
The Australian Digital Technologies Curriculum: Challenge and
Opportunity

Katrina Falkner Rebecca Vivian Nickolas Falkner
School of Computer Science
The University of Adelaide
Adelaide, South Australia

Firstname.lastname@adelaide.edu.au

Abstract
There is a call for change in the treatment of ICT
curriculum in our schools driven by the relatively recent
acknowledgement of the growing importance of ICT in
industry and society, and the need to empower youth as
producers, as well as consumers, of technology. ICT
curriculum in previous incarnations tended to focus on
ICT as a tool, with the development of digital literacy as
the key requirement. Areas such as computer science (CS)
or computational thinking were typically isolated into
senior secondary programs, with a focus on programming
and algorithm development, when they were considered at
all. New curricula introduced in England, and currently
under debate within Australia, have identified the need to
educate for both digital literacy and CS, and the need to
promote both learning areas from the commencement of
schooling, Foundation (F) to year 12.

In this paper, we discuss the main trends and learning
objectives of these new curricula, identifying key areas
requiring further research and development by the CS
Education community. We undertake a review of current
research in CS Education within the F-12 context, to
identify research that can guide effective implementation
and provide opportunities for further research. .
Keywords: National curriculum, computer science,
informatics, education, primary school, high school.

1 Introduction
Over the last decade, the need to rethink our education
systems in terms of the treatment of computer science
(CS) and information technology has gained global
attention (Gander et al., 2013; Seehorn et al., 2011; The
Royal Society, 2012). We struggle to attract potential
students and to promote CS as a creative, engaging
career, despite the growing need for CS professionals.
Recent US statistics indicate that only 2% of SAT takers
intending to pursue college degrees intend to major in CS
(College Board, 2012). The “Shut down or restart?”
report by The Royal Society (2012) states: “despite the
near-ubiquity of computer technology, there is now a
dwindling interest in studying Computing at school”.

Copyright © 2014, Australian Computer Society, Inc. This
paper appeared at the 16th Australasian Computing Education
Conference (ACE 2014), Auckland, New Zealand, January
2014. Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 148. J. Whalley and D. D’Souza,
Eds. Reproduction for academic, not-for-profit purposes
permitted provided this text is included.

Considerable research has explored the reasons behind
this disparity, focussing on negative career perceptions,
the identity issues caused by the confusion of CS with the
simplistic application of ICT tools (Schulte et al., 2012),
gender differences (Henwood, 2000) and other
stereotypes (Jepson & Perl, 2002).

Over the past decade we have witnessed a transition in
ICT education from ICT as a tool - with the development
of digital literacy as the key requirement - moving toward
understanding the underpinning concepts and workings of
ICT. Areas such as CS or computational thinking were
typically isolated into senior secondary programs, with a
focus on programming and algorithm development, when
they were considered at all. Despite the recognised need
for CS education, schools are “failing to provide students
with access to the key academic discipline of CS, despite
the fact that it is intimately linked with current concerns
regarding national competitiveness” (Gal-Ezer and
Stephenson, 2009).

Recent reports from the US and Europe have argued
that it is essential that children be exposed to CS concepts
and principles from the very start of their education so
that “every child [may] have the opportunity to learn
Computing at School” (Gander et al., 2013; Wilson &
Guzdial, 2010). This is a driver for CS to be taught in
school, as early as the first year. Encouraging students to
engage in current technologies and participate as creators
of future technologies requires more than teaching the
fundamentals of digital literacy – familiarity with the
tools and approaches to interact with technology. We
must also teach computational thinking, the problem
solving processes and intellectual practices needed to
understand the scientific practices that underpin
technology. Without this, we face the risk of our youth
being placed in the position of consumers of technology
produced elsewhere, unable to actively participate as
producers and leaders in this field (Gal-Ezer &
Stephenson, 2009; Gander et al., 2013).

However, these reports stress that students would
benefit from education in CS as an independent scientific
subject on par with learning areas such as Mathematics or
English (Gander et al, 2012). It is essential that our
education systems evolve, requiring the clear articulation
of CS as a distinct discipline, including integrating CS as
a fundamental learning area across curricula, and
exploring the societal and cultural impacts of technology.

New curricula introduced in England (Department for
Education, 2013), Australia (ACARA, 2012), New
Zealand and the new ACM CS standards (Seehorn et al.,

Proceedings of the Sixteenth Australasian Computing Education Conference (ACE2014), Auckland, New Zealand

3

2011) have identified the need to educate for both digital
literacy and CS, and the need to promote both learning
areas from the commencement of schooling through to
high school, to support youth in participating in an
increasingly digital society. While this movement has
many positive aspects, the introduction of such curricula
poses many challenges for those involved: appropriate
and inclusive development for teachers, research into
pedagogy and approaches, and integration with current
efforts in CS education that span primary-secondary
education, and integration into further study.

In this paper, we provide an overview and discuss the
core learning objectives of two new curriculum
documents that introduce CS as a learning area:
Australia’s proposed Digital Technologies curriculum
and England’s computing curriculum. Additionally, we
undertake a review of current research in CS Education
within the primary and secondary context. Our goal is
both to identify key sources of information that may be
used to guide effective implementation, as well as
identifying areas of research that have been insufficiently
researched to date.

2 Next Generation ICT Curricula
Different terminology has been applied to identify the
study of this discipline. For example computer science is
used in the US (Seehorn et al., 2011), informatics in
Europe (Gander et al., 2013), computing in England
(Department for Education, 2013) and computational
thinking or even ICT have been used in curriculum
discussions. Australia introduces this learning area as the
digital technologies. To demonstrate the variety of
terminology, we draw on 71 articles later analysed in this
paper, presenting the most frequent words (frequency
increased by text size) used by authors to describe the
discipline. For consistency, we have chosen to use the
term computer science (CS), unless referring to particular
curricula.

