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INTRODUCTION
Coronary heart disease (CHD) is one of the leading human
diseases of high mortality in industrialized countries (1, 2).
However, it is equally prevalent as a cause of death in de-
veloping countries. A risk factor is accepted as a causal factor
if the results of observational studies and randomized con-
trolled trials (RCT, interventional studies) are also supported
by results from basic research (biological plausibility) (3).
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ABSTRACT

Objective: The present contribution concentrates on the application of support vector machines (SVM)
for coronary heart disease and non-coronary heart disease classification. 
Methods: We conducted many experiments with support vector machine and different variables of low-
density lipoprotein cholesterol (LDLC), high-density lipoprotein cholesterol (HDLC), total cholesterol
(TC), triglycerides (TG), glucose and age (dataset 346 patients with completed diagnostic procedures).
Linear and non-linear classifiers were compared: linear discriminant analysis (LDA) and SVM with a
radial basis function (RBF) kernel as a non-linear technique. 
Results: The prediction accuracy of training and test sets of SVM were 96.86% and 78.18% res-
pectively, while the prediction accuracy of training and test sets of LDA were 90.57% and 72.73%
respectively.  The cross-validated prediction accuracy of SVM and LDA were 92.67% and 85.4%. 
Conclusion: Support vector machine can be used as a valid way for assisting diagnosis of coronary
heart disease. 

Clasificación con la Máquina de Vector de Apoyo para Diferenciar la Cardiopatía
Coronaria de la Cardiopatía no Coronaria en los Pacientes 
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RESUMEN

Objetivo: El presente trabajo trata de la utilización de las máquinas de vector de apoyo a la hora de
clasificar cardiopatías coronarias y cardiopatías no coronarias. 
Métodos: Llevamos a cabo numerosos experimentos con máquinas de vector de apoyo y diferentes
variables de colesterol de lipoproteínas de baja densidad (CLBD), colesterol de lipoproteínas de alta
densidad (CLAD), colesterol total (TC), triglicéridos (TG), glucosa y edad de nuestro conjunto de datos
(346 pacientes con procedimientos de diagnóstico completos).  Se compararon los clasificadores
lineales y no lineales: el análisis lineal discriminante (ALD) y las máquinas de vector de apoyo (SVM)
con un kernel de función de base radial (FBR) como técnica no lineal. 
Resultado: La exactitud de predicción del conjunto de pruebas y de entrenamientos de SVM fue 96.86%
y 78.18% respectivamente, mientras que la exactitud de predicción de los conjuntos de prueba y
entrenamientos de  ALD fue 90.57% y 72.73% respectivamente.  La exactitud de predicción de SVM y
ALD tras la validación cruzada fue  92.67% y 85.4%. 
Conclusión. La máquina de vector de apoyo puede usarse como una forma válida de ayuda a la hora
de realizar el diagnóstico de la cardiopatía coronaria. 
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Epidemiological studies have established that low-density
lipoprotein cholesterol (LDLC), high-density lipoprotein
cholesterol (HDLC), total cholesterol (TC) and triglycerides
(TG) are major risk factors for developing CHD (4–7).
Scientific consensus exists on the importance of the three
main risk factors for the development of CHD: hypercholes-
terolaemia, diabetes mellitus and age.  Cardiovascular
disease accounts for approximately 70% of all deaths in
people with diabetes mellitus (8), and the risk of
cardiovascular mortality is two to three times higher in men
and three to five times higher in women with diabetes than in
those without diabetes (9–11).  These factors play an impor-
tant role in the development of atherosclerosis and CHD in
the developed world but also play an increasingly important
role in the developing world (12).

The three risk factors (mentioned above) only aid to
diagnose CHD by traditional methods.  There is no publica-
tion that shows that the diagnosis of CHD only depends on
them.  Machine learning methods may be capable of objec-
tive interpretation of all available results for the same patient
and in this way increase the diagnostic accuracy.  In the usual
setting, the machine learning algorithms are tuned to maxi-
mize classification accuracy.  Pattern recognition methods
which can develop models with maximal generalization
ability from large and generally noisy data sets are proposed.

Methods of artificial intelligence were gradually intro-
duced into clinical decision-making research from 1970 to
1974.  There are many pattern recognition methods suitable
for classification: two of the most commonly used are linear
discriminant analysis (LDA) and support vector machines
(SVM) (13).  The technique of SVM, developed by Vapnik,
was proposed essentially for classification problems of two
classes.  Support vector machines use geometric properties to
exactly calculate the optima separating hyperplane directly
from the training data (14–16). 

