform, much

like the edge detection or developed into a library.

The resources involved in designing and implementing the algorithms would be too

large to be identified as additional objectives within a research project, instead they

8.4 Further Work 83

should be considered as further work.

8.4 Further Work

The findings and results from this project have identified key areas of further research

and development work. The processing times for stereo vision provided in Chapter

7.4.1 have revealed that the realisation of a real-time system for stereo processing will

require improvements in efficiency.

This may be possible with the included support for multi-core CPU’s or even processing

through the GPU. These techniques are becoming common, as most desktop computer

systems include a dual or quad core CPU configuration, which would be ideal for

processor intensive tasks, including stereo vision.

Research and development could be undertaken in the area of automatic calibration.

As it was found that accurate manual calibration took approximately 20 minutes to

complete, an approach for automation would be beneficial.

8.5 Final Conclusion

This project has shown that it is possible to operate multiple low-cost consumer web-

cams simultaneously on a common desktop computer system. It has also been identified

that the consumer webcam is capable of being implemented into a stereo vision system,

if the correct calibration and image rectification processes have been completed.

The implication of these findings will allow an increased level of accessibility into the

field of stereo vision research and development.

References

Appple (2011), ‘Quicktime Overview’, http://developer.apple.com/

library/mac/#documentation/QuickTime/RM/Fundamentals/QTOverview/

QTOverview_Document/QuickTimeOverview.html#//apple_ref/doc/uid/

TP30000992-CH1g-QuickTimeOverview. [Online; accessed 3 July-2011].

Axelson, J. (2009), USB Complete: The Developer’s Guide, 4th edn, Lakeview Re-

search.

Ball, E. & Taschuk, G. (2011), ‘Reverse Engineering the Kinect Stereo Algorithm’,

www.sccs.swarthmore.edu/users/13/gtaschuk/Kinect-proj3.pdf. [Online;

accessed 17 July-2011].

Bhatti, A. & Nahavandi, S. (2008), ‘Stereo correspondence estimation using multi-

wavelets scale-space representation-based multiresolution analysis.’, Cybernetics

and Systems pp. 641–665.

Bradski, D. G. R. & Kaehler, A. (2008), Learning opencv, 1st edition, first edn, O’Reilly

Media, Inc.

Carmody, T. (2010), ‘How Motion Detection Works in

Xbox Kinect’, http://www.wired.com/gadgetlab/2010/11/

tonights-release-xbox-kinect-how-does-it-work/. [Online; accessed

17 July-2011].

Castejon, C Blanco, D. M. (2009), ‘Friendly interface to learn stereovision theory’,

Computer Applications in Engineering Education 17, 180–186.

http://developer.apple.com/library/mac/#documentation/QuickTime/RM/Fundamentals/QTOverview/QTOverview_Document/QuickTimeOverview.html#//apple_ref/doc/uid/TP30000992-CH1g-QuickTimeOverview
http://developer.apple.com/library/mac/#documentation/QuickTime/RM/Fundamentals/QTOverview/QTOverview_Document/QuickTimeOverview.html#//apple_ref/doc/uid/TP30000992-CH1g-QuickTimeOverview
http://developer.apple.com/library/mac/#documentation/QuickTime/RM/Fundamentals/QTOverview/QTOverview_Document/QuickTimeOverview.html#//apple_ref/doc/uid/TP30000992-CH1g-QuickTimeOverview
http://developer.apple.com/library/mac/#documentation/QuickTime/RM/Fundamentals/QTOverview/QTOverview_Document/QuickTimeOverview.html#//apple_ref/doc/uid/TP30000992-CH1g-QuickTimeOverview
www.sccs.swarthmore.edu/users/13/gtaschuk/Kinect-proj3.pdf
http://www.wired.com/gadgetlab/2010/11/tonights-release-xbox-kinect-how-does-it-work/
http://www.wired.com/gadgetlab/2010/11/tonights-release-xbox-kinect-how-does-it-work/

REFERENCES 85

Chen, X. & Davis, J. (2000), Camera placement considering occlusion for robust motion

capture, Technical report.

Cuypers, T Van, T. L. S. F. Y. (n.d.), ‘STEREOWIISION: STEREO VISION WITH

WIIMOTES’. [Online; accessed 7 August-2011].

Davies, E. R. (2004), Machine Vision: Theory, Algorithms, Practicalities, Morgan

Kaufmann Publishers Inc., San Francisco, CA, USA.

Engineers Australia (2011a), ‘Code of Ethics’, http://engineersaustralia.org.au/

about-us/corporate-reports/corporate-reports-home.cfm#ETHICS. [On-

line; accessed 9 May-2011].

Engineers Australia (2011b), ‘Sustainability Resources’, http://www.

engineersaustralia.org.au/colleges/environmental/activities/

sustainability/sustainability. [Online; accessed 12 May-2011].

Forsyth, D. A. & Ponce, J. (2002), Computer Vision: A Modern Approach, Prentice

Hall Professional Technical Reference.

Hay, S., Newman, J. & Harle, R. (2008), ‘Optical tracking using commodity hardware’,

Mixed and Augmented Reality, 2008. ISMAR 2008. 7th IEEE/ACM International

Symposium on pp. 159–160.

House, B. C. & Nickels, K. (2006), ‘Increased automation in stereo camera calibration

techniques’, ournal of Systemics, Cybernetics and Informatics 4.

J. R. Asensio, J. M. M. M. & Montano, L. (1998), Navigation among obstacles by

the cooperation of trinocular stereo vision system and laser rangefinder, Madrid,

Spain, pp. 456 – 461.

Julesz, B. (1964), ‘Binocular depth perception without familiarity cues’, Science

145, 356–362.

Lee, J. C. (2008), ‘Hacking the nintendo wii remote’, IEEE Pervasive Computing 7, 39–

45.

LinuxTV (2009), ‘Standard Image Formats’, http://linuxtv.org/downloads/

v4l-dvb-apis/ch02s03.html. [Online; accessed 23 June-2011].

http://engineersaustralia.org.au/about-us/corporate-reports/corporate-reports-home.cfm#ETHICS
http://engineersaustralia.org.au/about-us/corporate-reports/corporate-reports-home.cfm#ETHICS
http://www.engineersaustralia.org.au/colleges/environmental/activities/sustainability/sustainability
http://www.engineersaustralia.org.au/colleges/environmental/activities/sustainability/sustainability
http://www.engineersaustralia.org.au/colleges/environmental/activities/sustainability/sustainability
http://linuxtv.org/downloads/v4l-dvb-apis/ch02s03.html
http://linuxtv.org/downloads/v4l-dvb-apis/ch02s03.html

REFERENCES 86

Medioni, G. & Kang, S. B. (2004), Emerging Topics in Computer Vision, Prentice Hall

PTR, Upper Saddle River, NJ, USA.

Microsoft (2011a), ‘Introduction to Directshow’, http://msdn.microsoft.com/

en-us/library/windows/desktop/dd390351. [Online; accessed 10 May-2011].

Microsoft (2011b), ‘Video for Windows’, http://msdn.microsoft.com/en-us/

library/windows/desktop/dd757708(v=vs.85).aspx. [Online; accessed 21

June-2011].

Microsoft (2011c), ‘What’s New for Media Foundation’, http://msdn.microsoft.com/

en-us/library/windows/desktop/bb970511(v=vs.85).aspx. [Online; accessed

21 June-2011].

Mubarak, S. (1997), Fundamentals of Computer Vision, University of Central Florida,

Orlando, FL.

Murphy, C., Lindquist, D., Rynning, A. M., Cecil, T., Leavitt, S. & Chang, M. L.

(2007), ‘Low-cost stereo vision on an fpga’, Field-Programmable Custom Comput-

ing Machines, Annual IEEE Symposium on 0, 333–334.

Narasimha, R. (2010), ‘Depth recovery from stereo matching using couple random

fields’, http://perception.inrialpes.fr/Publications/2010/Nar10.

Net Market Share (2011), ‘Market Share for Mobile and Desktop’, http://www.

netmarketshare.com/. [Online; accessed 23 June-2011].

Pesce, M. D. (2002), Programming Microsoft DirectShow for Digital Video, Television,

and DVD, Microsoft Press, Redmond, WA, USA.

R. Guerchouche, F. C. (2008), Camera calibration methods evaluation procedure for

images rectification and 3d reconstruction, in ‘Proceedings 16th International Con-

ference in Central Europe on Computer Graphics’, pp. 205–210.

Scharstein, D. & Szeliski, R. (2001), ‘A taxonomy and evaluation of dense two-frame

stereo correspondence algorithms’, INTERNATIONAL JOURNAL OF COM-

PUTER VISION 47, 7–42.

Ubuntu (2011), ‘UVC Linux Driver’, https://help.ubuntu.com/community/UVC.

[Online; accessed 24 June-2011].

http://msdn.microsoft.com/en-us/library/windows/desktop/dd390351
http://msdn.microsoft.com/en-us/library/windows/desktop/dd390351
http://msdn.microsoft.com/en-us/library/windows/desktop/dd757708(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/dd757708(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/bb970511(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/bb970511(v=vs.85).aspx
http://perception.inrialpes.fr/Publications/2010/Nar10
http://www.netmarketshare.com/
http://www.netmarketshare.com/
https://help.ubuntu.com/community/UVC

REFERENCES 87

USQ (2011), ENG4111 Research Project Reference Book: study book, University of

Southern Queensland, Toowoomba, QLD.

Zhang, Z. (2000), ‘A flexible new technique for camera calibration’, IEEE Transactions

on Pattern Analysis and Machine Intelligence 22, 1330–1334.

Zitnick, C. & Kanade, T. (1999), A cooperative algorithm for stereo matching and oc-

clusion detection, Technical Report CMU-RI-TR-99-35, Robotics Institute, Pitts-

burgh, PA.

Appendix A

Project Specification

ENG 4111/2 (or ENG8002) Research Project

Project Specification

For: Adam Cox

Topic: Stereo Vision with USB Webcams

Supervisor: J.Leis

Program: Computer Systems Engineering

Sponsorship: Faculty of Engineering & Surveying

Project Aim: To create a low cost, real time multiple webcam vision sys-

tem with an investigation into the feasibility of providing

stereo vision capabilities and a software platform for future

research and development projects.

1. Research stereo and multi camera vision systems including occlusion reduction

and depth extraction techniques.

2. Research the feasibility of operating two or more USB webcam devices simulta-

neously on a single desktop system.

3. Design of a software access and control system for multiple webcam image acqui-

sition and edge detection.

4. Research calibration and stereo disparity processing techniques and the feasibility

of applying them to the image acquisition system.

5. Analyse captured image data for edge detection and surface processing accuracy.

6. Design and implement image acquisition library into Dynamic-link library (DLL)

format for access by other applications.

As time and resources permit:

1. Investigate the feasibility of implementing the software system on multiple OS

platforms.

2. Extend application research into infrared cameras and game based controllers.

3. Design of software functions for multiple webcam calibration and stereo disparity

processing.

Agreed:

Student Name: Adam Cox

Date: 04/08/11

Supervisor Name: John Leis

Date: 04/08/11

Examiner/Co-Examiner:

Date:

Appendix B

Project Timeline

Appendix C

Source Code Listings

C.1 Source - dshow webcam.c

Main image capture platform GUI source code:

//−−
//
// Streams from up to 3 capture dev i c e s s imu l taneous l y us ing Microso f t Directshow .
// Up to 5 dev i c e s are enumerated f o r access .
//
//−−

#define WIN32 LEAN AND MEAN
#define STRICT

#pragma comment (l i b , ” user32 . l i b ”)
#pragma comment (l i b , ” gdi32 . l i b ”)
#pragma comment (l i b , ” s h e l l 3 2 . l i b ”)
#pragma comment (l i b , ” s t rm i i d s . l i b ”)
#pragma comment (l i b , ” o l e32 . l i b ”)
#pragma comment (l i b , ”amstrmid . l i b ”)
#pragma comment (l i b , ” o l eaut32 . l i b ”)
#pragma comment (l i b , ”uuid . l i b ”)
#pragma comment (l i b , ” quartz . l i b ”)

#include <windows . h>
#include <dshow . h> // Link with s t rm i i d s . l i b and quar t z . l i b
#include <s t d i o . h>
#include <s tdde f . h>
#include <s h l ob j . h>
#include <s t r i n g . h>
#include <o c i d l . h>
#include ” edge de t e c t i on . h” // Edge de t e c t i on code prov ided by John Leis .

//==
// Function Prototypes
//==
int FindCaptureDevice (void) ;

int InitWebCamCapture1 (HWND hVidWnd1 , int ∗pWidth , int ∗pHeight) ;
int InitWebCamCapture2 (HWND hVidWnd2 , int ∗pWidth , int ∗pHeight) ;
int InitWebCamCapture3 (HWND hVidWnd3 , int ∗pWidth , int ∗pHeight) ;

int InitVideoWindow1 (HWND hVidWnd1 , int ∗pWidth , int ∗pHeight) ;
int InitVideoWindow2 (HWND hVidWnd2 , int ∗pWidth , int ∗pHeight) ;
int InitVideoWindow3 (HWND hVidWnd3 , int ∗pWidth , int ∗pHeight) ;

int Init ial izeWindowlessVMR1 (HWND hVidWnd1) ;
int Init ial izeWindowlessVMR2 (HWND hVidWnd2) ;
int Init ial izeWindowlessVMR3 (HWND hVidWnd3) ;

int Convert24Image (BYTE ∗p32Img , BYTE ∗p24Img , DWORD dwSize32) ;

int StreamWebCamFrame1(unsigned char ∗pFrameOut , unsigned long FrameBufferLen ,\
int ∗pWidth , int ∗pHeight) ;

int StreamWebCamFrame2(unsigned char ∗pFrameOut , unsigned long FrameBufferLen ,\
int ∗pWidth , int ∗pHeight) ;

int StreamWebCamFrame3(unsigned char ∗pFrameOut , unsigned long FrameBufferLen ,\
int ∗pWidth , int ∗pHeight) ;

int StopWebCamCapture (void) ;
int PauseWebCamCapture (void) ;
int ResumeWebCamCapture(void) ;
int CloseWebCamCapture (void) ;

int GrabWebCamFrame1(void) ;

int GrabWebCamFrame2(void) ;
int GrabWebCamFrame3(void) ;

extern void MouseMove(int x , int y) ;

extern int ProcessFrame1 (unsigned char ∗pFrameIn , unsigned char ∗pFrameOut ,
int Width , int Height) ;

extern int ProcessFrame2 (unsigned char ∗pFrameIn , unsigned char ∗pFrameOut ,
int Width , int Height) ;

extern int ProcessFrame3 (unsigned char ∗pFrameIn , unsigned char ∗pFrameOut ,
int Width , int Height) ;

extern int ProcessFrameGrayscale (unsigned char ∗pFrameIn , unsigned char ∗pFrameOut , \
int Width , int Height) ;

extern int ProcessFrameCopyBuf (unsigned char ∗pFrameIn , unsigned char ∗pFrameOut , \
int Width , int Height) ;

extern int ProcessFrameInvert (unsigned char ∗pFrameIn , unsigned char ∗pFrameOut , \
int Width , int Height) ;

extern int ProcessFrameVertEdge (unsigned char ∗pFrameIn , unsigned char ∗pFrameOut , \
int Width , int Height) ;

extern int ProcessFrameHorizEdge (unsigned char ∗pFrameIn , unsigned char ∗pFrameOut , \
int Width , int Height) ;

extern int ProcessFrameRedOnly (unsigned char ∗pFrameIn , unsigned char ∗pFrameOut , \
int Width , int Height) ;

extern int ProcessFrameConv (unsigned char ∗pFrameIn , unsigned char ∗pFrameOut , \
int Width , int Height , int xd , int yd) ;

extern int ProcessFrameRunLen (unsigned char ∗pFrameIn , unsigned char ∗pFrameOut , \
int Width , int Height) ;

extern HBITMAP hCanvasBitmap ;

//==
// Globa l De f i n i t i on s
//==
IBa s eF i l t e r ∗pSrc1 = NULL; // F i l t e r s f o r 3 dev i c e s in use .
IBa s eF i l t e r ∗pSrc2 = NULL;
IBa s eF i l t e r ∗pSrc3 = NULL;

IBa s eF i l t e r ∗pEnumSrc1 = NULL; // Enumerate the f i r s t 5 dev i c e s .
IBa s eF i l t e r ∗pEnumSrc2 = NULL;
IBa s eF i l t e r ∗pEnumSrc3 = NULL;
IBa s eF i l t e r ∗pEnumSrc4 = NULL;
IBa s eF i l t e r ∗pEnumSrc5 = NULL;

IEnumPins ∗pEnum1 = NULL;
IEnumPins ∗pEnum2 = NULL;
IEnumPins ∗pEnum3 = NULL;

IGraphBuilder ∗pGraphBuilder1 = NULL;
IGraphBuilder ∗pGraphBuilder2 = NULL;
IGraphBuilder ∗pGraphBuilder3 = NULL;

IMediaControl ∗pMediaControl1 = NULL;
IMediaControl ∗pMediaControl2 = NULL;
IMediaControl ∗pMediaControl3 = NULL;

IMediaEventEx ∗pMediaEvent1 = NULL;
IMediaEventEx ∗pMediaEvent2 = NULL;
IMediaEventEx ∗pMediaEvent3 = NULL;

ICaptureGraphBuilder2 ∗pCaptureGraphBuilder1 = NULL;
ICaptureGraphBuilder2 ∗pCaptureGraphBuilder2 = NULL;
ICaptureGraphBuilder2 ∗pCaptureGraphBuilder3 = NULL;

IVMRWindowlessControl ∗VMRpVidWin1 = NULL;
IVMRWindowlessControl ∗VMRpVidWin2 = NULL;
IVMRWindowlessControl ∗VMRpVidWin3 = NULL;

IPin ∗m pCamOutPin1 = NULL;
IPin ∗m pCamOutPin2 = NULL;
IPin ∗m pCamOutPin3 = NULL;

ISpec i fyProper tyPages ∗pSpecPropPage1 = NULL;
ISpec i fyProper tyPages ∗pSpecPropPage2 = NULL;
ISpec i fyProper tyPages ∗pSpecPropPage3 = NULL;

//−−
//Bitmap d e f i n i t i o n s f o r header in f o .
typedef LPBITMAPINFOHEADER PDIB ;
// Constants
#define BFT BITMAP 0x4d42 /∗ ’BM’ ∗/
// Macros
#define DibNumColors (l pb i) ((l pb i)−>biClrUsed == 0 && (l pb i)−>biBitCount <= 8\

? (int) (1 << (int) (l pb i)−>biBitCount)\
: (int) (l pb i)−>biClrUsed)

#define DibSize (l pb i) ((l pb i)−>b i S i z e + (l pb i)−>biS izeImage +\
(int) (l pb i)−>biClrUsed ∗ s izeof (RGBQUAD))

#define DibPa l e t t eS i z e (l pb i) (DibNumColors (l pb i) ∗ s izeof (RGBQUAD))

//−−
// Webcam windows dimensions
#define WEBCAMWINDOWX 320
#define WEBCAMWINDOWY 240

#define DEFAULTCANVASWIDTH 320
#define DEFAULT CANVAS HEIGHT 240

stat ic int WebcamImageWidth = DEFAULTCANVASWIDTH;
stat ic int WebcamImageHeight = DEFAULT CANVAS HEIGHT;
//−−
int cameraNum = 0 ; //Number o f current enumerated capture dev i c e s .

int CurPos ; // Trackbar Pos i t ion
int DevMenuIndex = 0 ; // Index fo r menu order .

// bmp f i l ename counters
int l e f tF i l eCoun t = 0 ;
int centerF i l eCount = 0 ;
int r i ghtF i l eCount = 0 ;
//−−
// Camera s t a t u s v a r i a b l e s
int CameraActive1 = 0 ;
int CameraActive2 = 0 ;
int CameraActive3 = 0 ;

int WebCamRunning = 0 ;
int WebCamPaused = 0 ;
int WebCamInitial ized = 0 ;

int ItemIndex1 = 0 ;
int ItemIndex2 = 0 ;
int ItemIndex3 = 0 ;
//−−
int edgeDetectOn = 0 ; // Edged de t e c t i on con t ro l
stat ic int Pixe lThresho ld = 10 ; // I n i t i a l p i x e l t h r e s ho l d

// frame ra te in ms
#define FRAMERATE 200
#define IDWCAPWIN 1000
#define ID TIMER 350

stat ic TCHAR szAppName [] = TEXT (”Webcam Capture”) ;

stat ic long nFrames = 0L ;

unsigned long ImageBufferLen = 0L ;

stat ic BYTE ∗ ImageBuffer = (BYTE ∗)NULL;
stat ic BYTE ∗ ImageBuffer1 = (BYTE ∗)NULL;

//==

// Define Windows
//==
HINSTANCE hInstance ;

HWND CreateMainWindow (HINSTANCE hInstance , HINSTANCE hPrevInstance , \
LPSTR lpszCmdLine , int nWinMode) ;

HWND CreateCaptureWindow (HWND hParentWnd) ;
HWND CreateGrabWindow (HWND hParentWnd) ;

HWND hWnd;
HWND hMainWnd ; // Main Window handle .