Figure 1: 25 most frequent words used to describe the

discipline across 71 papers

2.1 The Australian National Curriculum
The Australian primary and secondary school system is
undergoing a significant period of change, with the
introduction of a National Curriculum. In Australia
primary school includes the first year of school, called
Foundation (F) followed by year 1, and so on, until year 6
or 7, (depending on the state) and secondary school (also
known as high school) includes years 7 or 8 to year 12. In

2013, the Australian Curriculum Assessment and
Reporting Authority (ACARA) released a series of draft
curriculum standards for the national curriculum that is to
be introduced across Australia in 2014. The curriculum
introduces new learning areas with considerable effort
committed in the definition of the curriculum and
national achievement standards for each area. Some
learning areas have achievement standards defined from
F-12, while others, including ICT, have achievement
standards defined from F-10, with decisions in the senior
years of schooling to be defined at a later stage.

‘The Shape of the Australian Curriculum’ (ACARA,
2012), identifies that “rapid and continuing advances in
ICT are changing the ways people share, use, develop and
process information and technology, and young people
need to be highly skilled in ICT”. The ACARA
documents include ICT awareness (digital literacy) as a
key capability, embedded throughout the curriculum, and
additionally introduce a new learning area, Technologies,
combining the “distinct but related” areas of Design and
Technologies and Digital Technologies (DT) (ACARA,
2013). DT explicitly addresses computational thinking
and the use of digital systems and data, spanning
representation, abstraction, algorithmic design,
fundamental programming, requirements analysis and
cultural impacts of technology.

An information report released by ACARA states that
the DT curriculum does involve some (CS) knowledge
and skills, as well as some digital solutions (possibly
involving programming and CS concepts) but the
intended focus is on developing computational thinking,
logic and problem solving capabilities (ACARA, 2013).
The DT curriculum is based on a systems thinking
approach, designed to encourage students to understand
the individual parts of the system, while also being
capable of having a holistic view of the, including ethical,
societal and sustainability considerations.

DT focuses on developing knowledge of digital
systems, information management and the computational
thinking required to create digital solutions. The core is
the development of computational thinking skills:
problem solving strategies and techniques that assist in
the design and use of algorithms and models. The
Australian Curriculum describes the nature of learners
and curriculum across three broad year-groupings:
Foundation to Year 2 (ages 5-7); Years 3 to 6 (ages 8-11);
and Years 7 to 10 (ages 12-16).

Approaches to teaching vary according to these year-
groupings. The development of both digital literacy and
computational thinking commences in the F-2 band. In F-
2, learning is based around directed play, facilitating
students in developing an understanding of the
relationship between the real and virtual worlds, the use
of technology in communication, and the importance of
precise instructions and simple problem solving in the
digital world. In 3-6, students are guided to develop a
wider understanding of the impact of technology,
including family and community considerations, and are
able to work on, and communicate about, more complex
and elaborate problems. Across 7-10, students move
beyond their initial community and are required to
consider broader ethical and societal considerations. In
this band, students should be able to solve sophisticated

CRPIT Volume 148 - Computing Education 2014

4

problems using technology, and understand complex and
abstract processes. This development from F-10 supports
the understanding of the utility of technology, as well as
the development of problem solving skills and an abstract
understanding of CS.

The eight key concepts that underpin the DT
curriculum are allocated to one of two strands:
‘Knowledge and Understanding’ and ‘Processes and
Production Skills’.

2.1.1 Knowledge and Understanding
The Knowledge and Understanding strand builds
awareness of digital systems and digital information. This
includes the impact of digital technologies upon societies
and relationships between these technologies and a
society, exploring ethical and cultural considerations,
from both a local and global perspective. The following
sequence of learning objectives explores how an
understanding of digital representation is developed
across the curriculum:

• F-2: Recognise and play with patterns in data
and represent data as pictures, symbols and
diagrams.

• 3-6: Explain how digital systems represent
whole numbers as a basis for representing all
types of data.

• 7-10: Explain how text, audio, image and video
data are stored in binary with compression.

2.1.2 Processes and Production Skills
In Processes and Production Skills, students explore how
to solve computational problems, involving developing
skills in “formulating and investigating problems;
analysing and creating digital solutions; representing and
evaluating solutions; and utilising skills of creativity,
innovation and enterprise for sustainable patterns of
living” (ACARA, 2013).

The following presents an example sequence of
learning objectives designed to introduce algorithmic
planning:

• F-2: Follow, describe, represent and play with a
sequence of steps and decisions needed to solve
simple problems.

• 3-4: Design and implement simple visual
programs with user input and branching.

• 5-6: Follow, modify and describe simple
algorithms, involving sequence of steps,
decisions and repetitions that are represented
diagrammatically and in plain English.

• 7-8: Develop and modify programs with user
interfaces involving branching, repetition or
iteration and subprograms in a general-purpose
programming language.

• 9-10: Collaboratively develop modular digital
solutions, applying appropriate algorithms and
data structures using visual, object-oriented
and/or scripting tools and environments.

The processes and production strand encapsulates the key
concepts of computational thinking and presents
challenges to us as a community in how we develop
relevant skills within the younger age-groups.

2.2 The National Curriculum in England
England’s new National Curriculum, to be introduced in
2014, places the education of computing across two main
learning areas: “computing”, and the study of “design and
technology”. Computing as a discipline is a required
study element across the curriculum, while the study of
design and technology is a required component across
Stages 1-3, addressing primary and junior secondary
education. At Stage 4 (years 10-12) students may elect to
study an information technology topic in-depth.

Computing: The Computing curriculum explicitly
targets the development of CS skills, including the
understanding of fundamental CS concepts, the ability to
analyse problems and develop computer programs to
solve those problems and the evaluation of information
technology solutions. At Stage 1 (years 1-2), students will
have direct exposure to programming languages,
including skills in creating and debugging simple
programs, as well as cyber-security and digital literacy.
At Stage 2 (years 3-6), students develop more complex
programming skills, including decomposition, iteration
and selection, logical reasoning and error detection. At
Stage 3 (years 7-9) move to a more abstract level,
exploring computational abstractions that model real-
world problems, sorting and searching algorithms, use of
two or more programming languages, modularity and
decomposition, and digital representation.