Due to its remarkable generalization performance and
small number of learning parameters, the SVM has attracted
attention and gained extensive applications.  Support vector
machines have been effective in disease diagnosis (17–19),
DNA sequence analysis, protein structure prediction and
gene expression pattern discovery (20–25).  They are
particularly suitable for CHD prediction because of their
ability to build effective predictive models when the
dimensionality of the data is high and the number of
observations is limited.  They are also based on a strong
theoretical foundation for avoiding over-fitting training data. 

Based on the laboratory tests (TG, TC, LDLC, HDLC
and glucose) and age, we proposed SVM for the classifi-
cation of CHD and non-CHD controls, as results show that
SVM is a superior method in diagnosis of CHD and it can be
extended for classification of other diseases.

SUBJECTS AND METHODS
Serum Samples
In this study, cases were chosen from the First Hospital of
Lanzhou University.  It is one of top-ranking hospitals in
China and the major hospital in Gansu Province.  One-
hundred and seventy-two patients with CHD were diagnosed
by coronary angiography in the hospital over two years.
One-hundred and seventy-four persons without CHD
comprised the control group selected from persons who came
for routine medical examination.  Serum samples from 172
patients with CHD and 174 persons with non-CHD were
obtained.  The ages of the patients ranged from 24 to 83 years
(mean: 53.9 years). Of the control group, the ages ranged
from 30 to 76 years (mean: 49.4 years).  Test samples must
be collected in the manner routinely used for analysis.
Freshly drawn serum from a fasting individual is preferred.
Plasma or serum samples should be physically separated
from contact with cells as soon as possible within two hours.
Tubes of blood are to be kept closed at all times in a vertical
position.  Serum samples were stored at +2°C to +8°C and
assayed within eight hours.

Clinical Chemistry 
Glucose reagent is used to measure the triglyceride concen-
tration by timed endpoint method.  In the reaction, hexo-
kinase catalyses the transfer of the phosphate group from
adenosine triphosphate to glucose to form adenosine diphos-
phate and glucose-6-phosphate.  The glucose-6 phosphate is
then oxidized to 6-phosphogluconate with the concomitant
reduction of β-nicotinamide adenine dinucleotide to reduced
β-nico-tinamide adenine dinucleotide by the catalytic action
of glucose-6-phosphate dehydrogenase.

Triglyceride reagent is used to measure the triglyceride
concentration by timed endpoint method.  Triglycerides in
the sample are hydrolyzed to glycerol and free fatty acids by
the action of lipase.  A sequence of three coupled enzymatic
steps using glycerol kinase (GK), glycerophosphate oxidase
(GPO) and horseradish peroxidase (HPO) cause the oxidative
coupling of 3,5-dichloro-2-hydroxybenzenesul-fonic acid
(DHBS) with 4-aminoantipyrine to form a red quinoneimine
dye.

High-density lipoprotein cholesterol reagent is used to
measure the cholesterol concentration by a time-endpoint
method.  In the reaction, the cholesterol esterase (CE)
hydrolyzes cholesterol esters to free cholesterol and fatty
acids.  The free cholesterol is oxidized to cholesterol-3-one
and hydrogen peroxide by cholesterol oxidase (CO).  Peroxi-
dase (HPO) catalyzes the reaction of hydrogen peroxide with
4-aminoantipyrine (4-AAP) and phenol to produce a
coloured quinoneimine product.

The Synchron LX System automatically proportions
the appropriate HDLC, TG and glucose samples and reagent
volume into a cuvette.  The ratio used is one part sample to
60 parts reagent of HDLC and to 100 parts reagent of TG and
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glucose.  The system monitors the change in absorbance at
520, 520 to 340 nanometers of HDLC, TG and glucose res-
pectively.  This change in absorbance is directly proportional
to the concentration of cholesterol in the sample and is used
to calculated and express the corresponding concentration.

At the same time, the concentration of TC and LDLC
were calculated according to the concentration of TG and
HDLC.

Low-density lipoprotein cholesterol was considered
high if the level exceeded 3.7 mmol/L or the individual was
on LDLC lowering therapy.  High density lipoprotein
cholesterol was considered low when under 0.6 mmol/L, TG,
TC and glucose level over 1.8 mmol/L, 5.7 mmol/L and 6.11
mmol/L respectively were considered high.

