
Tamper-proofing Software Watermarks

Clark Thomborson Jasvir Nagra Ram Somaraju Charles He

Computer Science Department
University of Auckland

New Zealand
Email: cthombor,jas,rsom012,yhe007@cs.auckland.ac.nz

Abstract

We introduce a novel method called constant en-
coding, which can be used to tamper-proof a soft-
ware watermark that is embedded in the dynamic
data structures of a program. Our novel tamper-
proofing method is based on transforming numeric
or non-numeric constant values in the text of the wa-
termarked program into function calls whose value
depends on the watermark data structure. Under
reasonable assumptions about the knowledge and re-
sources of an attacker, we argue that no attacker can
be certain that they have altered our tamperproofed
watermark unless they take a risk of affecting program
correctness in some way that may be difficult to de-
tect. In this paper we also present a novel scheme for
representing a numeric value as a Planted Plane Cu-
bic Tree, and we describe how to use this scheme in a
particularly-effective implementation of our constant
encoding tamperproofing method.

1 Introduction

Anyone who tries to sell intellectual property in dig-
ital format will know (or quickly learn) of the ex-
istence of pirates who make unauthorised copies of
digital objects for personal use or on-sale. There are
several lines of defense against such pirates, for ex-
ample technological measures to prevent copying or
unauthorised use; legal measures (such as the Digi-
tal Millenium Copyright Act of the USA) to prevent
copying, unauthorised use, or on-sale; and social mea-
sures (such as advertising campaigns) to decrease the
motivation for piratical acts.

A related problem for a software producer is that
of reverse engineering, which is the process by which
a competitor may discover how to make a related soft-
ware product even though the design documentation
is not publically available. In an extreme case, the re-
verse engineer may take a copy of entire subroutines
or even an entire executable, incorporating these sub-
routines or executable into a competing product. In
many jurisdictions, such copying would be legally for-
bidden as a violation of the software producer’s copy-
right; however it can be difficult for the vendor to
discover that this violation has occurred.

In this paper we focus our attention on the tech-
nology of robust invisible software watermarks. The
robust property ensures that such watermarks are dif-
ficult for a pirate or reverse engineer to remove. The
invisible property indicates that these watermarks are

Copyright c©2004, Australian Computer Society, Inc. This pa-
per appeared at Australasian Information Security Workshop
2004 (AISW 2004), Dunedin, New Zealand. Conferences in Re-
search and Practice in Information Technology, Vol. 32. James
Hogan, Paul Montague, Martin Purvis and Chris Steketee, Ed.
Reproduction for academic, not-for profit purposes permitted
provided this text is included.

not designed to be apparent to the end-user. Instead,
the information in the watermark is intended to be
revealed only to a digital-rights management (DRM)
system that prevents or dissuades unauthorised use.
In some cases, the DRM system must operate au-
tonomously, for example if its intent is to prevent
unauthorised copying or use on a desktop PC. In
other cases, the DRM system is highly mediated by
humans, for example when the evidence from a wa-
termark detector is presented by an expert witness
in courtroom proceedings where a copyright violation
has been alleged.

Our preferred name for robust invisible water-
marks is Prevention Marks, to emphasise their role in
preventing unauthorised uses. There are three other
major categories of watermarks. Any robust visible
watermark is an Assertion Mark, used to make a pub-
lic claim to ownership or some other public assertion.
The results in this paper have some applicability to
Assertion Marks.

Fragile invisible marks, or Permission Marks,
should become illegible or invalid whenever the un-
derlying object is changed or copied. For example,
a DRM could use a Permission Mark to keep track
of the number of authorised copies that can be made
of a controlled object. The fourth and final class is
the Affirmation Mark, in which a visible fragile water-
mark serves as a seal of authenticity. In prior writing
(Nagra, Thomborson & Collberg 2002), we identified
these functional categories but gave them different
names. The tamperproofing techniques presented in
this paper will increase the robustness of watermarks;
hence they have little or no applicability to Permis-
sion Marks or Affirmation Marks.

1.1 Software Watermarking.

The process of software watermarking may be for-
mally described as follows. Let P be the set of all
legal programs in Java or some other fixed representa-
tion. We embed a robust watermark w into a program
P ∈ P, using embedder process E to produce program
Pw ∈ P such that w can be reliably located and ex-
tracted from Pw, using extractor X even after Pw has
been subjected to code transformations such as ob-
fuscation, translation and optimization (Collberg &
Thomborson 1999). In this paper we add a require-
ment of tamperproofing, so that the tamperproof ro-
bust watermark will also survive purposeful attacks
by a skilled reverse engineer.

Ideally, a Prevention Mark w should have a math-
ematical property that allows us to argue that w did
not arise by chance, but instead was embedded de-
liberately in the program. As an example of such a
property, w may be an integer x = pq that is a prod-
uct of two very large primes p and q. The person
who created this x can use standard cryptographic
techniques (RSA Laboratories 2002) to demonstrate

their knowledge of its factors, whereas attackers will
be unable to supply this proof of ownership.

If the mark w lacks a mathematical property it
may be escrowed, and fully revealed only during
courtroom proceedings where the authorship of the
mark is contested.

Some watermarks are of the “Easter Egg” variety:
they are only revealed when a specific input is pre-
sented to the program. To allow us to discuss such
cases formally, we define I as the set of all the input
sequences for programs in P. For example in Java the
input sequence may include key strokes, mouse strikes
and input from other inputs defined in Java and its
libraries. We will extend this formalism in Section
2. In the remainder of this section we briefly survey
technologies for software watermarking.

1.2 Static and Dynamic Watermarks.

Software watermarks may be embedded either in the
static representation of the program, or in its dynamic
execution state. Static watermarks can be detected
without running the program. This generally leads
to an inexpensive detection process. However static
watermarks are susceptible to attack by anyone of rea-
sonable skill in software analysis who gains access to
the detection system – this is typically a software pro-
gram. Such an attacker may be expected to analyse
the watermark detector to discover its operating prin-
ciples. Once these principles are known, the attacker
will generally be able to tamper with the watermark,
either by rendering it unreadable or by modifying it
to any desired value.

Static watermarks may be embedded in an
otherwise-unused data area of a program. Such marks
are trivially modified by anyone who knows how the
embedder searches for the mark. A checksum could
be included in the watermark, as noted in claim 8
of Holmes’407 (Holmes 1994), and such appendage
would provide a modicum of tamperproofing. A
successful attack on this tamperproofed watermark
would require two steps: modifying the watermark,
and modifying the checksum. However the second
step is hardly more complex than the first, and could
be trivially accomplished by any attacker who knows
(or can discover) the checksum algorithm. We note
in passing that a cryptographically secure checksum
algorithm could be employed in Holmes’ invention,
however then the secret key for the checksum must
be hidden somewhere. The search for this key (or
for a working implementation of the keyed checksum-
calculating algorithm) becomes a third step for our
presumed attacker. If the watermark detector is dis-
tributed to end-users, for example as part of a license
control system, then a skilled adversary will gener-
ally be able to access this extraction software for in-
spection, analysis, and modification of its checksum
calculation routines.

