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Abstract

Many different random graph constructions are used
to model large real life graphs. Often it is not clear,
however, how the strength of the different models
compare to each other, e.g., when does it hold that a
certain model class contains another. We are partic-
ularly interested in random graph models that arise
via abstract geometric constructions, motivated by
the fact that these graphs can model certain wire-
less communication networks. We set up a general
framework to compare the strength of random graph
models, and present some results about the equality,
inequality and proper containment of certain model
classes, as well as some open problems.

1 Introduction

Large real life graphs are often modeled by various
random graph contructions, see, e.g. Bornholdt &
Shuster (2003), Franceschetti & Meester (2007), Pen-
rose (2003) and many further references therein. In
many cases it is not at all clear how the modeling
strength of differently generated random graph model
classes relate to each other. We would like to initiate a
systematic investigation of such issues. Our approach
was originally motivated to capture properties of the
random network topology of wireless communication
networks. We started some investigations in Faragó
(2007), but here we elevate it to a more abstract level
that makes it possible to compare the strength of dif-
ferent classes of random graph models.
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2 Classes of Random Graph Models

2.1 General Random Graph Models

Let us first explain what we mean by random graphs
and a random graph model in the most general sense.
In full generality, by a random graph on a fixed num-
ber of vertices (n) we mean a random variable that
takes its values in the set of all undirected graphs1 on
n vertices2. We denote a random graph on n nodes
by Gn. At this point, it is still completely general, it
can be generated by any mechanism, with arbitrary
dependencies among its parts, it is just any graph-
valued random variable, taking its values among undi-
rected graphs on n nodes.

Definition 1 (General random graph model) A
random graph model is given by a sequence of graph
valued random variables, one for each possible value
of n:

M = (Gn; n ∈ N).
The set of all such models is denoted by GEN.

It is worth noting that even though the model is
defined by random graphs for fixed values of n, when
we apply it to actually generate a random graph, we
do not have to use a fixed number of nodes. For ex-
ample, let ν be a Poisson random variable. We can
then consider the random graph Gν which is gener-
ated such that we first draw the random value of ν
and then take νth entry from the random graph se-
quence M = (G1, G2, . . .). Thus, the random graph
model M serves as a defining basis, from which we
can generate random graphs in different ways. The
simplest way, of course, is just to take Gn for a fixed
n, but, as the example shows, it is not the only way.

2.2 Geometric Random Graph Models

Let us now introduce a model class that reflects a typ-
ical feature of geometric random graph models. This
feature is that in geometric random graphs the pri-
mary random choice is picking random nodes from
some domain and then the edges are already deter-
mined by some geometric property (typically some
kind of distance) of the random nodes. We elevate
this approach to an abstract level that, as will be
shown later, actually turns out to be no less general
than the totally unrestricted model. Our model is
built of the following components:

1The approach could also be developed for directed graphs in a
similar way, but in this paper we stay with undirected graphs.

2We use the words “vertex” and “node” interchangeably.



• Node variables. The nodes are represented by
an infinite sequence X1, X2, . . . of random vari-
ables, called node variables. They take their val-
ues in an arbitrary (nonempty) set S, which is
called the domain of the model. When a random
graph on n nodes is generated, then we use the
first n entries of the sequence, that is, X1, . . . , Xn
represent the nodes in Gn. It is important to note
that we do not require the node variables to be
independent.

• Edge functions. We denote by Y
(n)
ij ∈ {0, 1}

the indicator of the edge between nodes Xi, Xj
in the random graph Gn. Since loops are not
allowed, we always assume i �= j, without re-
peating this condition each time. The (abstract)
geometric nature of the model is expressed by
the requirement that the random variables Y

(n)
ij

are determined by the nodes X1, . . . , Xn, possi-
bly with additional independent randomization.
Specifically, we assume that there exist functions
f

(n)
ij , such that

Y
(n)
ij = f

(n)
ij (X1, . . . , Xn, ξij)

where ξij is a random variable that is uniformly
distributed on [0, 1] and is independent of all the
other defining random variables of the model (i.e,
the node variables and all the other ξkl variables).
Henceforth the role of ξij is referred to as in-
dependent randomization3. The undirected na-
ture of the graph is expressed by the requirement
Y

(n)
ij = Y

(n)
ji , which can simply be enforced by

computing all values for i < j only and defining
the i > j case by exchanging i and j.

We use the following notational convention:
whenever a function is distinguished by certain pa-
rameters within some family of functions, such as f

(n)
ij

above, then it is assumed that the function “knows”
its own parameters. In other words, the parameter
values can be used in the definition of the function.
Conversely, whatever information is used in comput-
ing the function should occur either as a variable or
an explicitely shown parameter.