Choice of Parameters
Data on age, gender, smoking, alcohol, family history, blood
pressure, chest pain symptoms, ECG changes and serum
indices (TC, TG, LDLC, HDLC, glucose, calcium,
potassium, phosphorus, myocardial enzymes) were collected
from the hospital files of 346 persons (172 CHD patients and
174 non-CHD patients).  All indices were analyzed with a
stepwise method of linear discriminant analysis.  Finally,
only 6 indices including serum lipids (TC, TG, LDLC,
HDLC) glucose and age entered the model.  Although SVM
can easily tolerate more parameters, most of the features are
usually irrelevant for the classification task and only intro-
duce noise.  The precise order of features might change from
iteration to iteration.  Because of the multivariate properties
of the SVM algorithm, each feature ranking takes into
account (at least to some extent) correlations between single
variables.  Evaluating the classification performance at each
step makes it possible not only to identify a suitable subset of
descriptors but also to determine how many of them are
actually needed for a reliable classification. 

Linear Discriminant Analysis
Linear discriminant analysis is useful in building a predictive
model of group membership based on observed characteris-
tics of each case.  The procedure generates a discriminant
function (or, for more than two groups, a set of discriminant
functions) based on linear combinations of the predictor
variables that provide the best discrimination between the
groups.  The functions are generated from a sample of cases
for which group membership is known; the functions can
then be applied to new cases with measurements for the
predictor variables but with unknown group membership.

All of these approaches are analogous discriminant
function analysis used to determine which variables dis-
criminate between two or more naturally occurring groups.
If we code the two groups in the analysis as Group 1 CHD
and Group 2 non-CHD patients and use that variable as the
dependent variable in a multiple regression analysis, then we
would get results that are analogous to those we would obtain
via linear discriminant analysis. 

Support Vector Machine
What follows is a brief description of the SVM algorithm.
Overfitting of data can be avoided by limiting the complexity
of the models that the method can possibly generate.  A spe-
cific approach for controlling the complexity of the models is
given by the Vapnik-Chervonenkis (VC) theory and the struc-
tural risk minimization principle (26).  This is applied to the
training of a classification SVM by fitting of a hyperplane
such that the largest margin is formed between two classes of
chemicals while minimizing the classification errors.  Non-
linearity in a data set is accounted for with kernel functions,
which map the input vectors to some higher dimensional
space such that a hyperplane with reduced classification
errors can be found (27).  A major advantage is that opti-
mization problems resulting from SVMs have a global mini-
mum and can be solved with standard quadratic program-
ming tools.

Support vector machine is a learning system that uses a
hypothesis space of linear functions in a high dimensional
feature space, trained with a learning algorithm from the
optimization theory.  It attempts to minimize the upper bound
on the generalization error based on the principle of struc-
tural risk minimization (SRM) (28).  The decision function
implemented by SVM can be written as:

f (x) = sign 

Two typical kernel functions are listed below:

Polynomial function k

Radial basis function (RBF) k 

Training parameters γ and C were optimized using a
gradient decent-like algorithm to achieve maximum accuracy
of prediction for the validation set.  Parameter C is an inter-
nal parameter that is set prior to SVM training.  It defines the
trade-off between the separating margin and the penalty for
incorrect predictions (27). 

Training and Test Data Sets
The data set was split randomly into a 242-member training
set and an external prediction set of 104 cases.  Of the train-
ing set, there are 120 CHD cases, 122 non-CHD cases.  Of
the test set, there are 52 CHD and non-CHD cases respective-
ly.  The training set was used to adjust the parameters of the
models and the test set was used to evaluate its prediction
ability.  Leave-one-out (LOO) cross-validation was used to
prevent the network from overfitting.

Accuracy of Diagnostic Tests
Accuracy of a diagnostic test can be expressed through sen-
sitivity and specificity.  Sensitivity refers to the ability of a
certain diagnostic test to detect a particular disease.  It is ex-
pressed as the probability of testing positive if the particular
disease is truly present ie the probability of having both a
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positive test and a positive diagnosis.  Hence a test with 96%
sensitivity means that 96% of those with the disease will test
positive.  Specificity, on the other hand, refers to the proba-
bility of testing negative if the disease is truly absent.  In
other words, 96% specificity means that 96% of those who
are truly negative for the disease or problem will have a nega-
tive test while 4% of them will have a false positive test.

RESULTS
Since disease diagnosis is of great concern, positive pre-
dictive value was used to evaluate the models.  Table1 shows

the performance of SVM for the training and test sets.  The
prediction accuracy of training and test sets of SVM are
96.86% and 78.18% respectively while the prediction accur-
acy of training and test sets of LDA are 90.57% and 72.73%
respectively.  With the cross-validation, the prediction accur-
acy of SVM and LDA was 92.67% and 85.4%.