HWND hPixTrackBar ; // Pixe l Threshold Trackbar Handle

HWND hVidWnd1 ; // Camera Windows
HWND hVidWnd2 ;
HWND hVidWnd3 ;

HWND hGraWnd1 ; // Frame Grab Windows
HWND hGraWnd2 ;
HWND hGraWnd3 ;

HWND hWndComboBox1 ; // Combo Boxes
HWND hWndComboBox2 ;
HWND hWndComboBox3 ;

HWND hTextImageDims ;
HWND hTextCursorPos ;

LRESULT CALLBACK WndProc(HWND hwnd , UINT message , WPARAM wParam , \
LPARAM lParam) ;

LRESULT CALLBACK WndProcCaptureWindow(HWND hwnd , UINT message , \
WPARAM wParam , LPARAM lParam) ;

LRESULT CALLBACK WndProcGrabWindow(HWND hwnd , UINT message , \
WPARAM wParam , LPARAM lParam) ;

//==
// Menu
//==
#define ID FILE EXIT 9001
#define ID DEVICE LIST 9002
#define ID ABOUT 9003

//==
// Buttons
//==
#define IDB STARTBUTTON 110
#define IDB STOPBUTTON 111
#define IDB PAUSEBUTTON 112
#define IDBRESUMEBUTTON 113
#define IDBGRABLBUTTON 114
#define IDBGRABCBUTTON 115
#define IDBGRABRBUTTON 116
#define IDBGRABABUTTON 117
#define IDB EDBUTTON 118
#define IDB EXITBUTTON 119
//==
// Combo Boxes
//==
#define IDC COMBO1 120
#define IDC COMBO2 121
#define IDC COMBO3 122

//==
// Track Bar
//==
#define IDC TRACK PIX 130

//==
// Main Window Menu
//==

int BuildMenus (HWND hwnd)
{

HMENU hMenu , hSubMenu ;
HICON hIcon , hIconSm ;

hMenu = CreateMenu () ;

hSubMenu = CreatePopupMenu () ;

AppendMenu(hMenu , MF STRING | MF POPUP, (UINT)hSubMenu , ”&F i l e ”) ;
AppendMenu(hSubMenu , MF STRING, ID FILE EXIT , ”E&x i t ”) ;

hSubMenu = CreatePopupMenu () ;
AppendMenu(hMenu , MF STRING | MF POPUP, (UINT)hSubMenu , ”&About”) ;
AppendMenu(hSubMenu , MF STRING, ID ABOUT, ”&About”) ;

SetMenu (hwnd , hMenu) ;

return 1 ;
}
//==
// Find Capture Devices and Create F i l t e r s
//==

int FindCaptureDevice ()
{

// Remove Combo box content s .
SendMessage (hWndComboBox1 ,CB RESETCONTENT, 0 , 0) ;
SendMessage (hWndComboBox2 ,CB RESETCONTENT, 0 , 0) ;
SendMessage (hWndComboBox3 ,CB RESETCONTENT, 0 , 0) ;

SendMessage (hWndComboBox1 , (UINT)CB ADDSTRING, (WPARAM)0 , (LPARAM)”Not Se l e c t ed ”) ;
SendMessage (hWndComboBox2 , (UINT)CB ADDSTRING, (WPARAM)0 , (LPARAM)”Not Se l e c t ed ”) ;
SendMessage (hWndComboBox3 , (UINT)CB ADDSTRING, (WPARAM)0 , (LPARAM)”Not Se l e c t ed ”) ;

SendMessage (hWndComboBox1 , (UINT)CB SETCURSEL, (WPARAM)0 , (LPARAM) 0) ;
SendMessage (hWndComboBox2 , (UINT)CB SETCURSEL, (WPARAM)0 , (LPARAM) 0) ;
SendMessage (hWndComboBox3 , (UINT)CB SETCURSEL, (WPARAM)0 , (LPARAM) 0) ;

HRESULT hr = S OK;
cameraNum = 0 ;

IMoniker ∗pMoniker= NULL;
ICreateDevEnum ∗pDevEnum= NULL;
IEnumMoniker ∗pClassEnum= NULL;
IPropertyBag ∗pPropBag= NULL;

// Create the system dev i ce enumerator
hr = CoCreateInstance (&CLSID SystemDeviceEnum ,

NULL,
CLSCTX INPROC,
&IID ICreateDevEnum ,
(void ∗∗) &pDevEnum) ;

i f (FAILED(hr))
{

MessageBox (0 , TEXT(”Device Enumeration Fa i l ed ! ”) , 0 , 0) ;
return hr ;

}

// Create an enumerator f o r the v ideo capture dev i c e s
i f (SUCCEEDED(hr))
{

// Create an enumerator f o r the ca tegory .
hr = pDevEnum−>CreateClassEnumerator (&CLSID VideoInputDeviceCategory , \

&pClassEnum , 0) ;
i f (hr == S FALSE)
{

hr = VFWENOT FOUND; // The category i s empty . Treat as an error .
}
pDevEnum−>Release () ;

i f (FAILED(hr))
{

MessageBox (0 , TEXT(”No Devices Detected ! ”) , 0 , 0) ;
return hr ;

}
}

i f (SUCCEEDED(hr))
{

// I f t he re are no enumerators f o r the reques t ed type , then
// CreateClassEnumerator w i l l succeed , but pClassEnum w i l l be NULL.
i f (pClassEnum == NULL)
{

MessageBox (0 , TEXT(” Fa i l ed ”) , 0 , 0) ;
hr = E FAIL ;
return hr ;

}
}

while (pClassEnum−>Next (1 , &pMoniker , NULL) == S OK)
{

HRESULT hr = pMoniker−>BindToStorage (0 , 0 , &IID IPropertyBag , \
(void ∗∗)&pPropBag) ;

i f (FAILED(hr))
{

MessageBox (0 , TEXT(”Binding to Storage Fa i l ed ”) , 0 , 0) ;
pMoniker−>Release () ;
continue ;

}

VARIANT var ;
var . vt = VT BSTR;

// Get d e s c r i p t i on or f r i e n d l y name .
hr = pPropBag−>Read(L”Desc r ip t i on ” , &var , 0) ;
i f (FAILED(hr))
{

hr = pPropBag−>Read(L”FriendlyName” , &var , 0) ;

char szName [2 5 6] ;
// Convert BSTR
WideCharToMultiByte (CP ACP, 0 , var . bstrVal ,−1 ,szName , 2 5 6 , 0 , 0) ;
// Store webcam name in combo box
SendMessage (hWndComboBox1 , (UINT)CB ADDSTRING, (WPARAM)0 ,\

(LPARAM)szName) ;
SendMessage (hWndComboBox2 , (UINT)CB ADDSTRING, (WPARAM)0 ,\

(LPARAM)szName) ;
SendMessage (hWndComboBox3 , (UINT)CB ADDSTRING, (WPARAM)0 ,\

(LPARAM)szName) ;
}
i f (SUCCEEDED(hr))
{

VariantClear (&var) ;
SysFreeStr ing (var . bstrVal) ;

}

hr = pPropBag−>Write (L”FriendlyName” , &var) ;

switch (cameraNum)
{
case 0 :

// Bind Moniker to a f i l t e r o b j e c t
pMoniker−>BindToObject (0 ,0 ,& I ID IBaseF i l t e r , \

(void∗∗)&pEnumSrc1) ;
cameraNum ++;
break ;

case 1 :
// Bind Moniker to a f i l t e r o b j e c t

pMoniker−>BindToObject (0 ,0 ,& I ID IBaseF i l t e r , \
(void∗∗)&pEnumSrc2) ;

cameraNum ++;
break ;

case 2 :
// Bind Moniker to a f i l t e r o b j e c t
pMoniker−>BindToObject (0 ,0 ,& I ID IBaseF i l t e r , \

(void∗∗)&pEnumSrc3) ;
cameraNum ++;
break ;

case 3 :
// Bind Moniker to a f i l t e r o b j e c t
pMoniker−>BindToObject (0 ,0 ,& I ID IBaseF i l t e r , \

(void∗∗)&pEnumSrc4) ;
cameraNum ++;
break ;

case 4 :
// Bind Moniker to a f i l t e r o b j e c t
pMoniker−>BindToObject (0 ,0 ,& I ID IBaseF i l t e r , \

(void∗∗)&pEnumSrc5) ;
cameraNum ++;
break ;

default :
return hr ;

}

// Release proper ty bag and moniker
pPropBag−>Release () ;
pMoniker−>Release () ;

}
// r e l e a s e enumerator
pClassEnum−>Release () ;

return 1 ;

}

//==
// Create Capture Device #1 F i l t e r
//==
int InitWebCamCapture1 (HWND hVidWnd1 , int ∗pWidth , int ∗pHeight)
{

HRESULT hr ;

// Create the f i l t e r graph manager and query f o r i n t e r f a c e s .
CoCreateInstance(&CLSID FilterGraph , //Class ID fo r COM ob j e c t

NULL,
CLSCTX INPROC SERVER,
&IID IGraphBuilder , // In t e r f a c e ID
(void ∗∗)&pGraphBuilder1) ; // Pointer back to FGM

i f (! Init ial izeWindowlessVMR1 (hVidWnd1))
{

return 0 ;
}

// Media Control p rov ides methods f o r f l ow of data through the
// f i l t e r graph i . e . play , stop , pause . . .
pGraphBuilder1−>QueryInter face (&IID IMediaControl , // In t e r f a c e ID

(void ∗∗)&pMediaControl1) ; // Pointer back to MC

// Media Event prov ides methods f o r r e t r i e v i n g event n o t i f i c a t i o n s .
pGraphBuilder1−>QueryInter face (&IID IMediaEventEx , // In t e r f a c e ID

(void ∗∗)&pMediaEvent1) ; // Pointer back to ME

// Capture Graph Bui lder captures l i v e v ideo .

CoCreateInstance(&CLSID CaptureGraphBuilder2 , //Class ID fo r COM ob j e c t
NULL,
CLSCTX INPROC,
&IID ICaptureGraphBuilder2 , // In t e r f a c e ID
(void ∗∗)&pCaptureGraphBuilder1) ; // Pointer back to CGB2

// Set the f i l t e r graph to capture graph .
pCaptureGraphBuilder1−>Se tF i l t e r g r aph (pGraphBuilder1) ;

// Attach the f i l t e r graph to capture graph .
pGraphBuilder1−>AddFi lter (pSrc1 , L”Video Capture”) ;

// Enumerate p ins from Capture f i l t e r .
pSrc1−>EnumPins(&pEnum1) ;
pEnum1−>Reset () ;
pEnum1−>Next (1 , &m pCamOutPin1 , NULL) ;

// Pin Proper t i e s .
hr = m pCamOutPin1−>QueryInter face (&IID ISpec i fyPropertyPages , \

(void ∗∗)&pSpecPropPage1) ;
i f (SUCCEEDED(hr))
{

PIN INFO PinIn fo ;
m pCamOutPin1−>QueryPinInfo(&PinIn fo) ;

// Show the proper ty page f o r user input .
CAUUID caGUID ;
pSpecPropPage1−>GetPages(&caGUID) ;
OleCreatePropertyFrame (

hMainWnd,
0 ,
0 ,
L”Capture Device 1” ,
1 ,
(IUnknown ∗∗)&(m pCamOutPin1) ,
caGUID . cElems ,
caGUID . pElems ,
0 ,
0 ,

NULL) ;
CoTaskMemFree(caGUID . pElems) ;
P inIn fo . pF i l t e r−>Release () ;

}

i f (! InitVideoWindow1 (hVidWnd1 , pWidth , pHeight))
{

return 0 ;
}

hr = pGraphBuilder1−>Render (m pCamOutPin1) ;
i f (FAILED(hr))
{

return 0 ;
}

// Run l i v e capture from dev i ce .
hr = pMediaControl1−>Run () ;

pEnum1−>Release () ;

WebCamInitial ized = 1 ;
WebCamPaused = 0 ;

return 1 ;
}

//==
// Create Capture Device #2 F i l t e r
//==
int InitWebCamCapture2 (HWND hVidWnd2 , int ∗pWidth , int ∗pHeight)
{

HRESULT hr ;

// Create the f i l t e r graph manager and query f o r i n t e r f a c e s .
CoCreateInstance(&CLSID FilterGraph , //Class ID fo r COM ob j e c t

NULL,
CLSCTX INPROC SERVER,
&IID IGraphBuilder , // In t e r f a c e ID
(void ∗∗)&pGraphBuilder2) ; // Pointer back to FGM

i f (! Init ial izeWindowlessVMR2 (hVidWnd2))
{

return 0 ;
}

// Media Control p rov ides methods f o r f l ow of data through the f i l t e r
// graph i . e . play , stop , pause . . .
pGraphBuilder2−>QueryInter face (&IID IMediaControl , // In t e r f a c e ID

(void ∗∗)&pMediaControl2) ; // Pointer back to MC

// Media Event prov ides methods f o r r e t r i e v i n g event n o t i f i c a t i o n s .
pGraphBuilder2−>QueryInter face (&IID IMediaEventEx , // In t e r f a c e ID

(void ∗∗)&pMediaEvent2) ; // Pointer back to ME

// Capture Graph Bui lder captures l i v e v ideo .
CoCreateInstance(&CLSID CaptureGraphBuilder2 , //Class ID fo r COM ob j e c t

NULL,
CLSCTX INPROC,
&IID ICaptureGraphBuilder2 , // In t e r f a c e ID
(void ∗∗)&pCaptureGraphBuilder2) ; // Pointer back to CGB2

// Set the f i l t e r graph to capture graph .
pCaptureGraphBuilder2−>Se tF i l t e r g r aph (pGraphBuilder2) ;

// Attach the f i l t e r graph to capture graph .
pGraphBuilder2−>AddFi lter (pSrc2 , L”Video Capture”) ;

// Enumerate p ins from source base f i l t e r .
pSrc2−>EnumPins(&pEnum2) ;
pEnum2−>Reset () ;
pEnum2−>Next (1 , &m pCamOutPin2 , NULL) ;

// Pin Proper t i e s .
hr = m pCamOutPin2−>QueryInter face (&IID ISpec i fyPropertyPages , \

(void ∗∗)&pSpecPropPage2) ;
i f (SUCCEEDED(hr))
{

PIN INFO PinIn fo ;
m pCamOutPin2−>QueryPinInfo(&PinIn fo) ;

// Show the proper ty page f o r user input .
CAUUID caGUID ;
pSpecPropPage2−>GetPages(&caGUID) ;
OleCreatePropertyFrame (

hMainWnd,
0 ,
0 ,
L”Capture Device 2” ,
1 ,
(IUnknown ∗∗)&(m pCamOutPin2) ,
caGUID . cElems ,
caGUID . pElems ,
0 ,
0 ,

NULL) ;
CoTaskMemFree(caGUID . pElems) ;
P inIn fo . pF i l t e r−>Release () ;

}

i f (! InitVideoWindow2 (hVidWnd2 , pWidth , pHeight))
{

return 0 ;
}

hr = pGraphBuilder2−>Render (m pCamOutPin2) ;
i f (FAILED(hr))
{

return 0 ;
}

// Run l i v e capture from dev i ce .
hr = pMediaControl2−>Run () ;

pEnum2−>Release () ;

WebCamInitial ized = 1 ;
WebCamPaused = 0 ;

return 1 ;
}

//==
// Create Capture Device #3 F i l t e r
//==
int InitWebCamCapture3 (HWND hVidWnd3 , int ∗pWidth , int ∗pHeight)
{

HRESULT hr ;

// Create the f i l t e r graph manager and query f o r i n t e r f a c e s .
CoCreateInstance(&CLSID FilterGraph , //Class ID fo r COM ob j e c t

NULL,
CLSCTX INPROC SERVER,
&IID IGraphBuilder , // In t e r f a c e ID
(void ∗∗)&pGraphBuilder3) ; // Pointer back to FGM

i f (! Init ial izeWindowlessVMR3 (hVidWnd3))
{

return 0 ;
}

// Media Control p rov ides methods f o r f l ow of data through the f i l t e r
// graph i . e . play , stop , pause . . .
pGraphBuilder3−>QueryInter face (&IID IMediaControl , // In t e r f a c e ID

(void ∗∗)&pMediaControl3) ; // Pointer back to MC

// Media Event prov ides methods f o r r e t r i e v i n g event n o t i f i c a t i o n s .
pGraphBuilder3−>QueryInter face (&IID IMediaEventEx , // In t e r f a c e ID

(void ∗∗)&pMediaEvent3) ; // Pointer back to ME

// Capture Graph Bui lder captures l i v e v ideo .
CoCreateInstance(&CLSID CaptureGraphBuilder2 , //Class ID fo r COM ob j e c t

NULL,
CLSCTX INPROC,
&IID ICaptureGraphBuilder2 , // In t e r f a c e ID
(void ∗∗)&pCaptureGraphBuilder3) ; // Pointer back to CGB2

// Set the f i l t e r graph to capture graph .
pCaptureGraphBuilder3−>Se tF i l t e r g r aph (pGraphBuilder3) ;

// Attach the f i l t e r graph to capture graph .
pGraphBuilder3−>AddFi lter (pSrc3 , L”Video Capture”) ;

// Enumerate p ins from Capture f i l t e r .
pSrc3−>EnumPins(&pEnum3) ;
pEnum3−>Reset () ;
pEnum3−>Next (1 , &m pCamOutPin3 , NULL) ;

// Pin Proper t i e s .
hr = m pCamOutPin3−>QueryInter face (&IID ISpec i fyPropertyPages , \

(void ∗∗)&pSpecPropPage3) ;

i f (SUCCEEDED(hr))
{

PIN INFO PinIn fo ;
m pCamOutPin3−>QueryPinInfo(&PinIn fo) ;

// Show the proper ty page f o r user input .
CAUUID caGUID ;
pSpecPropPage3−>GetPages(&caGUID) ;
OleCreatePropertyFrame (

hMainWnd,
0 ,
0 ,
L”Capture Device 3” ,
1 ,
(IUnknown ∗∗)&(m pCamOutPin3) ,
caGUID . cElems ,
caGUID . pElems ,
0 ,
0 ,

NULL) ;
CoTaskMemFree(caGUID . pElems) ;
P inIn fo . pF i l t e r−>Release () ;

}

i f (! InitVideoWindow3 (hVidWnd3 , pWidth , pHeight))
{

return 0 ;
}

hr = pGraphBuilder3−>Render (m pCamOutPin3) ;
i f (FAILED(hr))
{

return 0 ;
}

// Run l i v e capture from dev i ce .
hr = pMediaControl3−>Run () ;

pEnum3−>Release () ;

WebCamInitial ized = 1 ;
WebCamPaused = 0 ;

return 1 ;
}

//==
// Webcam Contro ls
//==

// Pause the webcam via mediacontro l when pause but ton s e l e c t e d .
int PauseWebCamCapture (void)
{

HRESULT hr ;

i f (! WebCamInitial ized)
{

return 0 ;
}

i f (WebCamPaused)
{

return 0 ;
}

i f (pMediaControl1)
{

hr = pMediaControl1−>Pause () ;
i f (FAILED(hr))
{

return 0 ;
}

}

i f (pMediaControl2)
{

hr = pMediaControl2−>Pause () ;
i f (FAILED(hr))
{

return 0 ;
}

}

i f (pMediaControl3)
{

hr = pMediaControl3−>Pause () ;
i f (FAILED(hr))
{

return 0 ;
}

}

//−−−
WebCamPaused = 1 ;
//−−−

return 0 ;
}
//−−−

//−−−
// Resume the webcam via mediacontro l when resume but ton i s s e l e c t e d .
int ResumeWebCamCapture(void)
{

HRESULT hr ;

i f (! WebCamInitial ized)
{

return 0 ;
}

i f (! WebCamPaused)
{

return 0 ;
}

i f (pMediaControl1)
{

hr = pMediaControl1−>Run () ;
i f (FAILED(hr))
{

return 0 ;
}

}

i f (pMediaControl2)
{

hr = pMediaControl2−>Run () ;
i f (FAILED(hr))
{

return 0 ;
}

}

i f (pMediaControl3)
{

hr = pMediaControl3−>Run () ;
i f (FAILED(hr))
{

return 0 ;
}

}

//−−−
WebCamPaused = 0 ;
//−−−

return 0 ;
}
//−−−

//−−−
// Close the app l i ca t i on , r e l e a s e f i l t e r s and webcams when e x i t i n g .
int CloseWebCamCapture (void)
{