Design and Technology: At Stage 1 (1-2), students
explore designing, making and evaluating technology,
with an emphasis on physical structures and, where
appropriate, ICT. At Stage 2 (3-6), digital literacy and CS
become more prominent, incorporating the use of
modelling tools and computer aided design, and the
ability to programme in order to monitor and control
products as a key technical knowledge component. At
Stage 3 (7-9), this development is elaborated through
elements of digital literacy (computer-based tool usage,
digital presentations and modelling) and CS (applying
their knowledge of computing to embed intelligence in
products, with reasoning about explicit inputs and control
outputs), along with a deeper understanding of the social
and ethical impacts of technology, and consideration of
culture and user needs within design.

2.3 Discussion
Both the Australian and English curricula integrate digital
literacy and computational thinking from the Foundation
year level. While the English curriculum focuses
explicitly on programming and programming languages,
the Australian curriculum introduces programming
through a focus on the problem solving abilities required.
In addition, the Australian curriculum introduces digital
representation at an early point, with a stronger focus on
understanding data. The English curriculum focuses on a
stronger understanding of abstraction, and more advanced
software decomposition and design methodology.

The challenges faced by both nations in the adoption
of these curricula are extensive. Consultation with
Industry, Community and Education within Australia
(ACARA, 2013b) has identified significant concerns in
relation to teacher development (particularly at F-7),
appropriate pedagogy, and skills needed for integration of

Proceedings of the Sixteenth Australasian Computing Education Conference (ACE2014), Auckland, New Zealand

5

DT learning objectives with the teaching of other learning
areas. 55% of respondents indicated concern with the
manageability of the implementation of the DT
curriculum, while 45% of respondents did not think that
the learning objectives were realistic.

Support for the professional development of teachers
is crucial in expanding CS curricula, including the
creation of community networks to share insights and
pedagogical approaches and research (ACARA, 2013b;
Gander et al, 2012). Bell, Newton, Andreae, and Robins
(2012) describe the New Zealand experience of the rapid
introduction of a senior secondary CS curriculum, and the
need for extensive teacher development that addresses
both content knowledge and pedagogical knowledge.
Ragonis, Hazzan, and Gal-Ezer (2010) identify best
practice as the development of a dedicated teacher
development programme specifically addressing CS.
They recommend that a critical element of such programs
is to use empirical research to guide appropriate
pedagogy for specific year bands, and learning objectives.

However, in addressing the learning of CS or
computational thinking from the Foundation year
onwards, do we as a community fully understand the
pedagogy that is needed? As a community, there have
been many efforts over recent decades devoted to
exposing pre-tertiary students to CS and programming,
via initiatives such as CS4HS (Google, 2013), CS4FN
(CS4FN, 2013), Georgia Computes! (Georgia Tech,
2012), or with resources like CS Unplugged (Computer
Science Unplugged, 2013). These efforts are often
implemented with the aim of changing stereotypes and
encouraging participation in non-traditional student
groups. CS is a young field, and there is much to learn
about how to integrate computational thinking principles
and digital literacy concepts with traditional early
education pedagogy. This presents a considerable
challenge to the CS Education community, but also an
opportunity for us to reassess the direction of our research
and explore the open research questions ahead of us.

3 Computer Science Education Research
How can we use existing findings to inform the
implementation of the DT learning objectives? Our
approach is to review the existing literature within CS
education in the context of F-12, exploring the following
questions:

• What research exists to guide teaching CS to
students aging from 5 years to 18 years?

• Which methodologies have researchers used?
• Which DT concepts do the studies investigate?

4 Methodology
There have been a number of surveys examining the
literature in CS education. Fincher and Petre (2004) and
Pears et al. (2007) explore the different subfields within
CS education research. More recently, Malmi et al.
(2010) have undertaken a review characterising CS
education research according to the type of research
undertaken, specifically exploring associated theories and
frameworks, research purpose and data collection.
Sheard, Simon, Hamilton, and Lönnberg (2009) report on
a survey of CS education within introductory

programming, identifying common trends and limitations
of the current research. They identify that investigating
student learning in terms of established theories of
learning are rare, and deserving of more research
attention. Most relevant to this work is the
methodological review of Randolph (2008) of program
evaluations in F-12, published prior to 2005, which
resulted in the identification of 29 reports. The majority
of the evaluation reports related to US studies, and only 3
of the reports were set within the F-6 context.

We adopted Simon’s classification system as it was
suitable for our purposes, has been applied to a number of
computing education conferences (Simon, 2007, 2008;
Simon, Carbone, et al., 2008; Simon, Sheard, et al.,
2008). The approach has been validated previously with
fairly consistent results, with the exception toward
difficulty in identifying ‘topic’ (also referred to as
‘theme’ in Simon, Carbone, et al., 2008). In the following
section we describe the instruments used and elaborate on
the classification processes along with our search process.

4.1 Analysis Procedure
We have reviewed existing research papers about CS

Education implemented for children between the ages of
5 and 18. We undertook a semi-systematic literature
approach to review each paper 1) by classification, using
Simon’s system (Simon, 2007) to determine context,
topic, scope and nature; 2) identify the subject matter
taught that aligns with the Australian key concepts for the
Digital Technologies curriculum; 3) to identify the age
group studied; and 4) to identify data collection methods
reported. We used software tools EndNoteX5 and NVivo
10 to organise our classifications and to “code” papers.

While Simon’s system has been broadly applied across
CS-related conference proceedings, we have a particular
focus on research that appear in journals and conference
proceedings about CS Education for 5-18 year olds. We
explain how our specifications relate to Simon’s process
below and identify those that emerged in our analysis of
the field in the Results section. We briefly describe each
dimension in the system, however, for a thorough
description of Simon’s classification see Simon (2007).