Moskowitz and Cooperman (Moskowitz &
Cooperman 1998) have patented a more advanced
tamperproofing method for static software water-
marks. In their technique, some portion of the
program code is encoded into a watermark that is
stored in some essential data area of the program, for
example a digital image. The watermark also con-
tains licensing information. Any attacker who makes
random modifications to the data that obliterate or
modify the licensing information, will almost cer-
tainly make random modifications to the portion of
the program code that is encoded in the watermark.
This will cause the attack to fail if the encoded code
portion is carefully chosen to be essential to normal
operation of the program. However, this method of
tamperproofing will not be resilient to an attack by

an adversary who is capable of analysing the tam-
perproofed code sufficiently to discover the encoded
portions of the code. For example, an adversary may
attach a debugger to the tamperproofed code. With
a debugger, an adversary may generally observe
program behaviour and outputs, whenever it makes
reference to specified regions in its static data areas.
An adversary may also observe any call to code
that is constructed on-the-fly by a decoding process;
once such a call is detected, the adversary may then
modify the tamperproofed program so that its code
region contains a static (unencoded) version of the
formerly encoded portion. Then the adversary may
freely distort the image containing the watermark
until the watermark is unreadable, without fear of
introducing “bugs” in program operation.

1.3 Dynamic Watermarks.

Collberg and Thomborson proposed a method of wa-
termarking software called dynamic data structure
watermarks (Collberg & Thomborson 1999). Such
watermarked programs build a special, recognisable,
data structure representing a particular graph w that
serves as a watermark. This watermark may be of the
Easter Egg variety, that is, it may be revealed by a
special input sequence k.

In this paper we will make many references to
the set of possible watermark graphs G available
to a dynamic data structure watermarking scheme.
The watermark w must be chosen from this set.
As noted by Collberg and Thomborson (Collberg &
Thomborson 1999), a good choice for G is the set of
planted planar cubic trees of a given size, say those
with 1000 leaf nodes.

A planted planar cubic tree (PPCT tree) has the
following properties:

1. The tree is embedded in the plane.

2. All vertices are either monovalent or trivalent.

3. A single vertex is distinguished as the root of the
tree.

4. The root is monovalent.

Whatever the specific choice of G, a fundamental
requirement on this set of graphs is that it be ef-
ficiently enumerable, in the following sense: G must
have a associated pair of encoding and decoding func-
tions (e, d), where the encoder function e of the codec
maps a set of integers N|G| onto the set G. The de-
coder d is the inverse of e, mapping elements of G

onto the the set N|G|. Here Nn denotes the set [0, n)
and n ∈ N is an integer. The pair (e, d) is referred to
as a “graph codec”.

The watermark embedder E uses the encoder func-
tion e to compute the graph w = e(x) encoding some
desired integer x, such as the x = pq example dis-
cussed above. A data-structure representation r(w)
of w is embedded by E into the program P . This
data-structure r(w) might be created fully only when
a specific keyed input k ∈ I is presented to the pro-
gram P .

We now have developed enough formalism to de-
scribe the main features of our new technology and its
predecessors. In Section 2 of this paper, we will com-
plete our formalisation of the watermarking processes
of embedding and extraction.

In our constant encoding method for tamper-
proofing watermarks, described fully in Section 3,
we introduce randomly-chosen dependencies between
the semantically-important operations of the water-
marked program and the representation of the water-
mark graph in the dynamic data structures built by

the program at runtime. Specifically, the introduced
dependencies are on the values of constants which, in
the original (untamperproofed) program are merely
loaded as integers (or other base type) from some
statically-defined area (such as the constant pool in
Java, or the constant-fields of individual instructions).
In the tamperproofed program, these constants are
decoded from the dynamic data structures of the pro-
gram. The areas being decoded into constants may be
part of the watermark w itself, in which case we have
introduced a true dependency on the watermarked
data structure r(w). We also introduce false depen-
dencies which are difficult for the attacker to distin-
guish from true dependencies, because the data struc-
tures r′ which are decoded into constants will closely
resemble the watermark r(w), or because these de-
pendencies are embedded in “dead code” guarded by
opaquely false predicates.

Palsberg (Palsberg, Krishnaswami, Kwon, Ma,
Shao & Zhang 2001) describes a somewhat related
tamperproofing method for dynamic data structure
watermarks. We discuss this method at the end of
Section 3.

In Section 4 we argue that reasonably-limited at-
tackers can only remove our tamperproof watermarks
if they risk making undiagnosable changes to program
correctness – unless the code being watermarked is so
simple as to be completely testable by the attackers.
However code that is simple enough to be completely
testable by the attackers could, presumably, be com-
pletely redeveloped in a “clean room” by these at-
tackers at reasonable cost. We note that watermark
protection would be of little practical importance in
such a case, and indeed it is unrealistic to expect to be
able to embed a tamperproof watermark on software
with a simple (and public, or easily discoverable) I/O
behaviour.

In Section 5 we conclude our paper with some sug-
gestions for future developments and enhancements.

2 Notation

As noted in the previous section, P is the set of all
legal programs in Java or some other fixed represen-
tation, and I is the set of all the input sequences for
programs in P. In a dynamic data structure water-
marking scheme, the watermark w must be chosen
from a set G of graphs. A pair of functions (e, d) is
referred to as a “graph codec”, where the encoder e
maps integers N|G| onto the set G, and decoder d is
the inverse of e. Here Nn denotes the set [0, n) and
n ∈ N is an integer.

The watermark embedder E uses the encoder func-
tion e to compute the graph w = e(x) which corre-
sponds to some desired watermark integer x. This
graph is then embedded into the program P . More
precisely, what is embedded in the program is some
representation r(w) of the graphical watermark w,
where r is a function r : G → S that maps graphs
in set G onto the set S of data structures that may be
used by programs in P. This mapping and its inverse
r−1 : S → G must be efficiently computable.

A suitable representation of graphs as members
of S makes use of the pointer-type data structures
that are commonly encountered in computer pro-
grams written in Java, C or C++. In numerical pro-
grams, one could represent a graph by an array of
integers, where the rows of the array represent the
nodes of the graph, and the columns of the array
represent the arcs of the graph. Many other repre-
sentations could be quickly devised and described by
anyone conversant with graph algorithms.

