University of Southern Queensland

Faculty of Engineering and Surveying

The Efficient Use of Building Mechanical Services for Saving Energy

A dissertation submitted by

Joshua Searle

In fulfilment of the requirements of

ENG4111 and 4112 Research Project

towards the degree of

Bachelor of Mechanical Engineering

Submitted: October, 2011

ABSTRACT

Energy consumption in buildings is responsible for 26% of Australia's greenhouse gas emissions (CSIRO, 2010). Furthermore the energy consumption associated with cooling and heating plant in buildings typically accounts for over 50% of the total building energy use (CSIRO, 2010). As a result this project assesses the greenhouse gas emissions associated with possible air conditioning upgrade alternatives for a multi-storied building 295 Ann Street, Brisbane.

295 Ann Street, Brisbane was constructed in 1973 making the mechanical services plant approximately 38 years old. Due to the age and condition of the air conditioning plant the system is due for replacement.

The aims of the project are to analyse, compare and contrast various air conditioning upgrade alternatives to determine which will provide the greatest greenhouse gas emissions savings. A BCA2010 reference building will be modeled for each alternative to determine if the existing system or proposed upgrades are compliant with the Building Code of Australia.

Using the TRACE 700 Load and Energy Analysis Software the upgrade alternatives and reference buildings were modeled. It was identified that significant greenhouse gas emissions savings can be achieved by upgrading the buildings mechanical services. A trigeneration system combined with chilled beams proved to be the most energy efficient.

University of Southern Queensland

Faculty of Engineering and Surveying

ENG4111 Research Project Part 1 & ENG4112 Research Project Part 2

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Engineering and Surveying, and the staff of the University of Southern Queensland, do not accept any responsibility for the truth, accuracy or completeness of material contained within or associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the risk of the Council of the University of Southern Queensland, its Faculty of Engineering and Surveying or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond this exercise. The sole purpose of the course pair entitled "Research Project" is to contribute to the overall education within the student's chosen degree program. This document, the associated hardware, software, drawings, and other material set out in the associated appendices should not be used for any other purpose: if they are so used, it is entirely at the risk of the user.

L Bullo

Professor Frank Bullen

Dean Faculty of Engineering and Surveying

CERTIFICATION

I certify that the ideas, designs and experimental work, results, analyses and conclusions set out in this dissertation are entirely my own effort, except where otherwise indicated and acknowledged.

I further certify that the work is original and has not been previously submitted for assessment in any other course or institution, except where specifically stated

Student Name: Joshua Searle Student Number: 0050000893

Albearle

Signature

Date

24 October 2011

ACKNOWLEDGEMENTS

I would like to thank my supervisor Dr Sourish Banerjee for his assistance and guidance throughout this project. His advice, guidance and encouragement throughout the completion of this research is acknowledged and greatly appreciated.

I would also like to thank the Facilities Operations Group who are the property managers of 295 Ann Street, Brisbane. Their permission to base this research project on their building, plus providing complete access to the buildings historical data was extremely vital to effectively complete this project.

Finally I would like to thank my family - my wife, daughters, mother and father. Their ongoing support and understanding not only during the completion of this project but throughout my entire degree is very much appreciated.

TABLE OF CONTENTS

Abstract		ii
Limitations of	of Use	iii
Certification		iv
Acknowledg	ements	.v
Table of Cor	itents	vi
List of Figur	es	ix
List of Table	s	xi
1. INTRO	DUCTION	1
1.1 Pro	ject Aims	2
	kground	
2. LITERA	ATURE REVIEW	5
2.1 Glo	bal Warming	5
2.2 Ene	rgy Production	5
2.2.1	Electricity Consumed from the Power Grid	6
2.2.2	Natural Gas Consumption	
2.3 Glo	bal Warming and the Built Environment	8
2.4 Air	Conditioning Systems 1	0
2.4.1	Variable Air Volume 1	1
2.4.2	Chilled Beams 1	2
2.4.3	Trigeneration1	
2.5 Bui	lding Code of Australia 1	5
2.6 Mo	delling Software 1	9
3. PROJEC	CT METHODOLOGY 2	1
3.1 Mo	delling the Existing Building and the Mechanical Services Systems 2	1
3.1.1	Select Weather Information 2	1
3.1.2	Creation of Rooms	2
3.1.2.1	Rooms 2	2
3.1.2.2	Roofs	
3.1.2.3	Walls	
3.1.2.4	Internal Loads	
3.1.2.5	Airflows 2	5

Partition/Floors	26
Create Systems	27
Fans	28
odelling the BCA 2010 Reference Buildings	31
odelling the Proposed Upgrades	34
Variable Air Volume	34
Central Air Handling	35
Floor Air Handling	37
Active Chilled Beams	39
Central Air Handling	40
Floor Air Handling Plant	41
YSIS OF RESULTS	46
tual Usage During Baseline Year	46
isting Building Calculated Energy Usage	47
Iculated Consumption versus Actual Consumption	49
isting Building BCA Compliance	52
grade Alternatives Energy Usage	54
ilding Code of Australia Compliance	73
tive Chilled Beams versus Variable Air Volume	75
oor Air Handling Plant Compared to Central Air Handling Plant	76
LUSION	
eenhouse Gas Emissions Saving	78
ilding Code of Australia Compliance	79
ildings of Similar Style and Usage	79
portunities for Further Studies	80
ENCES	81
A - Project Specification	83
B – TRACE 700 Compliance Letter	84
E –295 ANN STREET TYPICAL FLOOR PLAN	103
F - BCA 2010 Glazing Calculator	104
_	
	Partition/Floors Create Systems

APPENDIX H - Modelling Output for existing building 106
APPENDIX I - Modelling Output For Reference Building With Zone Mixing Boxes
& Central Air Handling 109
APPENDIX J - Modelling Output For Variable Air Volume With Central Air
Handling Plant
APPENDIX K - Modelling Output For Reference Building With Variable Air
Volume And Central Air Handling Plant 115
APPENDIX L - Modelling Output For Variable Air Volume System With Floor Air
Handling Plant
APPENDIX M - Modelling Output For Reference Building With Variable Air
Volume And Floor Air Handling Plant 121
APPENDIX N - Modelling Output For Active Chilled Beams With Central Air
Handling Plant 124
APPENDIX O - Modelling Output For Reference Building With Active Chilled
Beams and Central Air Handling Plant 127
APPENDIX P - Modelling Output For Active Chilled Beams With Floor Air
Handling Plant 130
APPENDIX Q - Modelling Output For Reference Building With Active Chilled
Beams And Floor Air Handling Plant 133
APPENDIX R - Modelling Output For Trigeneration With Zone Mixing Boxes and
Central Air Handling 136
APPENDIX S - Modelling Output For Trigeneration Combined With Variable Air
Volume and Floor Air Handling 139
APPENDIX T - Modelling Output For Trigeneration Combined With Active Chilled
Beams and Floor Air Handling 142

LIST OF FIGURES

Figure 1.1: Typical Air Handling Unit Configuration at 295 Ann Street, Brisbane3
Figure 1.2 : Typical Mixing Box Configuration at 295 Ann Street, Brisbane4
Figure 2.1: Building Cooling Load Increase Versus Average Temperature Increase8
Figure 2.2: Building Energy Usage Increase Versus Average Temperature Increase_9
Figure 2.3 : Pressure Independent Variable Air Volume Box Configuration11
Figure 2.4: Active Chilled Beam Configuration12
Figure 2.5: Trigeneration Process Schematic 14
Figure 3.1: Zone Mixing Box Schematic27
Figure 3.2: Variable Air Volume System Schematic35
Figure 3.3: Active Chilled Beam System Schematic39
Figure 4.1: Actual Electrical Energy Consumption Versus Calculated Electrical Energy Usage51
Figure 4.2: Calculated Percentage of Actual Consumption51
Figure 4.3: Existing Building Calculated Greenhouse Gas Emissions Versus BCA2010 Reference Building Emissions 54
Figure 4.4: Calculated Monthly Emissions of a Variable Air Volume System with
Central Air Handling, BCA2010 Reference Building and Existing Building_57

Figure 4.5: Calculated Monthly Emissions of a Variable Air Volume System with Floor Air Handling, BCA2010 Reference Building and Existing Building _____60

Figure 4.6: Calculated Monthly Emissions of an Active Chilled Beams System with Central Air Handling, BCA2010 Reference Building and Existing Building____63

Figure 4.7: Calculated Monthly Emissions of an Active Chilled Beams System with Floor Air Handling, BCA2010 Reference Building and Existing Building _____66

 Figure 4.8: Calculated Monthly Emissions of Trigeneration Combined with Mixing

 Boxes and Central Air Handling, BCA2010 Reference Building and Existing

 Building
 68

Figure 4.9: Calculated Monthly Emissions of Trigeneration Combined With Variable Air Volume Boxes and Floor Air Handling, BCA2010 Reference Building and Existing Building _____70

 Figure 4.10: Calculated Monthly Emissions of Trigeneration Combined with Active

 Chilled Beams and Floor Air Handling Plant, BCA2010 Reference Building and

 Existing Building
 73

Figure 4.11: Calculated Monthly Emissions Comparison Between the V	Variable Air
Volume Systems and Chilled Beams Systems	