Simon’s scheme classifies papers across four
dimensions, which include: topic, context, scope and
nature. The topic dimension describes what the paper is
about, for example ‘ability/aptitude’, ‘curriculum’ or a
‘teaching/learning tool’. The context dimension includes
the subject area in which the paper is situated, such as the
area of programming or group work. Where topic and
context differ is that a paper may be in the area of
‘programming’, but the topic of focus is specifically
student ‘aptitude/ability’. Although the previous studies
have identified a number of topics and contexts covered,
we intend to see those relating to CS education at the
schooling level, so do not expect to see work on
‘capstone projects’ or ‘work experience’ (contexts) or
‘tutors and demonstrators’ (topics). Instead we expect the
emergence of topics and contexts particular to this
review. Scope describes the breadth of the paper, such as
within a subject, an institution, a department/program or
across multiple institutions. Many efforts to teach CS in
primary and high school contexts are currently situated
within initiatives, camps, or programmes inside or outside

CRPIT Volume 148 - Computing Education 2014

6

of the classroom and so we have included another scope
called ‘intensive program/initiative’. The nature
dimension describes the type of paper. Simon’s
classification includes four: ‘experiment’ and ‘analysis’
(which, combined constitute ‘research’ papers), ‘reports’
and ‘position’ papers. An ‘experiment’ examines a
specific research question or hypothesis and collects data
to test or answer the research question. An ‘analysis’ is a
paper that analyses existing data and a ‘report’ is a report
on something that has been done, possibly in conjunction
with a basic survey. Our analysis excludes position
papers as these are not fully implemented or evaluated.

We included a further classification named age band.
The possible bands within this classification align with
the Australian curriculum (ACARA, 2011) and include
year levels grouped as: Lower primary: F-2 (ages 5-7)
and 3-4 (ages 8-9), Middle: Year 5-6 (ages 10-11) and 7-
8 (ages, 12-13) and Upper/HS: 9-10 (ages 14-15) and
Year 11+ (16+).

Additionally, we created a broad-level classification
for studies conducted across multiple year levels. Where
articles targeted a specific age range or a number of age
ranges, we classified according to the ‘best fit’ (e.g. for
an article about ages 13-15, band 9-10 was selected).

To determine the variety of CS concepts found in the
papers we used the ACARA document (ACARA, 2012,
pp. 63- 64) as a guide to code content identified in the
papers as being the object of study in the activities being
researched or reported. We created a document based on
the desired key concepts on page 63-64, including a
description and “content terms to look out for”. If the
subject content were mentioned in the paper it was coded
to the relevant ‘key concepts’ nodes in NVivo.

Methodology was another aspect of interest in our
review. We coded any mention of data collection
techniques to particular nodes we created in NVivo (e.g.
interviews, focus groups) and classified each article as
being ‘mixed’ methods or ‘qualitative’ or ‘quantitative’.

4.2 Process and procedure
We searched Google Scholar and the ACM Digital

Library database for articles about the F-12 CS
Education, limited to 2003- 2013. Google search terms
included those associated with ‘computer science’
(‘informatics’, ‘programming’, ‘computing’) and words
such as ‘education’, ‘activities’, ‘learning’, and ‘lesson’.
Year-level search terms used included ‘schooling’, ‘high
school’, ‘primary’, ‘elementary’, ‘F-10’, ‘F-12’ and their
derivatives. As the ACM Digital Library has a CS focus,
we wanted to source articles with a F-12 and lesson focus
and searched the database using the terms ‘school’,
‘activities’, ‘lessons’, ‘students’ and their derivatives.

Inclusion Exclusion
2003- 2013
F-12 (ages 5- 18)
Research papers and reports
About the implementation of
activities for teaching CS-
related concepts
Situated within any context
Student-focused

Before 2003
University/college
Position papers
Theoretical papers
Teachers and PD programs (other
than design and implementation
of lessons/initiatives)

Table 1: Inclusion/exclusion criteria

Relevant papers matching our inclusion/exclusion
criteria (Table 1) were entered into EndNote X5 with the
PDF as an attachment. The Endnote file was exported to
NVivo version 10 for classification and coding.

5 Results
The search for articles returned 71 results that matched
our inclusion criteria. Table 2 describes the descriptives
of the articles sourced using Simon’s classification.

5.1 Summary of research articles

Nature Book Conference Journal Total
Analysis 0 1 0 1
Experiment 2 18 10 30
Report 5 29 6 40
Total 7 48 16 71

Table 2: Cross-tabulation of papers by nature &
type

Some 40 papers were reports: discussing the outcomes

of a particular activity or outreach program, using
researcher experiences, observation or a basic end-of-
course questionnaire. 30 papers were based on
experiments (or a study) where researchers used research
methods to gather data to answer a particular research
question. Although these were also about outreach
programs or activity outcomes, the researchers used a
combination or more rigorous use of methods. However,
many measured student engagement or interest, rather
than pedagogical effectiveness or students' achievement.
Use of existing data of students' work was classified as
'analysis'.

Table 3 demonstrates that the majority of studies were
conducted in the United States (US; 39), followed by
European regions and Asia.

US EU Asia UK AU NZ Other Total
39 15 9 2 1 1 4 71

Table 3: Number of articles by origin

When examining the publish dates for each of the
articles in Table 4, starting from 2004, we can see that
they grow significantly in 2009 and continue to increase.
As the search was conducted in 2013, we expect the
number of published articles to continue to rise.

‘04 ‘05 ‘06 ‘07 ‘08 ‘09 ’10 ‘11 ‘12 ‘13

1 2 3 1 2 12 10 16 17 7
Table 4: Number of articles by published year

The scope of the paper identifies the range of the

sample and context in which the paper describes. We
present a cross-tabulation of context and scope in Table
6. Although university institutions run many of the
initiatives and research, we can see that most of the
articles were about intensive programs and initiatives, so
we created a category to recognise this. A number also
specifically referred to research that was conducted
within a single case study so we classified these as ‘single
cases’.

Proceedings of the Sixteenth Australasian Computing Education Conference (ACE2014), Auckland, New Zealand

7

Context/Topic Ability/ aptitude
Assess.

techniques
Assess.

tools Curriculum
Perceptions/

interest T/L
T/L

techniques
T/L
tools Total

Broad-based

3 2

5
Computational
thinking 1 2

3 3 9

Curriculum

1

2 3
Data structures

1

1

Gaming

2

1

3
Hardware/architecture

1 1

Information systems 1

1
Integrated curriculum

1 2

3 1 7

Introduction to IT

2

2
Mathematics 1

2 1 4

Programming 11

4 1 7 8 31
Project

1 1

2

4

Total 12 2 2 5 14 1 19 16 71
Table 5: Cross-tabulation of context and topic of papers

Intensive program/ initiative 31
Single case 17
Multi-institutional (different schools) 10
institution (within school) 9
Not applicable 4

Table 6: Scope

Of the papers, we classified them according to the type
of research design used according to mixed methods (25),
qualitative methods only (32) and quantitative methods
(14), with 3 being ‘other’. Table 7 presents the range of
data collection methods used across the 71 papers. Some
papers used more than one method. ‘Other methods’
included collecting data by involving the students as
researchers, for example, by producing journals about
their processes. The most commonly used methods were
questionnaires and interviews, measuring student
engagement and interest after the activity or intervention.
Other common methods involved the collection of
student work that was examined or analysed, usually in
the form of student games that they had programmed.