We require, of our graph representations, that they
specify some total order on the outgoing arcs at each

node. That is, there must be a “first” (according to
the total order) outgoing arc at each node that has
at least one out-arc. This constraint is easily satis-
fied by most common methods for representing graphs
in data structures. For example, in the pointer-type
data structure representation, the total order on the
outgoing arcs is defined by the order in which the
corresponding pointer references appear in computer
memory.

From this point forward in this paper, the term
graph refers to a directed graph, possibly discon-
nected, with a total ordering on the outgoing arcs
at each node.

We can now define the embedding function E used
in a data structure watermarking algorithm as fol-
lows:

E : P × N|G| × I → P (1)

This embedding function E(P, w, k) takes a pro-
gram P , a watermark integer w ∈ N|G| and a secret
key input sequence k and produces a Program Pw,
such that, when Pw is run on the key input k, it pro-
duces a data structure Sw such that d(r−1(Sw)) = w.

The corresponding extractor function

X : P × I → G (2)

takes a watermarked program Pw, runs it on a given
input i ∈ I and “de-represents” the data structure Sw

built by Pw, returning the graph r−1(Sw). When the
extractor is run on Pw and the special input k, the
watermark is revealed: d(X (Pw, k)) = w.

A degree of invisibility can be imposed by requir-
ing that, for at least some k′ 6= k, d(X (Pw, k′)) 6= w.
In some applications such extreme invisibility is irrel-
evant or unimportant, indeed it may be desirable to
build the watermark w before any input is received, in
which case the special input k is the (easily guessed)
null input sequence Φ.

An extreme degree of invisibility can be imposed
by using a watermark that has a Boolean-valued
recognition function X ′ but no efficient extractor
function X . Such recognition functions X ′(P, k′, w′)
return the value true (signifying recognition) only
when the watermark specified in their third argument
w′ matches the watermark found when program P
is run on input k′. Watermarks lacking efficient ex-
tractor functions are sometimes called private water-
marks. They generally suffer from the problem that
their robustness depends on the recognition value w
being a closely-held secret. For example, DRM sys-
tems based on private watermarks should not be re-
leased into any environment where an attacker might
discover the secret w by reverse-engineering, and then
use this knowledge (in a subtractive attack) to create
a pirated derivative product that does not bear the
watermark w.

The primary constraints on any tamperproof-
ing process are that it must not be too expen-
sive either in time or in space; and the recognition
properties (cost of recognition, visibility/invisibility,
fragility/robustness) of the watermark must not be
affected by tamperproofing. The goal of tamperproof-
ing a watermark is to make it economically infeasible
for a skilled reverse engineer to remove or modify the
watermark, where such removal or modification must
be guaranteed to preserve program correctness.

3 Tamperproofing

The main idea behind constant encoding is to replace
constants used in programs with a function f whose
value is dependent on the values of pointer variables

in the dynamic data structure S that contains the
watermark. We take special care to ensure that any
portion of S that will affect the value of our f , will
be properly initialised before any call is made to f .

We implement our constant encoding method with
an algorithm T : P × Z → P having the following
properties. Implementation notes on this algorithm
are presented later in this section.

1. The inputs to T are a watermarked program Pw

and an integer c.

2. The output of T is a modified program P ′
w with

the same watermarking behavior: for all inputs
i ∈ I

d(X (P ′
w, i)) = d(X (Pw, i)) (3)

3. Semantic Equivalence. The observable behavior
of P ′

w does not differ from Pw in any important
manner, that is, T preserves the semantics of the
program Pw without greatly changing its runtime
or consumption of system resources.

4. The algorithm T may be executed repeatedly,
until a desired amount of tamperproofing is
acheived.

5. The algorithm T selects a statement pc in Pw,
where pc is chosen uniformly at random from the
set of all statements using as c a constant.

6. The program P ′
w

constructed by T differs from
Pw at the statement pc, the constant-loading
portion of which is replaced by a function call
f(a1, a2, ..., an).

7. The arguments (a1, a2, ..., an) and the function
f are chosen appropriately by algorithm T , to
ensure that the result value of the function call
f(a1, a2, ..., an) is invariant over all execution
paths leading to this call. This guarantees the
semantic equivalence of P ′

w
and Pw, as required

by property (3) above.

8. Dependency property. One or more of the ar-
guments (a1, a2, ..., an) should be pointers into
the data structure S built by P ′w. These ar-
guments may reference areas of the data struc-
ture in which the watermark is embedded. The
desired property of the pointer arguments is to
provide tamperproofing of the watermark, in the
following sense: if the data structure is altered
indiscriminately by an attacker, in an attempt
to remove its watermark, then f() may evalu-
ate incorrectly and the program semantics may
change.

9. Many-to-one property. Randomisation (or other
means unpredictable to the potential attacker)
should be used in the selection of f , and of
the value of each its arguments (a1, a2, ..., an).
This random selection should be made over an
extremely large range of possible variants that
would evaluate to the same constant c; in math-
ematical terminology, the function f should be
many-to-one. The desired property of this ran-
domised selection process is to prevent any re-
verse engineer from building a small but compre-
hensive catalog, or other compact description, of
all f(a1, a2, ..., an) that may appear in a tamper-
proofed program.

10. One or more of the arguments (a1, a2, ..., an) may
be integer constants.

11. Resistance to protocol attack. The decoding func-
tion d used by the extractor function X should
be functionally present in the tamperproof wa-
termarked program, so that the watermark is re-
sistant to the protocol attack analyzed in Section
4.6.

12. Stealth and invariance properties of watermarked
data structures and decoys. The algorithm T
may, in an initial step, modify the program Pw so
that the modified program P ′

w
builds a modified

data structure S′ with the desirable properties
of stealth and invariance, described briefly be-
low. The data types and operations used to cre-
ate new regions of, or to modify existing regions
of, the data structure S of the original program
Pw should closely resemble the data types and
operations used to create the watermarked data
structure(s) in Pw. This stealthiness or close re-
semblance will make it difficult for an attacker to
distinguish the modified regions from the water-
marked regions. The desired invariance property
of S′ is that algorithm T , in any of its (possibly
repeated) applications, will have efficient means
of discovering (or recalling, by table lookup or
other means of memorisation) pointers or refer-
ences into S′ that have desirable values as ar-
guments of f , where these desirable values are
invariant over all execution paths leading to func-
tion call f .