Figure 4.12:	Calculated	Monthly	Emissions	Comparison	Between	the	Variable	Air
Volume Alter	matives							_77

Figure	4.13 :	Calculated	Monthly	Emissions	Comparison	Between	Active	Chilled
Beams	Altern	atives						77

LIST OF TABLES

Table 2.1: 2010 Emissions Factors for States of Australia	6
Table 2.2: Emissions Factors for the Consumption of Natural Gas	7
Table 3.1 : Typical Room Properties at 295 Ann Street, Brisbane	23
Table 3.2 : Typical Wall Properties at 295 Ann Street, Brisbane	24
Table 3.3 : Typical Internal Loads at 295 Ann Street, Brisbane	25
Table 3.4 : Outside Air/Infiltration Rates at 295 Ann Street, Brisbane	26
Table 3.5 : Partition/Floor Descriptions at 295 Ann Street, Brisbane	26
Table 3.6: Fan Performance Data from Mechanical O&M Manuals	28
Table 3.7 : Room to System Assignment for the Existing Building Model	29
Table 3.8 : Existing Building Cooling and Heating Plant	30
Table 3.9: Reference Building Wall Thermal Performance	31
Table 3.10 : BCA2010 Compliant Glazing for 295 Ann Street, Brisbane	33
Table 3.11: BCA2010 Reference Building Plant Performance	34
Table 3.12: Fan Performance – Variable Air Volume Combined with Centra Handling	
Table 3.13: Fan Performance – Variable Air Volume Combined with Floor Handling	
Table 3.14: Floor Air Handling Supply and Return Air Fan Pressure	Drop
Calculation	39

Table 3.15: Fan Performance – Active Chilled Beams with Central Air Handling Image: Active Chilled Beams with Central Air Handling
Plant40
Table 3.16: Fan Performance – Active Chilled Beams with Floor Air Handling Plant41
Table 3.17: Trigeneration Equipment Schedule44
Table 4.1: Mechanical Plant Actual Electrical Energy Consumption During Baseline Year 46
Table 4.2 : Calculated Energy Consumption for the Existing Mechanical Plant47
Table 4.3: Calculated Greenhouse Gas Emissions for the Existing Buildings Mechanical Plant 49
Table 4.4: Calculated Electrical Energy Consumption Versus Actual Electrical Energy Consumption 50
Table 4.5: BCA2010 Reference Building Calculated Energy Consumption and Greenhouse Gas Emissions for the Existing Mechanical Services 53
Table 4.6: Calculated Energy Consumption and Greenhouse Gas Emissions for a Variable Air Volume System With Central Air Handling55
Table 4.7 : BCA2010 Reference Building Calculated Energy Consumption and Gas Emissions for a Variable Air Volume System with Central Air Handling56
Table 4.8 : Calculated Energy Consumption and Gas Emissions Associated with a Variable Air Volume System with Floor Air Handling58
Table 4.9 : BCA2010 Reference Building Calculated Energy Consumption and Gas Emissions for a Variable Air Volume System with Floor Air Handling59
Table 4.10: Calculated Energy Consumption and Greenhouse Gas Emissions for Active Chilled Beams with Central Air Handling61
xii

Table 4.11: BCA2010 Reference Building Calculated Energy Consumption and Ga
Emissions for Active Chilled Beams with Central Air Handling6
Table 4.12: Calculated Energy Consumption and Greenhouse Gas Emissions for
Active Chilled Beams with Floor Air Handling64
Table 4.13: BCA2010 Reference Building Calculated Energy Consumption and Ga
Emissions for Active Chilled Beams with Floor Air Handling6
Table 4.14: Calculated Energy Consumption and Greenhouse Gas Emissions for
Trigeneration Combined with Mixing Boxes6
Table 4.15: Calculated Energy Consumption and Greenhouse Gas Emissions for
Trigeneration Combined with Variable Air Volume and Floor Air Handling69
Table 4.16: Calculated Energy Consumption and Greenhouse Gas Emissions for
Trigeneration Combined with Active Chilled Beams and Floor Air Handling7
Table 4.17: BCA2010 Compliance Based on the Calculated Annual Energy
Consumption74
Table 5.1: Summary of Upgrade Alternatives Calculated Emissions7

1. INTRODUCTION

Since the industrial revolution greenhouse gas emissions in the earth's atmosphere have risen significantly (Preston, Jones, 2006). The radiation absorbed by these gases is re-emitted in all directions resulting in a warming of the earth's surface (Australian Government, 2011).

Energy consumption in buildings is responsible for 26% of Australia's greenhouse gas emissions (CSIRO, 2010). Furthermore the energy consumption associated with a buildings cooling and heating plant typically accounts for over 50% of a buildings total energy usage (CSIRO, 2010). The aims of the project are to analyse, compare and contrast various air conditioning upgrade alternatives for the building 295 Ann Street, Brisbane, to determine which will provide the greatest greenhouse gas emissions savings.

In order to energy model the various upgrade alternatives, the TRACE 700 Load and Energy Analysis software was used. The existing building in its current form was the first system modelled to determine the current energy usage and the associated greenhouse gas emissions. The results were compared with the buildings actual energy usage data to verify the modelling software. Energy models for the seven upgrade alternatives were then modelled to determine the greenhouse gas emissions associated with each. For each alternative a Building Code of Australia reference building was modelled to determine which was compliant with the Building Code of Australia. A reference building is a hypothetical building that is used to calculate the maximum allowable energy load (Australian Building Codes Board, 2010).

The results were then analysed to compare the greenhouse gas emissions associated with each system. Each upgrade alternative was then compared with the associate Building Code of Australia reference building to determine which was compliant with the Building Code of Australia.

1.1 Project Aims

The aims of the project are to analyse, compare and contrast a number of air conditioning upgrade alternatives to determine which will provide the greatest greenhouse gas emissions savings. The study is performed to a building at 295 Ann Street, Brisbane.

The upgrade alternatives to be analysed include:

- Variable air volume system with central air handling plant.
- Variable air volume system with floor air handling plant.
- Active chilled beams system with central air handling plant.
- Active chilled beams system with floor air handling plant.
- Trigeneration energy production plant combined with zone mixing boxes and central air handling.
- Trigeneration energy production plant combined with variable air volume and floor air handling plant.
- Trigeneration energy production plant combined with active chilled beams and floor air handling plant.

1.2 Background

295 Ann Street is a 16 storey office building situated in the Brisbane CBD. The building was constructed in 1973 making the mechanical services plant approximately 38 years old. Due to the age and condition of the air conditioning plant, the system is due for replacement.

The existing air conditioning system serving the building consists of a central cooling and heating plant with an air distribution subsystem. The air distribution subsystem consists of eight central air handling units. Four air handling units are located in the level 16 plant room and are dedicated to the north-east, south-east, south-west and north-west zones on levels 8 to 15 inclusive. The remaining four air handling units are located in the lower ground plant room and serve the north-east, south-east, southwest and north-west zones on levels ground to 7 inclusive. Each of the air handling units consists of a chilled water cooling coil and a hot water heating coil. A cold deck fan and a hot deck fan provide cold and hot supply air to the floor mixing boxes via individual ductwork reticulation systems. A return air fan draws air from the conditioned space and returns it back to the air handling unit. Here the return air mixes with outside air to repeat the process. Figure 1.1 shows a typical air handling unit configuration.

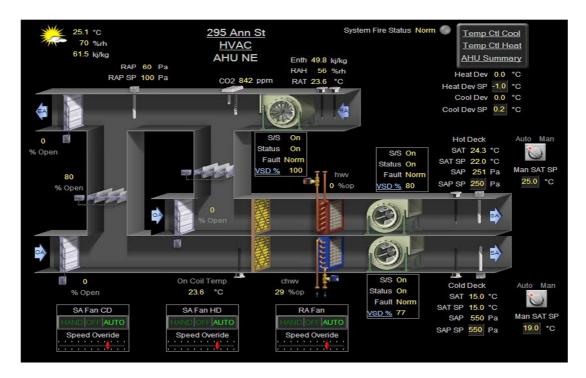


Figure 1.1: Typical Air Handling Unit Configuration at 295 Ann Street, Brisbane

There are a total of 18 mixing boxes per floor that control the air distribution to each zone. The mixing boxes contain a modulating damper that balances the proportion of hot and cold air in order to meet the required zone condition determined by a wall mounted thermostat. Figure 1.2 shows a typical mixing box configuration.