HRESULT hr ;

i f (CameraActive1 == 1)
{

pMediaControl1−>Stop () ;
m pCamOutPin1−>Disconnect () ;
m pCamOutPin1−>Release () ;
pSrc1−>Release () ;
pMediaControl1−>Release () ;
pMediaEvent1−>Release () ;
Inva l i da t eRec t (hVidWnd1 , NULL, TRUE) ;
Inva l i da t eRec t (hGraWnd1 , NULL, TRUE) ;

}

i f (CameraActive2 == 1)
{

pMediaControl2−>Stop () ;
m pCamOutPin2−>Disconnect () ;
m pCamOutPin2−>Release () ;
pSrc2−>Release () ;
pMediaControl2−>Release () ;
pMediaEvent2−>Release () ;
Inva l i da t eRec t (hVidWnd2 , NULL, TRUE) ;
Inva l i da t eRec t (hGraWnd2 , NULL, TRUE) ;

}

i f (CameraActive3 == 1)
{

pMediaControl3−>Stop () ;
m pCamOutPin3−>Disconnect () ;
m pCamOutPin3−>Release () ;
pSrc3−>Release () ;
pMediaControl3−>Release () ;
pMediaEvent3−>Release () ;
Inva l i da t eRec t (hVidWnd3 , NULL, TRUE) ;
Inva l i da t eRec t (hGraWnd3 , NULL, TRUE) ;

}

WebCamInitial ized = 0 ;
WebCamRunning = 0 ;

return 0 ;
}

//==
// Windoless VMR #1 Function
//==

// Windowless v ideo con t ro l f o r v ideo window placement .
int Init ial izeWindowlessVMR1 (HWND hVidWnd1)
{

IBa s eF i l t e r ∗pVmr1 = NULL;
IVMRFilterConfig ∗pConfig1 = NULL;

HRESULT hr ;

// Create the VMR and add i t to the f i l t e r graph .
hr = CoCreateInstance(&CLSID VideoMixingRenderer , NULL,

CLSCTX INPROC, &I ID IBaseF i l t e r , (void∗∗)&pVmr1) ;

i f (FAILED(hr))
{

return 0 ;
}

hr = pGraphBuilder1−>AddFi lter (pVmr1 , L”Video Mixing Renderer ”) ;
i f (FAILED(hr))
{

return 0 ;
}

// Set the render ing mode and number o f streams .

hr = pVmr1−>QueryInter face (&IID IVMRFilterConfig , (void∗∗)&pConfig1) ;
i f (FAILED(hr))
{

return 0 ;
}

pConfig1−>SetRenderingMode (VMRMode Windowless) ;
pConfig1−>Release () ;

hr = pVmr1−>QueryInter face (&IID IVMRWindowlessControl , (void∗∗)&VMRpVidWin1) ;
i f (FAILED(hr))
{

return 0 ;
}

// Set VMR windowless output to windows handle
VMRpVidWin1−>SetVideoClippingWindow (hVidWnd1) ;

//Release VMR con t ro l
pVmr1−>Release () ;

return 1 ;
}

//==
// Windoless VMR #2 Function
//==

// Windowless v ideo con t ro l f o r v ideo window placement .
int Init ial izeWindowlessVMR2 (HWND hVidWnd2)
{

IBa s eF i l t e r ∗pVmr2 = NULL;
IVMRFilterConfig ∗pConfig2 = NULL;

HRESULT hr ;

// Create the VMR and add i t to the f i l t e r graph .
hr = CoCreateInstance(&CLSID VideoMixingRenderer , NULL,

CLSCTX INPROC, &I ID IBaseF i l t e r , (void∗∗)&pVmr2) ;

i f (FAILED(hr))
{

return 0 ;
}

hr = pGraphBuilder2−>AddFi lter (pVmr2 , L”Video Mixing Renderer ”) ;
i f (FAILED(hr))
{

return 0 ;
}

// Set the render ing mode and number o f streams .

hr = pVmr2−>QueryInter face (&IID IVMRFilterConfig , (void∗∗)&pConfig2) ;
i f (FAILED(hr))
{

return 0 ;
}

pConfig2−>SetRenderingMode (VMRMode Windowless) ;
pConfig2−>Release () ;

hr = pVmr2−>QueryInter face (&IID IVMRWindowlessControl , (void∗∗)&VMRpVidWin2) ;
i f (FAILED(hr))
{

return 0 ;
}

// Set VMR windowless output to windows handle
VMRpVidWin2−>SetVideoClippingWindow (hVidWnd2) ;

//Release VMR con t ro l
pVmr2−>Release () ;

return 1 ;
}

//==
// Windoless VMR #3 Function
//==

// Windowless v ideo con t ro l f o r v ideo window placement .
int Init ial izeWindowlessVMR3 (HWND hVidWnd3)
{

IBa s eF i l t e r ∗pVmr3 = NULL;
IVMRFilterConfig ∗pConfig3 = NULL;

HRESULT hr ;

// Create the VMR and add i t to the f i l t e r graph .
hr = CoCreateInstance(&CLSID VideoMixingRenderer , NULL,

CLSCTX INPROC, &I ID IBaseF i l t e r , (void∗∗)&pVmr3) ;

i f (FAILED(hr))
{

return 0 ;
}

hr = pGraphBuilder3−>AddFi lter (pVmr3 , L”Video Mixing Renderer ”) ;
i f (FAILED(hr))
{

return 0 ;
}

// Set the render ing mode and number o f streams .

hr = pVmr3−>QueryInter face (&IID IVMRFilterConfig , (void∗∗)&pConfig3) ;
i f (FAILED(hr))
{

return 0 ;
}

pConfig3−>SetRenderingMode (VMRMode Windowless) ;
pConfig3−>Release () ;

hr = pVmr3−>QueryInter face (&IID IVMRWindowlessControl , (void∗∗)&VMRpVidWin3) ;
i f (FAILED(hr))
{

return 0 ;
}

// Set VMR windowless output to windows handle
VMRpVidWin3−>SetVideoClippingWindow (hVidWnd3) ;

//Release VMR con t ro l
pVmr3−>Release () ;

return 1 ;
}

//==
// Video Window #1 Function
//==

// Co l l e c t v ideo window dimensions
int InitVideoWindow1 (HWND hVidWnd1 , int ∗pWidth , int ∗pHeight)
{

HRESULT hr ;
RECT rcDest ;
IAMStreamConfig ∗pStreampConfig = NULL;
IEnumMediaTypes ∗pEnumMediaType = NULL;
AMMEDIA TYPE ∗pmt = NULL, ∗ pfnt = NULL;
VIDEOINFOHEADER ∗vidInfoHead = NULL;
char tmpbuf [1 0 0 0] ;

hr = m pCamOutPin1−>EnumMediaTypes(&pEnumMediaType) ;
i f (! SUCCEEDED(hr))
{

return 0 ;
}

while (pEnumMediaType−>Next (1 , &pmt , 0) == S OK)
{

i f (memcmp((void ∗)& pmt−>formattype , (void ∗)&FORMAT VideoInfo , \
s izeof (GUID)) == 0)

{

vidInfoHead = (VIDEOINFOHEADER ∗)pmt−>pbFormat ;
{

pfnt = pmt ;
break ;

}
}

}

pEnumMediaType−>Release () ;

hr = m pCamOutPin1−>QueryInter face (&IID IAMStreamConfig , \
(void ∗∗)&pStreampConfig) ;

i f (FAILED(hr))
{

return 0 ;
}

i f (! p fnt)
{

return 0 ;
}

hr = pStreampConfig−>SetFormat (pfnt) ;

CoTaskMemFree ((void ∗) p fnt) ;

hr = pStreampConfig−>GetFormat(&pfnt) ;
i f (FAILED(hr))
{

return 0 ;
}

// Co l l e c t image width and he i gh t from video header .
∗pWidth = ((VIDEOINFOHEADER ∗) pfnt−>pbFormat)−>bmiHeader . biWidth ;
∗pHeight = ((VIDEOINFOHEADER ∗) pfnt−>pbFormat)−>bmiHeader . b iHeight ;

CoTaskMemFree ((void ∗) p fnt) ;

// Force preview to f i x e d s i z e
rcDest . l e f t = 0 ;
rcDest . top = 0 ;
rcDest . r i g h t = 320 ;
rcDest . bottom = 240 ;
hr = VMRpVidWin1−>SetVideoPos i t ion (NULL, &rcDest) ;

pStreampConfig−>Release () ;

return 1 ;
}

//==
// Video Window #2 Function
//==

// Co l l e c t v ideo window dimensions
int InitVideoWindow2 (HWND hVidWnd2 , int ∗pWidth , int ∗pHeight)
{

HRESULT hr ;
RECT rcDest ;
IAMStreamConfig ∗pStreampConfig = NULL;
IEnumMediaTypes ∗pEnumMediaType = NULL;
AMMEDIA TYPE ∗pmt = NULL, ∗ pfnt = NULL;
VIDEOINFOHEADER ∗vidInfoHead = NULL;
char tmpbuf [1 0 0 0] ;

hr = m pCamOutPin2−>EnumMediaTypes(&pEnumMediaType) ;
i f (! SUCCEEDED(hr))
{

return 0 ;
}

while (pEnumMediaType−>Next (1 , &pmt , 0) == S OK)
{

i f (memcmp((void ∗)& pmt−>formattype , (void ∗)&FORMAT VideoInfo , \
s izeof (GUID)) == 0)

{

vidInfoHead = (VIDEOINFOHEADER ∗)pmt−>pbFormat ;
{

pfnt = pmt ;
break ;

}
}

}

pEnumMediaType−>Release () ;

hr = m pCamOutPin2−>QueryInter face (&IID IAMStreamConfig , \
(void ∗∗)&pStreampConfig) ;

i f (FAILED(hr))
{

return 0 ;
}

i f (! p fnt)
{

return 0 ;
}

hr = pStreampConfig−>SetFormat (pfnt) ;

CoTaskMemFree ((void ∗) p fnt) ;

hr = pStreampConfig−>GetFormat(&pfnt) ;
i f (FAILED(hr))
{

return 0 ;
}

// Co l l e c t image width and he i gh t from video header .
∗pWidth = ((VIDEOINFOHEADER ∗) pfnt−>pbFormat)−>bmiHeader . biWidth ;
∗pHeight = ((VIDEOINFOHEADER ∗) pfnt−>pbFormat)−>bmiHeader . b iHeight ;

CoTaskMemFree ((void ∗) p fnt) ;

// Force preview to f i x e d s i z e
rcDest . l e f t = 0 ;
rcDest . top = 0 ;
rcDest . r i g h t = 320 ;
rcDest . bottom = 240 ;
hr = VMRpVidWin2−>SetVideoPos i t ion (NULL, &rcDest) ;

pStreampConfig−>Release () ;

return 1 ;
}

//==
// Video Window #3 Function
//==

// Co l l e c t v ideo window dimensions
int InitVideoWindow3 (HWND hVidWnd3 , int ∗pWidth , int ∗pHeight)
{

HRESULT hr ;
RECT rcDest ;
IAMStreamConfig ∗pStreampConfig = NULL;
IEnumMediaTypes ∗pEnumMediaType = NULL;
AMMEDIA TYPE ∗pmt = NULL, ∗ pfnt = NULL;
VIDEOINFOHEADER ∗vidInfoHead = NULL;
char tmpbuf [1 0 0 0] ;

hr = m pCamOutPin3−>EnumMediaTypes(&pEnumMediaType) ;
i f (! SUCCEEDED(hr))
{

return 0 ;
}

while (pEnumMediaType−>Next (1 , &pmt , 0) == S OK)
{

i f (memcmp((void ∗)& pmt−>formattype , (void ∗)&FORMAT VideoInfo , \
s izeof (GUID)) == 0)

{

vidInfoHead = (VIDEOINFOHEADER ∗)pmt−>pbFormat ;
{

pfnt = pmt ;
break ;

}
}

}

pEnumMediaType−>Release () ;

hr = m pCamOutPin3−>QueryInter face (&IID IAMStreamConfig , \
(void ∗∗)&pStreampConfig) ;

i f (FAILED(hr))
{

return 0 ;
}

i f (! p fnt)
{

return 0 ;
}

hr = pStreampConfig−>SetFormat (pfnt) ;

CoTaskMemFree ((void ∗) p fnt) ;

hr = pStreampConfig−>GetFormat(&pfnt) ;
i f (FAILED(hr))
{

return 0 ;
}

// Co l l e c t image width and he i gh t from video header .
∗pWidth = ((VIDEOINFOHEADER ∗) pfnt−>pbFormat)−>bmiHeader . biWidth ;
∗pHeight = ((VIDEOINFOHEADER ∗) pfnt−>pbFormat)−>bmiHeader . b iHeight ;

CoTaskMemFree ((void ∗) p fnt) ;

// Force preview to f i x e d s i z e
rcDest . l e f t = 0 ;
rcDest . top = 0 ;
rcDest . r i g h t = 320 ;
rcDest . bottom = 240 ;
hr = VMRpVidWin3−>SetVideoPos i t ion (NULL, &rcDest) ;

pStreampConfig−>Release () ;

return 1 ;
}

//==
// Frame Capture #1 Function
//==

// Co l l e c t frame from stream and conver t to 24 b i t i f necessary
int StreamWebCamFrame1(unsigned char ∗pFrameOut , unsigned long FrameBufferLen ,\

int ∗pWidth , int ∗pHeight)
{

// Current frame bu f f e r
BYTE ∗ lpCurrImage = NULL;
LPBITMAPINFOHEADER pdib ;

BYTE ∗pTemp32 ;
unsigned long FrameSize24 ;
unsigned long Height , Width ;
char tmpbuf [1 0 0 0] ;

i f (! VMRpVidWin1)
{

return 0 ;
}

// Co l l e c t frame from VMR stream
i f (VMRpVidWin1−>GetCurrentImage(&lpCurrImage) != S OK)
{

return 0 ;
}

pdib = (LPBITMAPINFOHEADER) lpCurrImage ;
pTemp32 = lpCurrImage + s izeof (BITMAPINFOHEADER) ;

// Define v ideo stream dimensions
Height = pdib−>biHeight ;
Width = pdib−>biWidth ;
FrameSize24 = Width∗Height ∗3L ;

∗pWidth = Width ;
∗pHeight = Height ;

i f (FrameSize24 > FrameBufferLen)
{

CoTaskMemFree(lpCurrImage) ; // f r e e the image

return 0 ;
}

Convert24Image (pTemp32 , pFrameOut , pdib−>biS izeImage) ;

CoTaskMemFree(lpCurrImage) ; // f r e e the image

return 1 ;
}

//==
// Frame Capture #2 Function
//==

// Co l l e c t frame from stream and conver t to 24 b i t i f necessary
int StreamWebCamFrame2(unsigned char ∗pFrameOut , unsigned long FrameBufferLen , \

int ∗pWidth , int ∗pHeight)
{

// Current frame bu f f e r
BYTE ∗ lpCurrImage = NULL;
LPBITMAPINFOHEADER pdib ;

BYTE ∗pTemp32 ;
unsigned long FrameSize24 ;
unsigned long Height , Width ;
char tmpbuf [1 0 0 0] ;

i f (! VMRpVidWin2)
{

return 0 ;
}

// Co l l e c t frame from VMR stream
i f (VMRpVidWin2−>GetCurrentImage(&lpCurrImage) != S OK)
{

return 0 ;
}

pdib = (LPBITMAPINFOHEADER) lpCurrImage ;
pTemp32 = lpCurrImage + s izeof (BITMAPINFOHEADER) ;

// Define v ideo stream dimensions
Height = pdib−>biHeight ;
Width = pdib−>biWidth ;
FrameSize24 = Width∗Height ∗3L ;

∗pWidth = Width ;
∗pHeight = Height ;

i f (FrameSize24 > FrameBufferLen)
{

CoTaskMemFree(lpCurrImage) ; // f r e e the image
return 0 ;

}

Convert24Image (pTemp32 , pFrameOut , pdib−>biS izeImage) ;

CoTaskMemFree(lpCurrImage) ; // f r e e the image

return 1 ;
}

//==
// Frame Capture #3 Function
//==

// Co l l e c t frame from stream and conver t to 24 b i t i f necessary
int StreamWebCamFrame3(unsigned char ∗pFrameOut , unsigned long FrameBufferLen , \

int ∗pWidth , int ∗pHeight)

{

// Current frame bu f f e r
BYTE ∗ lpCurrImage = NULL;
LPBITMAPINFOHEADER pdib ;

BYTE ∗pTemp32 ;
unsigned long FrameSize24 ;
unsigned long Height , Width ;
char tmpbuf [1 0 0 0] ;

i f (! VMRpVidWin3)
{

return 0 ;
}

// Co l l e c t frame from VMR stream
i f (VMRpVidWin3−>GetCurrentImage(&lpCurrImage) != S OK)
{

return 0 ;
}

pdib = (LPBITMAPINFOHEADER) lpCurrImage ;
pTemp32 = lpCurrImage + s izeof (BITMAPINFOHEADER) ;

// Define v ideo stream dimensions
Height = pdib−>biHeight ;
Width = pdib−>biWidth ;
FrameSize24 = Width∗Height ∗3L ;

∗pWidth = Width ;
∗pHeight = Height ;

i f (FrameSize24 > FrameBufferLen)
{

CoTaskMemFree(lpCurrImage) ; // f r e e the image
return 0 ;

}

Convert24Image (pTemp32 , pFrameOut , pdib−>biS izeImage) ;

CoTaskMemFree(lpCurrImage) ; // f r e e the image

return 1 ;
}

//==
// Convert Image Function
//==

// Convert frame b i t count
int Convert24Image (BYTE ∗p32Img , BYTE ∗p24Img , DWORD dwSize32)
{

DWORD dwSize24 ;
BYTE ∗pTemp,∗ ptr ;
DWORD index ;
unsigned char r , g , b ;

i f ((! p32Img) | | (! p24Img) | | (dwSize32 == 0))
{

return 0 ;
}

dwSize24=(dwSize32 ∗ 3)/4 ;

pTemp=p32Img ;

ptr=p24Img ;

for (index = 0 ; index < dwSize32 /4 ; index++)
{

∗ptr++ = ∗pTemp++;
∗ptr++ = ∗pTemp++;
∗ptr++ = ∗pTemp++;
pTemp++;

}
return 1 ;

}

//==
// Grab Frame From Webcam 1
//==

// Grab frame and save as bitmap format
int GrabWebCamFrame1(void)
{

HRESULT hr ;
BYTE∗ lpCurrImage = NULL;
int ln = 0 ;

i f (CameraActive1 == 0)
{

// Make sure dev i c e s are s e l e c t e d .
MessageBox (0 , TEXT(”Frame grab f a i l e d on Device 1 ! ”) , 0 , 0) ;
CloseWebCamCapture () ;
return 0 ;

}

i f (SUCCEEDED(hr = VMRpVidWin1−>GetCurrentImage(&lpCurrImage)))
{

BITMAPFILEHEADER hdr ;
DWORD dwSize , dwWritten ;
LPBITMAPINFOHEADER pdib = (LPBITMAPINFOHEADER) lpCurrImage ;

const char ∗name = ” l e f t ” ;
char l e f tF i l eName [3 2] = {0} ;

s p r i n t f (le f tFi leName , ”%s%d .bmp” , name , l e f tF i l eCoun t) ;
l e f tF i l eCoun t++;

// Create handle and output bmp f i l e
HANDLE WebcamFrame1 = CreateF i l e (le f tFi leName , GENERIC WRITE,

FILE SHARE READ, NULL, CREATEALWAYS,
FILE ATTRIBUTE NORMAL, 0) ;

i f (WebcamFrame1 == INVALID HANDLE VALUE)
return 0 ;

// I n i t i a l i z e the bitmap header
dwSize = DibSize (pdib) ;
hdr . bfType = BFT BITMAP;
hdr . b f S i z e = dwSize + s izeof (BITMAPFILEHEADER) ;
hdr . bfReserved1 = 0 ;
hdr . bfReserved2 = 0 ;
hdr . b fO f fB i t s = (DWORD) s izeof (BITMAPFILEHEADER) + \

pdib−>b i S i z e + DibPa l e t t eS i z e (pdib) ;

// Write the bitmap to the f i l e
WriteFi l e (WebcamFrame1 , (LPCVOID) &hdr , s izeof (BITMAPFILEHEADER) , \