13. Invariance property of f . The function f should
have a desirable invariance property such that al-
gorithm T , in any of its (possibly repeated) ap-
plications, will have efficient means of discover-
ing (or recalling, by table lookup or other means
of memorisation) pointers or references into S ′

whose variation, over all execution paths leading
to function call f , can not affect the value of f .
For example a function f would have the desir-
able invariance property if its value were unaf-
fected by the structure of the right-child descen-
dants (if any) of its first argument, where this
first argument is a reference to a representation
of node in a binary tree. This would be a desir-
able function for the tamperproofing of a region
of data structure S′ representing a node of a wa-
termark tree with a known (invariant) structure
in its left-child.

14. Variable dependency. The algorithm T should
have the capacity to modify the program Pw so
that the modified program P ′

w has a program
variable whose presence is necessary for correct
operation, with the property that the current
value of this variable is decoded by a function
call f of the form described above. Alterna-
tively, this modification to Pw may be done by
a human operator of T . The desired property
of this introduction of variable dependency is to
prevent an attacker from mounting a possible
“pattern-matching” attack on the tamperproof
watermarked program, as discussed in Section 4.
As an example of an introduced instance, a pro-
gram loop may be unrolled once, allowing a varia-
tion in program coding such that even-numbered
iterations of the loop require a “True” value of
a newly-introduced Boolean variable for correct-
ness, while odd-numbered iterations of the loop
require a “False” value for correctness.

15. Dead code property. The algorithm T should
have the capacity to modify the program Pw so
that the modified program P ′

w has function calls
f of the form described above in “dead code”

that will never be executed. This is another de-
fense against a pattern-matching attack.

3.1 Example

Consider the following trivial program that builds a
watermark w encoding the value 7.
public class A {

PPCT w; // w is our watermark
public void print () {

w = build_PPCT_watermark (7);
int a = 2;
System.out.println (a);

}
public static void main (String [] args) {

new A(). print ();
}

}

If the constant “2” were chosen for tamperproof-
ing, this trivial program might be revised as follows.
public class A{

PPCT w;
PPCT a1, a2, a3; // pointers into w
public void print (){

PPCT s; // a subtree of g
w = build_PPCT_watermark (7, a1, a2, a3);
// a1 , a2 , a3 are pointers into w
s = t(a1, a2, a3); // subgraph of w
a = d(s); // decode 2 from s
System.out.println(a);

}
public static void main (String [] args){

new A(). print ();
}

}

The revised program uses pointers a1, a2, and a3
into the watermark graph w as arguments to a func-
tion t whose implementation will be discussed later
in this section. The value of t(a1, a2, a3) is a PPCT
s with the property that d(s) = 2, where d is the de-
coding function of the watermark codec. In terms of
the generalised properties listed above for the tamper-
proofing algorithm, we have implemented the func-
tion f(a1, a2, ..., an) as the composition of the decoder
d and the PPCT-valued function t.

3.2 Implementation Notes

The first step in the implementation is to perform
an interprocedural flow analysis on Pw, to discover
one or more code segments (“dominators”) that are
guaranteed to execute prior to the execution of the
constant-loading statement pc. The next step is to in-
sert new program statements into one or more of these
dominating code segments, where these new program
statements have the effect of allocating new objects
in the program’s dynamic data structure, and set-
ting the pointer fields ai of these objects so that they
represent any desired graph as required to get the
appropriate constant value c as the result of evalu-
ating d(t(a1, a2, ..., an)). Some of these pointer fields
may refer to components of the watermark w that are
known to be constant over the entire program run. A
full set of such invariants on w would be difficult to
discover by any static analysis of Pw, however these
invariants could be recorded during the watermark-
ing process and transmitted as ancillary information
to the tamperproofing process.

For example, the watermark w may be in the shape
of a tree, in which case the ancillary information may
report that the subtree rooted at some node x will re-
main unchanged after the first execution of program
statement y. In this case the node x, or any of its
descendants, may be used as a constant-valued argu-
ment for an introduced function f that replaces the
constant-loading portion of any program statement
dominated by statement y.

The selection of an appropriate function f , and of
an appropriate set of arguments (a1, a2, ..., an), may
be deferred until the runtime of the tamperproofed
program P ′

w
. For example the constant-loading part

of a single program statement pc in the watermarked
program Pw may be replaced by a conditional pro-
gram statement, in which the second alternative is
executed in cases where an execution of the first alter-
native would not yield in a calculation of the desired
constant result c. A convenient “switch” to control
such case statements could be obtained by adapting
the path profiling algorithm of Ball and Larus (Ball
& Larus 1996). This, or some similar technique in
which a program may gather information about its
own path of execution, would allow the newly intro-
duced program variable(s) to control the evaluation
of f as well as to invoke any required initializations
of the data structure(s) referenced by its arguments.

The preservation of the watermark, and of all ob-
servable behaviour of Pw, can be guaranteed by us-
ing only semantics-preserving program transforma-
tions during the tamperproofing process, along with a
normal level of care for program efficiency so that the
tamperproofing does not result in an easily-observable
slowdown of program operations. A normal level of
care for program efficiency would generally include
the following measures if a program flow analysis re-
veals that pc may be executed multiple times.

1. The evaluation of f , in code replacing the
constant-loading portion of pc, may be hoisted
to some dominating program segment that is ex-
ecuted at most once.

2. The evaluation of f , in code replacing the
constant-loading portion of pc, may be guarded
by a predicate (initially true) dependent on one
or more newly introduced program variables.
The value of one or more of these newly intro-
duced program variables may be adjusted dur-
ing the first execution of the code replacing pc,
so that any subsequent executions of the code
replacing pc may reuse the result of an earlier
evaluation of f . Occasional re-evaluations of f
may occur (instead of a reuse of a stored con-
stant value) without noticeable impact on pro-
gram performance.

3.3 Possible inclusion of non-constant func-
tion evaluations f

Any program variable whose value is rarely updated
may be treated as a constant during the periods in
which it is unchanged. All evaluations of such a non-
constant variable may be replaced by an evaluation
of a function f as described above, if the data struc-
ture referenced by the arguments of this function is
modified every time the non-constant variable is up-
dated. For example, an evaluation pv of a variable
whose value is initially false, and whose value is set
to true after some point y in program execution, may
be replaced by a function evaluation on one or more
non-constant arguments whose values are varied by
newly-introduced program statements at point y in
the tamperproofed program.

3.4 Avoiding a Chicken-and-Egg Conundrum

As noted in the introduction, our tamperproofing
method bears some similarity to a method of ob-
fuscating and tamperproofing a watermark, which
was proposed several years ago by Palsberg et
al. (Palsberg et al. 2001). In Palsberg’s method, a
graph w′ is chosen from the same set G as the water-
mark w. A data structure representing the graph w′

is built at the very beginning of the execution of the
watermarked program; the code that builds this data
structure is added by Palsberg’s obfuscating and tam-
perproofing process. This data structure w′ is analo-
gous to our modified program data structure S ′.