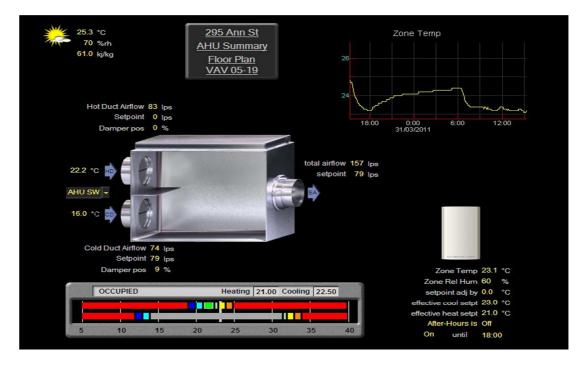


Figure 1.2: Typical Mixing Box Configuration at 295 Ann Street, Brisbane

2. LITERATURE REVIEW

2.1 Global Warming

Global warming is the gradual increase of the Earth's average surface temperature as a result of greenhouse gases in the atmosphere (Australian Government, 2010). The earth's atmosphere contains a natural level of greenhouse gases (Australian Government, 2010). The main constituents include water vapour, carbon dioxide and other important trace gases such as methane, nitrous oxide, ozone and anthropogenic halocarbon compounds (Australian Government, 2011). The radiation absorbed by these gases is re-emitted in all directions resulting in a warming of the earth's surface (Australian Government, 2011).

Since the industrial revolution, greenhouse gas emissions have risen significantly (Preston, Jones, 2006). Carbon dioxide levels have increased by over 30%, from 280 to 380 parts per million, nitrous oxide has increased by 17% and methane has increased by 151% (Preston, Jones, 2006). The increase of greenhouse gases into the atmosphere is a result of human activities, including:

- Burning fossil fuels including coal, oil and gas (Australian Government, 2010).
- Using energy generated by burning fossil fuels (Australian Government, 2010).
- Various aspects of farming such as raising livestock, using fertilisers and growing crops (Australian Government, 2010).
- Clearing land (Australian Government, 2010).
- Various industrial processes (Australian Government, 2010).

2.2 Energy Production

In Australia, the principal greenhouse gas generated by energy production is carbon dioxide (CO_2), (Australian Government, July 2010). Methane, nitrous oxide and synthetic gases are also generated in smaller amounts depending on the fuel used and the combustion conditions (Australian Government, July 2010).

2.2.1 Electricity Consumed from the Power Grid

Emission factors are used for calculating the total emissions generated as a result of energy production. Emission factors are expressed in the form of a quantity of emitted greenhouse gas per unit of energy (kg CO₂-e/kW). All emitted greenhouse gases are expressed as a carbon dioxide equivalent (kg CO₂-e/kW), (Australian Government, July 2010).

There are three categories used to report the types of emissions generated being Scope 1, Scope 2 and Scope 3.

- Scope 1 emissions are direct or point source, for example emissions from a manufacturing process, mining activity or onsite waste disposal (Australian Government, July 2010).
- Scope 2 emissions are indirect and are used to describe the emissions from the generation of purchased and consumed electricity by an organisation (Australian Government, July 2010).
- Scope 3 emissions are those attributed to the losses within the electricity distribution network (Australian Government, July 2010).

Due to the varying fuels used for the production of energy within Australia, emissions factors vary from state to state. Table 2.1 details the latest estimated Scope 2 & 3 emissions factors for each state of Australia.

Location	EF for Scope 2	EF for Scope 3	EF for Scope 2 +
	(kg CO ₂ -e/kWh)	(kg CO ₂ -e/kWh)	EF for Scope 3
			(kg CO ₂ -e/kWh)
Victoria	1.23	0.14	1.37
Queensland	0.89	0.13	1.02
South Australia	0.72	0.13	0.85
Western Australia	0.82	0.10	0.93
Northern	0.68	0.09	0.77
Territory			
New South Wales	0.9	0.17	1.07

 Table 2.1:
 2010 Emissions Factors for States of Australia (Australian Government, July 2010)

From Table 2.1, it can be concluded that Queensland's emissions factors are poor in comparison with other states of Australia and needs to be improved. This can be done by investigating more efficient means for producing and distributing energy throughout the state.

2.2.2 Natural Gas Consumption

The combustion of natural gas is an option for energy consumption within buildings. The emissions factors for the consumption of natural gas distributed in a pipeline are detailed in Table 2.2.

Table 2.2: Emissions Factors for the Consumption of Natural Gas (Australian Government, July2010)

Fuel Combusted	Emission Factor (kg CO ₂ -e/GJ)			
	CO ₂	CH ₄	N ₂ O	
Natural Gas Distributed in a Pipeline	51.2	0.1	0.03	

The following formula is used to estimate the greenhouse gas emissions from the combustion of gaseous fuels:

$$E = Q \times EF$$
 (i) (Australian Government, July 2010)

Where,

E, is the emissions of the respective gas type (kg CO₂-e).

Q, is the quantity of fuel type (GJ).

EF, is the Emissions Factor for each gas type as detailed in Table 2.2.

2.3 Global Warming and the Built Environment

Energy consumption in buildings is responsible for 26% of Australia's greenhouse gas emissions (CSIRO, 2010). Furthermore, the energy consumption associated with a buildings cooling and heating plant typically accounts for over 50% of the buildings total energy usage (CSIRO, 2010).

In 2006 Lishan Guan undertook a research project titled "The Implications of Global Warming on the Energy Performance and Indoor Thermal Environment of Air-Conditioned Office Buildings in Australia". Results of her research showed that there is a near linear relationship between the increase of ambient air temperatures and the increase of building energy use (Guan, 2006).

Figure 2.1 and 2.2, shows the effects of global warming on a buildings cooling load and the total building energy use in cities throughout Australia.

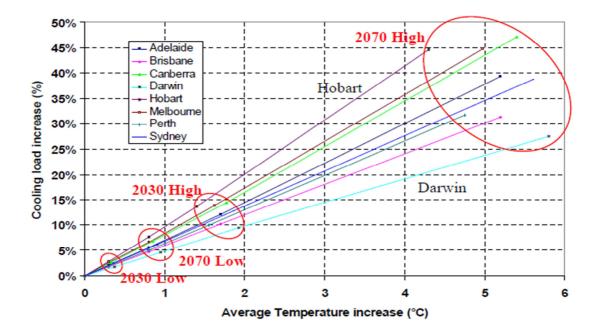


Figure 2.1: Building Cooling Load Increase versus Average Temperature Increase (Guan, 2006)

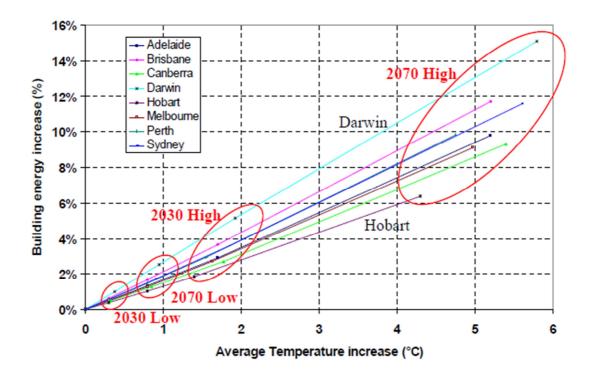


Figure 2.2: Building Energy Usage Increase versus Average Temperature Increase (Guan, 2006)

From Figures 2.1 and 2.2 it can be seen that building energy consumption is proportional to the ambient air temperature and global warming. As a result a cycling effect is evident. Global warming leads to greater building energy loads, which causes more greenhouse gas emissions, which leads to global warming. As building air conditioning systems account for a large proportion of greenhouse gas emissions, alternate energy efficient air conditioning systems should be investigated and analysed.

A recommendation for future research from "The Implications of Global Warming on the Energy Performance and Indoor Thermal Environment of Air-Conditioned Office Building in Australia" is to undertake a study of air conditioning systems selection and the energy efficiency associated with different systems (Guan, 2006).

2.4 Air Conditioning Systems

As detailed in Section 2.3, energy consumption in buildings is responsible for 26% of Australia's greenhouse gas emissions with 50% of the emissions associated with the air conditioning plant (CSIRO, 2010).

The cooling requirements of a building are dependent on a variety of factors which include but are not limited to the following:

- The climate zone the building is situated (Bhatia, 2011).
- The required space temperature (Bhatia, 2011).
- The type of construction and the thermal properties of the building fabric (Bhatia, 2011).
- The building orientation and how much shade is on the building (Bhatia, 2011).
- The physical size of the building to be conditioned (Bhatia, 2011).
- The quantity of ambient air infiltration into the building (Bhatia, 2011).
- The occupancy levels of the building (Bhatia, 2011).
- Activities undertaken within the building (Bhatia, 2011).
- Amount and type of lighting within the building (Bhatia, 2011).

Due to the wide variety of factors which affect the cooling requirements of a building it can be said that no two buildings are the same and each buildings has its own unique characteristics. As a result when determining heat loads and selecting the most energy efficient equipment it should be done on a case by case basis, as an appropriate selection for one building may not be the most appropriate for another.

The below subsections detail the air conditioning systems which are to be investigated in detail. The systems include:

- Variable air volume,
- Active Chilled beams,
- Trigeneration.

2.4.1 Variable Air Volume

A variable air volume (VAV) air conditioning system varies the quantity of supply air to meet the changing load conditions of the space (Trane, 2001). A VAV system is typically made up of the following main components:

- An air handling unit consisting of a variable speed supply air fan (Trane, 2001).
- A minimum of one variable air volume box downstream of the air handling unit. The primary components of the variable air volume box include an air modulation device such as a rotating blade damper, and control hardware (Trane, 2001).
- A thermostat dedicated to each variable air volume box (Trane, 2001).