Method No.
Questionnaire 24
Student work or artefact 18
Interview 17
Observation (by researcher) 17
Test (of knowledge/ability) 14
Researcher reflection 12
Questionnaire incl. open qu. 11
Focus Group 7
Video 6
Course materials or curriculum document 2
Student grades 1
Other 6

Table 7: Data collection methods used across 71
papers

5.2 Research Topics
Table 5 presents a cross-tabulation of topics and contexts
for the papers analysed. The table indicates that, similar
to previous analysis using Simon’s classification with CS
education research, these research papers were also most
commonly situated within a ‘programming’ context.
Within this context, the papers explored topics such as
students’ ability or aptitude to do programming activities
or the extent they applied CS concepts and knowledge to
their programming. Other topics included exploring
teaching and learning techniques for CS concepts or
delivery of activities, trialling new teaching and learning

tools and student perception and interest in programming.
Other popular contexts included integrating CS within
other learning areas, such as the Humanities.

In Table 8 we grouped articles by year level bands to
allow the examination of types of paper topics explored
within each band. From Most articles addressed children
in the middle school or high school. In these year levels,
the articles focused on student perceptions about doing
CS activities, their ability to undertake CS tasks and
teaching and learning techniques used within these age
groups. Minimal research exists about students in the
lower primary levels but for those articles we did source,
investigated whether young children could engage in
programming or computational thinking and also
explored new tools that could be used to teach CS
activities for children.

Topic
Lower

(5-
9yrs)

Mid/Upper
(10- 14yrs)

HS
(14>)

Broad-
age

Ability/aptitude 4 6 2
Assess. technique 2
Assess. tools 1 1
Curriculum 4 1
Perceptions/
interest 9 3 2

T/L 1
T/L techniques 1 10 6 2
T/L tools 4 6 4 2
Total 10 31 22 8

Table 8: Topic compared to year level band

 Lower
(5- 9yrs)

Mid/Upper
(10- 14 yrs)

HS
(14+) Total

Tangible
programming tools 5 14 2 21

Other
resources/tools 3 1 5 9

Curriculum
resources (CS
Unplugged)

0 3 4 7

Electronics 0 4 2 6
Non-digital
activities 0 2 3 5

Robotics 1 3 1 5
Game creation
environments 0 4 0 4

Java and java-
programming tools 0 2 2 4

Game or PC puzzle 0 2 1 3
Table 9: Tools and resources used in the 71 papers

CRPIT Volume 148 - Computing Education 2014

8

Table 9 demonstrates that the majority of F-7 research
within CS addresses the use of tangible programming
tools (21), followed by the use of existing CS activities
(with all but one involving the use of CS Unplugged; the
other a German version Informatik erLeben). Scratch
makes up the majority, with 10 cases, followed by three
research papers examining the use of Alice

An examination of the articles according to the DT
key concepts (ACARA, 2012) in Table 10, reveals that
most of the articles implemented activities that involved
algorithms, implementation and specification: essentially
those involved through teaching programming activities.
Another commonly taught topic was data representation
and interpretation. In the younger years, this involved
activities such as understanding binary through tactile
games or in the upper years it extended to more complex
activities such as manipulating digital images. Some of
the papers also discussed multiple topics within one
article and we coded these as broad-based. These
typically involved reporting on the success of a set of
activities that covered many of the DT concepts.

Communication of Problems and Solutions
 Algorithms (following and describing) 29
 Implementation (translating and programming) 34
 Specification (descriptions and techniques) 18
Data

 Data collection (properties, sources and data collection) 3
 Data interpretation (patterns and context) 8
 Data representation (symbolism and separation) 12
Digital systems (hardware, software, and networks on the
Internet)
 Hardware and software 7
 Networks and the Internet 9
Interactions (people and digital systems, data and processes) 8
Broad-based concepts 8
Abstraction (hiding irrelevant details) 7
Impact (impacts and empowerment) 1

Table 10: Articles according to DT key concepts

There was only one article that explored CS careers.

With the Australian and English curricula addressing
social and ethical impact, research is required that
investigates the teaching of such content, in addition to
programming skills and computational thinking. This will
also be an important area for consideration if we are to
make computational thinking and programming activities
relevant to the lives and future careers of students.

6 Limitations
We acknowledge that we have not possibly captured all
existing literature about CS education in years F-12. In
our initial study, we provide a preliminary guide to
current existing research and trial our analysis approach
so that we can review and implement our approach on a
larger scale. Our future work will continue to refine and
expand databases and terms.

We also realise that CS Education research may exist
within other discipline areas that were not discovered in
searches, such as society and environment, design and
technology, mathematics, or science because of its
versatile nature and the ability for CS concepts and
approaches to be applicable in other fields, as we saw
with the use of programming as a tool for story telling
and learning about storyboarding (Burke & Kafai, 2010).

This offers opportunities for future research to identify
cross-curricula use of CS within other learning areas.

Similar to Simon, Carbone, et al. (2008), we also
encountered difficulties in deciding the context and topic
of papers, however, using Simon’s suggestion, we made
our decision on what topic or context was the ‘best fit’
when more than one possible topic existed. We
acknowledge that others may classify some papers within
different areas, but nonetheless the classification still
provide sound guidance for what research currently exists
in F-12 CS Education and what research is required.

7 Discussion
After review, three significant areas emerged that provide
guidance for future research. We will discuss how these
guide approaches to future research and lead into the
conclusion.