Palsberg’s method also inserts opaque predi-
cates (Collberg, Thomborson & Low 1998) of the
form x==y or x!=y, where x and y are pointers into
w′. Opaque predicates that evaluate to the constant
value true are used to guard semantically-important
regions of the watermarked code; and opaque predi-
cates that evaluate to the constant value false are
used to guard spurious code, inserted during Pals-
berg’s method, that if executed would damage the
correctness of the watermarked code.

We believe that Palsberg’s tamperproofing is effec-
tive against transformative attacks by a limited ad-
versary, however an expert adversary who is able to
distinguish w from w′ may be able to (in Palsberg’s
words) “unravel the whole construction.”

Our constant-encoding method can be seen as a
greatly extended variant of Palsberg’s chicken-and-
egg method. Palsberg’s method encodes only the log-
ical constants true and false, and this encoding uses
only a simple function f that consists of an equality
test on two pointer variables. Our method encodes
any integer value, using much more complex functions
f of many variables.

Our method is sharply distinguished from Pals-
berg’s method, in that we are replacing constants that
occur in the watermarked code. By contrast, Pals-
berg introduces Boolean constants as guards (opaque
predicates) to the watermarked code.

Finally, and perhaps most importantly, our
method is sharply distinguished from Palsberg’s
method because (in one of the alternatives described
above) the value of our constant-encoding function
f may depend on portions of the watermark w tree
that are built unconditionally by code segments that
dominate the constant-loading statement pc. This is
a solution to Palsberg’s chicken-and-egg conundrum,
for in our method a (constant portion of) a watermark
w may be used to defend the code that modifies or
builds other portions of w.

3.5 Tree-Valued Functions

Our simplest tree-valued function has a single argu-
ment: t(ai) is the set of all data structure nodes reach-
able from ai with a depth-first search. Note that we
use the total ordering on the outgoing arcs from each
node to unambiguously define the depth first search.
Also, note that t(ai) is a sub-graph of the entire graph
represented by the data structure S built by Pw.

We define the intersection of two trees, t1 ∧ t2, in
the natural way. If either tree is null then the inter-
section is null. In general, if the root of t1 has j1
children and the root of t2 has j2 children, then the
root of t1 ∧ t2 has min(j1, j2) children. The structure
of the subtrees rooted at each of these children is de-
fined analogously, in a recursive fashion; for example
if min(j1, j2) > 1 then the leftmost child of t1∧ t2 has
min(j11, j21) children if the leftmost child of t1 has j11
children and the leftmost child of t2 has j21 children.

These ideas are illustrated in Figure 1. Part (a) of
this figure shows a graph whose nodes are labelled by
a depth-first search beginning at the node labeled 0
referenced by pointer a3. Part (b) of this figure shows
the tree t(a1). Part (c) shows the tree t(a2), and part
(c) shows the intersection t1 ∧ t2.

3.5.1 Masking Functions

Our simplest two-argument tree-valued function is
the “masking function” tm(a1, a2) defined as the in-

tersection of t(a1) and t(a2). We call tm() a mask-
ing function because the tree represented by its sec-
ond argument is used to “mask” (or filter) the nodes
in the tree represented by the first argument. We
note that generally t has the desired many-to-one
property for a large tree, which typically has many
subtrees whose intersection is a desired tree such as
the one in Figure 1. For example in this figure,
tm(a1, a2) = tm(a1, a3).

Note that the value of a masking function is gen-
erally insensitive to small variations in one or more
of its arguments. For example the value of tm(a, b)
is unaffected by any changes to the right-hand sub-
tree (if any) of its second argument b if its first argu-
ment a has no right-hand subtree. Thus this function,
with argument a known to have no right-hand sub-
tree, would be suitable for the tamperproofing of a
region of data structure S ′ representing a node b of a
watermark tree with an invariant left subtree and a
variable right subtree.

Extension 1. Any argument ai in a masking func-
tion may be replaced by an integer encoding a bi-
nary tree as a totally balanced sequence (see Exten-
sion 4 below). Thus many different argument lists
(a1, a2, ..., an) will generate the same constant c, in-
creasing the difficulty of pattern-matching attacks.

Extension 2. We define the union of two trees
analogous to the intersection operation, but replacing
min() by max() in the recursive definition. A mask-
ing function may then be any tree valued function
obtained by union and intersection. For example we
could define a three argument tm3 as

tm3(a1, a2, a3)
.
= (t(a1) ∧ t(a2)) ∨ t(a3) (4)

3.5.2 Boundary Functions

Our boundary function tb(r, a1, a2, ..., an) has a first
argument r defining a sub-tree t(r) using a depth-
first search. The remaining arguments (a1, a2, ..., an)
define nodes acting as “Boundaries” that cut off por-
tions of t(r) by the following algorithm.

1. Perform a depth first search to discover the nodes
of t(r), terminating the search whenever any
node in (a1, a2, ..., an) is encountered.

2. Return a tree composed of all nodes encountered
in the search, excluding the terminating nodes.

See Figure 2 for an example, showing
tb(a1, 3, 4, 6, 11).

5

9

7

12

2

1

10

The tree t(a1, 3, 4, 6, 11)

Figure 2: The tree t(a1, 3, 4, 6, 11) derived from the
data structure of Figure 1a.

Note that the list (a1, a2, ..., an) may contain nodes
that are not found in the search of t(r) and hence tb

is a many-to-one function. For example the tree in
Figure 2 can be encoded as tb(a1, 3, 4, 6, 11, 8). The
desired invariance property is also present in tb be-
cause one or more of the boundaries may be arbi-
trary references to watermarked portions of the data

5

96

7 8 10 11

12

2

1

2 4 5

3 96

7 8 10 11

12
12

1

2 4 5

0

6 9

117

3

8 10

13

a. A graph represented by a data
structure with arbitrary labels. b. The tree t(a1) c. The tree t(a2)

d. The tree t(a1) ∧ t(a2)

a1
a3

a2

Figure 1: Illustrating depth first search trees and their intersection.

structure, in any context where algorithm T has de-
termined that subtree t(r) is disjoint from the water-
marked portions of the data structure.

3.6 Encoding and Decoding Functions

We use well-known techniques from combinatorial
graph theory to design codecs that convert integers
into trees and vice versa. Two implementations of
these techniques will be described very briefly below.
Both implementations are based on PPCT trees.