Definition 2 (Abstract geometric model) The
class of all models that have the structure explained
above is called GEOM.

A model M ∈ GEOM, no matter how general it
can be, still has a restricted structure. Therefore, one
may ask whether every model in GEN can be repre-
sented in such a way. To make it precise when two
models or model classes are considered equivalent, let
us introduce the following definition.

Definition 3 (Equivalence) Two random graph
models M = (Gn; n ∈ N) and M̃ = (G̃n; n ∈ N)
are called equivalent, denoted by M ∼ M̃, if for any
graph G

Pr(Gn = G) = Pr(G̃n = G)
holds, where equality of graphs means that they are
isomorphic.

3Note that the specified distribution of ξij does not impose a

restriction, since the functions f
(n)
ij

are arbitrary.

Definition 4 (Containment, equivalence and
disjointness of model classes) Let C1,C2 be two
classes of random graph models. We say that C2 con-
tains C1, denoted by C1 � C2, if for every M1 ∈ C1
there is an M2 ∈ C2, such that M1 ∼ M2. If
C1 � C2 and C2 � C1 both hold, then the two
classes are called equivalent, denoted by C1 � C2.
If there exist no models M1 ∈ C1 and M2 ∈ C2 with
M1 ∼ M2, then the two classes are called disjoint,
denoted by C1 ∩ C2 = ∅.

Now we may ask whether GEOM � GEN holds
or not. We show later that it does, even with more re-
strictions on GEOM. To this end, we introduce some
restricting conditions to the model class GEOM.
As a simple notation, whenever some restrictions
R1, . . . , Rk are applied, the arising class is denoted
by GEOM(R1, . . . , Rk).

2.3 Subclasses of GEOM

The first considered restriction is called locality. Up
to now we allowed that an edge in Gn can depend on
all the nodes, and the dependence expressed by the
f

(n)
ij functions can be arbitrary and different for each

edge. To get a little closer to the usual geometric
random graph model, we introduce the condition of
locality. Informally, it restricts the dependence of an
edge to its endpoints, in a homogeneous way, but still
via an arbitary function.

Definition 5 (Locality) A model M ∈ GEOM is
called local, if for every n and i, j ≤ n the existence of
an edge between Xi, Xj depends only on these nodes.
Moreover, the dependence is the same for every i, j,
possibly with independent randomization. That is,
there are functions f (n) such that the edge indicators
are expressible as

Y
(n)
ij = f (n)(Xi, Xj , ξij)

where ξij represents the independent randomization.
The set of local models in GEOM is denoted by
GEOM(loc).

Note: with our notational convention f (n) can depend
on its variables and on n. On the other hand, it has
no access to the value of i and j, unless they are
somehow contained in Xi, Xj , in a way that makes it
possible to extract them without using anything else
than the explicitely listed information.

Another restriction that we consider is a condition
on the distribution of the vertices. To introduce it,
let us first recall a concept from probability theory,
called exchangeability.

Definition 6 (Exchangeable random variables)
A finite sequence ξ1, . . . , ξn of random variables is
called exchangeable if for any permutation σ of
{1, . . . , n}, the joint distribution of ξ1, . . . , ξn is the
same as the joint distribution of ξσ(1), . . . , ξσ(n). An
infinite sequence of random variables is called ex-
changeable if every finite initial segment of the se-
quence is exchangeable.

Exchangeability can be equivalently defined such
that taking any k ≥ 1 of the random variables, say,
ξj1 , . . . , ξjk

, their joint distribution does not depend



on which particular k of them are taken. Note that
independent, identically distributed (i.i.d.) random
variables are always exchangeable, but the converse
is not true, so this is a larger family.

Now let us introduce the condition that we use to
restrict the arbitrary dependence of node variables.

Definition 7 (Name invariance) A random graph
model M ∈ GEOM is called name invariant, if its
node variables are exchangeable. The class of such
models is denoted by GEOM(inv).

We call it the name invariance of the model be-
cause it means the names (the indices) of the nodes
are irrelevant in the sense that the joint probabilis-
tic behavior of any fixed number of nodes is invariant
to renaming (reindexing) the nodes. In particular, it
also implies that each single node variable Xi has the
same probability distribution (but they do not have
to be independent).

A simple example for a dependent, yet still name
invariant, node generation process is a “clustered uni-
form” node generation. As an example, let S be a a
sphere in 3-dimensional space, i.e., the surface of a
3-dimensional ball. Let R be the radius of the ball.
Let us first generate a pivot point Y uniformly at
random from S. Then generate the nodes X1, X2, . . .
uniformly at random and independently of each other
from the neighborhood of radius r � R of the random
pivot point Y (within the sphere). It is directly im-
plied by the construction that exhangeability holds.
Moreover, any particular Xi will be uniformly dis-
tributed over the entire sphere, since Y is uniform
over the sphere. On the other hand, the Xi are far
from independent of each other, since they cluster
around Y , forcing any two of them to be within dis-
tance 2r. The example can be generalized to applying
several pivot points and non-uniform distributions,
creating a more sophisticated clustering.