There are two main control strategies for variable air volume boxes being pressure dependant and pressure independent control. Pressure dependant systems use the space temperature to control the position of the modulating device. The quantity of supply air delivered to the space is dependent on the static pressure within the duct and the position of the modulating device (Trane, 2001). A pressure independent unit controls the actual supply air delivered to the space utilising a velocity sensor in the supply air stream. Pressure independent variable air volume devices are the most popular form of control (Trane, 2001).

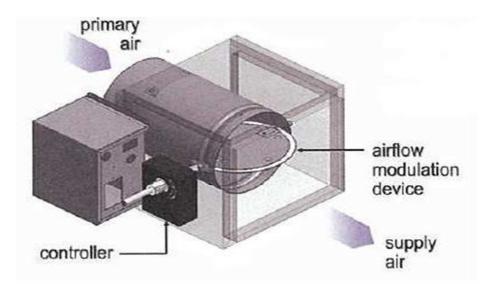


Figure 2.3: Pressure Independent Variable Air Volume Box Configuration (Trane, 2001)

There are two primary advantages associated with using a variable air volume system. The first is the system's ability to provide both fan and refrigeration part load energy savings. When the cooling demand is minimal within the space the damper modulates closed which creates an opportunity to reduce the speed of the fan which reduces fan energy. This reduced airflow across the cooling coil reduces the energy demand on the refrigeration system thus saving energy in the main cooling plant (Trane, 2001).

The second advantage associated with variable air volume systems is the improved comfort control. The system is capable of providing control to many spaces with varying cooling and heating requirements utilising one air handling unit fan and a variable air volume box to each individual space.

2.4.2 Chilled Beams

There are two main types of chilled beam air terminal devices namely active and passive (AIRAH, 2011). An active chilled beam utilises primary supply air for inducing room air over the chilled beam heat exchanger (AIRAH, 2011). It can be seen in Figure 2.4 that primary air is delivered to the mixing chamber through the primary air nozzles. This induces air from the conditioned space to rise through the secondary heat exchanger and mix with the primary air in the mixing chamber. The mixed air is then delivered to the space as supply air (AIRAH, 2011).

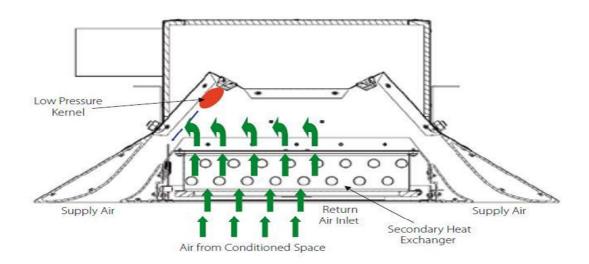


Figure 2.4, Active Chilled Beam Configuration (AIRAH, 2011)

A passive chilled beam has no direct supply air and relies on the room's natural air convection (Rumsey, Weale, 2011). Warm air rises to the beams coils, causing the air to cool and fall into the occupied zone (Rumsey, Weale, 2011). Passive chilled beams can handle low ventilation requirements and are less flexible than active technology (Rumsey, Weale, 2011). As a result active chilled beams will be used in this energy analysis.

The advantages associated with chilled beam technology include:

- Chilled beams use higher chilled water temperatures than conventional systems.
 A chiller dedicated to chilled beams has a lower temperature lift and can operate with a 15-20% higher efficiency (Roth, Dieckmann, Zogg, Brodrick, 2007).
- The combination of higher chilled water temperatures and the fact active chilled beams entrain large quantities of room air greatly reduces the need for energy consuming reheat of the cooled air (Roth, Dieckmann, Zogg, Brodrick, 2007).
- Chilled beams reduce ventilation fan energy consumption (Roth, Dieckmann, Zogg, Brodrick, 2007).

A study of the energy performance of active chilled beams and variable air volume systems for a building in Sydney found similar energy performances for the two buildings (Roth, Dieckmann, Zogg, Brodrick, 2007). During the summer months, the chilled beams system consumed less energy than the variable air volume system but during the winter months consumed more because of the reduced quantity of supply air precluded the use of an air side economizer (Roth, Dieckmann, Zogg, Brodrick, 2007). Studies of other buildings in Australia found that the energy impact varied appreciably depending on the specifics of the given project (Roth, Dieckmann, Zogg, Brodrick, 2007).

2.4.3 Trigeneration

Trigeneration also known as combined cooling, heating and power (CCHP) is the simultaneous production of electricity, heating and/or cooling from a single fuel source (Clinch, Selth, 2009). A gas turbine is used to simultaneously produce both electricity and useful heat (Australian Government, Feb 2010). With trigeneration the

useful heat can be either used for heating or transformed into cooling energy by an absorption chiller (Australian Government, 2010).

Absorption chillers use heat in lieu of mechanical energy to provide cooling. A thermal compressor consists of an absorber, a generator, a pump and a throttling device and replaces the mechanical vapour compressor (REI, 2011). Absorption chillers have a low coefficient of performance (capacity output divided by the energy input) in comparison to typical mechanical chillers. Although they have a poor coefficient of performance they can substantially reduce operating costs because they are powered by low grade waste heat from the gas turbine (REI, 2011).

Figure 2.5, shows a typical trigeneration schematic. From this diagram it can be seen that natural gas supplies the generator and boiler. Electrical power is provided to the building from two sources being the electrical grid and the generator. Waste heat from the generator can be used for both heating and cooling as necessary.

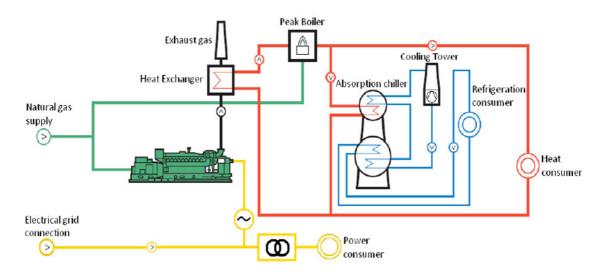


Figure 2.5: Trigeneration Process Schematic (Clinch, R, Selth, J, 2009)

The advantages of a trigeneration system is that it can make use of 70-75% of the energy in the original fuel, in comparison to a conventional coal fired power station which utilises approximately 25-30% (Australian Government, 2010). This is achieved by utilising the waste heat which would otherwise be wasted. A second advantage is that by producing the electricity on site, transmission and distribution losses are avoided which are often as high as 10% (Australian Government, 2010).

2.5 Building Code of Australia

The objective of Section J of the Building Code of Australia is to reduce building greenhouse gas emissions (Australian Building Codes Board, 2010). In order to reduce greenhouse gas emissions a building including its services must have features that facility the efficient use of energy (Australian Building Codes Board, 2010).

The Building Code of Australia (BCA) 2010 was effective from the 1 May 2010 and was superseded by the BCA2011 on the 1 May 2011 (Australian Building Codes Board, 2010). As this research project commenced prior to the 1 May 2011, the BCA2010 was adopted as the defining code for this research project.

For a building to comply with Section J of the BCA2010, it can be done so in one of two ways. The first is complying with the *Deemed-to-Satisfy Provisions* detailed within Parts J1 to J7. The title of each of these parts is listed below:

- Part J1: Building Fabric.
- Part J2: Glazing.
- Part J3: Building Sealing.
- Part J4: Not defined in BCA2010
- Part J5: Air-Conditioning and Ventilation Systems.
- Part J6: Artificial Lighting and Power.
- Part J7: Hot Water Supply and Swimming Pool and Spa Pool Plant.

Parts J1 to J7 can be categorised into two categories being building envelope requirements and building services requirements (Australian Building Codes Board, 2010). Parts J1, J2 and J3 make up the building envelope requirements while Parts J5, J6 and J7 make up the building services requirements.

The second alternative for compliance with the BCA2010 is verification using a reference building. Compliance using a reference building is verified when the annual energy consumption of the proposed building and its services is not more than the annual energy consumption of a reference building when:-

- (i) The proposed building is modelled with the proposed services; and
- (ii) The proposed building is modelled with the same services as the reference building (Australian Building Codes Board, 2010).

As detailed above verification using a reference building compares the annual energy consumptions of the proposed building with the annual energy consumption of the reference building. As the objective of the Building Code of Australia is to reduce greenhouse gas emissions, for this research project, annual greenhouse gas emissions will be compared instead of annual energy consumption. This will provide a more accurate analysis as to which upgrade is the most energy efficient in terms of which emits the least greenhouse gases. Gas and electrical energy consumptions will be converted to greenhouse gas emissions using the formulas described in Chapter 2.2 of this report.

As defined by the Building Code of Australia 2010, a reference building is a hypothetical building that is used to calculate the maximum allowable annual energy load, or maximum allowable annual energy consumption for the proposed building (Australian Building Codes Board, 2010). The *Deemed-to-Satisfy Provisions* from Parts J1 to J7 are to be used to model the reference buildings. A further description of these performance requirements are detailed later in this section.