It is easily shown (Kreher & Stinson 1999, Palsberg
et al. 2001) that PPCT graphs are enumerated by the
Catalan numbers Cn where

Cn =

(

2n − 2
n − 1

)

n
(5)

We define the set of all PPCTs with n leaves to
be Gn. Where the context is clear we suppress the
subscript n and write G instead of Gn. Also let Gn =
G1 ∪ G2 ∪ ... ∪ Gn.

3.6.1 Codec 1

The codec (d1, e1) was implemented by Yong He (He
2002), who corrected an erroneous term in the recur-
sive formulas of Palsberg et al. (Palsberg et al. 2001).
It ranks left-balanced trees higher than right-balanced
trees. The decoder d1 : Gn → N|Gn| is defined recur-
sively as follows:

d1(G) =

0
if |G| = 1

d1(G.L) ∗ CR + d1(G.R)

+
∑

L−1

i=1
CL−i ∗ CR+i

if |G| > 1

(6)
Here G.L and G.R are the left and right sub-trees

of G, with L = |G.L| and R = |G.R|.
Extension 3. In this extension, the decoder func-

tion d′
1 is defined as d′

1 : G → N|G|. This definition

allows the PPCTs to have a variable number of leaves.
Curiously, the same recursive algorithm is used for d′

1

as for d1, because there is no dependence on the num-
ber of leaves n in the recurrences presented above for
d1.

The recurrence relations above are rather time-
consuming to calculate for trees with hundreds or
thousands of leaves, because the arithmetic must be
performed to hundreds or thousands of bits of pre-
cision. Almost two bits of precision are required
for each leaf in a PPCT; for example, there are
C200 ≈ 2388 PPCTs with 200 leaves, so 388 bits of
arithmetic precision are required in the calculations
made by any codec for such trees. The calculation
d1(G.L) ∗ CR in the recurrence above requires one
high-precision multiplication per node in the tree.
Many additional high-precision multiplications are re-
quired to compute the summation in the third term
for d1(G).

Extension 4. PPCT graphs, and all other Catalan-
enumerable combinatorial objects, are in a 1-1 re-
lationship with the “totally balanced binary se-
quences”, for which a multiplication-free codec was
developed by Kreher (Kreher & Stinson 1999). This
codec builds up a two-dimensional table of dimension
n by n, using a Pascal-triangle recurrence involving
a single addition for each cell in the table, to encode
or decode an n-element sequence. The functions d1()
and e1() on n-leaf trees may be evaluated with O(n)
addition operations per function evaluation, after this
table is precomputed in O(n2) addition operations.

It would be reasonably straightforward to adapt
Kreher’s codec to operate directly on PPCT graphs,
although it seems somewhat easier to write linear-
time translation algorithms to convert a PPCT graph
into a totally balanced binary sequence and vice
versa. Indeed, such translation algorithms were de-
rived in Charles (Yong) He’s recent Master’s the-
sis on tamperproof software watermarks(He 2002),
even though Charles was not aware of Kreher’s
multiplication-free codec.

3.6.2 Codec 2

We have done some experimentation with an alterna-
tive codec (d2, e2) in which the PPCTs are enumer-
ated in order of increasing depth.

3.7 Choice of Arguments

We have conducted a series of Monte Carlo exper-
iments and proven various lemmas, of the sort de-
scribed briefly below, to verify that each integer con-
stant commonly occurring in a computer program
may be decoded (by the decoding functions described
in the previous subsection) from an extremely wide
range of arguments, for any of of the masking or
boundary functions described earlier in this paper.

For example if we choose a random integer x,
where x is uniformly distributed over the range [0,
C200 − 1], then the PPCT watermark w = e1(x) en-
coding this integer will have 201 leaves when Codec
1 is employed. If two nodes a and b are chosen uni-
formly at random from among the nodes of this ran-
domly chosen watermark tree, then the integer de-
coded from the simplest 2-input masking function
tm(a, b) will have a probability greater than 75%
of being either a 0 or a 1. This is easily verified
as a consequence of the following facts: there are
4002 = 160000 different ways of selecting two nodes a
and b from a tree with 201 leaves; there are more than
120000 different ways to select two nodes a and b such
that at least one of these two nodes is either a leaf or
a node at distance one from a leaf; and d1(tm(a, b))
will be a 0-1 integer whenever tm(a, b) is a tree with
one or two leaves.

Thus our simplest 2-input masking function
strongly exhibits the desired “many-to-one” property
for the commonly encountered constants zero and
one. Furthermore, because a zero is always decoded
by this function if one of its two arguments is a leaf
node, this function has the desired invariance prop-
erty.

Constants larger than “0” or “1” may be decoded
from trees as well, even though our Monte Carlo
experimentation shows that the many-to-one prop-
erty of the simplest 2-input masking function falls off
sharply with the size of the integer constant. For ex-
ample, with probability in excess of 90%, all integers
in the range 0 to 63 can be decoded by d1(tm(a, b)) for
at least one selection of a and b, where arguments a
and b are taken from the nodes of a randomly-chosen
201-leaf watermark tree w. Our alternative codec
(d2, e2) gives somewhat higher probabilities, although
the differences are generally not dramatic. Increasing
the size of the randomly-chosen tree w can greatly
increase the probabilities. Our results can be roughly
characterised as indicating that a randomly chosen
PPCT with n leaves can encode a randomly chosen
integer in the range 0 to n/3, with probability in ex-
cess of 90%. Integers encoded as unbalanced trees are
(unsurprisingly) less likely to be encodable than in-
tegers encoded as balanced trees, so our Codec 2 can
handle a slightly larger range of integers than Codec
1, for a PPCT of fixed size.

To decode large constants, with the desired many-
to-one property, the more complex masking and
boundary functions described in this article may be
employed. Alternatively, the well-known technique
of bit-string concatenation may be employed, for ex-
ample a 2-bit constant may be constructed by con-
catenating two 1-bit constants that are decoded indi-
vidually from trees referenced by simple masking or
boundary functions.

4 Security analysis

In order to facilitate a discussion of the strengths and
weaknesses of our tamper-proofing technique, we in-
troduce a more formal definition of an “attack”.

Let A : P → P be an “attack set”: a collection
of program transformations that an attacker has se-
lected for possible use against a watermarked pro-
gram. Any competent attacker will select a set con-
taining only transforms that are extremely likely to
preserve program correctness. This means the trans-
formed program a(Pw) should not differ in any obvi-
ous behavioural way from the original program Pw.
The rational attacker will also attempt to select only
transforms that are extremely likely to modify the
watermark, that is, d(X (a(Pw), k)) 6= d(X (Pw, k)).