It is worth mentioning that any finite sequence
X1, . . . , Xn of random variables can be easily trans-
formed into an exchangeable sequence by taking a
random permutation σ of {1, . . . , n} and defining the
transformed sequence by X̃i = Xσ(i). The resulting
joint distribution will be

Pr(X̃1 = x1, . . . , X̃n = xn) =

1
n!

∑
σ

Pr(Xσ(1) = x1, . . . , Xσ(n) = xn)

where σ in the summation runs over all possible per-
mutations of {1, . . . , n}. Even though this simple
construction does not work for infinite sequences, in
many practically relevant cases there is vanishing dif-
ference between a very long finite and an actually
infinite sequence.

A stronger restriction is if we want the node vari-
ables to be independent, not just exchangeable.

Definition 8 (Free geometric model) A random
graph model M ∈ GEOM is called free, if its node
variables are mutually independent. The class of such
models is denoted by GEOM(free).

2.4 Other Model Classes

We define some other classes of random graph models,
relating to some properties that are important in the
applications of these models.

Definition 9 (Bounded expected degree
model) A random graph model M ∈ GEN is called
a bounded expected degree model if there exists a
constant C such that

d(n) =
2E(e(Gn))

n
≤ C

for every n, where e(Gn) denotes the number of edges
in Gn. The class of bounded expected degree models
is denoted by BD.

Since 2e(Gn)/n is the average degree in Gn, there-
fore, d(n) = 2E(e(Gn))/n is the expected average de-
gree. Often the expected degree of each individual
node is also equal to d(n), but in a general model it
may not hold. Note that even if the expected degree
of each node is equal to the expected average degree,
it does not mean that the actual (random) degrees
are also equal, so Gn may be far from regular.

Another important property of random graph
models is asymptotically almost sure (a.a.s.) connec-
tivity.

Definition 10 (Connected model) A random
graph model M = (Gn; n ∈ N) ∈ GEN is called
connected if

lim
n→∞Pr(Gn is connected) = 1.

The class of connected models is denoted by CONN.

Note: Whenever we write down a limit, such as the
one above, we also assume that the limit exists.

Often the requirement of full connectivity is too
strong, so we define a relaxed version of it and the
corresponding model class.

Definition 11 (β-connectivity) For a real number
0 ≤ β ≤ 1, a graph G on n vertices is called β-
connected if G contains a connected component on at
least βn nodes.

When we consider a sequence of graphs with dif-
ferent values of n, then the parameter β may de-
pend on n. When this is the case, we write βn-
connectivity. Note that even if βn → 1, this is still
weaker then full connectivity in the limit. For exam-
ple, if βn = 1−1/

√
n, then we have βn → 1, but there

can be still n − βnn =
√

n nodes that are not part of
the largest connected component.

Definition 12 (βn-connected model) A random
graph model M = (Gn; n ∈ N) ∈ GEN is called
βn-connected if

lim
n→∞Pr(Gn is βn-connected) = 1.

The class of βn-connected models is denoted by βn-
CONN.

It is clear from the definitions that with βn ≡ 1,
the class 1-CONN is the same as CONN. But if we
only know that βn → 1, then βn-CONN becomes a
larger class.

Finally, let us define some classes that restrict the
indepedence structure of the edges. Let e be a (po-
tential) edge. We regard it as a 0-1 valued random



variable, indicating whether the edge is in the ran-
dom graph or not. The probability that an edge
e exists is Pr(e = 1), but we simply denote it by
Pr(e). We similarly write Pr(e1, . . . , ek) instead of
Pr(e1 = 1, . . . , ek = 1).

Definition 13 (Independent disjoint edges) A
random graph model M = (Gn; n ∈ N) ∈ GEN
is said to have independent disjoint edges if any set
e1 . . . , ek of pairwise disjoint edges are independent as
random variables. That is,

Pr(e1, . . . , ek) = Pr(e1) . . . Pr(ek)

holds whenever e1, . . . , ek are pairwise disjoint. The
class of models with independent disjoint edges is de-
noted by IDE.

Definition 14 (Positively correlated edges) A
random graph model M = (Gn; n ∈ N) ∈ GEN
is said to have positively correlated edges if any set
e1 . . . , ek of distinct edges are positively correlated in
the sense of

Pr(e1, . . . , ek) ≥ Pr(e1) . . . Pr(ek).