&dwWritten , 0) ;
Wri teF i l e (WebcamFrame1 , (LPCVOID) pdib , dwSize , &dwWritten , 0) ;

// Close the f i l e
CloseHandle (WebcamFrame1) ;

// Free the image data returned from GetCurrentImage ()
CoTaskMemFree(lpCurrImage) ;

}
else

{
MessageBox (0 , TEXT(”Frame grab f a i l e d on Device 1 ! ”) , 0 , 0) ;
return 0 ;

}

return 1 ;

}
//==
// Grab Frame From Webcam 2
//==

// Grab frame and save as bitmap format
int GrabWebCamFrame2(void)
{

HRESULT hr ;
BYTE∗ lpCurrImage = NULL;

i f (CameraActive2 == 0)
{

// Make sure dev i c e s are s e l e c t e d .
MessageBox (0 , TEXT(”Frame grab f a i l e d on Device 2 ! ”) , 0 , 0) ;
CloseWebCamCapture () ;
return 0 ;

}

i f (SUCCEEDED(hr = VMRpVidWin2−>GetCurrentImage(&lpCurrImage)))
{

BITMAPFILEHEADER hdr ;
DWORD dwSize , dwWritten ;
LPBITMAPINFOHEADER pdib = (LPBITMAPINFOHEADER) lpCurrImage ;

const char ∗name = ” cente r ” ;
char centerFi leName [3 2] = {0} ;

s p r i n t f (centerFileName , ”%s%d .bmp” , name , centerF i l eCount) ;
centerF i l eCount++;

//Create handle and output bmp f i l e
HANDLE WebcamFrame2 = CreateF i l e (centerFileName , GENERIC WRITE,

FILE SHARE READ, NULL, CREATEALWAYS,
FILE ATTRIBUTE NORMAL, 0) ;

i f (WebcamFrame2 == INVALID HANDLE VALUE)
return 0 ;

// I n i t i a l i z e the bitmap header
dwSize = DibSize (pdib) ;
hdr . bfType = BFT BITMAP;
hdr . b f S i z e = dwSize + s izeof (BITMAPFILEHEADER) ;
hdr . bfReserved2 = 0 ;
hdr . bfReserved2 = 0 ;
hdr . b fO f fB i t s = (DWORD) s izeof (BITMAPFILEHEADER) + \

pdib−>b i S i z e + DibPa l e t t eS i z e (pdib) ;

// Write the bitmap to the f i l e
WriteFi l e (WebcamFrame2 , (LPCVOID) &hdr , s izeof (BITMAPFILEHEADER) , \

&dwWritten , 0) ;
Wri teF i l e (WebcamFrame2 , (LPCVOID) pdib , dwSize , &dwWritten , 0) ;

// Close the f i l e
CloseHandle (WebcamFrame2) ;

// Free the image data returned from GetCurrentImage ()
CoTaskMemFree(lpCurrImage) ;

}
else
{

MessageBox (0 , TEXT(”Frame grab f a i l e d on Device 2 ! ”) , 0 , 0) ;
return 0 ;

}

return 1 ;

}
//==
// Grab Frame From Webcam 3
//==

// Grab frame and save as bitmap format
int GrabWebCamFrame3(void)
{

HRESULT hr ;
BYTE∗ lpCurrImage = NULL;

i f (CameraActive3 == 0)
{

// Make sure dev i c e s are s e l e c t e d .
MessageBox (0 , TEXT(”Frame grab f a i l e d on Device 3 ! ”) , 0 , 0) ;
CloseWebCamCapture () ;
return 0 ;

}

i f (SUCCEEDED(hr = VMRpVidWin3−>GetCurrentImage(&lpCurrImage)))
{

BITMAPFILEHEADER hdr ;
DWORD dwSize , dwWritten ;
LPBITMAPINFOHEADER pdib = (LPBITMAPINFOHEADER) lpCurrImage ;

const char ∗name = ” r i gh t ” ;
char r ightFi leName [3 2] = {0} ;

s p r i n t f (r ightFileName , ”%s%d .bmp” , name , r i ghtF i l eCount) ;
r i ghtF i l eCount++;

// Create handle and output bmp f i l e
HANDLE WebcamFrame3 = CreateF i l e (r ightFileName , GENERIC WRITE,

FILE SHARE READ, NULL, CREATEALWAYS,
FILE ATTRIBUTE NORMAL, 0) ;

i f (WebcamFrame3 == INVALID HANDLE VALUE)
return 0 ;

// I n i t i a l i z e the bitmap header
dwSize = DibSize (pdib) ;
hdr . bfType = BFT BITMAP;
hdr . b f S i z e = dwSize + s izeof (BITMAPFILEHEADER) ;
hdr . bfReserved2 = 0 ;
hdr . bfReserved2 = 0 ;
hdr . b fO f fB i t s = (DWORD) s izeof (BITMAPFILEHEADER) + pdib−>b i S i z e + \

DibPa l e t t eS i z e (pdib) ;

// Write the bitmap to the f i l e
WriteFi l e (WebcamFrame3 , (LPCVOID) &hdr , s izeof (BITMAPFILEHEADER) , \

&dwWritten , 0) ;
Wri teF i l e (WebcamFrame3 , (LPCVOID) pdib , dwSize , &dwWritten , 0) ;

// Close the f i l e
CloseHandle (WebcamFrame3) ;

// Free the image data returned from GetCurrentImage ()
CoTaskMemFree(lpCurrImage) ;

}
else
{

MessageBox (0 , TEXT(”Frame grab f a i l e d on Device 3 ! ”) , 0 , 0) ;
return 0 ;

}

return 1 ;

}

//==
// WinMain Entry
//==

// Main API entry po in t .
int WINAPI WinMain(HINSTANCE hInstance , HINSTANCE hPrevInstance , \

LPSTR lpszCmdLine , int nWinMode)
{

MSG msg ;

// Create windows
hMainWnd = CreateMainWindow (hInstance , hPrevInstance , lpszCmdLine , nWinMode) ;
i f (! hMainWnd)

return 0 ;

hWnd = CreateCaptureWindow (hMainWnd) ;
i f (FAILED(Co In i t i a l i z eEx (NULL, COINIT MULTITHREADED)))
{

e x i t (1) ;
}
hWnd = CreateGrabWindow (hMainWnd) ;
i f (FAILED(Co In i t i a l i z eEx (NULL, COINIT MULTITHREADED)))
{

e x i t (1) ;
}

// Find dev i c e s a t tached to the system
FindCaptureDevice () ;

while (GetMessage(&msg , NULL, 0 , 0))
{

TranslateMessage(&msg) ;
DispatchMessage(&msg) ;

}

return msg .wParam ;
}

//==
// Create Main Window
//==
LRESULT CALLBACK WndProc(HWND hwnd , UINT message , WPARAM wParam , LPARAM lParam)
{

PAINTSTRUCT ps ;
HDC hdc ;
RECT re c t ;

int ExtraWidth , ExtraHeight ;
int nVirtKey ;
char tmpbuf [1 0 0 0] ;

SCROLLINFO s i ;
CurPos = 0 ;

ZeroMemory(&s i , s izeof (s i)) ;
s i . cbS i ze = s izeof (s i) ;
s i . fMask = SIF RANGE | SIF PAGE | SIF TRACKPOS | SIF POS ;
s i . nMin = 0 ;
s i . nMax = 30 ;
s i . nPage = 10 ;
s i . nPos = 10 ;
s i . nTrackPos = 10 ;

S e t S c r o l l I n f o (hPixTrackBar , SB CTL, &s i , TRUE) ;

switch (message)
{

case WMCREATE:
BuildMenus (hwnd) ;
return 0 ;

case WMCOMMAND:

// Se l e c t d ev i c e s from combo boxes
switch (HIWORD(wParam))
{

case CBN SELCHANGE:

switch (LOWORD(wParam))
{

// Combo box 1
case IDC COMBO1:

ItemIndex1 = SendMessage ((HWND)hWndComboBox1,\
(UINT)CB GETCURSEL, (WPARAM)0 , (LPARAM) 0) ;

switch (ItemIndex1)
{

case 0 :
pSrc1 = NULL;
CameraActive1 = 0 ;

break ;

case 1 :
pSrc1 = pEnumSrc1 ;
CameraActive1 = 1 ;

break ;

case 2 :
pSrc1 = pEnumSrc2 ;
CameraActive1 = 1 ;

break ;

case 3 :
pSrc1 = pEnumSrc3 ;
CameraActive1 = 1 ;

break ;

case 4 :
pSrc1 = pEnumSrc4 ;
CameraActive1 = 1 ;

break ;

case 5 :
pSrc1 = pEnumSrc5 ;
CameraActive1 = 1 ;

break ;
default :

break ;
}

break ;

// Combo box 2
case IDC COMBO2:

ItemIndex2 = SendMessage ((HWND)hWndComboBox2,\
(UINT)CB GETCURSEL, (WPARAM)0 , (LPARAM) 0) ;

switch (ItemIndex2)
{

case 0 :
pSrc2 = NULL;
CameraActive2 = 0 ;

break ;

case 1 :
pSrc2 = pEnumSrc1 ;
CameraActive2 = 1 ;

break ;

case 2 :
pSrc2 = pEnumSrc2 ;
CameraActive2 = 1 ;

break ;

case 3 :
pSrc2 = pEnumSrc3 ;
CameraActive2 = 1 ;

break ;

case 4 :
pSrc2 = pEnumSrc4 ;
CameraActive2 = 1 ;

break ;

case 5 :
pSrc2 = pEnumSrc5 ;
CameraActive2 = 1 ;

break ;
default :

break ;
}

break ;

// Combo box 3
case IDC COMBO3:

ItemIndex3 = SendMessage ((HWND)hWndComboBox3,\
(UINT)CB GETCURSEL, (WPARAM)0 , (LPARAM) 0) ;

switch (ItemIndex3)
{

case 0 :
pSrc3 = NULL;
CameraActive3 = 0 ;

break ;

case 1 :
pSrc3 = pEnumSrc1 ;
CameraActive3 = 1 ;

break ;

case 2 :
pSrc3 = pEnumSrc2 ;
CameraActive3 = 1 ;

break ;

case 3 :
pSrc3 = pEnumSrc3 ;
CameraActive3 = 1 ;

break ;

case 4 :
pSrc3 = pEnumSrc4 ;
CameraActive3 = 1 ;

break ;

case 5 :
pSrc3 = pEnumSrc5 ;
CameraActive3 = 1 ;

break ;
default :

break ;
}

break ;

}
default :

break ;
}

switch (LOWORD(wParam))
{

case ID FILE EXIT :
PostMessage (hwnd , WMDESTROY, (WPARAM)0 , (LPARAM) 0) ;
break ;

case ID ABOUT:
MessageBox (0 , TEXT(”Mul i tp l e Camera Access Platform .\
\nSupports up to 5 dev i c e s . \n\nCreated by Adam Cox 2011”) , 0 , 0) ;
break ;

//−−
// Button con t r o l s
//−−
case IDB STARTBUTTON:

//−−
i f (WebCamRunning)
{

// Webcams a l ready running?
return 0 ;

}
//−−
i f (CameraActive1 == 0 && CameraActive2 == 0 && \

CameraActive3 == 0)
{

// Make sure dev i c e s are s e l e c t e d .
MessageBox (0 , TEXT(”No Devices Se l e c t ed ! ”) , 0 , 0) ;
return 0 ;

}
//−−
// I n i t i a t e cameras i f a t tached and s e l e c t e d
//−−
i f (CameraActive1 == 1)
{

i f (! InitWebCamCapture1 (hVidWnd1 , &WebcamImageWidth ,\
&WebcamImageHeight))
{

MessageBox (hwnd , ”Capture Device #1 Could Not I n i t i a l i s e ! ” ,\
”WebCam” , MBOK) ;
return 0 ;

}
}

i f (CameraActive2 == 1)
{

i f (! InitWebCamCapture2 (hVidWnd2 , &WebcamImageWidth ,\
&WebcamImageHeight))
{

MessageBox (hwnd , ”Capture Device #2 Could Not I n i t i a l i s e ! ” ,\
”WebCam” , MBOK) ;
return 0 ;

}
}

i f (CameraActive3 == 1)
{

i f (! InitWebCamCapture3 (hVidWnd3 , &WebcamImageWidth ,\
&WebcamImageHeight))
{

MessageBox (hwnd , ”Capture Device #3 Could Not I n i t i a l i s e ! ” ,\
”WebCam” , MBOK) ;
return 0 ;

}
}
//−−
// Set image b u f f e r l eng t h and crea t e b u f f e r
//−−
ImageBufferLen = WebcamImageWidth ∗ WebcamImageHeight ∗ 3L ;

ImageBuffer = (BYTE ∗) mal loc (ImageBufferLen) ;
i f (! ImageBuffer)
{

MessageBox (NULL, ”Image bu f f e r a l l o c f a i l e d ” , szAppName , MBOK) ;
break ;

}

ImageBuffer1 = (BYTE ∗) mal loc (ImageBufferLen) ;
i f (! ImageBuffer1)
{

MessageBox (NULL, ”Image bu f f e r 1 a l l o c f a i l e d ” , szAppName , MBOK) ;
i f (ImageBuffer)
{

f r e e ((void ∗) ImageBuffer) ;
ImageBuffer = (unsigned char ∗)NULL;

}
break ;

}
//−−

//−−
// Set camera s t a t u s
//−−
WebCamRunning = 1 ;
WebCamInitial ized = 1 ;
WebCamPaused = 0 ;
//−−

//−−
s p r i n t f (tmpbuf , ”%d x %d” , WebcamImageWidth , WebcamImageHeight) ;
SetWindowText (hTextImageDims , tmpbuf) ;
//−−

#i f 0
//−−
i f (StreamWebCamFrame1(ImageBuffer , ImageBufferLen , \

&WebcamImageWidth , &WebcamImageHeight))
i f (StreamWebCamFrame2(ImageBuffer , ImageBufferLen , \

&WebcamImageWidth , &WebcamImageHeight))
i f (StreamWebCamFrame3(ImageBuffer , ImageBufferLen , \

&WebcamImageWidth , &WebcamImageHeight))
//−−

#endif

//−−
// to r e s i z e image to ac tua l d r i v e r s i z e
//−−

//−−
//GetWindowRect (hMainWnd, &rec t) ;
// s p r i n t f (tmpbuf , ”w=%d h=%d” , r e c t . r i gh t , r e c t . bottom) ;
// s p r i n t f (tmpbuf , ” l=%d t=%d” , r e c t . l e f t , r e c t . top) ;
//MessageBox (hwnd , tmpbuf , ”WebCam” , MBOK) ;
//ExtraWidth = DEFAULT CANVASWIDTH − r e c t . r i g h t ;
//ExtraHeight = DEFAULT CANVAS HEIGHT − r e c t . bottom ;
//−−

//−−
// r e s i z e to capture d e f a u l t
//−−

//−−
/∗GetWindowRect (hMainWnd, &rec t) ;
MoveWindow(hMainWnd,

r e c t . l e f t , r e c t . top ,
3∗WebcamImageWidth + 200 ,
2∗WebcamImageHeight + 120 ,
TRUE) ;

MoveWindow(hVidWnd1 ,
140 , 20 ,
WebcamImageWidth , WebcamImageHeight ,
TRUE) ;

MoveWindow(hGraWnd1 ,
140 , 20 + WebcamImageHeight ,
WebcamImageWidth , WebcamImageHeight ,
TRUE) ; ∗/

//−−

//−−
SetTimer (hMainWnd, ID TIMER, FRAMERATE, NULL) ;
//−−

//−−
nFrames = 0L ;
//−−

break ;
//−−

//−−
case IDB STOPBUTTON:

//−−
// Reset p i x e l t h r e s ho l d and s l i d e r bar po s i t i on
//−−
Pixe lThresho ld = 10 ;
SendMessage (hPixTrackBar , TBM SETPOS, (WPARAM) \
TRUE, (LPARAM) 10) ;

CloseWebCamCapture () ;

//−−
break ;

//−−
case IDB PAUSEBUTTON:

//−−
i f (! WebCamRunning)

return 0 ;

i f (WebCamPaused)
return 0 ;

//−−

PauseWebCamCapture () ;

WebCamPaused = 1 ;

break ;
//−−

//−−
case IDBRESUMEBUTTON:

//−−
i f (! WebCamRunning)

return 0 ;

i f (! WebCamPaused)
return 0 ;

//−−

ResumeWebCamCapture () ;

WebCamPaused = 0 ;

break ;
//−−

//−−
// Grab l e f t frame
//−−
case IDBGRABLBUTTON:

//−−
i f (! WebCamRunning)

return 0 ;

GrabWebCamFrame1 () ;

break ;
//−−

//−−
// Grab center frame
//−−
case IDBGRABCBUTTON:

//−−
i f (! WebCamRunning)

return 0 ;

GrabWebCamFrame2 () ;

break ;
//−−

//−−
// Grab r i g h t frame
//−−
case IDBGRABRBUTTON:

//−−
i f (! WebCamRunning)

return 0 ;

GrabWebCamFrame3 () ;

break ;
//−−

//−−
// Grab a l l frames
//−−
case IDBGRABABUTTON:

//−−
i f (! WebCamRunning)

return 0 ;

i f (CameraActive1 == 1)
{

GrabWebCamFrame1 () ;
}

i f (CameraActive2 == 1)
{

GrabWebCamFrame2 () ;
}

i f (CameraActive3 == 1)
{

GrabWebCamFrame3 () ;
}

break ;
//−−

//−−
// Edge Detect ion Control
//−−
case IDB EDBUTTON:

i f (edgeDetectOn == 1)
{

edgeDetectOn = 0 ;
}

else i f (edgeDetectOn == 0)
{

edgeDetectOn = 1 ;
}

break ;

//−−
// Exi t and des t roy app l i c a t i on
//−−
case IDB EXITBUTTON:

PostMessage (hwnd , WMDESTROY, (WPARAM)0 , (LPARAM) 0) ;
break ;

}
//−−
// S c r o l l bar f o r p i x e l t h r e s ho l d
//−−
case WMHSCROLL:

CurPos = GetScro l lPos (hPixTrackBar , SB CTL) ;

switch (LOWORD(wParam))
{

case SB THUMBPOSITION:
CurPos = HIWORD(wParam) ;
Se tSc ro l lPo s (hPixTrackBar , SB CTL, \
CurPos , TRUE) ;
Pixe lThresho ld = Pixe lThresho ld+\
(CurPos−Pixe lThresho ld) ;

break ;

case SBTHUMBTRACK:
CurPos = HIWORD(wParam) ;
Se tSc ro l lPo s (hPixTrackBar , SB CTL, \
CurPos , TRUE) ;
Pixe lThresho ld = Pixe lThresho ld+\
(CurPos−Pixe lThresho ld) ;

break ;

case SB LINERIGHT:
Pixe lThresho ld++;

break ;

case SB LINELEFT :
Pixe lThreshold−−;

break ;

case SB PAGELEFT:
Pixe lThreshold−−;

break ;

case SB PAGERIGHT:
Pixe lThresho ld++;

break ;

default :
break ;

}

case WMPAINT:
//−−
hdc = BeginPaint (hwnd , &ps) ;

SetBkMode (hdc , TRANSPARENT) ;

// Pixe l Threshold Text .
TextOut (hdc , 20 , 270 , ” P ixe l Threshold : ” , 1 6) ;
TextOut (hdc , 20 , 290 , ”0” , 2) ;
TextOut (hdc , 100 , 290 , ”30” , 2) ;

// Camera Se l e c t i on Text .
TextOut (hdc , 140 , 540 , ” S e l e c t Camera 1 : ” , 1 6) ;
TextOut (hdc , 140 + WEBCAMWINDOWX, 540 , ” S e l e c t Camera 2 : ” , 1 6) ;
TextOut (hdc , 140 + (2∗WEBCAMWINDOWX) , 540 , ” S e l e c t Camera 3 : ” , 1 6) ;

EndPaint (hwnd , &ps) ;
//−−

return 0 ;

case WMTIMER:

i f (! WebCamRunning)
{

return 0 ;
}

i f (WebCamPaused)
{

return 0 ;
}
i f (edgeDetectOn == 1)
{

i f (CameraActive1 == 1)
{

i f (StreamWebCamFrame1(ImageBuffer , ImageBufferLen , \
&WebcamImageWidth , &WebcamImageHeight))
{

ProcessFrame1 (ImageBuffer , ImageBuffer1 , \
WebcamImageWidth , \
WebcamImageHeight) ;

}
}

i f (CameraActive2 == 1)
{

i f (StreamWebCamFrame2(ImageBuffer , ImageBufferLen , \
&WebcamImageWidth , &WebcamImageHeight))
{