7.1 CS F-10 Pedagogy
While there has been considerable research into CS
within the F-12 context, it is typically focussed on years
5-12 with much less research at the F-4 level. Most of the
research that has been done is situated within outreach
programs, focussed on sharing teaching techniques aimed
at motivating students to study CS, to address negative
perceptions of the discipline, stereotypes and to increase
diversity in our student cohorts. Computer games and the
creation of games through tangible programming tools
also play a significant role in current approaches to
engaging younger students in CS, however as highlighted
by Denner (2011), the majority of studies in this domain
explore the potential for computer games to motivate
students to study CS, rather than exploring what they are
able to learn. This is of increasing importance with the
emerging focus on computational thinking and the
development of computational problem solving skills.
There is a whole field of possibilities for pedagogical
exploration in F-10 CS education and to investigate
specific techniques for early education within CS,
including small-group ability levels, inquiry-based
learning, and play-based learning.

Compare this with the field of Mathematics education,
with its rich history of deep exploration of Mathematics
pedagogy. Some interesting recent examples that
highlight potential areas for related CS research include:
analysis of symbolic number sense and impact upon
mathematics achievement (Jordan et al, 2009); analysis of
core concepts and student understanding (Knuth et al,
2011); gender-based stereotypes and achievement
(Beilock et al, 2010); and emergent mathematical
thinking in play environments (van Oers, 2010).

Similarly, there are opportunities for exploring how
the use of CS tools influences learning processes.
Papert’s (1980) work in programming environments for
children introduces the idea of constructionist
programming environments: places where children can
create concrete digital constructs from abstract ideas, and
then reflect over those to develop understanding. Many of
the constructionist programming environments are
focused on years 3-7, including Scratch, Alice and Kodu.
In this emerging field, there is early work that
demonstrates that children who are exposed to
constructionist environments are able to learn

Proceedings of the Sixteenth Australasian Computing Education Conference (ACE2014), Auckland, New Zealand

9

computational thinking concepts (Bers & Horn, 2010;
Kazakoff & Bers, 2012; Kazakoff, Sullivan, & Bers,
2013; Lai & Yang, 2011). In contrast, a study by
Meerbaum-Salant, Armoni, and Ben-Ari (2011)
identifies that use of Scratch engenders specific poor
programming habits, at odds with both accepted practice
and the learning objectives of the proposed curricula.

This also applied to the lesson resources that currently
exist, such as CS Unplugged. These resources are helpful,
especially for teachers who have limited or no experience
in CS and are able to be implemented in classrooms with
no technology. However, we must be clear on the goals
of a program such as CS Unplugged. Taub, Ben-Ari, and
Armoni (2009) state the three main aims of CS
Unplugged as changing students’ views on the nature of
CS, promoting views that CS is a career for women and
changing views about CS as a profession. An analysis of
the CS unplugged resources to determine approach,
coverage of explicitly addressed CS concepts and
whether the aims were addressed identified that only
some of the objectives were addressed in the activities.
After trialing activities, year 7 students did change their
understanding of the nature of CS, but held less attractive
perceptions of CS as a career. Similarly, Feaster, Segars,
Wahba, and Hallstrom (2011) found implementation of a
semester long outreach program using the resources had
no significant impact on attitudes toward CS or content
understanding. Once again, activities like CS Unplugged
have typically been assessed in terms of their
effectiveness to change attitudes and perceptions, rather
than learning progress. There are new opportunities for
evaluating existing CS activities in terms of student
achievement, learning objectives and improved
computational thinking processes.

7.2 Methodology, Sample and Scope
Many studies were conducted with small sample sizes or
were pilot studies due to being situated within the work
of intensive programs or initiatives and because many
were about show-casing and sharing teaching and
learning techniques or tools (Kordaki, 2011; Lewis,
2011). Furthermore, the studies are usually conducted
outside of conventional classroom settings and authors
identify that it is difficult to make a comparison to
classroom environments (Lode, Franchi, & Frederiksen,
2013). If studies were conducted in-class they were
typically one-off sessions, out of the context of the
regular curriculum, which authors cautioned may have
result in students and teachers being ‘less committed’
(Meerbaum-Salant, Armoni, & Ben-Ari, 2010).

Another limitation was that students who were the
subject of study were usually involved because they
volunteered to participate in after school or holiday
programs (Denner, Werner, & Ortiz, 2012; Lau, Ngai,
Chan, & Cheung, 2009; Magnenat, Riedo, Bonani, &
Mondada, 2012). As volunteers, the participants may
come to the classes out of interest: a different frame of
mind to students who are in classrooms out of duty. Other
studies selected students based on their achievement, for
example in a study by Curzon, McOwan, Cutts, and Bell
(2009) participants were identified as being in the top 5%
of the school and participants in research by Feaster, Ali,
and Hallstrom (2012) involved high achievers. In

classroom environments, teachers typically have to cater
to students with a whole range of capabilities, interests
and achievement levels making this a challenge for
teachers to overcome.

The actual effectiveness of teaching techniques are
often not known because researchers have not measured
before and after (Meyers, Cole, Korth, & Pluta, 2009) and
because researchers experienced difficulty in identifying
ways to formally assess goals and outcomes of projects
(Settle et al., 2012). Ultimately, research in this area will
need to be rigorous, replicable and explicitly defined.

7.3 Teacher Experiences and Development
Our review of the literature was focused on students and
the implementation of the lessons, rather than teacher
ability and training, but one important aspect that arose
was in regard to who was implementing the activities that
were the object of study. In many cases, activities were
conducted by researchers from CS institutions or by those
with significant experience in teaching CS. For example,
in Meerbaum-Salant et al. (2011) the teacher had 15 years
experience with teaching CS and in Taub et al. (2009)
one teacher taught mathematics and programming and the
other teacher had one year’s experience teaching CS
Unplugged. Robertson & Nicholson 2007 involved a
specialist IT teacher and three researchers; and in a study
by Stoeckelmayr, Tesar, and Hofmann (2011) the activity
was conducted by a CS academic from a university with
the support of undergraduate students. These situations
are vastly different to a single generalist teacher
implementing classroom activities without support.