The class of models with positively correlated edges is
denoted by POS.

3 Results

Let us first address the question how the various re-
strictions influence the modeling strength of GEOM.
The motivation is that one might think that a con-
cept like locality imposes a significant restriction on
the model. After all, it severely restricts which node
variables can directly influence the existence of an
edge. For example, it seems to exclude situations
when the existence of an edge between Xi and Xj
is based on whether one of them is among the k near-
est neighbors of the other, according to some distance
function (often called k-nearest neighbor graph).

Surprisingly, it turns out that locality alone does
not impose any restriction at all on the generality
of the model. Not just any model in GEOM can be
expressed by a local one, but this remains true even if
we want to express an arbitrary random graph model
in GEN.

Theorem 1 Let M̃ = (G̃n; n ∈ N) ∈ GEN be an
arbitrary random graph model. Then there exists a
another model M = (Gn; n ∈ N) ∈ GEOM(loc)
such that M ∼ M̃.

Proof. Let Ỹ
(n)
ij denote the edge indicators in M̃.

We show that a M ∈ GEOM(loc) can be chosen
such that its edge indicators Y

(n)
ij satisfy Y

(n)
ij = Ỹ

(n)
ij ,

which implies that the two models are equivalent.
Let Q be the set of all 0-1 matrices of all possible

finite dimensions. For the domain S of M we choose
the set of all infinite sequences with entries in Q. Let
us define the node variable Xi such that

Xi = (Z(1)
i , Z

(2)
i , . . .)

where Z
(n)
i is an (n + 1) × n sized 0-1 matrix with

entries Z
(n)
i [k, �] = Ỹ

(n)
k,� for k �= � and k, � ≤ n,

Z
(n)
i [k, k] = 0 and the last row Z

(n)
i [n+1, . ] contains

the binary encoding of i. Then the edge functions for
M can be defined as

f (n)(Xi, Xj , ξij) = Z
(n)
i [i, j].

This indeed defines f (n), since knowing n the matrix
Z

(n)
i can be obtained as the nth component of Xi. The

value of i can be read out from the last row of Z
(n)
i .

Similarly, the value of j can be read out from the
last row of Z

(n)
j , which is the nth component of Xj .

Then the value of Z
(n)
i [i, j] can be looked up. (The

functions do not use the independent randomization).
This definition directly implies that M is local, as
f (n) does not use node variables other than Xi, Xj
and the same function applies to any pair of nodes.
Furthermore,

Y
(n)
ij = f (n)(Xi, Xj , ξij) = Z

(n)
i [i, j] = Ỹ

(n)
ij

holds, completing the proof.
♠

Next we show that a similar result holds for the
restriction of name invariance.

Theorem 2 Let M̃ = (G̃n; n ∈ N) ∈ GEN be an
arbitrary random graph model. Then there exists a
another model M = (Gn; n ∈ N) ∈ GEOM(inv)
such that M ∼ M̃.

Proof. We show that the name invariant model
M ∈ GEOM(inv) can be chosen such that its edge
indicators Y

(n)
ij satisfy Y

(n)
ij = Ỹ

(n)
ij , where the Ỹ

(n)
ij

denote the edge indicators in M̃.

Let Zn = [Ỹ (n)
ij ] be an n × n matrix, containing

all edge indicators of G̃n. Define Xi as an infinite
sequence

Xi = (Z1, Z2, . . .).
Since Xi is defined without using the value of i, we
have that all the Xi are equal, which is a trivial case
of name invariance. (All random node variables being
equal, re-indexing clearly cannot change anything.)
Then, following the edge function format of GEOM,
we can define the edge functions by

f
(n)
ij (X1, . . . , Xn, ξij) = Zn[i, j].

(The independent randomization is not used.) This
edge function is well defined, since, knowing n, the
array Zn can be read out from any of the Xi and in
the general GEOM model the functions can directly
depend on i and j. As, by definition, Zn[i, j] = Ỹ

(n)
ij ,

we obtain

Y
(n)
ij = f

(n)
ij (X1, . . . , Xn, ξij) = Zn[i, j] = Ỹ

(n)
ij

which completes the proof.
♠

Since we know by definition GEOM(loc) �
GEOM and GEOM(inv) � GEOM, as well as
GEOM � GEN, the theorems immediately imply
the following corollary.



Corollary 1 GEOM(loc) � GEOM(inv) �
GEOM � GEN.

We have seen above that neither locality nor name
invariance can restrict full generality. Both restric-
tions, if applied alone, still allow that an arbitrary
random graph model is generated. This situation nat-
urally leads to the question: what happens if the two
restrictions are applied together? At first, one might
think about it this way: if the set of local models
and the set of name invariant models are both equal
to the set of general models, then their intersection
should also be the same. This would mean that even
those models that are both local and name invariant
are still fully general.