We say that an attack is successful, if it modifies
the watermark and preserves program correctness.

The expert reader may note that our notion
of an attack set A is general enough to encom-
pass any semantics-preserving transformative attack,
subtractive attack, or additive attack (Collberg &
Thomborson 1999).

As noted in the previous section, users of our
tamper-proofing method should take reasonable steps
to prevent the attacker from learning our key input
k, our extractor function X , or our watermark inte-
ger w. This lack of knowledge will prevent the at-
tacker from being able to determine, with high con-
fidence, whether or not an attack was successful. An
optimal strategy for such knowledge-limited attack-
ers is to examine the watermarked program Pw to
the best of their skill, within their time and resource
constraints. The goal of this examination is to allow
the attacker to construct an attack set A for Pw that
maximizes the likelihood of a successful attack, if an
attack is chosen probabilistically from this set. Note
that an attacker who lacks knowledge of k may not
be able to construct a set containing a single attack
that will be successful against any k. Furthermore a
probabilistic choice on the part of an attacker is an
optimal strategy, according to an elementary game-
theoretic analysis, against a defender who may choose
a suitable watermarking scheme in partial knowledge
of the attacker’s eventual strategy. A similar analysis
shows that the defender should make a probabilis-
tic choice of their watermark, for any deterministic
choice will have little secrecy against to a knowledge-
able attacker.

We would expect any competent attacker to con-
duct a sequential attack, in which the attack sequence
consists of the selection of any available version of the
watermarked program, the definition (or redefinition)
of an attack set appropriate for the selected version,
the random selection of an attack from the set, the ap-
plication of the selected attack thereby creating a new
version of the watermarked program, an evaluation of
the success of the current attack, and a decision on
whether or not to continue the attack by repeating the
sequence. The continuation decision will depend on
the resources (time and computational budget) avail-
able to the attacker, and upon the attacker’s estimate
of the likelihood that they can correctly identify a de-
watermarked version of the program.

4.1 Attacks

There are several techniques that an attacker may
choose to use to remove a watermark embedded in
a program. One class of techniques involves altering
the embedded watermark graph itself. In order to
achieve this it is necessary to:

1. Replace all calls to f() by the constant value re-
turned by f().

2. Modify/remove the watermarked data structure
S.

Without our tamper-proofing, an attacker who
guessed or deduced the location of S and altered S in-
discriminately, could do so without endangering pro-
gram correctness. However an attacker who is faced
with a tamper-proofed program must find and remove
all functions f() that depend on the dynamic data
structure of the watermark; only then can the wa-
termark safely be changed. In terms of our model,
this means that a successful attack set can be con-
structed only after an attacker analyzes the program
sufficiently deeply to (reasonably accurately) list all
calls to f(). This analysis may be static, interpreta-
tive, or dynamic; it may also involve pattern match-
ing.

4.2 Static Analysis

One possible attack on a tamper-proofed P ′
w involves

a static analysis of the program to find the result
of a call to function f(). Such a “static analysis”
attack is unlikely to be feasible, because the value
returned by our function f() depends on the values
of pointers stored in dynamically-allocated objects,
and such functions are very difficult to analyze stati-
cally (Collberg et al. 1998, Palsberg et al. 2001).

4.3 Dynamic Analysis

A more powerful method of attacking the program is
available if the attacker is willing to execute a pro-
gram. If the attacker is able to recognize our tamper-
proofing function calls f() in the tamper-proofed pro-
gram P ′

w
, they may then observe the result computed

by this call to f() during a program run. We call this
a “dynamic attack” because it presumes that the at-
tacker is able and willing to execute and observe the
tamper-proofed code in its dynamic environment. Af-
ter successfully identifying the function return point,
and after accurately observing the constant result, the
attacker may replace the function call by a load of a
constant. The attacker must iterate this attack as
many times as we have iterated our tamper-proofing
method T , before all references to our modified data
structure S′ will be removed from the tamper-proofed
code P ′

w
. After all these references are removed, it

may be safe for the attacker to remove all code that
references or allocates objects of the same data type
as S′. This will successfully remove the watermark
w without damaging the semantics of Pw, so long as
the dynamic data structure watermark w is not built
from objects of some data type that already existed
in the unwatermarked program P .

Recall that our goal in tamper-proofing is to in-
crease the attacker’s uncertainty as to whether or not
they have successfully removed the watermark.

An expert and determined attacker could succeed
in a dynamic attack, if the watermark w and some
constant structure w′ in the modified data structure
S′ are the only structures that use a particular data
type that is recognizable to the attacker. Such at-
tacks could be frustrated by an additional process
step, prior to the iterative application of our tamper-
proofing method T . Our recommended process step
is the iterated use of an obfuscater to add many in-
stances of spurious code, guarded by an opaquely-
false predicate, before tamper-proofing. The dynamic
attacker, even after running such code under many
imaginable inputs and for a long time, will never gain
complete confidence that their attack set is likely to
remove all “live” references to objects of the data
type used for w and w′. Here we are relying on the
theoretically-sound notion of the undecidability of the

halting problem, and the practically-unsolved prob-
lem of creating a covering set of test inputs for any
reasonably-complex piece of real-world code.

4.4 Interpretative analysis

A closely-related possibility is an interpretive attack,
in which attacker seeks to discover the result of a
specific call to function f() by interpreting the state-
ments in f() on a virtual machine. Here we are distin-
guishing an interpretation on a virtual machine from
a dynamical execution of these same statements in an
actual run-time environment of Pw. In general, inter-
pretation takes much more time per statement than
a dynamic execution; however an interpretive envi-
ronment gives the attacker much more observational
and analytic access to the execution state and history.
The slower speed of the interpretation is a great liabil-
ity to an attacker, whenever the tamper-proofer con-
fuses the attacker (i.e. by opaquely-false predicates as
noted in the previous paragraph) about the liveness
of a code segment. We are not aware of any interpre-
tive environment that would give much assistance to
an attacker who wishes to visualize and analyze the
graphs (such as planted plane cubic trees) that may
be represented by a segment of a dynamic data struc-
ture. The effort required to construct and maintain
such an environment is, we tentatively assert, a sig-
nificant barrier to a successful interpretive attack on
our tamper-proofed watermark. Our tamper-proofing
is modestly potent even against such expert and well-
resourced attackers, because our tamper-proofing in-
troduces a data structure that closely resembles the
watermark w.

4.5 Pattern-Matching Attacks

Any of the attacks listed above may involve some pat-
tern matching on the static representation of the pro-
gram, in which an attacker hypothesizes (and even-
tually discovers) a pattern or other distinctive signa-
ture of all function calls f() inserted by the tamper-
proofing.