As 295 Ann Street Brisbane is an existing building with an age of approximately 38 years, the existing building envelope and building services do not comply with the *Deemed-to-Satisfy Provisions*. Due to the size and age of the building it would be unfeasible to upgrade the building envelope to comply with the *Deemed-to-Satisfy Provisions*. This would involve replacing all the single pane glass with double pane glass, and insulating all external walls and roofs. For this reason verification using a reference building will be used to assess the compliance of the upgrade alternatives modelled throughout this research project.

The implications of not upgrading the building envelope result in the proposed building using more energy than the reference buildings when the proposed building is modelled with the same services as the reference building, as per requirement (ii). This is due to the reference building being modelled with a *Deemed-to-Satisfy* envelope and services, while comparing this to the proposed building with a noncompliant envelope and *Deemed-to-Satisfy* services. For this reason, to determine BCA compliance for an existing building the proposed building will be modelled with the proposed services as per requirement (i).

The main performance requirements of the BCA2010 reference building are summarised below:

- Roof thermal resistance (R-Value) of 4.2 for a building in climate zone 2 (Australian Building Codes Board, 2010).
- Wall thermal resistance (R-Value) of 3.3 for a building in climate zone 2 (Australian Building Codes Board, 2010).
- Have an outdoor air economy cycle when the air conditioning unit capacity is over 50 kWr (Australian Building Codes Board, 2010).
- A gas boiler shall have a minimum gross thermal efficiency of 80% when the rated capacity is not more than 750 kW (Australian Building Codes Board, 2010).
- A Minimum energy efficiency ratio for refrigerant chillers of 4.2 under full load operation (Australian Building Codes Board, 2010).
- A solar absorptance of 0.6 for external walls and 0.7 for roofs (Australian Building Codes Board, 2010).
- For perimeter zones an air infiltration value of 1 air change per hour (Australian Building Codes Board, 2010).
- The aggregate air conditioning energy value attributable to the glazing must not exceed the allowance obtained by multiplying the facade area exposed to the conditioned space by the energy index (Australian Building Codes Board, 2010). The energy index for a building in climate zone 2 is 0.173. The aggregate air conditioning energy value is calculated using formula (2):

 $A_1[SHGC_1(C_A \times S_{H1} + C_B \times S_{C1}) + C_C \times U_1] + A_2[SHGC_2(C_A \times S_{H2} + C_B \times S_{C2}) + C_C \times U_2]$

..... (2), (Australian Building Codes Board, 2010).

Where,

 $A_{1,2}$ = the area of each glazing element $C_{A, B and C}$ = the energy constants A, B and C for the specific orientation. $SHGC_{1,2, etc}$ = the shading glass coefficient of each glazing element $S_{H1,2, etc}$ = the heating shading multiplier for each glazing element obtained from the BCA2010.

 $S_{C1,2, etc}$ = the cooling shading multiplier for each glazing element obtained from the BCA2010.

 $U_{1,2}$ = the area of each glazing element

The Building Code of Australia website provides an excel spread sheet to perform equation (2).

For consistency between the proposed building model and reference building model, section JV3, (d),(ii) of the Building Code of Australia 2010 details the features which are required to be kept consistent between the reference building and the proposed building model. One of the items includes the air conditioning system configuration and zones shall be kept consistent between the two models. As a result for each upgrade alternative a reference building shall be modelled with the same air conditioning system configurations and zones.

To ensure the results of the energy modelling are accurate, the Building Code of Australia requires that the energy consumption calculation method must comply with the Australian Building Codes Board, *Protocol for Building Energy Analysis Software* (Australian Building Codes Board, 2010). The protocol requires that evidence be produced to demonstrate the software is suitable. The evidence includes:

- The software has features and specific capabilities as detailed in section 3 and 4 of the Protocol for Building Energy Analysis Software (Australian Building Codes Board, 2010).
- The software has undergone appropriate testing and result analysis, and the process has undergone quality assurance (Australian Building Codes Board, 2010).
- A training program is available for users (Australian Building Codes Board, 2010).
- The status of the software such as whether it has been approved by any appropriate authority, must be clearly indicated (Australian Building Codes Board, 2010).

2.6 Modelling Software

The energy modelling software package being used for this analysis is TRACE 700 version 6.2. Trace 700 is a load, system, energy and economic analysis program. The software has the ability to analyse architectural features, heating, ventilation and air conditioning systems, building utilisation, scheduling and economic options (Trane, 2011).

As required by the Australian Building Codes Board (ABCB), TRACE 700 version 6.2.6 has been tested in compliance with ANSI/ASHRAE Standard 140-2007, *Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs* (Trane, 2011). To comply with this standard the software passed the BESTEST which compared the program with similar analysis programs. A letter verifying this compliance can be seen in Appendix B.

In order to gain a full appreciation of the software results it is necessary to understand the software's limitations. The limitations which have been identified include:

The software does not provide detailed temperature profiles of each room. The software requires the user to input the required dry bulb and wet bulb temperatures of the room, however, when comparing between proposed systems

it cannot be determined which system provides more consistent temperatures and air distribution, and which has a higher level of occupancy comfort.

 The energy calculations are based on average weather data for the location defined by the user. When comparing the theoretical energy usage with actual energy usage results will vary depending on how close the actual temperatures were to the average data built into the software.

3. PROJECT METHODOLOGY

This Chapter details the project methodology and tasks required to undertake this research. Each of the major tasks and milestones are detailed in the following sub headings.

3.1 Modelling the Existing Building and the Mechanical Services Systems

The first stage of the energy analyses was to model the existing building and the air conditioning systems within the building. This step determined the energy efficiency of the existing mechanical systems and provided a reference point to compare the upgrade alternatives to. Information used to model the existing building and its services was gathered from site audits, the buildings operation and maintenance manuals, as-installed drawings and the Building Management System (BMS). The below subsections detail the steps involved to model the existing systems. Appendix C contains screenshots of the TRACE 700 software for the existing building model.

3.1.1 Select Weather Information

As described in Section 2.4 climate greatly affects the energy consumption of buildings mechanical services. TRACE 700 has inbuilt weather files for a range of locations throughout the world. Information stored within these files includes:

- Maximum outside air dry bulb.
- Maximum outside air wet bulb.
- Humidity ratio.
- Cloud Cover Modifier.
- Wind speed.
- Barometric Pressure.

The building modelled is located at 295 Ann Street in the Brisbane CBD and as a result the Brisbane weather file was selected. Appendix D displays the Brisbane weather file which was used for this assessment.

3.1.2 Creation of Rooms

In order to model the existing building each floor was split into 18 individual rooms. Each level was assumed to be typical in terms of layout, construction and occupancy. The floor was divided into rooms by assuming one air mixing box was dedicated to each room thereby creating 18 rooms. Appendix E contains a typical floor plan which shows the segregation of the rooms. The subsections below detail the modelling associated with each room.

3.1.2.1 Rooms

The rooms sub-tab was used to define the following room properties:

- The length and width of the room.
- The height of the room including the slab to slab height and the ceiling plenum height.
- The cooling temperature set point.
- The heating temperature set point.
- Relative humidity set point.
- Cooling drift point which is the maximum range at which the temperature shall deviate from set point.
- The heating drift point which is the maximum range at which the temperature shall deviate from set point.
- The thermostat and CO₂ sensor positions.

Table 3.1 details the typical room properties for all rooms within the building. As seen in the table the room length and width are dependent on the respective room.

Length of Room	Dependant on the room
Width of Room	Dependant on the room
Floor to Floor Height (slab to slab)	3.65m
Ceiling Plenum Height	0.95m
Cooling Set Point	22.5°C
Heating Set Point	21°C
Relative Humidity	50%
Cooling Drift Point	23.5°C
Heating Drift Point	20
Thermostat Sensor Location	Room, wall mounted
CO ₂ Sensor Location	N/A

Table 3.1: Typical Room Properties at 295 Ann Street, Brisbane

The set points detailed in Table 3.1 were obtained from the Building Management System.

3.1.2.2 Roofs

The roofs sub-tab was used to input the roof construction and the associated thermal properties. As the top floor of 295 Ann Street is a non air conditioned plant room the thermal properties of the roof does not affect the energy consumption within the building.

3.1.2.3 Walls

The walls sub-tab was used to define the wall construction, direction and thermal properties of all external walls. The following properties were defined within the walls tab:

• The direction of the wall.

- The length and height of the wall.
- The construction type of the wall.
- The heat transfer coefficient (U-Factor) of the wall.
- The length and height of glass within each wall.
- The type of glass.
- The heat transfer coefficient (U-Factor) of the glass.
- The shading coefficient of the glass.

Typical wall and glass properties within the building are detailed in Table 3.2.