The above argument, however, is not correct. Al-
though we know from Corollary 1 that GEOM(loc)∩
GEOM(inv) � GEN, but it does not imply that
GEOM(loc, inv) � GEOM(loc)∩GEOM(inv) also
holds. In fact, the latter does not hold, which will be
obtained as a consequence of the following theorem.
The theorem proves the interesting thing that joint lo-
cality and name invariance makes it impossible that a
model satisfies bounded expected degree and (almost)
connectivity at the same time.

Theorem 3 Let βn → 1 be a sequence of positive
reals. Then

BD ∩ βn−CONN ∩ GEOM(loc, inv) = ∅
holds.

Proof. Consider a model M = (Gn; n ∈ N) ∈
GEOM(loc, inv). Let In denote the (random) num-
ber of isolated nodes in Gn. First we show that

E(In) ≥ n

(
1 − d(n)

n − 1

)n−1

(1)

holds4. Note that since our model is abstract and
does not involve any real geometry, one has to be
careful to avoid using such intuition that may appeal
geometrically, but does not follow from the abstract
model.

First, observe the following: name invariance im-
plies that for any function g of the node variables and
for any permutation σ of {1, . . . , n} we have

E(g(X1, . . . , Xn)) = E(g(Xσ(1), . . . , Xσ(n))).

Since the probability that a particular node has any
given degree k is also expressible by such a function,
therefore, the probability distribution of the node de-
gree must be the same for all nodes (but the degrees,
as random variables, may not be independent). As
a consequence, the expected degree of each node is
the same, which then must be equal to the expected
average degree d(Gn).

Let us pick a node Xi. We derive a lower bound
on the probability that Xi is isolated, i.e., its degree
is 0. Due to the above symmetry considerations, it
does not matter which node is chosen, so we can take

4It is worth noting that even when E(In) → ∞ is the case,
this fact alone may not a priori preclude the possibility of a.a.s.
βn-connectivity, even with βn ≡ 1. For example, if Gn is
connected with probability 1 − 1/

√
n and consists of n isolated

nodes with probability 1/
√

n, then E(In) = n/
√

n → ∞, but
Pr(Gn is connected) = 1 − 1/

√
n → 1.

i = 1. Let In be the (random) set of isolated nodes
in Gn. What we want to compute is a lower bound
on Pr(X1 ∈ In). Then we are going to use the fact
that

E(In) = E(|In|) =
n∑

i=1

Pr(Xi ∈ In)

Note that, due to the linearity of expectation, this
remains true even if the events {Xi ∈ In} are not
independent, which is typically the case. Then, by the
symmetry considerations, we can utilize that Pr(Xi ∈In) is independent of i, yielding E(In) = n Pr(X1 ∈
In).

In order to derive a lower bound on Pr(X1 ∈ In),
we need a fundamental result from probability theory,
called de Finetti’s Theorem5 This theorem says that
if an infinite sequence ξ1, ξ2, . . . of 0-1 valued random
variables6 is exchangeable, then the following hold:

(i) The limit

η = lim
N→∞

ξ1 + . . . + ξN

N
(2)

exists7 with probability 1.

(ii) For any N and for any system a1, . . . , aN ∈ {0, 1}
of outcomes with s =

∑N
i=1 ai

Pr(ξ1 = a1, . . . , ξN = aN ) =

=
∫ 1

0

xs(1 − x)N−sdFη(x)

holds, where Fη is the probability distribution
function of η.

(iii) The ξi are conditionally independent and iden-
tically distributed (conditionally i.i.d.), given η,
that is,

Pr(ξ1 = a1, . . . , ξN = an | η) =
N∏

i=1

Pr(ξi = ai | η).

Informally, de Finetti’s theorem says that ex-
changeable 0-1 valued random variables, even if they
are not independent, can always be represented as a
mixture of Bernoulli systems of random variables. It
is important to note, however, that even though the
statements (ii) and (iii) refer to finite initial segments
of the sequence ξ1, ξ2, . . . , it is necessary that the en-
tire infinite sequence is exchangeable. For finite se-
quences the theorem may not hold, counterexamples
are known for the finite case Stoyanov (1987).

Let us now define the infinite sequence of 0-1 val-
ued random variables

ej = f (n)(X1, Xj , ξ1j), j = 2, 3 . . .

5It was first published in de Finetti (2003). Being a classical
result, it can be found in many advanced textbooks on probability.

6Various extensions exist to more general cases, see, e.g., Kallen-
berg (2005), but for our purposes the simplest 0-1 valued case is
sufficient.