In general, in the two-group case we fit a linear
equation with LDA: 
Group 1 = -28.97 + 0.57 age + 1.36 × 10-3 TC  + 1.17 TG +
6.57 HDLC + 2.21 LDLC + 0.56 glucose
Group 2 = -19.58 + 0.4 age + 5.54 × 10-3 TC + 0.81 TG + 6.
18 HDLC + 2.69 LDLC + 0.3 glucose

Each variable has a different contribution to the above
equation (Table 2).  The interpretation of the results of a two-

Table 1:  Prediction accuracy rate of LDA and SVM methodology

LDA SVM (cost: 90  gamma: 0.06)
Training Test Total Training Test Total

Cross-validated 
grouped cases 89% 72.73% 85.4% – – 92.67%

Original grouped cases 90.57% 72.73% 86.59% 96.86% 78.18% 93.49%

specificity of 0.90 with 163 true positives, 158 true negatives,
16 false positives and 9 false negatives; applying LDA obtain
a sensitivity of 0.91 and specificity of 0.77, with 156 true
positives, 134 true negatives, 40 false positives and 16 false
negatives.

DISCUSSION
In general, LDA is a very useful tool for detecting the
variables that allow the researcher to discriminate between
different groups and for classifying cases into different
groups with a better than chance accuracy. However, the

Table 2:  F test of variables

F-value p-value

Age 164.675 0.000
TC 0.418 0.519
TG 4.943 0.027
HDLC 0.630 0.428
LDLC 2.653 0.105
Glucose 41.551 0.000

Table 3: Calculation of sensitivity and specificity for LDA and SVM
methodology

SVM LDA
+ – + –

Test results + 163 (TP) 158 (FP) 156 (TP) 134 (FP)
– 9 (FN) 16 (TN) 16 (FN) 40 (TN)

TP = number of true positive, FP = number of false positive, FN = number of
false negative, TN = number of true negtive

Sensitivity and specificity of SVM:
Sensitivity = TP/(TP + FN)
= 0.95
Specificity = TN/(TN + FP)
= 0.90
Sensitivity and specificity of LDA:
Sensitivity = TP/(TP + FN)
= 0.91
Specificity = TN/(TN + FP)
= 0.77

group problem is straightforward and closely follows the
logic of multiple regression.  Those variables with the largest
regression coefficients are the ones that contribute most to
the prediction of group membership.

The observation was confirmed in the results obtained
using SVM and LDA as shown in Table 3. Of the 172 CHD
samples and 174 normal samples, applying SVM with radial
basis function (RBF) yields a sensitivity of 0.95 and

prediction ability of the LDA method is much lower than
SVM . The quality of the SVM models depends on the kernel
type and various parameters that control the kernel shape.
Using a quadratic programming algorithm, SVM offers a
unique maximal separation hyperplane.  As other multi-
variate statistical models used in chemometrics, there are no
clear guidelines for selecting the optimum set of theoretical
parameters and decision function (kernel type and associated
parameters).  Therefore, the only practical way of finding an
optimally predictive SVM model is through extensive experi-
ments.  In this work, SVM training included the selection of
capacity parameter C, the corresponding parameters of the
kernel function.  Parameter C is a regularization parameter
that controls the trade-off between maximizing the margin
and minimizing the training error.  If C is too small, then

Support Vector Machines for Heart Disease



455Hongzong et al

insufficient stress will be placed on fitting the training data.
If C is too large, then the algorithm will overfit the training
data. But, literature indicated that prediction error was
scarcely influenced by C (29).  To make the learning process
stable, a large value should be set up for C first.  The kernel
type is another important one.  Because the use of SVM
models in chemometrics is only in the beginning, there are no
clear guidelines on selecting the most effective kernel for a
certain classification problem.  But for classification tasks,
you will most likely use C-classification with the RBF ker-
nel, because of its good general performance and the few
number of parameters (only two: C and γ) (30).  To select the
type of kernel function, which determines the sample distri-
bution in the mapping space, many studies indicated that the
radial basis function is commonly used because of its good
general performance and few parameters to be adjusted (30).
Therefore, in this work, the RBF was used, the form is as
follows: 

exp (– γ*

Where γ is a parameter of the kernel and u and v are two
independent variables. The γ of kernel function greatly
affects the number of support vectors which has a close
relation with the performance of the SVM and training time.
Too many support vectors can produce overfitting and make
the training time longer.  The γ also controls the amplitude of
the RBF function and, therefore, controls the generalization
ability of SVM.  Thus, to find the optimal parameter γ,
experiments were performed using a different value of γ with
the leave one out (LOO) procedure of the same training set
and the testing set.  For the training data set, the first group
of models, parameter γ was set in the range of 0.01 to 0.15
with 0.01 increment and C = 100.  The curve of training
accuracy and γ versus training accuracy is shown in Figure 1.
The low number of support vectors prompted the selection of
0.06 as the optimal value of the gamma.  In addition, to test

the effect of C, the second group of models using the same
training data set were obtained with capacity parameter C
from 10 to 150, every 10 and a certain γ = 0.06. The curve of
training accuracy and C value is shown in Figure 2.  It can be