ProcessFrame2 (ImageBuffer , ImageBuffer1 , \
WebcamImageWidth , \
WebcamImageHeight) ;

}
}

i f (CameraActive3 == 1)
{

i f (StreamWebCamFrame3(ImageBuffer , ImageBufferLen , \
&WebcamImageWidth , &WebcamImageHeight))
{

ProcessFrame3 (ImageBuffer , ImageBuffer1 , \
WebcamImageWidth , \
WebcamImageHeight) ;

}
}

}

return 0 ;

case WMCLOSE:
ShowWindow(hwnd , SW HIDE) ;
return 0 ;

case WMDESTROY:

//−−
Kil lTimer (hwnd , ID TIMER) ;
//−−

//−−
i f (ImageBuffer)
{

f r e e ((void ∗) ImageBuffer) ;
}
//−−

//−−
i f (ImageBuffer1)
{

f r e e ((void ∗) ImageBuffer1) ;
}
//−−
CloseWebCamCapture () ;
//−−

//−−
CoUn in i t i a l i z e () ;
//−−

//−−
PostQuitMessage (0) ;
//−−

return 0 ;

#i f 0
case WMMOUSEMOVE:

//−−
s p r i n t f (tmpbuf , ”Not in video ”) ;
SetWindowText (hTextCursorPos , tmpbuf) ;
//−−

return 0 ;
#endif

case WMKEYDOWN:
//−−
nVirtKey = (int) wParam ; // v i r t u a l−key code
// lKeyData = lParam ; // key data
//−−

//−−
i f (nVirtKey == VK F8)
{

// s p r i n t f (tmpbuf , ” key=%d” , nVirtKey) ;
//MessageBox (hwnd , tmpbuf , ”debug ” , MBOK) ;

//−−
i f (! WebCamRunning)
{

// a l ready running
return 0 ;

}
CloseWebCamCapture () ;

WebCamRunning = 0 ;
//−−

}

return 0 ;
}
return DefWindowProc (hwnd , message , wParam , lParam) ;

}

//==
// Main window handle
//==

HWND CreateMainWindow (HINSTANCE hInstance , HINSTANCE hPrevInstance , \
LPSTR lpszCmdLine , int nWinMode)

{

// Define windows c l a s s
WNDCLASSEX wndclass ;

wndclass . cbS ize = s izeof (WNDCLASSEX) ;
wndclass . s t y l e = CSHREDRAW | CSVREDRAW;
wndclass . lpfnWndProc = WndProc ;
wndclass . cbClsExtra = 0 ;
wndclass . cbWndExtra = 0 ;
wndclass . hInstance = hInstance ;
wndclass . hIcon = LoadIcon (NULL, IDI APPLICATION) ;
wndclass . hCursor = LoadCursor (NULL, IDCARROW) ;
wndclass . hbrBackground = GetSysColorBrush (COLOR 3DFACE) ;
wndclass . lpszMenuName = NULL;
wndclass . lpszClassName = szAppName ;
wndclass . hIconSm = LoadIcon (NULL, IDI APPLICATION) ;

i f (! Reg i s terClassEx(&wndclass))
{

MessageBox (NULL, TEXT (”This program r e qu i r e s Windows NT! ”) ,\
szAppName , MB ICONERROR) ;
return 0 ;

}

//−−−
// Main Window
//−−−

hWnd = CreateWindowEx (WS EX CLIENTEDGE,
szAppName , // window c l a s s name
TEXT (”Webcam Capture Test ”) , // window capt ion
WSOVERLAPPEDWINDOW, // window s t y l e
CWUSEDEFAULT, // i n i t i a l x po s i t i on
CWUSEDEFAULT, // i n i t i a l y po s i t i on
(3∗WebcamImageWidth) + 180 , // i n i t i a l x s i z e
(2∗WebcamImageHeight) + 180 , // i n i t i a l y s i z e
NULL, // parent window handle
NULL, // window menu handle
hInstance , // program ins tance handle
NULL) ; // crea t i on parameters

//−−−
// Combo Boxes
//−−−

hWndComboBox1 = CreateWindowEx (0 , ”COMBOBOX” , ”Camera 1” ,
CBS DROPDOWNLIST | CBS HASSTRINGS | WS CHILD | WS VISIBLE ,
140 , 560 , 300 , 160 ,
hWnd, (HMENU)IDC COMBO1, hInstance ,NULL) ;

hWndComboBox2 = CreateWindowEx (0 , ”COMBOBOX” , ”Camera 2” ,
CBS DROPDOWNLIST | CBS HASSTRINGS | WS CHILD | WS VISIBLE ,
140 + WEBCAMWINDOWX, 560 , 300 , 160 ,
hWnd, (HMENU)IDC COMBO2, hInstance ,NULL) ;

hWndComboBox3 = CreateWindowEx (0 , ”COMBOBOX” , ”Camera 3” ,
CBS DROPDOWNLIST | CBS HASSTRINGS | WS CHILD | WS VISIBLE ,
140 + (2∗WEBCAMWINDOWX) , 560 , 300 , 160 ,
hWnd, (HMENU)IDC COMBO3, hInstance ,NULL) ;

//−−−
// Buttons
//−−−

CreateWindowEx (BS PUSHBUTTON,
”button” ,
” Star t ” ,
WS CHILD | WS VISIBLE | BS PUSHBUTTON,
20 , 30 , 100 , 20 ,
hWnd, (HMENU)IDB STARTBUTTON,
hInstance , (LPVOID)NULL) ;

CreateWindowEx (BS PUSHBUTTON,
”button” , // window c l a s s name
”Stop” ,
WS CHILD | WS VISIBLE | BS PUSHBUTTON,
20 , 55 , 100 , 20 ,
hWnd, (HMENU)IDB STOPBUTTON,
hInstance , (LPVOID)NULL) ;

CreateWindowEx (BS PUSHBUTTON,
”button” , // window c l a s s name
”Pause” ,
WS CHILD | WS VISIBLE | BS PUSHBUTTON,
20 , 80 , 100 , 20 ,
hWnd, (HMENU)IDB PAUSEBUTTON,
hInstance , (LPVOID)NULL) ;

CreateWindowEx (BS PUSHBUTTON,
”button” , // window c l a s s name
”Resume” ,
WS CHILD | WS VISIBLE | BS PUSHBUTTON,
20 , 105 , 100 , 20 ,
hWnd, (HMENU)IDB RESUMEBUTTON,
hInstance , (LPVOID)NULL) ;

CreateWindowEx (BS PUSHBUTTON,
”button” , // window c l a s s name
”Grab Le f t ” ,
WS CHILD | WS VISIBLE | BS PUSHBUTTON,
20 , 150 , 100 , 20 ,
hWnd, (HMENU)IDBGRABLBUTTON,
hInstance , (LPVOID)NULL) ;

CreateWindowEx (BS PUSHBUTTON,
”button” , // window c l a s s name
”Grab Center ” ,
WS CHILD | WS VISIBLE | BS PUSHBUTTON,
20 , 175 , 100 , 20 ,
hWnd, (HMENU)IDBGRABCBUTTON,
hInstance , (LPVOID)NULL) ;

CreateWindowEx (BS PUSHBUTTON,
”button” , // window c l a s s name
”Grab Right” ,
WS CHILD | WS VISIBLE | BS PUSHBUTTON,
20 , 200 , 100 , 20 ,
hWnd, (HMENU)IDBGRABRBUTTON,
hInstance , (LPVOID)NULL) ;

CreateWindowEx (BS PUSHBUTTON,
”button” , // window c l a s s name
”Grab Al l ” ,
WS CHILD | WS VISIBLE | BS PUSHBUTTON,
20 , 225 , 100 , 20 ,
hWnd, (HMENU)IDBGRABABUTTON,
hInstance , (LPVOID)NULL) ;

CreateWindowEx (BS PUSHBUTTON,
”button” , // window c l a s s name

”Edge Detect ” ,
WS CHILD | WS VISIBLE | BS PUSHBUTTON,
20 , 360 , 100 , 20 ,
hWnd, (HMENU)IDB EDBUTTON,
hInstance , (LPVOID)NULL) ;

CreateWindowEx (BS PUSHBUTTON,
”button” , // window c l a s s name
”Exit ” ,
WS CHILD | WS VISIBLE | BS PUSHBUTTON,
20 , 560 , 100 , 20 ,
hWnd, (HMENU)IDB EXITBUTTON,
hInstance , (LPVOID)NULL) ;

//−−−
// Pixe l Threshold Trackbar
//−−−

hPixTrackBar = CreateWindowEx (
0 ,
TRACKBAR CLASS,
”Trackbar Control ” ,
WS CHILD | WS VISIBLE | TBS NOTICKS |
TBS HORZ | TBS FIXEDLENGTH,
20 , 305 ,
100 , 30 ,
hWnd,
(HMENU)IDC TRACK PIX,
hInstance ,
NULL
) ;
SendMessage (hPixTrackBar , TBMSETRANGE, (WPARAM) TRUE, (LPARAM) \

MAKELONG(0 , 3 0)) ;
SendMessage (hPixTrackBar , TBM SETPOS, (WPARAM) TRUE, (LPARAM) 10) ;
SendMessage (hPixTrackBar , TBM SETPAGESIZE, 0 , (LPARAM) 1) ;
//SetFocus (hPixTrackBar) ;

//Show Window
ShowWindow(hWnd, nWinMode) ;
UpdateWindow(hWnd) ;

return hWnd;
}

//==
// Create Capture Windows
//==

LRESULT CALLBACK WndProcCaptureWindow(HWND hWnd, UINT message , WPARAM wParam,\
LPARAM lParam)

{
PAINTSTRUCT ps ;

switch (message)
{

case WMCREATE:
return 0 ;

case WMPAINT:
BeginPaint (hWnd, &ps) ;
EndPaint (hWnd, &ps) ;
return 0 ;

case WMCLOSE:
PostMessage (hWnd, WMDESTROY, (WPARAM)0 , (LPARAM) 0) ;
return 0 ;

case WMDESTROY:
PostQuitMessage (0) ;

return 0 ;

default :
return DefWindowProc (hWnd, message , wParam , lParam) ;

}
}

//==
// Capture window handle
//==
HWND CreateCaptureWindow (HWND hParentWnd)
{

//HWND hWnd;
WNDCLASSEX wndclass ;

wndclass . cbS ize = s izeof (WNDCLASSEX) ;
wndclass . s t y l e = 0 ;
wndclass . lpfnWndProc = WndProcCaptureWindow ;
wndclass . cbClsExtra = 0 ;
wndclass . cbWndExtra = 0 ;
wndclass . hInstance = hInstance ;
wndclass . hIcon = NULL;
wndclass . hCursor = NULL;
wndclass . hbrBackground = GetSysColorBrush (WHITE BRUSH) ;
wndclass . lpszMenuName = NULL;
wndclass . hIconSm = LoadIcon (NULL, IDI APPLICATION) ;
wndclass . lpszClassName = ”CaptureWindowClass” ;

i f (! Reg i s terClassEx(&wndclass))
return 0 ;

hVidWnd1 = CreateWindowEx (WS EX CLIENTEDGE,
”CaptureWindowClass” , ”WebCam Window” ,
WS CHILD | WS VISIBLE ,
140 , 20 ,
WEBCAMWINDOWX, WEBCAMWINDOWY,
hParentWnd ,
NULL,
hInstance ,
NULL) ;

hVidWnd2 = CreateWindowEx (WS EX CLIENTEDGE,
”CaptureWindowClass” , ”WebCam Window” ,
WS CHILD | WS VISIBLE ,
140 + WEBCAMWINDOWX, 20 ,
WEBCAMWINDOWX, WEBCAMWINDOWY,
hParentWnd ,
NULL,
hInstance ,
NULL) ;

hVidWnd3 = CreateWindowEx (WS EX CLIENTEDGE,
”CaptureWindowClass” , ”WebCam Window” ,
WS CHILD | WS VISIBLE ,
140 + (2∗WEBCAMWINDOWX) , 20 ,
WEBCAMWINDOWX, WEBCAMWINDOWY,
hParentWnd ,
NULL,
hInstance ,
NULL) ;

ShowWindow(hWnd, SWSHOW) ;
UpdateWindow(hWnd) ;

return hWnd;
}

//==
// Create Frame Grab Windows
//==

LRESULT CALLBACK WndProcGrabWindow(HWND hWnd, UINT message , WPARAM wParam,\
LPARAM lParam)

{
PAINTSTRUCT ps ;

switch (message)
{

case WMCREATE:
return 0 ;

case WMPAINT:
BeginPaint (hWnd, &ps) ;
EndPaint (hWnd, &ps) ;
return 0 ;

case WMCLOSE:
PostMessage (hWnd, WMDESTROY, (WPARAM)0 , (LPARAM) 0) ;
return 0 ;

case WMDESTROY:
PostQuitMessage (0) ;
return 0 ;

default :
return DefWindowProc (hWnd, message , wParam , lParam) ;

}
}

//==
// Grab window handle
//==
HWND CreateGrabWindow (HWND hParentWnd)
{

//HWND hWnd;
WNDCLASSEX wndclass ;

wndclass . cbS ize = s izeof (WNDCLASSEX) ;
wndclass . s t y l e = 0 ;
wndclass . lpfnWndProc = WndProcCaptureWindow ;
wndclass . cbClsExtra = 0 ;
wndclass . cbWndExtra = 0 ;
wndclass . hInstance = hInstance ;
wndclass . hIcon = NULL;
wndclass . hCursor = NULL;
wndclass . hbrBackground = GetSysColorBrush (WHITE BRUSH) ;
wndclass . lpszMenuName = NULL;
wndclass . hIconSm = LoadIcon (NULL, IDI APPLICATION) ;
wndclass . lpszClassName = ”GrabWindowClass” ;

i f (! Reg i s terClassEx(&wndclass))
return 0 ;

hGraWnd1 = CreateWindowEx (WS EX CLIENTEDGE,
”GrabWindowClass” , ”WebCam Window” ,
WS CHILD | WS VISIBLE ,
140 , 40 + WEBCAMWINDOWY,
WEBCAMWINDOWX, WEBCAMWINDOWY,
hParentWnd ,
NULL,
hInstance ,
NULL) ;

hGraWnd2 = CreateWindowEx (WS EX CLIENTEDGE,
”GrabWindowClass” , ”WebCam Window” ,
WS CHILD | WS VISIBLE ,
140 + WEBCAMWINDOWX, 40 + WEBCAMWINDOWY,
WEBCAMWINDOWX, WEBCAMWINDOWY,
hParentWnd ,
NULL,
hInstance ,

NULL) ;

hGraWnd3 = CreateWindowEx (WS EX CLIENTEDGE,
”GrabWindowClass” , ”WebCam Window” ,
WS CHILD | WS VISIBLE ,
140 + (2∗WEBCAMWINDOWX) , 40 + WEBCAMWINDOWY,
WEBCAMWINDOWX, WEBCAMWINDOWY,
hParentWnd ,
NULL,
hInstance ,
NULL) ;

ShowWindow(hWnd, SWSHOW) ;
UpdateWindow(hWnd) ;

i f (hWnd)
{

HRESULT hr ;
}

return hWnd;
}

C.2 Source - calldll.c

Image capure DLL source code:

//−−
//
// dshow webcam . c − dshow webcam . d l l
// Library Access f o r Matlab .
// Created by Adam Cox
// Based on code prov ided by John Leis − USQ
//
//−−

//−−
#define WIN32 LEAN AND MEAN
#define STRICT

#pragma comment (l i b , ” user32 . l i b ”)
#pragma comment (l i b , ” gdi32 . l i b ”)
#pragma comment (l i b , ” s h e l l 3 2 . l i b ”)
#pragma comment (l i b , ” s t rm i i d s . l i b ”)
#pragma comment (l i b , ” o l e32 . l i b ”)
#pragma comment (l i b , ”amstrmid . l i b ”)
#pragma comment (l i b , ” o l eaut32 . l i b ”)
#pragma comment (l i b , ”uuid . l i b ”)
#pragma comment (l i b , ” quartz . l i b ”)

#include <windows . h>
#include <s t d i o . h>
#include <dshow . h> // Link with s t rm i i d s . l i b and quar t z . l i b
#include <s tdde f . h>
#include <s h l ob j . h>
#include <s t r i n g . h>
#include <o c i d l . h>
#include ”dshow webcam . h”
//−−

//==
// Globa l De f i n i t i on s
//==
IBa s eF i l t e r ∗pSrc1 = NULL;
IBa s eF i l t e r ∗pSrc2 = NULL;
IBa s eF i l t e r ∗pEnumSrc1 = NULL;
IBa s eF i l t e r ∗pEnumSrc2 = NULL;
IEnumPins ∗pEnum1 = NULL;
IEnumPins ∗pEnum2 = NULL;
IGraphBuilder ∗pGraphBuilder1 = NULL;
IGraphBuilder ∗pGraphBuilder2 = NULL;
IMediaControl ∗pMediaControl1 = NULL;
IMediaControl ∗pMediaControl2 = NULL;
IMediaEventEx ∗pMediaEvent1 = NULL;
IMediaEventEx ∗pMediaEvent2 = NULL;
ICaptureGraphBuilder2 ∗pCaptureGraphBuilder1 = NULL;
ICaptureGraphBuilder2 ∗pCaptureGraphBuilder2 = NULL;
IVMRWindowlessControl ∗VMRpVidWin1 = NULL;
IVMRWindowlessControl ∗VMRpVidWin2 = NULL;
IPin ∗m pCamOutPin1 = NULL;
IPin ∗m pCamOutPin2 = NULL;
ISpec i fyProper tyPages ∗pSpecPropPage1 = NULL;
ISpec i fyProper tyPages ∗pSpecPropPage2 = NULL;

//−−
AMMEDIA TYPE amt ;

//−−
//Bitmap d e f i n i t i o n s f o r header in f o .

typedef LPBITMAPINFOHEADER PDIB ;
// Constants
#define BFT BITMAP 0x4d42 /∗ ’BM’ ∗/
// Macros
#define DibNumColors (l pb i) ((l pb i)−>biClrUsed == 0 && (l pb i)−>biBitCount <= 8\

? (int) (1 << (int) (l pb i)−>biBitCount)\
: (int) (l pb i)−>biClrUsed)

#define DibSize (l pb i) ((l pb i)−>b i S i z e + (l pb i)−>biS izeImage +\
(int) (l pb i)−>biClrUsed ∗ s izeof (RGBQUAD))

#define DibPa l e t t eS i z e (l pb i) (DibNumColors (l pb i) ∗ s izeof (RGBQUAD))

// bmp f i l ename counters
int l e f tF i l eCoun t = 0 ;
int centerF i l eCount = 0 ;
int r i ghtF i l eCount = 0 ;

//−−
#define WEBCAMWINDOWX 320
#define WEBCAMWINDOWY 240
//−−
int cameraNum = 0 ; //Number o f current enumerated capture dev i c e s .

int CurPos ; // Trackbar Pos i t ion
int DevMenuIndex = 0 ; // Index fo r menu order .

int CameraActive1 = 0 ;
int CameraActive2 = 0 ;

int ItemIndex1 = 0 ;

int WebCamRunning = 0 ;
int WebCamPaused = 0 ;
int WebCamInitial ized = 0 ;

#define DEFAULTCANVASWIDTH 320
#define DEFAULT CANVAS HEIGHT 240

stat ic int WebcamImageWidth = DEFAULTCANVASWIDTH;
stat ic int WebcamImageHeight = DEFAULT CANVAS HEIGHT;

int ∗pWidth ;
int ∗pHeight ;

∗pWidth = &WebcamImageWidth ;
∗pHeight = &WebcamImageHeight ;

unsigned int LeftFi l eCount = 1 ;
unsigned int RightFi leCount = 1 ;

//==
// Define Windows
//==
HINSTANCE hInstance ;

HWND CreateCaptureWindow1 (HWND hParentWnd) ;
HWND CreateCaptureWindow2 (HWND hParentWnd) ;
HWND hWnd;
HWND hMainWnd ; // Main Window handle .
HWND hVidWnd1 ; // Camera Windows
HWND hVidWnd2 ;
LRESULT CALLBACK WndProcCaptureWindow1(HWND hwnd , UINT message , \

WPARAM wParam , LPARAM lParam) ;
LRESULT CALLBACK WndProcCaptureWindow2(HWND hwnd , UINT message , \

WPARAM wParam , LPARAM lParam) ;
//==

//==
// Function Prototypes
//==

int FindCaptureDevice (void) ;
//−−
int WINAPI DllEntryPoint (HINSTANCE hinst , unsigned long reason , void ∗p) ;
int WINAPI myd l l i n i t (HANDLE h , DWORD reason , void ∗ f oo) ;
//−−