7Note that exhangeability implies that all ξi have the same ex-
pected value, so in case they were independent, then the strong
law of large numbers would apply and the limit would be the com-
mon expected value, with probability 1. Since, however, the ξi are
not assumed independent (only exchangeable), therefore, the aver-
age may not tend to a constant, it can be a non-constant random
variable in [0, 1].



Of these, e2, . . . , en are the indicators of the edges
with one endpoint at X1. But the function f (n) is
defined for any (x, y, z) ∈ S × S × [0, 1], so nothing
prevents us to define the infinite sequence ej ; j =
2, 3, . . ., by taking more independent and uniform
ξ1j ∈ [0, 1] random variables.

Observe now that the sequence ej ; j = 2, 3, . . . is
an infinite exchangeable sequence of 0-1 valued ran-
dom variables. Only the exchangeability needs proof.
If we take any k indices j1, . . . , jk, then the joint dis-
tribution of ej1 , . . . , ejk

depends only the joint dis-
tribution of Xj1 , . . . , Xjk

, plus the independent ran-
domization. If we replace j1, . . . , jk by other k in-
dices, then it will not change the joint distribution of
the k node variables, due to their assumed exhange-
ability. The independent randomization also does not
change the joint distribution, since the ξ1j are i.i.d, so
it does not matter which k are taken. Furthermore,
the locality of the model implies that each ej depends
on one Xj (besides X1) so taking another k cannot
change how many node variables will any subset of
the ej share. Thus, for any k, the joint distribution
of ej1 , . . . , ejk

does not depend on which k indices are
chosen, proving that ej ; j = 2, 3, . . . is an infinite ex-
changeable sequence of 0-1 valued random variables.

Now, by de Finetti’s Theorem, there is a random
variable η ∈ [0, 1], such that the ej are conditionally
i.i.d, given η. Then we can write

Pr(X1 ∈ In) = Pr(e2 = . . . = en = 0)
= E(Pr(e2 = . . . = en = 0 | η))

= E

⎛
⎝ n∏

j=2

(Pr(ej = 0 | η))

⎞
⎠

= E

⎛
⎝ n∏

j=2

(1 − Pr(ej = 1 | η))

⎞
⎠ .(3)

Notice that Pr(ej = 1 | η) is the probability that an
edge exists between X1 and Xj , conditioned on η.
Consequently, ξ = Pr(ej = 1 | η) is a random variable,
depending on η. At the same time, it does not depend
on j, as by de Finetti’s theorem, the ej are condition-
ally i.i.d, given η, so it does not matter which j is
taken in ξ = Pr(ej = 1 | η). Thus, we can continue
(3) as

Pr(X1 ∈ In) = E

⎛
⎝ n∏

j=2

(1 − ξ)

⎞
⎠ = E

(
(1 − ξ)n−1

)
.

(4)
We can now observe that ξ ∈ [0, 1] and the function
g(x) = (1 − x)n is convex in [0, 1], so we may ap-
ply Jensen’s inequality. Jensen’s well known inequal-
ity says that for any random variable ζ and for any
convex function g the inequality E

(
g(ζ)

) ≥ g
(
E(ζ)

)
holds, which is a consequence of the definition of con-
vexity. Thus, we can further continue (4), obtaining

Pr(X1 ∈ In) = E
(
(1 − ξ)n−1

) ≥ (1 − E(ξ))n−1
.

Note that E(ξ) = E(Pr(ej = 1 | η)) = Pr(ej = 1) is
the probability that an edge exists between X1 and
Xj . By name invariance, this is the same probability
for any two nodes, let pn denote this common value.
Thus,

Pr(X1 ∈ In) ≥ (1 − pn)n−1

follows. We know that there are n − 1 potential
edges adjacent to each node, each with probabilty pn.
Therefore, despite the possible dependence of edges,
the linearity of expectation implies the expected de-
gree of each node under our conditions is (n − 1)pn,
which is also equal to d(n). We can then substitute
pn = d(n)/(n − 1), which yields

Pr(X1 ∈ In) ≥
(

1 − d(n)
n − 1

)n−1

,

implying

E(In) = n Pr(X1 ∈ In) ≥ n

(
1 − d(n)

n − 1

)n−1

.

Assume now M ∈ BD, which means there is a con-
stant C with d(n) ≤ C for every n. Then

(
1 − d(n)

n − 1

)n−1

≥
(

1 − C

n − 1

)n−1

→ e−C ,

so there exist constants a > 0 and n0 ∈ N, such that
E(In) ≥ an holds for every n ≥ n0.