2)u v−

Fig. 1: Training accuracy versus value of gamma from 0.01 to 0.15.

Fig. 2: Training accuracy versus value of C from 10 to 150.

seen from it that the selection of parameter C has some
influence on the performance.  The optimal C was found as
100 with a highest training accuracy of 92.67%.  The best
choices for C and γ of the SVM were 90 and 0.06 with the
support vector number of 48.  The test set was presented us-
ing the SVM model.  The mechanism of risk factors that has
been used in this study is a key step on development of CHD.

Dyslipidaemia is common in Type 2 diabetic patients
and is characterized by elevated TG and reduced HDLC (31).
Studies have indicated the role of high TG and low HDLC as
cardiovascular risk factors (32, 33).

The uptake of cholesterol by macrophages in the
arterial wall and the development of foam cells are facilitated
by oxidation of LDL which increases the affinity of LDL
particles for scavenger receptors on these cells (34).  Unlike
LDL receptors, scavenger receptors on macrophages are not
down-regulated by increased cellular cholesterol and rapid
accumulation of lipid may therefore occur, producing lipid-
laden foam cells and leading to the formation of athero-
sclerotic plaques (35).  High levels of HDLC are thought to
have protective effects against the development of athero-
sclerotic plaques and a low HDLC level is associated with
increased risk of CHD (36, 37).  Triglycerides level is often
inversely related to the level of HDLC (38, 39).  Although
TG does not accumulate in atherosclerotic plaques,
hypertriglyceridaemia is associated with an increased risk of
CHD and this may be a secondary consequence of the
atherogenic effects of low HDLC levels.  Several studies
have highlighted the impor-tance of elevated TG and low
HDLC levels in predicting coronary events in asymptomatic
subjects.  Levels of HDLC and TG, in addition to LDLC
levels and age were found to be independent risk factors for
myocardial infarction (40).  This gradient in risk is greater
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than that which could be predicted by analysis limited to
LDLC alone and demonstrates the importance of including
HDLC and TG levels in the assess-ment of CHD risk (41).
Observations may reflect that, as the absolute risk of CHD is
higher in patients with diabetes than in non-diabetic cohorts
(42) diabetes is associated with important quantitative and
qualitative changes in lipid and lipoprotein metabolism that
are likely to contribute appreciably to the excess CHD risk
allied with this condition.  In particular, the coexistence of
elevated plasma triglycerides, small, dense LDL and low
HDL cholesterol represents a lipid ‘triad’ that is highly
atherogenic.  While these lipid abnormalities are responsive
to therapeutic intervention, the majority of patients with
diabetic dyslipidaemia are under-diagnosed and this
necessitates an efficient diagnostic approach. If the serum
glucose is above the normal level for CHD patients, it will
accelerate atherosclerosis.  Diabetic glucose levels and im-
paired glucose tolerance can be maintained if ß-cell numbers
are reduced to < 20% of normal (43). 

From the above discussion, we can see that serum
lipids, glucose and age play key roles on CHD development.
SVM as a machine learning method has strong performance.
So we use SVM to classify CHD with several main risk
factors of CHD and gain good result. 

CONCLUSION
In the present work, age, serum lipid and glucose con-
centrations were used to build predictive models for the
diagnosis of CHD by the use of LDA and SVM.  Compared
with the results obtained by LDA, the model using SVM
exhibited a better predictive ability with the minimal mis-
classified number.  It showed that the SVM method based on
selected features can be used as a valid way for the diagnosis
of CHD.  More importantly, SVM was shown to be a very
promising tool for classification due to the embodying of the
structural risk minimization principle which minimizes an
upper bound of the generalization error rather than minimizes
the training error.  This eventually leads to better generaliza-
tion. In addition, there are fewer free parameters to be ad-
justed in the SVM, which made the model-selecting process
easy to be controlled.  Therefore, the SVM is a very effective
machine learning technique for the diagnosis of many
diseases. 
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