Direction of Wall	Dependant on the room
The Length of Wall	Dependant on the room
Height of Wall	3.65m
External Wall Construction	200mm concrete lined with 20mm of
	plaster
Heat Transfer Coefficient	1.4479 W/m ² °C
(U-Factor) of External Walls	
Length of Glass Within Wall	Dependant on the room
Height of Glass	1.76m
Type of Glass	Single Clear 1/8"
Heat Transfer Coefficient	5.9 W/m ² °C
(U-Factor) of Glass	
Shading Coefficient of Glass	0.8

Table 3.2: Typical Wall Properties at 295 Ann Street, Brisbane

The TRACE 700 software contains heat transfer coefficients for a large range of wall, slab and glazing construction types. As a result the heat transfer coefficients detailed in Table 3.2 were obtained by selecting the appropriate wall construction and glass types. Wall and glazing construction types were identified during a site inspection.

3.1.2.4 Internal Loads

The internal loads sub-tab was used to define the internal loads within each room. These internal loads include:

- The occupancy levels and the activities being undertaken by occupants.
- Number of workstations per person.
- The type of lighting and the lighting heat gain within the room.
- Any miscellaneous loads within the room

The typical internal loads are detailed in Table 3.3.

People Activity	Office
People Density	10 sq m/person
Workstation Density	1 workstation/person
Lighting Type	Fluorescent, 100% load to space
Heat Gain From Lighting	15 W/m ²

Table 3.3: Typical Internal loads at 295 Ann Street, Brisbane

AS 1668.2-1991, The Use of Mechanical Ventilation and Air-Conditioning in Buildings states that for an office building the typical floor area per person is 1 person per $10m^2$ (Standards Australia, 1991). The people density in Table 3.3 is based on this standard. The lighting heat gain of 15 W/m² was an assumption made based on typical industry figures from the period the building was constructed.

3.1.2.5 Airflows

The outside air rates and the infiltration rates of each room were detailed in the airflows sub-tab. Table 3.4 details the outside air and infiltration rates used for the existing building model.

10 L/s/person
10 L/s/person
1 air change/hour
1 air change/hour

Table 3.4: Outside Air/Infiltration Rates at 295 Ann Street, Brisbane

The outside air rates detailed in Table 3.4 were obtained from the mechanical operation and maintenance manuals. The infiltration rate of 1 air change/hour was an assumption made and is consistent with the requirements of the BCA.

3.1.2.6 Partition/Floors

The Partition/Floors sub-tab was used to nominate partition walls and floors which affect the heat load of a space. A partition wall is a wall which divides an air conditioned space from a non air conditioned space thereby resulting in heat transfer from one room to another. A wall which divides a conditioned room from another conditioned room of same temperature is not deemed to be a partition as there will be no heat transfer between spaces.

For the 295 Ann Street model the only partition wall is that between the office space and the building core. On ground level the floor was modelled as a partition as it divides the air conditioned ground floor with the non air conditioned plant room level below. Similarly, the level 16 floor was modelled as a partition as it divides the air conditioned level 15 from the non air conditioned plant room on level 16. Details of each partition can be seen in Table 3.5.

Partition Wall Construction	8" concrete block
Partition Wall Heat Transfer Coefficient (U-Factor)	2.288 W/m ² °C
Slab Construction	12" Concrete
Slab Heat Transfer Coefficient (U-Value)	0.515 W/m ² °C

Table 3.5: Partition/Floors Descriptions at 295 Ann Street, Brisbane

The heat transfer coefficients detailed in Table 3.5 were obtained by selecting the appropriate construction type scheduled within the TRACE 700 program. These construction types were identified during a site inspection of the premises.

3.1.3 Create Systems

The create system tab was the location to select and define the air side system. As described earlier in this report the air distribution subsystem in the existing building consists of eight central air handling units. Each of the air handling units consists of a chilled water cooling coil and a hot water heating coil. A cold deck fan and a hot deck fan provide cold and hot supply air to the floor mixing boxes via individual ductwork reticulation systems. A return air fan draws air from the conditioned space and returns it back to the air handling unit. Here the return air mixes with outside air to repeat the process. A schematic of a zone mixing box system can be seen in Figure 3.1.

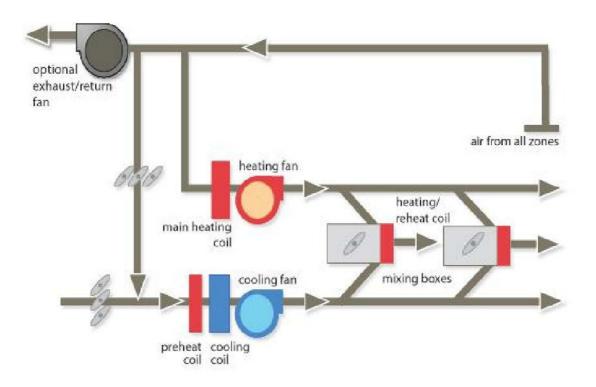


Figure 3.1: Zone Mixing Box Schematic

3.1.3.1 Fans

For each of the 8 air distribution systems, fan performance data was entered into the fans sub-tab. The fan information was obtained from the buildings operation and maintenance manuals. The performance data for the cooling, heating and return air fans for each system are summarised in Table 3.6.

System Description	Fan	Fan Type	Static Pressure Drop
AHU NW	Cooling Supply	Centrifugal, variable speed motor	650 Pa
(Level 1-7)	Heating Supply	Axial fan, variable speed motor	650 Pa
	Return Air Fan	Axial fan, variable speed motor	395 Pa
AHU NE	Cooling Supply	Centrifugal, variable speed motor	450 Pa
(Levels 1-7)	Heating Supply	Axial fan, variable speed motor	450 Pa
	Return Air Fan	Axial fan, variable speed motor	315 Pa
AHU SW	Cooling Supply	Centrifugal, variable speed motor	430 Pa
(Levels 1-7)	Heating Supply	Axial fan, variable speed motor	430 Pa
	Return Air Fan	Axial fan, variable speed motor	320 Pa
AHU SE	Cooling Supply	Centrifugal, variable speed motor	440 Pa
(Levels 1-7)	Heating Supply	Axial fan, variable speed motor	440 Pa
	Return Air Fan	Axial fan, variable speed motor	300 Pa
AHU NW	Cooling Supply	Centrifugal, variable speed motor	500 Pa
(Levels 8-15)	Heating Supply	Axial fan, variable speed motor	500 Pa
	Return Air Fan	Axial fan, variable speed motor	380 Pa
AHU NE	Cooling Supply	Centrifugal, variable speed motor	510 Pa
(Levels 8-15)	Heating Supply	Axial fan, variable speed motor	510 Pa
	Return Air Fan	Axial fan, variable speed motor	380 Pa

Table 3.6: Fan Performance Data from Mechanical O&M Manuals

AHU SW	Cooling Supply	Centrifugal, variable speed motor	445 Pa
(Levels 8-15)	Heating Supply	Axial fan, variable speed motor	445 Pa
	Return Air Fan	Axial fan, variable speed motor	390 Pa
AHU SE	Cooling Supply	Centrifugal, variable speed motor	520 Pa
(Levels 8-15)	Heating Supply	Axial fan, variable speed motor	520 Pa
	Return Air Fan	Axial fan, variable speed motor	380 Pa

3.1.4 Assign Rooms to Systems

The purpose of the assign rooms to system tab was to define the rooms each airside system serves. Table 3.7 details the room assignments used throughout this model.

AIR SIDE SYSTEM	ROOM ASSIGNMENT
AHU NW (Levels 1-7)	Zones 15, 16, 17 & 18 from levels 1 to 7
AHU NE (Levels 1-7)	Zones 10, 11, 12, 13 & 14 from levels 1 to 7
AHU SW (Levels 1-7)	Zones 1, 2, 3, 4, & 5 from levels 1 to 7
AHU SE (Levels 1-7)	Zones 6, 7, 8 & 9 from levels 1 to 7
AHU NW (Levels 8-15)	Zones 15, 16, 17 & 18 from levels 8 to 15
AHU NE (Levels 8-15)	Zones 10, 11, 12, 13 & 14 from levels 8 to 15
AHU SW (Levels 8-15)	Zones 1, 2, 3, 4, & 5 from levels 8 to 15
AHU SE (Levels 8-15)	Zones 6, 7, 8 & 9 from levels 8 to 15

Table 3.7: Room to System Assignment for the Existing Building Model

3.1.5 Create Plants

The main cooling and heating plants were created and defined in the create plants tab. A summary of the cooling and heating plants existing within the building are detailed in Table 3.8. This information was obtained from the buildings operation and maintenance manuals and mechanical as-installed drawings.