Now take a sequence βn ∈ [0, 1] with βn →
1. We are going to show that the probability
Pr(Gn is βn-connected) cannot tend to 1, meaning
M /∈ βn−CONN.

Set sn = Pr(In ≤ (1 − βn)n). Then
Pr(Gn is βn-connected) ≤ sn must hold, since βn-
connectivity implies that there may be at most (1 −
βn)n isolated nodes. Consider now the random vari-
able γn = n− In. The definition of γn implies γn ≥ 0
and E(γn) = n − E(In). Therefore, E(γn) ≤ (1 − a)n
holds for n ≥ n0. Moreover, the definition also di-
rectly implies that the events {In ≤ (1 − βn)n} and
{γn ≥ βnn} are equivalent. Thus, we can write, us-
ing Markov’s inequality for nonnegative random vari-
ables:

sn = Pr(In ≤ (1 − βn)n) = Pr(γn ≥ βnn) ≤

≤ E(γn)
βnn

≤ (1 − a)n
βnn

=
1 − a

βn
.

Since we know that a > 0 is a constant and βn → 1,
therefore, there must exist a constant b < 1, such that
sn ≤ b holds for all large enough n. This, together
with Pr(Gn is βn-connected) ≤ sn, proves that the
assumptions we made, that is, M ∈ GEOM(loc, inv)
and M ∈ βn−CONN, together imply M /∈ BD,
proving the theorem.

♠
As a corollary, we obtain that GEOM(loc, inv) is

smaller than GEOM(loc) and GEOM(inv).

Corollary 2 GEOM(loc, inv) �� GEOM(loc) and
GEOM(loc, inv) �� GEOM(inv).

Proof. Let M = (Gn; n ∈ N) be a model in which
Gn is chosen unformly at random from the set of all
connected graphs with maximum degree at most 3.
It follows from this construction that M ∈ BD ∩
CONN, implying M ∈ BD ∩ βn−CONN for any
βn. Then Theorem 3 implies M /∈ GEOM(loc, inv).
Since, naturally, M ∈ GEN, therefore, it follows
that GEOM(loc, inv) �� GEN. As we know from



Corollary 1 that GEOM(loc) � GEOM(inv) �
GEN, we obtain GEOM(loc, inv) �� GEOM(loc)
and GEOM(loc, inv) �� GEOM(inv).

♠

4 An Application

In this application example we model a mobile wire-
less ad hoc network, that is, a network in which wire-
less nodes communicate to each other directly, with-
out a supporting infrastructure, The initial position
of each node is chosen in the following way. Let P
be a probability measure over a planar domain D.
First we choose k pivot points independently at ran-
dom, using P . Then the actual node positions are
generated such that each potential node is chosen in-
dependently at random from P , but it is kept only if
it is within a given distance d0 to at least one of the
random pivot points, otherwise it is discarded. Note
that this way of generating the nodes makes them
dependent, as the non-discarded ones cluster around
the random pivot points, thus modeling a clustered,
non-independent node distribution.

The mobility of the nodes in this example is mod-
eled in the following way. Over some time horizon
Tn, that may depend on n, the number of nodes, each
node moves along a random curve from its initial po-
sition with a constant speed v0. The curve is chosen
from a set C of available potential trajectories in D.
For simplicity, it is assumed that each curve can be
identified by a real parameter. This parameter is cho-
sen using a probability distribution Qx,y that depends
on the initial position (x, y) of the node. Then the
randomly obtained curve is shifted so that its start-
point coincides with the random initial position of the
node and then the node will move along this random
trajectory.

Let d(x, y) be a nonnegative real valued function
over D×D, with the only restriction that d(x, x) = 0
holds for any x. This function is intended to mea-
sure “radio distance” in D. The assumption is that
whenever d(x, y) is small enough, then two nodes po-
sitioned at x and y can receive each others’ trans-
missions. The function d(x, y), however, does not
have to satisfy the usual distance axioms, it may re-
flect complex radio propagation characteristics, such
as expected attenuation and fading, it may account
for the heterogeneity of the terrain, for propagation
obstacles etc. We may also include random effects,
making d(x, y) a random variable, reflecting special
conditions of interest, such as the random presence of
eavesdroppers that can trigger the inhibition of cer-
tain links. We assume, however, that if there is ran-
domness in d(x, y), then it is independent of the other
random variables in the model.