//−−
// ∗∗∗ make sure the se are dec la red in the header f o r MATLAB ∗∗∗
int InitWebCamCapture1 (void) ;
int InitWebCamCapture2 (void) ;

int WebCam1(void) ;
int WebCam2(void) ;

int InitVideoWindow1 (HWND hVidWnd1 , int ∗pWidth , int ∗pHeight) ;
int InitVideoWindow2 (HWND hVidWnd2 , int ∗pWidth , int ∗pHeight) ;

int Init ial izeWindowlessVMR1 (void) ;
int Init ial izeWindowlessVMR2 (void) ;

int Re l e a s eF i l t e r s (void) ;

int StreamWebCamFrame1(unsigned char ∗pFrameOut , unsigned long FrameBufferLen ,\
int ∗pWidth , int ∗pHeight) ;

int StreamWebCamFrame2(unsigned char ∗pFrameOut , unsigned long FrameBufferLen ,\
int ∗pWidth , int ∗pHeight) ;

int GrabWebCamFrame1(void) ;
int GrabWebCamFrame2(void) ;
//−−

//−−
int WINAPI DllEntryPoint (HINSTANCE hinst , unsigned long reason , void ∗p)
{

return 1 ;
}

int WINAPI myd l l i n i t (HANDLE h , DWORD reason , void ∗ f oo)
{

return 1 ;
}
//−−

//==
// Find Capture Devices and Create F i l t e r s
//==

int FindCaptureDevice (void)
{

HRESULT hr = S OK;
cameraNum = 0 ;

IMoniker ∗pMoniker= NULL;
ICreateDevEnum ∗pDevEnum= NULL;
IEnumMoniker ∗pClassEnum= NULL;
IPropertyBag ∗pPropBag= NULL;

// Create the system dev i ce enumerator
hr = CoCreateInstance (&CLSID SystemDeviceEnum ,

NULL,
CLSCTX INPROC,
&IID ICreateDevEnum ,
(void ∗∗) &pDevEnum) ;

i f (FAILED(hr))
{

MessageBox (0 , TEXT(”Device Enumeration Fa i l ed ! ”) , 0 , 0) ;
return hr ;

}

// Create an enumerator f o r the v ideo capture dev i c e s
i f (SUCCEEDED(hr))
{

// Create an enumerator f o r the ca tegory .
hr = pDevEnum−>CreateClassEnumerator (&CLSID VideoInputDeviceCategory , \

&pClassEnum , 0) ;
i f (hr == S FALSE)
{

hr = VFWENOT FOUND; // The category i s empty . Treat as an error .
}
pDevEnum−>Release () ;

i f (FAILED(hr))
{

MessageBox (0 , TEXT(”No Devices Detected ! ”) , 0 , 0) ;
return hr ;

}
}

i f (SUCCEEDED(hr))
{

// I f t he re are no enumerators f o r the reques t ed type , then
// CreateClassEnumerator w i l l succeed , but pClassEnum w i l l be NULL.
i f (pClassEnum == NULL)
{

MessageBox (0 , TEXT(” Fa i l ed ”) , 0 , 0) ;
hr = E FAIL ;
return hr ;

}
}

while (pClassEnum−>Next (1 , &pMoniker , NULL) == S OK)
{

HRESULT hr = pMoniker−>BindToStorage (0 , 0 , &IID IPropertyBag , \
(void ∗∗)&pPropBag) ;

i f (FAILED(hr))
{

MessageBox (0 , TEXT(”Binding to Storage Fa i l ed ”) , 0 , 0) ;
pMoniker−>Release () ;
continue ;

}

VARIANT var ;
var . vt = VT BSTR;

// Get d e s c r i p t i on or f r i e n d l y name .
hr = pPropBag−>Read(L”Desc r ip t i on ” , &var , 0) ;
i f (FAILED(hr))
{

hr = pPropBag−>Read(L”FriendlyName” , &var , 0) ;

char szName [2 5 6] ;
// Convert BSTR
WideCharToMultiByte (CP ACP, 0 , var . bstrVal ,−1 ,szName , 2 5 6 , 0 , 0) ;
MessageBox (0 , szName , TEXT(”Camera Found : ”) , 0) ;

}
i f (SUCCEEDED(hr))
{

VariantClear (&var) ;
SysFreeStr ing (var . bstrVal) ;

}

hr = pPropBag−>Write (L”FriendlyName” , &var) ;

switch (cameraNum)
{
case 0 :

// Bind Moniker to a f i l t e r o b j e c t
pMoniker−>BindToObject (0 ,0 ,& I ID IBaseF i l t e r , (void∗∗)&pSrc1) ;

cameraNum ++;
CameraActive1 = 1 ;
break ;

case 1 :
// Bind Moniker to a f i l t e r o b j e c t
pMoniker−>BindToObject (0 ,0 ,& I ID IBaseF i l t e r , (void∗∗)&pSrc2) ;
cameraNum ++;
CameraActive2 = 1 ;
break ;

default :
return hr ;

}

pPropBag−>Release () ;
pMoniker−>Release () ;

}
pClassEnum−>Release () ;

return 1 ;
}

//==
// Create Capture Device #1 F i l t e r
//==
int InitWebCamCapture1 (void)
{

HRESULT hr ;

// Create the f i l t e r graph manager and query f o r i n t e r f a c e s .
CoCreateInstance(&CLSID FilterGraph , //Class ID fo r COM ob j e c t

NULL,
CLSCTX INPROC SERVER,
&IID IGraphBuilder , // In t e r f a c e ID
(void ∗∗)&pGraphBuilder1) ; // Pointer back to FGM

// Media Control p rov ides methods f o r f l ow of data through the f i l t e r
// graph i . e . play , stop , pause . . .
pGraphBuilder1−>QueryInter face (&IID IMediaControl , // In t e r f a c e ID

(void ∗∗)&pMediaControl1) ; // Pointer back to MC

// Media Event prov ides methods f o r r e t r i e v i n g event n o t i f i c a t i o n s .
pGraphBuilder1−>QueryInter face (&IID IMediaEventEx , // In t e r f a c e ID

(void ∗∗)&pMediaEvent1) ; // Pointer back to ME

// Capture Graph Bui lder captures l i v e v ideo .
CoCreateInstance(&CLSID CaptureGraphBuilder2 , //Class ID fo r COM ob j e c t

NULL,
CLSCTX INPROC,
&IID ICaptureGraphBuilder2 , // In t e r f a c e ID
(void ∗∗)&pCaptureGraphBuilder1) ; // Pointer back to CGB2

// Set the f i l t e r graph to capture graph .
pCaptureGraphBuilder1−>Se tF i l t e r g r aph (pGraphBuilder1) ;

// Attach the f i l t e r graph to capture graph .
pGraphBuilder1−>AddFi lter (pSrc1 , L”Video Capture”) ;

// Enumerate p ins from Capture f i l t e r .
pSrc1−>EnumPins(&pEnum1) ;
pEnum1−>Reset () ;
pEnum1−>Next (1 , &m pCamOutPin1 , NULL) ;

// Pin Proper t i e s .
hr = m pCamOutPin1−>QueryInter face (&IID ISpec i fyPropertyPages , \

(void ∗∗)&pSpecPropPage1) ;

i f (SUCCEEDED(hr))
{

PIN INFO PinIn fo ;
m pCamOutPin1−>QueryPinInfo(&PinIn fo) ;

// Show the page .
CAUUID caGUID ;
pSpecPropPage1−>GetPages(&caGUID) ;
OleCreatePropertyFrame (

hMainWnd,
0 ,
0 ,
L”Capture Device 1” ,
1 ,
(IUnknown ∗∗)&(m pCamOutPin1) ,
caGUID . cElems ,
caGUID . pElems ,
0 ,
0 ,

NULL) ;
CoTaskMemFree(caGUID . pElems) ;
P inIn fo . pF i l t e r−>Release () ;

}

Init ial izeWindowlessVMR1 () ;

i f (! InitVideoWindow1 (hVidWnd1 , pWidth , pHeight))
{

return 0 ;
}

hr = pGraphBuilder1−>Render (m pCamOutPin1) ;
i f (FAILED(hr))
{

return 0 ;
}

// Run l i v e capture from dev i ce .
pMediaControl1−>Run () ;

pEnum1−>Release () ;

WebCamInitial ized = 1 ;
WebCamPaused = 0 ;

return 1 ;
}

//==
// Create Capture Device #2 F i l t e r
//==
int InitWebCamCapture2 (void)
{

HRESULT hr ;

// Create the f i l t e r graph manager and query f o r i n t e r f a c e s .
CoCreateInstance(&CLSID FilterGraph , //Class ID fo r COM ob j e c t

NULL,
CLSCTX INPROC SERVER,
&IID IGraphBuilder , // In t e r f a c e ID
(void ∗∗)&pGraphBuilder2) ; // Pointer back to FGM

// Media Control p rov ides methods f o r f l ow of data through the f i l t e r
// graph i . e . play , stop , pause . . .
pGraphBuilder2−>QueryInter face (&IID IMediaControl , // In t e r f a c e ID

(void ∗∗)&pMediaControl2) ; // Pointer back to MC

// Media Event prov ides methods f o r r e t r i e v i n g event n o t i f i c a t i o n s .

pGraphBuilder2−>QueryInter face (&IID IMediaEventEx , // In t e r f a c e ID
(void ∗∗)&pMediaEvent2) ; // Pointer back to ME

// Capture Graph Bui lder captures l i v e v ideo .
CoCreateInstance(&CLSID CaptureGraphBuilder2 , //Class ID fo r COM ob j e c t

NULL,
CLSCTX INPROC,
&IID ICaptureGraphBuilder2 , // In t e r f a c e ID
(void ∗∗)&pCaptureGraphBuilder2) ; // Pointer back to CGB2

// Set the f i l t e r graph to capture graph .
pCaptureGraphBuilder2−>Se tF i l t e r g r aph (pGraphBuilder2) ;

// Attach the f i l t e r graph to capture graph .
pGraphBuilder2−>AddFi lter (pSrc2 , L”Video Capture”) ;

// Enumerate p ins from Capture f i l t e r .
pSrc2−>EnumPins(&pEnum2) ;
pEnum2−>Reset () ;
pEnum2−>Next (1 , &m pCamOutPin2 , NULL) ;

// Pin Proper t i e s .
hr = m pCamOutPin2−>QueryInter face (&IID ISpec i fyPropertyPages , \

(void ∗∗)&pSpecPropPage2) ;
i f (SUCCEEDED(hr))
{

PIN INFO PinIn fo ;
m pCamOutPin2−>QueryPinInfo(&PinIn fo) ;

// Show the page .
CAUUID caGUID ;
pSpecPropPage2−>GetPages(&caGUID) ;
OleCreatePropertyFrame (

hMainWnd,
0 ,
0 ,
L”Capture Device 2” ,
1 ,
(IUnknown ∗∗)&(m pCamOutPin2) ,
caGUID . cElems ,
caGUID . pElems ,
0 ,
0 ,

NULL) ;
CoTaskMemFree(caGUID . pElems) ;
P inIn fo . pF i l t e r−>Release () ;

}

Init ial izeWindowlessVMR2 () ;

i f (! InitVideoWindow2 (hVidWnd2 , pWidth , pHeight))
{

return 0 ;
}

hr = pGraphBuilder2−>Render (m pCamOutPin2) ;
i f (FAILED(hr))
{

return 0 ;
}

// Run l i v e capture from dev i ce .
pMediaControl2−>Run () ;

pEnum2−>Release () ;

WebCamInitial ized = 1 ;
WebCamPaused = 0 ;

return 1 ;
}

//==
// Video Window #1 Function
//==

// Co l l e c t v ideo window dimensions
int InitVideoWindow1 (HWND hVidWnd1 , int ∗pWidth , int ∗pHeight)
{

HRESULT hr ;
RECT rcDest ;
IAMStreamConfig ∗pStreampConfig = NULL;
IEnumMediaTypes ∗pEnumMediaType = NULL;
AMMEDIA TYPE ∗pmt = NULL, ∗ pfnt = NULL;
VIDEOINFOHEADER ∗vidInfoHead = NULL;

hr = m pCamOutPin1−>EnumMediaTypes(&pEnumMediaType) ;
i f (! SUCCEEDED(hr))
{

return 0 ;
}

while (pEnumMediaType−>Next (1 , &pmt , 0) == S OK)
{

i f (memcmp((void ∗)& pmt−>formattype , (void ∗)&FORMAT VideoInfo , \
s izeof (GUID)) == 0)

{

vidInfoHead = (VIDEOINFOHEADER ∗)pmt−>pbFormat ;
{

pfnt = pmt ;
break ;

}
}

}

pEnumMediaType−>Release () ;

hr = m pCamOutPin1−>QueryInter face (&IID IAMStreamConfig , \
(void ∗∗)&pStreampConfig) ;

i f (FAILED(hr))
{

return 0 ;
}

i f (! p fnt)
{

return 0 ;
}

hr = pStreampConfig−>SetFormat (pfnt) ;

CoTaskMemFree ((void ∗) p fnt) ;

hr = pStreampConfig−>GetFormat(&pfnt) ;
i f (FAILED(hr))
{

return 0 ;
}

// Co l l e c t image width and he i gh t from video header .
∗pWidth = ((VIDEOINFOHEADER ∗) pfnt−>pbFormat)−>bmiHeader . biWidth ;
∗pHeight = ((VIDEOINFOHEADER ∗) pfnt−>pbFormat)−>bmiHeader . b iHeight ;

CoTaskMemFree ((void ∗) p fnt) ;

// Force preview to f i x e d s i z e 320∗240
rcDest . l e f t = 0 ;
rcDest . top = 0 ;
rcDest . r i g h t = WEBCAMWINDOWX;

rcDest . bottom = WEBCAMWINDOWY;
hr = VMRpVidWin1−>SetVideoPos i t ion (NULL, &rcDest) ;

pStreampConfig−>Release () ;

return 1 ;
}

//==
// Video Window #2 Function
//==

// Co l l e c t v ideo window dimensions
int InitVideoWindow2 (HWND hVidWnd2 , int ∗pWidth , int ∗pHeight)
{

HRESULT hr ;
RECT rcDest ;
IAMStreamConfig ∗pStreampConfig = NULL;
IEnumMediaTypes ∗pEnumMediaType = NULL;
AMMEDIA TYPE ∗pmt = NULL, ∗ pfnt = NULL;
VIDEOINFOHEADER ∗vidInfoHead = NULL;

hr = m pCamOutPin2−>EnumMediaTypes(&pEnumMediaType) ;
i f (! SUCCEEDED(hr))
{

return 0 ;
}

while (pEnumMediaType−>Next (1 , &pmt , 0) == S OK)
{

i f (memcmp((void ∗)& pmt−>formattype , (void ∗)&FORMAT VideoInfo , \
s izeof (GUID)) == 0)

{

vidInfoHead = (VIDEOINFOHEADER ∗)pmt−>pbFormat ;
{

pfnt = pmt ;
break ;

}
}

}

pEnumMediaType−>Release () ;

hr = m pCamOutPin2−>QueryInter face (&IID IAMStreamConfig , \
(void ∗∗)&pStreampConfig) ;

i f (FAILED(hr))
{

return 0 ;
}

i f (! p fnt)
{

return 0 ;
}

hr = pStreampConfig−>SetFormat (pfnt) ;

CoTaskMemFree ((void ∗) p fnt) ;

hr = pStreampConfig−>GetFormat(&pfnt) ;
i f (FAILED(hr))
{

return 0 ;
}

// Co l l e c t image width and he i gh t from video header .
∗pWidth = ((VIDEOINFOHEADER ∗) pfnt−>pbFormat)−>bmiHeader . biWidth ;
∗pHeight = ((VIDEOINFOHEADER ∗) pfnt−>pbFormat)−>bmiHeader . b iHeight ;

CoTaskMemFree ((void ∗) p fnt) ;

// Force preview to f i x e d s i z e 320∗240
rcDest . l e f t = 0 ;
rcDest . top = 0 ;
rcDest . r i g h t = WEBCAMWINDOWX;
rcDest . bottom = WEBCAMWINDOWY;
hr = VMRpVidWin2−>SetVideoPos i t ion (NULL, &rcDest) ;

pStreampConfig−>Release () ;

return 1 ;
}

//==
// Windoless VMR #1 Function
//==

// Windowless v ideo con t ro l f o r v ideo window placement .
int Init ial izeWindowlessVMR1 (void)
{

IBa s eF i l t e r ∗pVmr1 = NULL;

IVMRFilterConfig ∗pConfig1 = NULL;

HRESULT hr ;

// Create the VMR and add i t to the f i l t e r graph .
hr = CoCreateInstance(&CLSID VideoMixingRenderer , NULL,

CLSCTX INPROC, &I ID IBaseF i l t e r , (void∗∗)&pVmr1) ;

i f (FAILED(hr))
{

return 0 ;
}

hr = pGraphBuilder1−>AddFi lter (pVmr1 , L”Video Mixing Renderer ”) ;
i f (FAILED(hr))
{

return 0 ;
}

// Set the render ing mode and number o f streams .

hr = pVmr1−>QueryInter face (&IID IVMRFilterConfig , (void∗∗)&pConfig1) ;
i f (FAILED(hr))
{

return 0 ;
}

pConfig1−>SetRenderingMode (VMRMode Windowless) ;
pConfig1−>Release () ;

hr = pVmr1−>QueryInter face (&IID IVMRWindowlessControl , \
(void∗∗)&VMRpVidWin1) ;

i f (FAILED(hr))
{

return 0 ;
}

// Set VMR windowless output to windows handle
VMRpVidWin1−>SetVideoClippingWindow (hVidWnd1) ;

//Release VMR con t ro l

pVmr1−>Release () ;

return 1 ;
}

//==
// Windoless VMR #2 Function
//==

// Windowless v ideo con t ro l f o r v ideo window placement .
int Init ial izeWindowlessVMR2 (void)
{

IBa s eF i l t e r ∗pVmr2 = NULL;

IVMRFilterConfig ∗pConfig2 = NULL;

HRESULT hr ;

// Create the VMR and add i t to the f i l t e r graph .
hr = CoCreateInstance(&CLSID VideoMixingRenderer , NULL,

CLSCTX INPROC, &I ID IBaseF i l t e r , (void∗∗)&pVmr2) ;

i f (FAILED(hr))
{

return 0 ;
}

hr = pGraphBuilder2−>AddFi lter (pVmr2 , L”Video Mixing Renderer ”) ;
i f (FAILED(hr))
{

return 0 ;
}

// Set the render ing mode and number o f streams .

hr = pVmr2−>QueryInter face (&IID IVMRFilterConfig , (void∗∗)&pConfig2) ;
i f (FAILED(hr))
{

return 0 ;
}

pConfig2−>SetRenderingMode (VMRMode Windowless) ;
pConfig2−>Release () ;

hr = pVmr2−>QueryInter face (&IID IVMRWindowlessControl , \
(void∗∗)&VMRpVidWin2) ;

i f (FAILED(hr))
{

return 0 ;
}

// Set VMR windowless output to windows handle
VMRpVidWin2−>SetVideoClippingWindow (hVidWnd2) ;

//Release VMR con t ro l
pVmr2−>Release () ;

return 1 ;
}

//==
// Grab Frame From Webcam 1
//==

// Grab frame and save as bitmap format

int GrabWebCamFrame1(void)
{

HRESULT hr ;
BYTE∗ lpCurrImage = NULL;

i f (CameraActive1==1)
{

i f (SUCCEEDED(hr = VMRpVidWin1−>GetCurrentImage(&lpCurrImage)))
{

BITMAPFILEHEADER hdr ;
DWORD dwSize , dwWritten ;
LPBITMAPINFOHEADER pdib = (LPBITMAPINFOHEADER) lpCurrImage ;

const char ∗name = ” l e f t ” ;
char l e f tF i l eName [3 2] = {0} ;

s p r i n t f (le f tFi leName , ”%s%d .bmp” , name , l e f tF i l eCoun t) ;
l e f tF i l eCoun t++;

// Create handle and output bmp f i l e
HANDLE WebcamFrame1 = CreateF i l e (le f tFi leName , GENERIC WRITE,

FILE SHARE READ, NULL, CREATEALWAYS,
FILE ATTRIBUTE NORMAL, 0) ;

i f (WebcamFrame1 == INVALID HANDLE VALUE)
return 0 ;

// I n i t i a l i z e the bitmap header
dwSize = DibSize (pdib) ;
hdr . bfType = BFT BITMAP;
hdr . b f S i z e = dwSize + s izeof (BITMAPFILEHEADER) ;
hdr . bfReserved1 = 0 ;
hdr . bfReserved2 = 0 ;
hdr . b fO f fB i t s = (DWORD) s izeof (BITMAPFILEHEADER) + \

pdib−>b i S i z e + DibPa l e t t eS i z e (pdib) ;