Table 3.8: Existing Building Cooling and Heating Plant

Equipment Description	Equipment Type	Capacity	COP	Sequencing
Equipment Description	Equipment Type	Supacity	cor	Sequencing
Water Cooled Chiller-1	Centrifugal 2	2110 kW	5.2	Parallel
	Stage with VSD			
Water Cooled Chiller-2	Centrifugal 2	1800 kW	5.2	-
	Stage with VSD			
Water Cooled Chiller-3	Reciprocating	450 kW	3	-
Water Cooled Chiller-4	Reciprocating	450 kW	3	
				I
Cooling Tower 1	Single Speed Fans	2450 kW	N/A	Parallel
Cooling Tower 2	Single Speed Fans	2450 kW	N/A	
~ ~ ~ ~ ~ ~ ~				
Chilled Water Pump 1	Constant Volume	40 kW	N/A	Single
Chilled Water Pump 2	Constant Volume	40 kW	N/A	Single
Chilled Water Pump 3	Constant Volume	22 kW	N/A	Single
Chilled Water Pump 4	Constant Volume	22 kW	N/A	Single
Condenser Water Pump 1	Constant Volume	20 kW	N/A	Single
Condenser Water Pump 2	Constant Volume	20 kW	N/A	Single
Condenser Water Pump 3	Constant Volume	11 kW	N/A	Single
Condenser Water Pump 4	Constant Volume	11 kW	N/A	Single
HEATING PLANT				
Boiler 1	Gas Fired	Calculated by	83.3%	Single
		TRACE		
Heating Water Pump	Constant Volume	15 kW	N/A	Single

3.1.6 Assign Systems to Plants

The final stage in the modelling process was to assign the air side systems to the main cooling and heating plants. Systems were assigned to plants by assigning all the cooling coils to the main cooling plant and all heating coils to the heating plant.

3.2 Modelling the BCA 2010 Reference Buildings

As described in Section 2.5 of this report, in order to assess if a building is compliant with the Building Code of Australia 2010, its proposed greenhouse gas emissions must be compared with that of a reference building. A reference building is a hypothetical building that is used to calculate the maximum allowable greenhouse gas emissions for the proposed building. The following subsections detail the modelling of the reference buildings.

3.2.1 Wall Thermal Performance Values

Table 3.9 details the difference in the wall thermal performance values between the existing building and the reference building. The reference building performance values were obtained from Part J1 of the Building Code of Australia 2010, which is the Building Fabric *Deemed-to-Satisfy Provisions*.

	Existing Building	Reference Building Value
	Value	
Wall Heat Transfer Coefficient	1.4479 W/m ² °C	0.303 W/m ² °C
(U-Value)		
Wall Solar Absorptance	0.9	0.6
Infiltration Rates	1 air changes/hour	1 air change/hour
Heat from Lighting	15 W/m^2	9 W/m ²

Table 3.9: Reference Building Roof and Wall Thermal Performance

3.2.2 Glazing

To determine the glazing performance of the reference building, the BCA2010 glazing calculator was used. The calculator performs equation (2) detailed in Section 2.5 of this report. The following data was required to be inputted into the spread sheet in order to perform the calculation:

- The facade area in each direction.
- The height and width of each glazing element.
- The thermal performance of the glass including the heat transfer coefficient and the glass shading coefficient.
- Dimensions of the physical shading around the windows including overhangs and reveals.
- The climate zone of which the building is located.

Appendix F contains the glazing calculator using the existing buildings glass properties. As all floors are typical the calculation has been performed for one level only. It can be seen in the far right hand column of the spread sheet that the glass does not comply due to:

- The aggregate air conditioning energy value attributed to the glazing in the northwestern direction is 163% of the allowable quantity.
- The aggregate air conditioning energy value attributed to the glazing in the northeastern direction is 201% of the allowable quantity.
- The aggregate air conditioning energy value attributed to the glazing in the southwestern direction is 115% of the allowable quantity.
- The aggregate air conditioning energy value attributed to the glazing in the southeastern direction is 131% of the allowable quantity.

As described earlier, the allowable energy value associated with the glazing is obtained by multiplying the facade area exposed to the conditioned space by the energy index. The energy index for a building in climate zone 2 is 0.173.

To determine the thermal performance of the glass which will comply with the BCA2010, the glazing calculator is used in an iterative process. The glass

performance is increased until the aggregate air conditioning energy value is 100% of the allowable quantity. The glazing calculator is presented in Appendix G and the compliant glass properties detailed in Table 3.10.

Aspect	Heat Transfer Coefficient (U-Value)	Shading Coefficient (SHGC)
North-West	3.4	0.48
North-East	3.4	0.4
South-West	3.4	0.69
South-East	3.4	0.61

Table 3.10: BCA2010 Compliant Glazing for 295 Ann Street, Brisbane

3.2.3 System and Plant Level

Section JV3, d, (ii) of the BCA2010 requires that the proposed building and the reference building be modelled with the same air conditioning system configuration and zones. As a result, for this project a reference building was modelled for the following system configurations:

- Mixing box with central air handling plant.
- Variable air volume with central air handling plant.
- Variable air volume with floor air handling plant.
- Active chilled beams with central air handling plant.
- Active chilled beams with floor air handling plant.

As described in Section 2.4.3, trigeneration is an energy production plant rather than an air conditioning system. The trigeneration alternatives modelled as part of this research project are in combination with the air conditioning systems listed above. For this reason a separate reference building was not required to be modelled for the trigeneration alternatives as the reference buildings detailed above will be suitable.

The system and plant level differences between the existing model and the reference building models can be seen in Table 3.11 below.

	Existing Building Value	Reference Building Value
Airside System Economiser	None	Outdoor air economy cycle
Boiler Efficiency	83%	80%
ChillerCoefficientofPerformance (COP)	5.2 & 3	4.2

 Table 3.11: BCA2010 Reference Building Plant Performance

It can be seen in Table 3.11, that the existing building has chillers with better energy efficiency than that required by the reference building. The existing buildings chillers have a coefficient of performance (COP) of 5.2 & 3 in comparison to the reference building with a COP of 4.2.

3.3 Modelling the Proposed Upgrades

After modelling the existing building and the Building Code of Australia reference buildings the proposed upgrades were modelled. The below subsections describes the modelling of the proposed upgrades.

3.3.1 Variable Air Volume

The first system modelled was a variable air volume system. A schematic of a variable air volume system from the TRACE 700 software is presented in Figure 3.2.

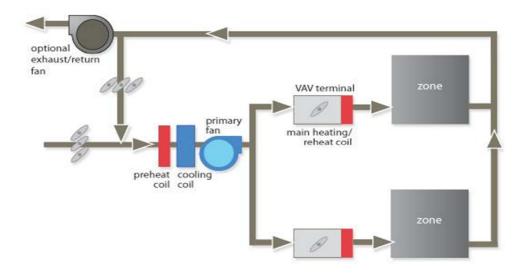


Figure 3.2: Variable Air Volume System Schematic

For a high rise application such as 295 Ann Street, a variable air volume system can be configured in two ways. The first configuration is central air handling plant. An air handling plant is made up of the primary fan, cooling coil and heating coil. The air handling plant shall be located in a centralised plant room and serve the same zones over a number of floors.

The second configuration is floor air handling plant. This configuration involves an air handling unit being located on each floor with one air handling unit serving the entire floor. The supply air fan on each floor shall provide supply air to the 18 variable air volume boxes on the respective floor. Both of these configurations have been modelled as part of this assessment and are detailed in the sub sections below.

3.3.1.1 Central Air Handling

Variable air volume combined with central air handling plant was the first variable air volume configuration modelled. Similar to the existing system, the system shall consist of eight central air handling units. Four central air handling units shall be located in the Level 16 plant room and be dedicated to the north-east, south-east, south-west and north-west zones on levels 8 to 15 inclusive. The remaining four central air handling units shall be located in the lower ground plant room and serve

the north-east, south-east, south-west and north-west zones on levels ground to 7 inclusive.

In order to model this upgrade alternative the rooms and plants created in the existing building model were copied for continuity between the files. Eight variable air volume systems were then created under the systems tab as per Table 3.12.

System Description	Fan	Fan Type	Static Pressure Drop
AHU NW	Cooling Supply	Centrifugal, variable speed motor	650 Pa
(Level 1-7)	Return Air Fan	Axial fan, variable speed motor	395 Pa
AHU NE	Cooling Supply	Centrifugal, variable speed motor	450 Pa
(Levels 1-7)	Return Air Fan	Axial fan, variable speed motor	315 Pa
AHU SW	Cooling Supply	Centrifugal, variable speed motor	430 Pa
(Levels 1-7)	Return Air Fan	Axial fan, variable speed motor	320 Pa
AHU SE	Cooling Supply	Centrifugal, variable speed motor	440 Pa
(Levels 1-7)	Return Air Fan	Axial fan, variable speed motor	300 Pa
AHU NW	Cooling Supply	Centrifugal, variable speed motor	500 Pa
(Levels 8-15)	Return Air Fan	Axial fan, variable speed motor	380 Pa
AHU NE	Cooling Supply	Centrifugal, variable speed motor	510 Pa
(Levels 8-15)	Return Air Fan	Axial fan, variable speed motor	380 Pa
AHU SW	Cooling Supply	Centrifugal, variable speed motor	445 Pa
(Levels 8-15)	Return Air Fan	Axial fan, variable speed motor	390 Pa
AHU SE	Cooling Supply	Centrifugal, variable speed motor	520 Pa
(Levels 8-15)	Return Air Fan	Axial fan, variable speed motor	380 Pa

Table 3.12: Fan Performance – Variable Air Volume Combined With Central Air Handling

The fan static pressure drop used in this system was the same as that used in the existing building. This is assuming duct is sized efficiently and similar duct runs are used for the upgraded system. It can be seen in Table 3.12 that the variable air volume system contains only a cooling supply fan and a return air fan, in comparison to the existing mixing box system which also contains a heating supply fan.