Let tn and rn be further parameters that may also
depend on the number n of nodes. We now define
the links of the network, as follows. Consider two
nodes with initial position vectors X1(0), X2(0), re-
spectively. As they move along their random tra-
jectories, their positions at time t is denoted by
X1(t), X2(t), respectively. The two nodes are con-
sidered connected by a link, if there is a closed subin-
terval of length at least tn within the time horizon
[0, Tn], such that d(X1(t), X2(t)) ≤ rn holds for ev-
ery time t within the subinterval8, with the possibly

8The motivation is that the nodes should be within range at
least for the time of sending a packet.

complicated radio distance.
Now the question is this: for given P , D, C, Qx,y

and d(x, y), and for the described way of dependent
node genaration, can we somehow choose the model
parameters k, d0, v0, Tn, tn and rn, such that the aris-
ing random graph is a.a.s. connected, while the ex-
pected average degree in the graph remains bounded?

We believe that it would be rather hard to answer
such a question with a direct analysis for arbitrary
complex choices of P , D, C Qx,y and d(x, y). On the
other hand, with our general results it becomes quite
straightforward, showing the strength of the results.

Let us choose the model domain S as a 3-
dimensional phase space, in which each node is rep-
resented by a point such that the first two coordi-
nates describe the intial position of the node and the
last coordinate encodes which random trajectory was
chosen from C for the node. Let X1, X2, . . . be the
representations of the nodes in this phase space.

We can now check that, for any n, the joint distri-
bution of X1, . . . , Xn is invariant to re-indexing them.
The reason is that both the initial positions and the
trajectory choices are generated by processes in which
the indices do not play any role. Therefore, the model
is name invariant. Interestingly, this remains true de-
spite having a lot of dependencies among the nodes:
the initial positions of different nodes are not inde-
pendent (due to clustering), and the trajectory of a
given node is also not independent of its initial po-
sition, as it is drawn from a probability distribution
that may depend on the location. Through this, the
trajectories and initial positions of different nodes also
become dependent, making their whole movement de-
pendent. Yet, the model is still name invariant.

Let us now consider the links. As defined above,
two nodes are considered connected if during their
movement over the time horizon [0, Tn] there is a
subinterval of time, of length at least tn, such that
they remain within “radio distance” ≤ rn during the
entire subinterval. The radio distance, however, may
be very different from the Euclidean distance, it may
be described by an arbitrary function that may ac-
count for complex propagation characteristics, atten-
uation, obstacles, and it may also contain indepen-
dent randomness.

Given some possibly complicated radio distance
d(x, y) and the node generation and movement pro-
cess with possibly complex trajectories, it may not
be easy to compute whether a link actually exists
between two nodes according to the above defini-
tion. On the other hand, for us it is enough to
note that once the phase space representations Xi, Xj
of any two nodes are given, plus the realization of
the independent randomness of the distance, they to-
gether determine whether a link exists between the
two nodes or not. The reason is that the initial po-
sitions and the trajectories, given in the phase space
representation, fully determine the movement of the
nodes. Once this is known, it determines, along with
the realization of the independent randomness of the
distance function, whether the link definition is sat-
isfied, i.e., if there is a subinterval of length ≥ tn in
[0, Tn], such that the nodes stay within radio distance
≤ rn during the entire subinterval. To actually com-
pute it may not be easy for a sophisticated case, but
for our purposes it enough to know that it is deter-
mined by the listed factors, without knowing anything
about the other nodes. This implies that the model
is local.



Thus, we have established that, for any choice of
the parameters, the problem can be described by a
model that is in GEOM(loc, inv), Then this model
cannot be in BD ∩ CONN, since we know from The-
orem 3 that BD ∩ βn−CONN ∩GEOM(loc, inv) =
∅ holds for any choice of βn → 1, including βn ≡ 1.
Thus, in our example it is impossible to keep the ex-
pected average degree bounded and achieveing a.a.s.
connectivity at the same time. With this we could
cut through a lot of complexity that would otherwise
arise with the direct analysis of the specific model.

5 Conclusion and Open Problems

Our research has been motivated by the fact that
many different random graph constructions are used
to model large real life graphs, but often it is not
clear how the strength of the different models com-
pare to each other, e.g., when does it hold that a cer-
tain model property implies another. We have set up
a general framework to compare the strength of vari-
ous random graph model classes, and presented some
results about the equality, inequality and proper con-
tainment of these classes.

Since we have just initiated this line of investiga-
tion, many questions remain open. Let us mention
two examples that seem interesting and nontrivial.

Open problem 1. One can easily see from the def-
inition that GEOM(loc, free) � IDE. That
is, in local geometric models with independent
node variables the disjoint edges are indepen-
dent. Is the converse true, i.e., can we represent
any M ∈ IDE by a local geometric model with
independent node variables?

Open problem 2. Is it true that in every local
and name invariant geometric model the edges
are positively correlated? In other words, does
GEOM(loc, inv) � POS hold? Or does at least
GEOM(loc, free) � POS hold? If it were true,
this would have important consequences for geo-
metric random graph models.
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