// Write the bitmap to the f i l e
WriteFi l e (WebcamFrame1 , (LPCVOID) &hdr , s izeof (BITMAPFILEHEADER) ,\
&dwWritten , 0) ;
Wri teF i l e (WebcamFrame1 , (LPCVOID) pdib , dwSize , &dwWritten , 0) ;

// Close the f i l e
CloseHandle (WebcamFrame1) ;

// Free the image data returned from GetCurrentImage ()
CoTaskMemFree(lpCurrImage) ;

}
else
{

MessageBox (0 , TEXT(”Frame grab f a i l e d on Device 1 ! ”) , 0 , 0) ;
return 0 ;

}
}
else
{

MessageBox (0 , TEXT(”Cannot Find Device 1 ! ”) , 0 , 0) ;
return 0 ;

}
return 1 ;
}

//==
// Grab Frame From Webcam 2
//==

// Grab frame and save as bitmap format

int GrabWebCamFrame2(void)
{

HRESULT hr ;
BYTE∗ lpCurrImage = NULL;

i f (CameraActive2==1)
{

i f (SUCCEEDED(hr = VMRpVidWin2−>GetCurrentImage(&lpCurrImage)))
{

BITMAPFILEHEADER hdr ;
DWORD dwSize , dwWritten ;
LPBITMAPINFOHEADER pdib = (LPBITMAPINFOHEADER) lpCurrImage ;

const char ∗name = ” r i gh t ” ;
char r ightFi leName [3 2] = {0} ;

s p r i n t f (r ightFileName , ”%s%d .bmp” , name , r i ghtF i l eCount) ;
r i ghtF i l eCount++;

// Create handle and output bmp f i l e
HANDLE WebcamFrame2 = CreateF i l e (r ightFileName , GENERIC WRITE,

FILE SHARE READ, NULL, CREATEALWAYS,
FILE ATTRIBUTE NORMAL, 0) ;

i f (WebcamFrame2 == INVALID HANDLE VALUE)
return 0 ;

// I n i t i a l i z e the bitmap header
dwSize = DibSize (pdib) ;
hdr . bfType = BFT BITMAP;
hdr . b f S i z e = dwSize + s izeof (BITMAPFILEHEADER) ;
hdr . bfReserved1 = 0 ;
hdr . bfReserved2 = 0 ;
hdr . b fO f fB i t s = (DWORD) s izeof (BITMAPFILEHEADER) + \
pdib−>b i S i z e + DibPa l e t t eS i z e (pdib) ;

// Write the bitmap to the f i l e
WriteFi l e (WebcamFrame2 , (LPCVOID) &hdr , s izeof (BITMAPFILEHEADER) ,\
&dwWritten , 0) ;
Wri teF i l e (WebcamFrame2 , (LPCVOID) pdib , dwSize , &dwWritten , 0) ;

// Close the f i l e
CloseHandle (WebcamFrame2) ;

// Free the image data returned from GetCurrentImage ()
CoTaskMemFree(lpCurrImage) ;

}
else
{

MessageBox (0 , TEXT(”Frame grab f a i l e d on Device 2 ! ”) , 0 , 0) ;
return 0 ;

}
}
else
{

MessageBox (0 , TEXT(”Cannot Find Device 2 ! ”) , 0 , 0) ;
return 0 ;

}
return 1 ;
}

//==
// Webcam 1 Window
//==

int WebCam1(void)
{

i f (CameraActive1==1)
{

hWnd = CreateCaptureWindow1 (hMainWnd) ;

// S ta r t camera
InitWebCamCapture1 () ;

}
else
{

MessageBox (0 , TEXT(”Cannot Find Device 1 ! ”) , 0 , 0) ;
return 0 ;

}
return 1 ;

}

//==
// Webcam 2 Window
//==

int WebCam2(void)
{

i f (CameraActive2==1)
{

hWnd = CreateCaptureWindow2 (hMainWnd) ;

// S ta r t camera
InitWebCamCapture2 () ;

}
else
{

MessageBox (0 , TEXT(”Cannot Find Device 2 ! ”) , 0 , 0) ;
return 0 ;

}
return 1 ;

}

//==
// Create Capture Window 1
//==

LRESULT CALLBACK WndProcCaptureWindow1(HWND hWnd, UINT message , \
WPARAM wParam , LPARAM lParam)

{
PAINTSTRUCT ps ;

switch (message)
{

case WMCREATE:
return 0 ;

case WMPAINT:
BeginPaint (hWnd, &ps) ;
EndPaint (hWnd, &ps) ;
return 0 ;

case WMCLOSE:
Re l e a s eF i l t e r s () ;
DestroyWindow (hWnd) ;
PostMessage (hWnd, WMDESTROY, (WPARAM)0 , (LPARAM) 0) ;
return 0 ;

case WMDESTROY:
Re l e a s eF i l t e r s () ;
PostQuitMessage (0) ;
return 0 ;

default :
return DefWindowProc (hWnd, message , wParam , lParam) ;

}
}

//==
// Capture window 1 handle
//==
HWND CreateCaptureWindow1 (HWND hParentWnd)
{

//HWND hWnd;
WNDCLASSEX wndclass ;

wndclass . cbS ize = s izeof (WNDCLASSEX) ;
wndclass . s t y l e = 0 ;
wndclass . lpfnWndProc = WndProcCaptureWindow1 ;
wndclass . cbClsExtra = 0 ;
wndclass . cbWndExtra = 0 ;
wndclass . hInstance = hInstance ;
wndclass . hIcon = NULL;
wndclass . hCursor = NULL;
wndclass . hbrBackground = GetSysColorBrush (WHITE BRUSH) ;
wndclass . lpszMenuName = NULL;
wndclass . hIconSm = LoadIcon (NULL, IDI APPLICATION) ;
wndclass . lpszClassName = ”CaptureWindowClass1” ;

i f (! Reg i s terClassEx(&wndclass))
return 0 ;

hVidWnd1 = CreateWindowEx (WS EX CLIENTEDGE,
”CaptureWindowClass1” , ”WebCam Window” ,
WS VISIBLE | WSSYSMENU | WS CAPTION | WS MINIMIZEBOX,
0 , 0 ,
WEBCAMWINDOWX, WEBCAMWINDOWY,
NULL,
NULL,
hInstance ,
NULL) ;

ShowWindow(hWnd, SWSHOW) ;
UpdateWindow(hWnd) ;

return hWnd;
}

//==
// Create Capture Window 2
//==

LRESULT CALLBACK WndProcCaptureWindow2(HWND hWnd, UINT message ,\
WPARAM wParam , LPARAM lParam)

{
PAINTSTRUCT ps ;

switch (message)
{

case WMCREATE:
return 0 ;

case WMPAINT:
BeginPaint (hWnd, &ps) ;
EndPaint (hWnd, &ps) ;
return 0 ;

case WMCLOSE:
Re l e a s eF i l t e r s () ;
DestroyWindow (hWnd) ;
PostMessage (hWnd, WMDESTROY, (WPARAM)0 , (LPARAM) 0) ;
return 0 ;

case WMDESTROY:
Re l e a s eF i l t e r s () ;
PostQuitMessage (0) ;

return 0 ;

default :
return DefWindowProc (hWnd, message , wParam , lParam) ;

}
}

//==
// Capture window 2 handle
//==
HWND CreateCaptureWindow2 (HWND hParentWnd)
{

//HWND hWnd;
WNDCLASSEX wndclass ;

wndclass . cbS ize = s izeof (WNDCLASSEX) ;
wndclass . s t y l e = 0 ;
wndclass . lpfnWndProc = WndProcCaptureWindow2 ;
wndclass . cbClsExtra = 0 ;
wndclass . cbWndExtra = 0 ;
wndclass . hInstance = hInstance ;
wndclass . hIcon = NULL;
wndclass . hCursor = NULL;
wndclass . hbrBackground = GetSysColorBrush (WHITE BRUSH) ;
wndclass . lpszMenuName = NULL;
wndclass . hIconSm = LoadIcon (NULL, IDI APPLICATION) ;
wndclass . lpszClassName = ”CaptureWindowClass2” ;

i f (! Reg i s terClassEx(&wndclass))
return 0 ;

hVidWnd2 = CreateWindowEx (WS EX CLIENTEDGE,
”CaptureWindowClass2” , ”WebCam Window” ,
WS VISIBLE | WSSYSMENU | WS CAPTION | WS MINIMIZEBOX,
0 , 0 ,
WEBCAMWINDOWX, WEBCAMWINDOWY,
NULL,
NULL,
hInstance ,
NULL) ;

ShowWindow(hWnd, SWSHOW) ;
UpdateWindow(hWnd) ;

return hWnd;
}

//==
// Release F i l t e r s
//==

int Re l e a s eF i l t e r s (void)
{

// Release a l l f i l t e r s .
i f (cameraNum==1)
{

PostQuitMessage (0) ;
pMediaControl1−>Stop () ;
m pCamOutPin1−>Disconnect () ;
m pCamOutPin1−>Release () ;
pSrc1−>Release () ;
pMediaControl1−>Release () ;
pMediaEvent1−>Release () ;

}

i f (cameraNum==2)
{

PostQuitMessage (0) ;
pMediaControl1−>Stop () ;
m pCamOutPin1−>Disconnect () ;
m pCamOutPin1−>Release () ;
pSrc1−>Release () ;
pMediaControl1−>Release () ;
pMediaEvent1−>Release () ;

pMediaControl2−>Stop () ;
m pCamOutPin2−>Disconnect () ;
m pCamOutPin2−>Release () ;
pSrc2−>Release () ;
pMediaControl2−>Release () ;
pMediaEvent2−>Release () ;

}

return 1 ;
}

//−−
#i f 0
// empty
// i n t main ()
int main (int argc , char ∗argv)
{

return 1 ;
}
#endif

C.3 Source - directshow webcam.c

C test source code for DLL:

/∗ c a l l d l l . c
∗
∗ Basic Test App l i ca t ion fo r directshow webcam . c
∗ Developed by Adam Cox
∗ Based on code prov ided by John Leis − USQ
∗/

#include <windows . h>
#include <s t d l i b . h>
#include <s t r i n g . h>
#include <tchar . h>

//−−
// fo r s t a t i c c a l l
int FindCaptureDevice (void) ;
int WebCam1(void) ;
int WebCam2(void) ;
int GrabWebCamFrame1(void) ;
int GrabWebCamFrame2(void) ;
//−−

//−−
// fo r dynamic c a l l
typedef void (∗DLLPROC)(long x , long ∗py , long ∗parr , char ∗ s t r a r g) ;

// module handle f o r module conta in ing c a l l
stat ic HMODULE hDllMod = (HMODULE)NULL;

// p t r to ac tua l proc
stat ic DLLPROC DllProc = (DLLPROC)NULL;

void LoadDLL(void) ;
void UnloadDLL(void) ;

//−−
// Globa l v a r i a b l e s

// The main window c l a s s name .
stat ic TCHAR szWindowClass [] = T(”win32app”) ;

// The s t r i n g t ha t appears in the app l i c a t i on ’ s t i t l e bar .
stat ic TCHAR s zT i t l e [] = T(”DLL Test App”) ;

HINSTANCE hInst ;

// Forward de c l a r a t i on s o f f unc t i ons inc luded in t h i s code module :
LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM) ;

int WINAPI WinMain(HINSTANCE hInstance ,
HINSTANCE hPrevInstance ,
LPSTR lpCmdLine ,
int nCmdShow)

{

WNDCLASSEX wcex ;

wcex . cbS ize = s izeof (WNDCLASSEX) ;
wcex . s t y l e = CSHREDRAW | CSVREDRAW;
wcex . lpfnWndProc = WndProc ;
wcex . cbClsExtra = 0 ;
wcex . cbWndExtra = 0 ;
wcex . hInstance = hInstance ;
wcex . hIcon = LoadIcon (hInstance , MAKEINTRESOURCE(IDI APPLICATION)) ;

wcex . hCursor = LoadCursor (NULL, IDCARROW) ;
wcex . hbrBackground = (HBRUSH) (COLORWINDOW+1);
wcex . lpszMenuName = NULL;
wcex . lpszClassName = szWindowClass ;
wcex . hIconSm = LoadIcon (wcex . hInstance , MAKEINTRESOURCE(IDI APPLICATION)) ;

i f (! Reg i s terClassEx(&wcex))
{

return 1 ;
}

hInst = hInstance ; // Store ins tance handle in our g l o b a l v a r i a b l e

HWND hWnd = CreateWindow (
szWindowClass ,
s zT i t l e ,
WSOVERLAPPEDWINDOW,
CWUSEDEFAULT, CWUSEDEFAULT,
500 , 100 ,
NULL,
NULL,
hInstance ,
NULL

) ;

i f (!hWnd)
{

return 1 ;
}

ShowWindow(hWnd,nCmdShow) ;
UpdateWindow(hWnd) ;

LoadDLL () ;

FindCaptureDevice () ;

WebCam1() ;
WebCam2() ;
GrabWebCamFrame1 () ;
GrabWebCamFrame2 () ;
UnloadDLL () ;

// Main message loop :
MSG msg ;

while (GetMessage(&msg , NULL, 0 , 0))
{

TranslateMessage(&msg) ;
DispatchMessage(&msg) ;

}

return (int) msg .wParam ;
}

LRESULT CALLBACK WndProc(HWND hWnd, UINT message , WPARAM wParam , LPARAM lParam)
{

PAINTSTRUCT ps ;
HDC hdc ;
TCHAR gr e e t i n g [] = T(”DLL Test ! ”) ;

switch (message)
{
case WMPAINT:

hdc = BeginPaint (hWnd, &ps) ;

TextOut (hdc ,
5 , 5 ,
g r ee t ing , t c s l e n (g r e e t i n g)) ;

EndPaint (hWnd, &ps) ;
break ;

case WMDESTROY:
PostQuitMessage (0) ;
break ;

default :
return DefWindowProc (hWnd, message , wParam , lParam) ;
break ;

}

return 0 ;
}

//−−
void LoadDLL(void)
{

// kerne l32 . d l l c on ta in t s GetSystemTimes () under XP
hDllMod = LoadLibrary (”dshow webcam . d l l ”) ;
i f (! hDllMod)
{

// p r i n t f (” LoadLibrary () f a i l e d \n”) ;
return ;

}

// p r i n t f (” LoadLibrary () OK\n”) ;

// note l ead ing underscore
/∗

DllProc = (DLLPROC)GetProcAddress (hDllMod , ” FindCaptureDevice ”) ;
i f (! Dl lProc)
{

// p r i n t f (”GetProcAddress () f a i l e d \n”) ;
re turn ;

}
∗/
}
//−−

//−−
void UnloadDLL(void)
{

i f (hDllMod)
{

FreeLibrary (hDllMod) ;
}

}
//−−

C.4 Script - matdll.m

MATLAB script for testing the DLL:

% Matlab s c r i p t f o r dshow webcam . d l l access .
% Created by Adam Cox
% Based on code prov ided by John Leis − USQ.
%
% Use the matlab commands fo r access :
% l o a d l i b r a r y () − l oad d l l
% c a l l l i b () − c a l l d l l f unc t i on
% un l oad l i b r a r y (dl lname) − unload d l l
%
%
% Li s t o f dshow webcam . d l l a c c e s s i b l e f unc t i ons :
%
% FindCaptureDevice − Enumerate a l l cameras on the system
% WebCam1 − Camera 1 access
% WebCam2 − Camera 2 access
% GrabWebCamFrame1 − Grab frame from camera 1
% GrabWebCamFrame2 − Grab frame from camera 2
% Re l e a s eF i l t e r s − Release DirectShow and COM components

%−−
% Example s c r i p t
%−−
clc
clear a l l
close a l l
%−−

dllname = ’ dshow webcam ’ ; % no . d l l e x t ens ion

i f (˜ l i b i s l o a d e d (dllname))
l o a d l i b r a r y (dllname) ;

end

find = c a l l l i b (dllname , ’ FindCaptureDevice ’) ;

cam1 = c a l l l i b (dllname , ’WebCam1 ’) ;
cam2 = c a l l l i b (dllname , ’WebCam2 ’) ;

pause (1) % Allow pin to be accessed .

grab1 = c a l l l i b (dllname , ’GrabWebCamFrame1 ’) ;
%grab2 = c a l l l i b (dllname , ’GrabWebCamFrame2 ’) ;

l oad image l = imread (’ l e f t 0 .bmp ’) ;
%load imager = imread (’ r i g h t 0 . bmp ’) ;

imshow (load image l) ;

%re l = c a l l l i b (dllname , ’ Re l ea s eF i l t e r s ’) ;

%−−
%i f (l i b i s l o a d e d (dl lname))
% un l oad l i b r a r y (dl lname) ;
%end
%−−

%c l o s e a l l
%c l e a r a l l
%c l c

C.5 Script - runlrc905640r150.m

MATLAB script for testing stereo processing:

%===
% Dense Stereo Process ing − Liv ing Room Test (Re c t i f i e d) Log i tech C905
% Reso lu t ion 640∗480
% Base l ine 150 mm
% Scr i p t by Adam Cox − 2011
%
% Process ing completed by :
%
% Stereo us ing d i f f u s e c onne c t i v i t y (Matlab 7 code)
% Abh i j i t Ogale (ogale@cs .umd. edu)
% Computer Vision Lab , Un ive r s i t y o f Maryland at Co l l e ge Park
% h t t p ://www. c f a r .umd. edu/ users / oga l e
%===

clc ;
clear a l l ;

% Load images
iL t = imread (’ 640 c 9 0 5 l e f t r e c t l r 1 5 0 .bmp ’) ;
iRt = imread (’ 640 c 9 0 5 r i g h t r e c t l r 1 5 0 .bmp ’) ;

% Crop d i s t o r t e d edges
iL t=imcrop (iLt , [4 0 , 40 , 6 0 0 , 4 4 0]) ;
iRt=imcrop (iRt , [40 , 40 , 6 0 0 , 4 4 0]) ;

t ic
% Apply s t e r eo proces s ing
s h i f t r a n g e = [0 : 5 0] ;
[b e s t s h i f t sL , occlL , be s t sh i f t sR , occlR] = stereoCorrespond (iLt , iRt , sh i f t r ange , 1 0) ;
toc

% Output Di spar i t y Maps fo r l e f t and r i g h t images
figure ; imagesc (b e s t s h i f t sR)
figure ; imagesc (b e s t s h i f t s L)

C.6 Script - runlrc905640r.m

MATLAB script for testing stereo processing:

%===
% Dense Stereo Process ing − Liv ing Room Test (Re c t i f i e d) Log i tech C905
% Reso lu t ion 640∗480
% Base l ine 50 mm
% Scr i p t by Adam Cox − 2011
%
% Process ing completed by :
%
% Stereo us ing d i f f u s e c onne c t i v i t y (Matlab 7 code)
% Abh i j i t Ogale (ogale@cs .umd. edu)
% Computer Vision Lab , Un ive r s i t y o f Maryland at Co l l e ge Park
% h t t p ://www. c f a r .umd. edu/ users / oga l e
%===

clc ;
clear a l l ;

% Load images
iL t = imread (’ 640 c 9 0 5 l e f t r e c t l r .bmp ’) ;
iRt = imread (’ 640 c 9 0 5 r i g h t r e c t l r .bmp ’) ;

% Crop d i s t o r t e d edges
iL t=imcrop (iLt , [4 0 , 40 , 6 0 0 , 4 4 0]) ;
iRt=imcrop (iRt , [40 , 40 , 6 0 0 , 4 4 0]) ;

t ic
% Apply s t e r eo proces s ing
s h i f t r a n g e = [0 : 1 0] ;
[b e s t s h i f t sL , occlL , be s t sh i f t sR , occlR] = stereoCorrespond (iLt , iRt , sh i f t r ange , 1 0) ;
toc

% Output Di spar i t y Maps fo r l e f t and r i g h t images
figure ; imagesc (b e s t s h i f t sR)
figure ; imagesc (b e s t s h i f t s L)

C.7 Script - runlrc905640nr150.m

MATLAB script for testing stereo processing:

%===
% Dense Stereo Process ing − Liv ing Room Test (Not Rec t i f i e d) Log i tech C905
% Reso lu t ion 640∗480
% Base l ine 150 mm
% Scr i p t by Adam Cox − 2011
%
% Process ing completed by :
%
% Stereo us ing d i f f u s e c onne c t i v i t y (Matlab 7 code)
% Abh i j i t Ogale (ogale@cs .umd. edu)
% Computer Vision Lab , Un ive r s i t y o f Maryland at Co l l e ge Park
% h t t p ://www. c f a r .umd. edu/ users / oga l e
%===

clc ;
clear a l l ;