Authors, Settle et al. (2012), recognise the difficulty in
translating materials into existing curriculum, when
unfamiliar with the tools. In one study, when teachers
used guiding activity resources for their CS lessons, they
were apprehensive about using teaching methods such as
group work (Curzon). The teachers also felt that because
they were unfamiliar with the topic, considerable
preparation would be required. Meerbaum-Salant et al
(2011) identified that although the teacher was
experienced in CS, adding new tools created anxiety,
causing deviation from lesson plans. Tinapple,
Sadauskas, and Olson (2013) further comment on the
challenge for teachers, where expected software and/or
hardware are not easily available.

Black et al. (2013) describe a survey of UK computing
teachers in relation to their suggestions on improving CS
education, and teacher development needs. Their results
highlighted teacher training, and the need for a network
and community to support resource development. Black
et al’s survey identifies that teachers focus more on fun
activities rather than providing opportunities for deep
learning of computational thinking, focussing on
impressive technology, physical computing and
programming in constructionist environments. These
forms of activities can complicate the learning
environment further by placing additional stress on
teachers inexperienced with technology.

8 Conclusions
The expected changes in the teaching of Computer
Science represent a significant challenge for our
schooling systems. Computational Thinking and

CRPIT Volume 148 - Computing Education 2014

10

Computer Science will form part of the Australian
standard curriculum from F-12 from 2014. In this paper,
we have presented the key learning objectives of both
curricula, and have identified the key challenges that arise
from these changes, specifically, the need to teach
computational thinking as a standalone concept; the
introduction of computational thinking and computer
science from Foundation onwards, and the need to
develop and understand appropriate pedagogy that
integrates with existing early childhood approaches.

We have undertaken a preliminary review of existing
CS education research within the F-12 context,
identifying key themes (outreach, programming, tangible
programming tools, CS activities, senior secondary) and
also gaps (F-7, computational thinking, CS concepts). We
have identified a distinct lack of rigorous research within
the F-7 context, including relevant pedagogy and
assessment practices within conventional classroom
settings. This represents an outline of needed research
requiring greater collaboration between representatives in
primary and secondary school education, education
researchers, and higher education CS departments. With
greater collaboration between each group it may better
ensure the development of a research agenda that
encompasses the expertise and needs of both groups.

9 References
ACARA. (2011): 3.1 School structures. National

Reporting on Schooling in Australia 2009,
http://www.acara.edu.au/reporting/national_report_on_
schooling/schools_and_schooling/school_structures.ht
ml, Accessed 4 Sep 2013.

ACARA. (2012): The shape of the Australian curriculum:
technologies. Sydney, NSW: ACARA,
http://www.acara.edu.au/curriculum_1/learning_areas/t
echnologies.html, Accessed 29 Aug 2013.

ACARA. (2013): The Australian curriculum:
technologies information sheet. Sydney, NSW:
ACARA,
http://www.acara.edu.au/curriculum_1/learning_areas/t
echnologies.html, Accessed 20 Sep 2013.

Bell, T., Newton, H., Andreae, P., & Robins, A. (2012):
The introduction of computer science to NZ high
schools: an analysis of student work. Workshop in
Primary and Secondary Computing Education,
Hamburg, Germany, 5-15.

Bers, M., & Horn, M. (2010): Chapter 4: Tangible
programming in early childhood. In I. Berson & M.
Berson (Eds.), High-Tech Tots: Childhood in a Digital
World (HC), 49- 68, Information Age Publishing.

Black, J., Brodie, J., Curzon, P., Myketiak, C., McOwan,
P., & Meagher, L. (2013): Making computing
interesting to school students: teachers' perspectives.
Proc. ITiCSE, Canterbury, England, 255-260.

Burke, Q., & Kafai, Y. B. (2010): Programming &
storytelling: opportunities for learning about coding &
composition. Proc. International Conference on
Interaction Design and Children, Barcelona, Spain,
348- 351.

Computer Science Unplugged. (2013): Computer Science
Unplugged, http://csunplugged.org/, Accessed
September 2013.

CS4FN. (2013): About cs4fn,
http://www.cs4fn.org/about.php, Accessed 25 Aug
2013.

Curzon, P., McOwan, P., Cutts, Q., & Bell, T. (2009):
Enthusing & inspiring with reusable kinaesthetic
activities. SIGCSE Bulletin 41(3): 94- 98.

Denner, J. (2011): What predicts middle school girls'
interest in computing? International Journal of
Gender, Science and Technology 3(1): 53-61.

Denner, J., Werner, L., & Ortiz, E. (2012): Computer
games created by middle school girls: can they be used
to measure understanding of computer science
concepts? Computers & Education 58(1): 240-249.

Department for Education. (2013): The national
curriculum in England. Cheshire, UK: Crown.

Feaster, Y., Ali, F., & Hallstrom, J. (2012): Serious toys:
teaching the binary number system. Proc. ITiCSE,
Haifa, Israel, 262- 267.

Feaster, Y., Segars, L., Wahba, S., & Hallstrom, J.
(2011): Teaching CS unplugged in the high school
(with limited success): Proc. ITiCSE, Darmstadt,
Germany, 248- 252.

Fincher, S., & Petre, M. (2004): Computer Science
Education Research. Psychology Press.

Gal-Ezer, J., & Stephenson, C. (2009): The current state
of computer science in US high schools: a report from
two national surveys. Journal for Computing Teachers,
Spring: 1- 5.

Gander, W., Petit, A., Berry, G., Demo, B., Vahrenhold,
J., McGettrick, A., Boyle, R., Drechsler, M.,
Mendelson, A., Stephenson, C., Ghezzi, C. & Meyer,
B. (2013): Informatics education: Europe cannot afford
to miss the boat ACM Europe: Informatics Education
Report. New York.

Google. (2013): What is CS4HS? Google: computer
science for high school, from http://www.cs4hs.com/

Georgia Tech. (2012): Georgia Computes!,
http://gacomputes.cc.gatech.edu/, Accessed 15 Sep
2013.

Henwood, F. (2000): From the woman question in
technology to the technology question in feminism
rethinking gender equality in IT education. European
Journal of Women's Studies 7(2): 209- 227.

Jepson, A., & Perl, T. (2002): Priming the pipeline. ACM
SIGCSE Bulletin 34(2): 36- 39.

Kazakoff, E., & Bers, M. (2012): Programming in a
robotics context in the kindergarten classroom: the
impact on sequencing skills. Journal of Educational
Multimedia and Hypermedia 21(4): 371- 391.