Pattern-matching on the static representation of
a program may be employed in conjunction with a
dynamic or interpretative analysis, in which the at-
tacker observes the operation of the program using
a debugger or other means, to discover the value re-
turned by every f() that is recognised by the current
pattern-matching hypothesis. Any hypothesized f()
which returns a non-constant value, over all observa-
tions, is evidence against the current hypothesis. The
hypothesis may then be adjusted to be consistent with
all observations to date. At any point, the attacker
may choose to test the hypothesis by replacing all
f() with a best-guess constant value. If the modi-
fied program seems to work accurately, the attacker
may subsequently modify the watermark without any
immediately-obvious damage to program correctness.

To counter this pattern matching attack, the func-
tion f should be a many-to-one function, so that dif-
ferent occurrences of the same constant c may be re-
placed by calls to function f with different parame-
ter lists. Another defense, noted in point 14 of Sec-
tion 3, is the introduction of calls to f() that produce
non-constant values during program runs. For exam-
ple, when a constant 0 is required in the program,
this may be computed as the sum f(y) + f ′(y) where
these two calls to f() produce different values x and
−x on different program runs. Such non-constant f()
would complicate a pattern-matching attack, for an
attacker must recognise a source code sequence com-
puting f(y)+f ′(y), for any y, as a pattern that always
produces a 0. This idea may be extended indefinitely,

in an “arms race” where the defender introduces pat-
terns with z > 1 variables to counter an attacker who
can recognize patterns with at most z variables. This
arms race is moderated by the commonly-encountered
tradeoff between security and performance.

If the runtime complexity of the constant-loading
functions were doubled, for example by using f(y) +
f(y′) instead of f(y) to compute a constant, then
only half as many of our watermark “guard” func-
tions could be executed in any program run. At
present, our technique is so novel that no attacker
is likely to recognize a complex pattern. Thus we be-
lieve that early applications of our technique should
guard watermarks with as many simple guards as
possible without unacceptable performance degrada-
tion. More complex guards should be employed when
pattern-matching attack tools have become easier and
more attractive to build, that is, after many programs
have been protected by our method.

4.6 Protocol Attacks

We close our security analysis by considering a “pro-
tocol attack” on the unmodified program Pw. The
goal of this attack is to thwart a definitive (court-
room) identification of the embedded watermark, by
constructing a false decoder d′ 6= d, and perhaps a
false input k′ 6= k, such that the watermarked pro-
gram Pw seems to bear a spurious watermark w′ 6= w
claimed by the attacker.

A novel feature of our tamper-proofing technique
is that it embeds the watermark-decoding function d
into the watermarked program. This will enable a de-
fender’s expert witness to persuasively argue that d
is the appropriate decoder for the watermark in Pw.
An attacker cannot plausibly lay claim to an arbitrary
decoder d′, although they might successfully make a
spurious claim to some d′ that is a subroutine of our
d. Thus the protocol attacker must find a d′ very sim-
ilar to the true decoder d, and an input sequence k′,
with the property that d′(X (Pw, k′)) = w′ = p′q′ 6= w
for large primes p′ and q′. The probability of success
in this endeavour is exceedingly remote, unless the
attacker has very detailed knowledge of how water-
marks are built dynamically by Pw. Even with this
knowledge, the attack is very unlikely. Thus, unless
a defender is foolish or careless enough to reveal the
secret primes p and q used to construct watermark w,
they can be confident of surviving a protocol attack
on Pw in the courtroom.

5 Conclusion

In this paper we have formally defined the problem
of tamperproofing a software watermark. We have
described an implementation of our “constant encod-
ing” solution to this problem. We have briefly de-
scribed the results of our feasibility study (consisting
of extensive Monte Carlo experimentation and some
lemma-proving), showing that commonly occurring
constants in computer programs can indeed be re-
placed automatically, by a random selection from a
very wide range of possible function calls and argu-
ments. Our security analysis indicates that our solu-
tion would indeed be tamperproof to a reverse engi-
neer who can perform only a static analysis; and that
a long series of dynamic analyses would be required
to safely remove the watermark. We have argued,
somewhat less convincingly, that our solution would
also be resistant to pattern-matching attacks. We ex-
pect to be able to mount a more convincing argument
after we have completed a prototype full implemen-
tation. Then we can tamperproof a few sample wa-
termarked programs, and we can ask some talented

reverse engineers to try to remove or modify these
watermarks without damage to program correctness.
We believe that such human-factor experiments are
required to properly evaluate the security of any real
system; theoretical arguments in favour of security
are always limited by ad hoc assumptions about the
skill, knowledge and resources of the attacker.

References

Ball, T. & Larus, J. R. (1996), Efficient path profiling,
in ‘Proceedings of the 29th Annual IEEE/ACM
International Symposium on Microarchitecture
(MICRO-29)’, pp. 46–57.

Collberg, C. & Thomborson, C. (1999), Software
watermarking: Models and dynamic embed-
dings, in ‘Principles of Programming Languages
(POPL’99)’, San Antonio, TX, pp. 311–324.

Collberg, C., Thomborson, C. & Low, D. (1998),
Manufacturing cheap, resilient, and stealthy
opaque constructs, in ‘Principles of Program-
ming Languages (POPL’98)’, San Diego, CA,
pp. 184–196.

He, Y. (2002), Tamperproofing a software watermark
by encoding constants, Master’s thesis, Comp.
Sci. Dept., Univ. of Auckland.

Holmes, K. (1994), ‘Computer software protection’,
US Patent 5,287,407. Assignee: International
Business Machines.

Kreher, D. & Stinson, D. (1999), Combinatorial Al-
gorithms, CRC Press LLC.

Moskowitz, S. A. & Cooperman, M. (1998), ‘Method
for stega-cipher protection of computer code’, US
Patent 5,745,569. Assignee: The Dice Company.

Nagra, J., Thomborson, C. & Collberg, C. (2002),
A functional taxonomy for software watermark-
ing, in M. Oudshoorn, ed., ‘Proc. 25th Aus-
tralasian Computer Science Conference 2002’,
ACS, pp. 177–186.

Palsberg, J., Krishnaswami, S., Kwon, M., Ma,
D., Shao, Q. & Zhang, Y. (2001), Experi-
ence with software watermarking, in ‘Proc. 16th
Ann. Comp. Security Applications Conf. (AC-
SAC’00)’, IEEE Computer Society, pp. 308–316.

RSA Laboratories (2002), ‘Public-key cryp-
tography standard (PKCS) #1 v2.1’,
ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-
1/pkcs-1v2-1.pdf.