% Load images
iL t = imread (’ 640 c 9 0 5 l e f t n o r e c t l r 1 5 0 .bmp ’) ;
iRt = imread (’ 640 c 9 0 5 r i g h t n o r e c t l r 1 5 0 .bmp ’) ;

% Crop d i s t o r t e d edges
iL t=imcrop (iLt , [4 0 , 40 , 6 0 0 , 4 4 0]) ;
iRt=imcrop (iRt , [40 , 40 , 6 0 0 , 4 4 0]) ;

t ic
% Apply s t e r eo proces s ing
s h i f t r a n g e = [0 : 5 0] ;
[b e s t s h i f t sL , occlL , be s t sh i f t sR , occlR] = stereoCorrespond (iLt , iRt , sh i f t r ange , 1 0) ;
toc

% Output Di spar i t y Maps fo r l e f t and r i g h t images
figure ; imagesc (b e s t s h i f t sR)
figure ; imagesc (b e s t s h i f t s L)

C.8 Script - runlrc905640nr.m

MATLAB script for testing stereo processing:

%===
% Dense Stereo Process ing − Liv ing Room Test (Not Rec t i f i e d) Log i tech C905
% Reso lu t ion 640∗480
% Base l ine 50 mm
% Scr i p t by Adam Cox − 2011
%
% Process ing completed by :
%
% Stereo us ing d i f f u s e c onne c t i v i t y (Matlab 7 code)
% Abh i j i t Ogale (ogale@cs .umd. edu)
% Computer Vision Lab , Un ive r s i t y o f Maryland at Co l l e ge Park
% h t t p ://www. c f a r .umd. edu/ users / oga l e
%===

clc ;
clear a l l ;

% Load images
iL t = imread (’ 640 c 9 0 5 l e f t n o r e c t l r .bmp ’) ;
iRt = imread (’ 640 c 9 0 5 r i g h t n o r e c t l r .bmp ’) ;

% Crop d i s t o r t e d edges
iL t=imcrop (iLt , [4 0 , 40 , 6 0 0 , 4 4 0]) ;
iRt=imcrop (iRt , [40 , 40 , 6 0 0 , 4 4 0]) ;

t ic
% Apply s t e r eo proces s ing
s h i f t r a n g e = [0 : 1 0] ;
[b e s t s h i f t sL , occlL , be s t sh i f t sR , occlR] = stereoCorrespond (iLt , iRt , sh i f t r ange , 1 0) ;
toc

% Output Di spar i t y Maps fo r l e f t and r i g h t images
figure ; imagesc (b e s t s h i f t sR)
figure ; imagesc (b e s t s h i f t s L)

C.9 Script - runbsc905640r150.m

MATLAB script for testing stereo processing:

%===
% Dense Stereo Process ing − Book She l f Test (Re c t i f i e d) Log i tech C905
% Reso lu t ion 640∗480
% Base l ine 150 mm
% Scr i p t by Adam Cox − 2011
%
% Process ing completed by :
%
% Stereo us ing d i f f u s e c onne c t i v i t y (Matlab 7 code)
% Abh i j i t Ogale (ogale@cs .umd. edu)
% Computer Vision Lab , Un ive r s i t y o f Maryland at Co l l e ge Park
% h t t p ://www. c f a r .umd. edu/ users / oga l e
%===

clc ;
clear a l l ;

% Load images
iL t = imread (’ 640 c 9 0 5 l e f t r e c t b s 1 5 0 .bmp ’) ;
iRt = imread (’ 640 c 9 0 5 r i g h t r e c t b s 1 5 0 .bmp ’) ;

% Crop d i s t o r t e d edges
iL t=imcrop (iLt , [4 0 , 40 , 6 0 0 , 4 4 0]) ;
iRt=imcrop (iRt , [40 , 40 , 6 0 0 , 4 4 0]) ;

t ic
% Apply s t e r eo proces s ing
s h i f t r a n g e = [0 : 2 0 0] ;
[b e s t s h i f t sL , occlL , be s t sh i f t sR , occlR] = stereoCorrespond (iLt , iRt , sh i f t r ange , 2) ;
toc

% Output Di spar i t y Maps fo r l e f t and r i g h t images
figure ; imagesc (b e s t s h i f t sR)
figure ; imagesc (b e s t s h i f t s L)

C.10 Script - runbsc905640r.m

MATLAB script for testing stereo processing:

%===
% Dense Stereo Process ing − Book She l f Test (Re c t i f i e d) Log i tech C905
% Reso lu t ion 640∗480
% Base l ine 50 mm
% Scr i p t by Adam Cox − 2011
%
% Process ing completed by :
%
% Stereo us ing d i f f u s e c onne c t i v i t y (Matlab 7 code)
% Abh i j i t Ogale (ogale@cs .umd. edu)
% Computer Vision Lab , Un ive r s i t y o f Maryland at Co l l e ge Park
% h t t p ://www. c f a r .umd. edu/ users / oga l e
%===

clc ;
clear a l l ;

% Load images
iL t = imread (’ 640 C9 0 5 l e f t r e c t b s .bmp ’) ;
iRt = imread (’ 640 C905 r i g h t r e c t b s .bmp ’) ;

% Crop d i s t o r t e d edges
iL t=imcrop (iLt , [4 0 , 40 , 6 0 0 , 4 4 0]) ;
iRt=imcrop (iRt , [40 , 40 , 6 0 0 , 4 4 0]) ;

t ic
% Apply s t e r eo proces s ing
s h i f t r a n g e = [0 : 5 0] ;
[b e s t s h i f t sL , occlL , be s t sh i f t sR , occlR] = stereoCorrespond (iLt , iRt , sh i f t r ange , 2) ;
toc

% Output Di spar i t y Maps fo r l e f t and r i g h t images
figure ; imagesc (b e s t s h i f t sR)
figure ; imagesc (b e s t s h i f t s L)

C.11 Script - runbsc905640nr150.m

MATLAB script for testing stereo processing:

%===
% Dense Stereo Process ing − Book She l f Test (Not Rec t i f i e d) Log i tech C905
% Reso lu t ion 640∗480
% Base l ine 150 mm
% Scr i p t by Adam Cox − 2011
%
% Process ing completed by :
%
% Stereo us ing d i f f u s e c onne c t i v i t y (Matlab 7 code)
% Abh i j i t Ogale (ogale@cs .umd. edu)
% Computer Vision Lab , Un ive r s i t y o f Maryland at Co l l e ge Park
% h t t p ://www. c f a r .umd. edu/ users / oga l e
%===

clc ;
clear a l l ;

% Load images
iL t = imread (’ 640 c 9 0 5 l e f t n o r e c t b s 1 5 0 .bmp ’) ;
iRt = imread (’ 640 c 9 0 5 r i g h t n o r e c t b s 1 5 0 .bmp ’) ;

% Crop d i s t o r t e d edges
iL t=imcrop (iLt , [4 0 , 40 , 6 0 0 , 4 4 0]) ;
iRt=imcrop (iRt , [40 , 40 , 6 0 0 , 4 4 0]) ;

t ic
% Apply s t e r eo proces s ing
s h i f t r a n g e = [0 : 2 0 0] ;
[b e s t s h i f t sL , occlL , be s t sh i f t sR , occlR] = stereoCorrespond (iLt , iRt , sh i f t r ange , 2) ;
toc

% Output Di spar i t y Maps fo r l e f t and r i g h t images
figure ; imagesc (b e s t s h i f t sR)
figure ; imagesc (b e s t s h i f t s L)

C.12 Script - runbsc905640nr.m

MATLAB script for testing stereo processing:

%===
% Dense Stereo Process ing − Book She l f (Not Re c t i f i e d) Test Log i tech C905
% Reso lu t ion 640∗480
% Base l ine 50 mm
% Scr i p t by Adam Cox − 2011
%
% Process ing completed by :
%
% Stereo us ing d i f f u s e c onne c t i v i t y (Matlab 7 code)
% Abh i j i t Ogale (ogale@cs .umd. edu)
% Computer Vision Lab , Un ive r s i t y o f Maryland at Co l l e ge Park
% h t t p ://www. c f a r .umd. edu/ users / oga l e
%===

clc ;
clear a l l ;

% Load images
iL t = imread (’ 640 C90 5 l e f t n o r e c t b s .bmp ’) ;
iRt = imread (’ 640 C905 r i gh t no r e c t b s .bmp ’) ;

% Crop d i s t o r t e d edges
iL t=imcrop (iLt , [4 0 , 40 , 6 0 0 , 4 4 0]) ;
iRt=imcrop (iRt , [40 , 40 , 6 0 0 , 4 4 0]) ;

t ic
% Stereo proces s ing
s h i f t r a n g e = [0 : 5 0] ;
[b e s t s h i f t sL , occlL , be s t sh i f t sR , occlR] = stereoCorrespond (iLt , iRt , sh i f t r ange , 2) ;
toc

% Output Di spar i t y Maps
figure ; imagesc (b e s t s h i f t sR)
figure ; imagesc (b e s t s h i f t s L)

C.13 Script - runbsc200640r.m

MATLAB script for testing stereo processing:

%===
% Dense Stereo Process ing − Book She l f Test (Re c t i f i e d) Log i tech C200
% Reso lu t ion 640∗480
% Base l ine 50 mm
% Scr i p t by Adam Cox − 2011
%
% Process ing completed by :
%
% Stereo us ing d i f f u s e c onne c t i v i t y (Matlab 7 code)
% Abh i j i t Ogale (ogale@cs .umd. edu)
% Computer Vision Lab , Un ive r s i t y o f Maryland at Co l l e ge Park
% h t t p ://www. c f a r .umd. edu/ users / oga l e
%===

clc ;
clear a l l ;

% Load images
iRt = imread (’ 640 c 2 0 0 r i g h t r e c t b s .bmp ’) ;
iLt = imread (’ 640 c 2 0 0 l e f t r e c t b s .bmp ’) ;

% Crop d i s t o r t e d edges
iL t=imcrop (iLt , [4 0 , 40 , 6 0 0 , 4 4 0]) ;
iRt=imcrop (iRt , [40 , 40 , 6 0 0 , 4 4 0]) ;

t ic
% Apply s t e r eo proces s ing
s h i f t r a n g e = [0 : 1 0 0] ;
[b e s t s h i f t sL , occlL , be s t sh i f t sR , occlR] = stereoCorrespond (iLt , iRt , sh i f t r ange , 2) ;
toc

% Output Di spar i t y Maps fo r l e f t and r i g h t images
figure ; imagesc (b e s t s h i f t sR)
figure ; imagesc (b e s t s h i f t s L)

C.14 Script - runbsc200640nr.m

MATLAB script for testing stereo processing:

%===
% Dense Stereo Process ing − Book She l f Test (Not Rec t i f i e d) Log i tech C200
% Reso lu t ion 640∗480
% Base l ine 50 mm
% Scr i p t by Adam Cox − 2011
%
% Process ing completed by :
%
% Stereo us ing d i f f u s e c onne c t i v i t y (Matlab 7 code)
% Abh i j i t Ogale (ogale@cs .umd. edu)
% Computer Vision Lab , Un ive r s i t y o f Maryland at Co l l e ge Park
% h t t p ://www. c f a r .umd. edu/ users / oga l e
%===

clc ;
clear a l l ;

% Load images
iRt = imread (’ 640 c 2 0 0 r i g h t n o r e c t b s .bmp ’) ;
iLt = imread (’ 640 c 2 0 0 l e f t n o r e c t b s .bmp ’) ;

% Crop d i s t o r t e d edges
iL t=imcrop (iLt , [4 0 , 40 , 6 0 0 , 4 4 0]) ;
iRt=imcrop (iRt , [40 , 40 , 6 0 0 , 4 4 0]) ;

t ic
% Apply s t e r eo proces s ing
s h i f t r a n g e = [0 : 1 0 0] ;
[b e s t s h i f t sL , occlL , be s t sh i f t sR , occlR] = stereoCorrespond (iLt , iRt , sh i f t r ange , 2) ;
toc

% Output Di spar i t y Maps fo r l e f t and r i g h t images
figure ; imagesc (b e s t s h i f t sR)
figure ; imagesc (b e s t s h i f t s L)

C.15 Script - runbsc200320r.m

MATLAB script for testing stereo processing:

%===
% Dense Stereo Process ing − Book She l f Test (Re c t i f i e d) Log i tech C200
% Reso lu t ion 320∗240
% Base l ine 50 mm
% Scr i p t by Adam Cox − 2011
%
% Process ing completed by :
%
% Stereo us ing d i f f u s e c onne c t i v i t y (Matlab 7 code)
% Abh i j i t Ogale (ogale@cs .umd. edu)
% Computer Vision Lab , Un ive r s i t y o f Maryland at Co l l e ge Park
% h t t p ://www. c f a r .umd. edu/ users / oga l e
%===

clc ;
clear a l l ;

% Load images
iL t = imread (’ 320 C2 0 0 l e f t r e c t b s .bmp ’) ;
iRt = imread (’ 320 C200 r i g h t r e c t b s .bmp ’) ;

% Crop d i s t o r t e d edges
iL t=imcrop (iLt , [4 0 , 40 , 6 0 0 , 4 4 0]) ;
iRt=imcrop (iRt , [40 , 40 , 6 0 0 , 4 4 0]) ;

t ic
% Apply s t e r eo proces s ing
s h i f t r a n g e = [0 : 1 0 0] ;
[b e s t s h i f t sL , occlL , be s t sh i f t sR , occlR] = stereoCorrespond (iLt , iRt , sh i f t r ange , 2) ;
toc

% Output Di spar i t y Maps fo r l e f t and r i g h t images
figure ; imagesc (b e s t s h i f t sR)
figure ; imagesc (b e s t s h i f t s L)

C.16 Script - runbsc200320nr.m

MATLAB script for testing stereo processing:

%===
% Dense Stereo Process ing − Book She l f Test (Not Rec t i f i e d) Log i tech C200
% Reso lu t ion 320∗240
% Base l ine 50 mm
% Scr i p t by Adam Cox − 2011
%
% Process ing completed by :
%
% Stereo us ing d i f f u s e c onne c t i v i t y (Matlab 7 code)
% Abh i j i t Ogale (ogale@cs .umd. edu)
% Computer Vision Lab , Un ive r s i t y o f Maryland at Co l l e ge Park
% h t t p ://www. c f a r .umd. edu/ users / oga l e
%===

clc ;
clear a l l ;

% Load images
iL t = imread (’ 320 C20 0 l e f t n o r e c t b s .bmp ’) ;
iRt = imread (’ 320 C200 r i gh t no r e c t b s .bmp ’) ;

% Crop d i s t o r t e d edges
iL t=imcrop (iLt , [4 0 , 40 , 6 0 0 , 4 4 0]) ;
iRt=imcrop (iRt , [40 , 40 , 6 0 0 , 4 4 0]) ;

t ic
% Apply s t e r eo proces s ing
s h i f t r a n g e = [0 : 1 0 0] ;
[b e s t s h i f t sL , occlL , be s t sh i f t sR , occlR] = stereoCorrespond (iLt , iRt , sh i f t r ange , 2) ;
toc

% Output Di spar i t y Maps fo r l e f t and r i g h t images
figure ; imagesc (b e s t s h i f t sR)
figure ; imagesc (b e s t s h i f t s L)

C.17 Script - runbenchmark.m

MATLAB script for testing stereo processing:

%===
% Dense Stereo Process ing − Book She l f Test (Re c t i f i e d) Log i tech C200
% Reso lu t ion 640∗480
% Scr i p t by Adam Cox − 2011
%
% Process ing completed by :
%
% Stereo us ing d i f f u s e c onne c t i v i t y (Matlab 7 code)
% Abh i j i t Ogale (ogale@cs .umd. edu)
% Computer Vision Lab , Un ive r s i t y o f Maryland at Co l l e ge Park
% h t t p ://www. c f a r .umd. edu/ users / oga l e
%===

clc ;
clear a l l ;

% Load images
iRt = imread (’ l .bmp ’) ;
iLt = imread (’ r .bmp ’) ;

t ic
% Apply s t e r eo proces s ing
s h i f t r a n g e = [0 : 1 0] ;
[b e s t s h i f t sL , occlL , be s t sh i f t sR , occlR] = stereoCorrespond (iLt , iRt , sh i f t r ange , 2) ;
toc

% Output Di spar i t y Maps fo r l e f t and r i g h t images
figure ; imagesc (b e s t s h i f t sR)
figure ; imagesc (b e s t s h i f t s L)

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Glossary of Terms
	Chapter The Utilisation of Webcams for Stereo Vision
	Project Aim
	Project Objectives
	Overview of the Dissertation Structure

	Chapter Literature Review
	Chapter Overview
	Computer Based Stereo Vision
	Camera Calibration and Image Rectification
	Occlusion Reduction

	Current Computer Based Stereo Vision Systems
	Operation of Multiple Webcams
	USB Interface Capabilities
	Application Programming Interface
	Microsoft Windows API's
	Linux and Apple API's

	Infrared Based Game Controllers for Stereo Vision Systems
	Nintendo Wii
	Xbox Kinect

	Chapter Summary

	Chapter Methodology for Software Development and Stereo Vision Evaluation
	Chapter Overview
	Project Methodology

	Task Breakdown
	System Operation
	Task Analysis
	Stereo Webcam Mounting
	Webcam Interfacing in Both Hardware and Software
	Development of the Multiple Camera Access Platform
	Webcam Image Capture
	Webcam Calibration for the Correction of Intrinsic and Extrinsic Parameters
	Image Pair Rectification and Edge Detection
	Stereo Processing and Disparity Mapping
	Software Library Development for Webcam Access

	Consequential Effects
	Sustainability
	Safety
	Ethical Dimensions

	Risk Assessment
	Risk During the Execution of the Project
	Risk Beyond the Completion of the Project
	Risk Summary

	Research Timeline
	Chapter Summary

	Chapter Test Platform and Webcam Selection
	Chapter Overview
	Test platform Requirements
	USB Connectivity and Interfacing Requirements
	Processor Configuration
	Operating System

	Webcam Requirements
	Webcam Costs
	Webcam Compatibility
	Webcam Build Quality and Properties

	Selected Test Platforms
	Selected Webcams
	Chapter Summary

	Chapter Image Capture Platform and Library Development
	Chapter Overview
	Software Requirements and Selection
	Programming Language
	Integrated Development Environment
	Application Programming Interface
	Microsoft DirectShow Operation

	Image Capture Platform Requirements
	Review of Provided Code Example
	GUI Layout
	Enumeration and Selection of Available Webcams
	Control of Webcam Properties
	Simultaneous Webcam Access
	Real-Time Edge Detection
	Image Acquisition
	Releasing DirectShow Objects

	Library Development
	Chapter Summary

	Chapter Experimental Approach and Testing of Image Capture and Processing
	Chapter Overview
	Image Capture Platform GUI Operation
	Edge Detection Processing

	Image Capture Library Operation
	Access Through MATLAB
	Access Through C

	Scene Capture and Stereo Processing
	Object Position and Scene Type
	Scene 1 - The Bookshelf
	Scene 2 - The Living Room
	Webcam Mounting
	Webcam Calibration
	Image Rectification
	Stereo Processing

	Chapter Summary

	Chapter Results and Discussion
	Chapter Overview
	Image Capture Platform Operation
	Enumeration of Devices
	Access and Operation of Devices
	Image Capture and Image Output
	Edge Detection Processing

	Image Capture Library Operation
	Access Through MATLAB
	Access Through C

	Scene Capture and Stereo Processing
	Webcam Comparison and Image Resolution
	Object Position and Scene Type
	The Effects of Webcam Mounting Configurations
	Webcam Calibration and Image Rectification Effects on Stereo Processing

	Chapter Summary

	Chapter Conclusions
	Chapter Overview
	Achievement of Project Objectives
	Shortcomings and Possible Improvements
	Further Work
	Final Conclusion

	References
	Appendix Project Specification
	Appendix Project Timeline
	Appendix Source Code Listings
	Source - dshow_webcam.c
	Source - calldll.c
	Source - directshow_webcam.c
	Script - matdll.m
	Script - runlrc905640r150.m
	Script - runlrc905640r.m
	Script - runlrc905640nr150.m
	Script - runlrc905640nr.m
	Script - runbsc905640r150.m
	Script - runbsc905640r.m
	Script - runbsc905640nr150.m
	Script - runbsc905640nr.m
	Script - runbsc200640r.m
	Script - runbsc200640nr.m
	Script - runbsc200320r.m
	Script - runbsc200320nr.m
	Script - runbenchmark.m