Kazakoff, E., Sullivan, A., & Bers, M. (2013): The effect
of a classroom-based intensive robotics and
programming workshop on sequencing ability in early
childhood. Early Childhood Education Journal 41(4)
1- 11.

Proceedings of the Sixteenth Australasian Computing Education Conference (ACE2014), Auckland, New Zealand

11

Kordaki, M. (2011): A computer card game for the
learning of basic aspects of the binary system in
primary education: design and pilot evaluation.
Education and Information Technologies 16(4): 395-
421.

Lai, A.-F., & Yang, S.-M. (2011, 16-18 Sept. 2011): The
learning effect of visualized programming learning on
6th graders' problem solving and logical reasoning
abilities. Proc. International Conference on Electrical
and Control Engineering (ICECE), Yichang, 6940-
6944.

Lau, W., Ngai, G., Chan, S., & Cheung, J. (2009):
Learning programming through fashion and design: a
pilot summer course in wearable computing for middle
school students. SIGCSE Bulletin 41(1): 504- 508.

Lewis, C. (2011): Is pair programming more effective
than other forms of collaboration for young students?
Computer Science Education 21(2): 105- 134.

Lode, H., Franchi, G., & Frederiksen, N. (2013):
Machineers: playfully introducing programming to
children. Proc. Human Factors in Computing Systems,
Paris, France, 2639- 2642.

Magnenat, S., Riedo, F., Bonani, M., & Mondada, F.
(2012, 21-23 May 2012): A programming workshop
using the robot "Thymio II": The effect on the
understanding by children. Proc. Workshop on
Advanced Robotics and its Social Impacts, Munich,
Germany, 24- 29.

Malmi, L., Sheard, J., Bednarik, R., Helminen, J.,
Korhonen, A., Myller, N., Sorva, J. & Taherkhani, A.
(2010): Characterizing research in computing
education: a preliminary analysis of the literature.
Proc. ICER, San Diego, 3-12.

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M.
(2010): Learning computer science concepts with
scratch. Proc. International workshop on computing
education research, Denmark, 69- 76.

Meerbaum-Salant, O., Armoni, M., & Ben-Ari, M.
(2011): Habits of programming in scratch. Proc.
ITiCSE, Germany, 168- 172.

Meyers, A., Cole, M., Korth, E., & Pluta, S. (2009):
Musicomputation: teaching computer science to
teenage musicians. Proc. ACM conference on
Creativity and cognition, Berkeley, California, 29-38.

Papert, S. (1980): Mindstorms: children, computers, and
powerful ideas. New York, Basic Books, Inc.

Pears, A., Seidman, S., Malmi, L., Mannila, L., Adams,
E., Bennedsen, J., Delvin, M. & Paterson, J. (2007): A
survey of literature on the teaching of introductory
programming. SIGCSE Bulletin 39(4): 204- 223.

Ragonis, N., Hazzan, O., & Gal-Ezer, J. (2010): A survey
of computer science teacher preparation programs in
Israel tells us: computer science deserves a designated
high school teacher preparation! Proc. ACM technical
symposium on computer science education, 401- 405.

Randolph, J. (2008): A methodological review of the
program evaluations in K-12 computer science
education. Informatics in Education- An International
Journal 7(2): 237- 258.

Schulte, C., Hornung, M., Sentance, S., Dagiene, V.,
Jevsikova, T., Thota, N., Eckeral, A. & Peters, A.-K.
(2012): Computer science at school/CS teacher
education: Koli working-group report on CS at school.
Proc. Koli Calling International Conference on
Computing Education Research, Koli, Finland, 29- 38.

Seehorn, D., Carey, S., Fuschetto, B., Lee, I., Moix, D.,
O'Grady-Cunniff, D., . . . Verno, A. (2011): CSTA K-
12 computer science standards The CSTA Standards
Task Force. New York: Computer Science Teachers
Association, Association for Computing Machinery.

Settle, A., Franke, B., Hansen, R., Spaltro, F., Jurisson,
C., Rennert-May, C., & Wildeman, B. (2012): Infusing
computational thinking into the middle-and high-
school curriculum. Proc. ITiCSE, Haifa, Israel, 22- 27.

Sheard, J., Simon, Hamilton, M., & Lönnberg, J. (2009):
Analysis of research into the teaching and learning of
programming. Proc. ICER, Berkeley, California, 93-
104.

Simon. (2007): A classification of recent Australasian
computing education publications. Computer Science
Education 17(3): 155- 169.

Simon. (2008): Koli calling comes of age: an analysis.
Proc. Baltic Sea Conference on Computing Education
Research (Koli Calling), Koli National Park, Finland,
119- 126.

Simon, Carbone, A., de Raadt, M., Lister, R., Hamilton,
M., & Sheard, J. (2008): Classifying computing
education papers: process and results. International
Proc. Workshop on Computing Education Research,
Sydney, Australia.

Simon, Sheard, J., Carbone, A., de Raadt, M., Hamilton,
M., Lister, R., & Thompson, E. (2008): Eight years of
computing education papers at NACCQ. Proc. Annual
Conference of the National Advisory Committee on
Computing Qualifications, Auckland, New Zealand,
101- 107.

Stoeckelmayr, K., Tesar, M., & Hofmann, A. (2011):
Kindergarten children programming robots: a first
attempt. Proc. International conference on robotics in
education, Vienna, Austria, 185- 192.

Taub, R., Ben-Ari, M., & Armoni, M. (2009): The effect
of CS unplugged on middle-school students' views of
CS. Proc. SIGCSE conference on innovation and
technology in computer science education, Paris,
France, 99- 103.

The Royal Society. (2012): Shut down or restart? The
way forward for computing in UK schools. London.

Tinapple, D., Sadauskas, J., & Olson, L. (2013): Digital
culture creative classrooms (DC3): teaching 21st
century proficiencies in high schools by engaging
students in creative digital projects. Proc. International
Conference on Interaction Design and Children, New
York, 380- 383.

Wilson, C., & Guzdial, M. (2010): How to make progress
in computing education. Communications of the ACM
53(5): 35- 37.

CRPIT Volume 148 - Computing Education 2014

12