3.3.1.2 Floor Air Handling

In order to model a variable air volume system with floor air handling plant the rooms and plants created in the existing building model were copied for continuity. As there shall be an air handling unit dedicated to each floor, sixteen variable air volume systems were created under the systems tab. Similar to the existing building model fan performances were detailed in the fans sub-tab and are summarised in Table 3.13.

System Description	Fan	Fan Type	Static Pressure Drop
AHU Ground	Supply Air Fan	Centrifugal, variable speed motor	448 Pa
	Return Air Fan	Centrifugal, variable speed motor	312 Pa
AHU Level 1	Supply Air Fan	Centrifugal, variable speed motor	448 Pa
	Return Air Fan	Centrifugal, variable speed motor	312 Pa
AHU Level 2	Supply Air Fan	Centrifugal, variable speed motor	448 Pa
	Return Air Fan	Centrifugal, variable speed motor	312 Pa
AHU Level 3	Supply Air Fan	Centrifugal, variable speed motor	448 Pa
	Return Air Fan	Centrifugal, variable speed motor	312 Pa
AHU Level 4	Supply Air Fan	Centrifugal, variable speed motor	448 Pa
	Return Air Fan	Centrifugal, variable speed motor	312 Pa
AHU Level 5	Supply Air Fan	Centrifugal, variable speed motor	448 Pa
	Return Air Fan	Centrifugal, variable speed motor	312 Pa

Table 3.13: Fan Performance - Variable Air Volume Combined With Floor Air Handling

			-
AHU Level 6	Supply Air Fan	Centrifugal, variable speed motor	448 Pa
	Return Air Fan	Centrifugal, variable speed motor	312 Pa
AHU Level 7	Supply Air Fan	Centrifugal, variable speed motor	448 Pa
	Return Air Fan	Centrifugal, variable speed motor	312 Pa
AHU Level 8	Supply Air Fan	Centrifugal, variable speed motor	448 Pa
	Return Air Fan	Centrifugal, variable speed motor	312 Pa
AHU Level 9	Supply Air Fan	Centrifugal, variable speed motor	448 Pa
	Return Air Fan	Centrifugal, variable speed motor	312 Pa
AHU Level 10	Supply Air Fan	Centrifugal, variable speed motor	448 Pa
	Return Air Fan	Centrifugal, variable speed motor	312 Pa
AHU Level 11	Supply Air Fan	Centrifugal, variable speed motor	448 Pa
	Return Air Fan	Centrifugal, variable speed motor	312 Pa
AHU Level 12	Supply Air Fan	Centrifugal, variable speed motor	448 Pa
	Return Air Fan	Centrifugal, variable speed motor	312 Pa
AHU Level 13	Supply Air Fan	Centrifugal, variable speed motor	448 Pa
	Return Air Fan	Centrifugal, variable speed motor	312 Pa
AHU Level 14	Supply Air Fan	Centrifugal, variable speed motor	448 Pa
	Return Air Fan	Centrifugal, variable speed motor	312 Pa
AHU Level 15	Supply Air Fan	Centrifugal, variable speed motor	448 Pa
	Return Air Fan	Centrifugal, variable speed motor	312 Pa
	l		

To approximate the static pressure drop for the floor supply and return air fans it was assumed that the floor level supply and return air ductwork was configured and sized in the same arrangement as the existing ductwork. The supply and return air fan static pressure drop for the central air handling systems were averaged and the approximated riser losses were subtracted. Table 3.14 presents these calculations for both the supply and return air fan.

	Supply Air Fan	Return Air Fan
Average Cooling Supply Fan Pressure Drop	493	357
from the Existing System		
Approximate Riser Pressure Losses	50	50
Approximate Static Pressure Drop for	448	312
Floor Air Handling Configuration		

Table 3.14: Floor Air Handling Supply and Return Air Fan Pressure Drop Calculation

3.3.2 Active Chilled Beams

A schematic of an active chilled beams system from the TRACE 700 software can be seen in the Figure 3.3.

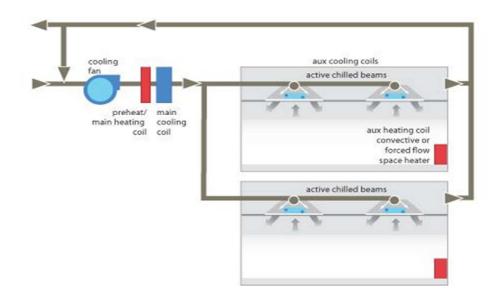


Figure 3.3: Active Chilled Beams System Schematic

Similar to a variable air volume system an active chilled beam system can be configured in two ways, being a central air handling system and a floor air handling system. Both of these configurations were modelled as detailed in the following subsections.

3.3.2.1 Central Air Handling

To ensure consistency between the files the rooms and main cooling and heating plants were copied from the existing building model. Eight active chilled beam systems were then created under the systems tab.

Similar to the existing system this upgrade alternative shall consist of eight central air handling plants. Four central air handling units shall be located in the Level 16 plant room and be dedicated to the north-east, south-east, south-west and north-west zones on levels 8 to 15 inclusive. The remaining four central air handling units shall be located in the lower ground plant room and serve the north-east, south-east, south-west and north-west zones, south-west and north-west zones on levels ground plant room and serve the north-east, south-east, south-west and north-west zones on levels ground to 7 inclusive.

The static pressure drop used in this system was the same as that used in the existing building model. This was based on the assumption that the duct sizing and configuration will be the same as the existing. The fan performance details for the active chilled beam system with central air handling plant are presented in Table 3.15.

System	Fan	Fan Type	Static Pressure
Description	ган	ran rype	Drop
AHU NW	Cooling Supply	Centrifugal, variable speed motor	650 Pa
(Level 1-7)	Return Air Fan	Axial fan, variable speed motor	395 Pa
AHU NE	Cooling Supply	Centrifugal, variable speed motor	450 Pa
(Levels 1-7)	Return Air Fan	Axial fan, variable speed motor	315 Pa
AHU SW	Cooling Supply	Centrifugal, variable speed motor	430 Pa
(Levels 1-7)	Return Air Fan	Axial fan, variable speed motor	320 Pa
AHU SE	Cooling Supply	Centrifugal, variable speed motor	440 Pa
(Levels 1-7)	Return Air Fan	Axial fan, variable speed motor	300 Pa
AHU NW	Cooling Supply	Centrifugal, variable speed motor	500 Pa
(Levels 8-15)	Return Air Fan	Axial fan, variable speed motor	380 Pa

Table 3.15: Fan Performance - Active Chilled Beams With Central Air Handling Plant

AHU NE	Cooling Supply	Centrifugal, variable speed motor	510 Pa
(Levels 8-15)	Return Air Fan	Axial fan, variable speed motor	380 Pa
AHU SW	Cooling Supply	Centrifugal, variable speed motor	445 Pa
(Levels 8-15)	Return Air Fan	Axial fan, variable speed motor	390 Pa
AHU SE	Cooling Supply	Centrifugal, variable speed motor	520 Pa
(Levels 8-15)	Return Air Fan	Axial fan, variable speed motor	380 Pa

Similar to the variable air volume system the active chilled beams system contains a cooling supply fan and a return air fan, in comparison to the existing mixing box system which also contains a heating supply fan.

3.3.2.2 Floor Air Handling Plant

To model the floor air handling active chilled beams system the rooms and main cooling and heating plants created in the existing building model were copied and reused to ensure consistency between the models. As there will be an air handling unit dedicated per floor sixteen active chilled beams systems were created under the systems tab. Fan performances were detailed in the fans sub-tab and are summarised in Table 3.16.

System Description	Fan	Fan Type	Static Pressure Drop
AHU Ground	Supply Air Fan	Centrifugal, variable speed motor	448 Pa
	Return Air Fan	Centrifugal, variable speed motor	312 Pa
AHU Level 1	Supply Air Fan	Centrifugal, variable speed motor	448 Pa
	Return Air Fan	Centrifugal, variable speed motor	312 Pa
AHU Level 2	Supply Air Fan	Centrifugal, variable speed motor	448 Pa
	Return Air Fan	Centrifugal, variable speed motor	312 Pa

 Table 3.16: Fan Performance - Active Chilled Beams With Floor Air Handling Plant

AHU Level 3	Supply Air Fan	Centrifugal, variable speed motor	448 Pa
	Return Air Fan	Centrifugal, variable speed motor	312 Pa
AHU Level 4	Supply Air Fan	Centrifugal, variable speed motor	448 Pa
	Return Air Fan	Centrifugal, variable speed motor	312 Pa
AHU Level 5	Supply Air Fan	Centrifugal, variable speed motor	448 Pa
	Return Air Fan	Centrifugal, variable speed motor	312 Pa
AHU Level 6	Supply Air Fan	Centrifugal, variable speed motor	448 Pa
	Return Air Fan	Centrifugal, variable speed motor	312 Pa
AHU Level 7	Supply Air Fan	Centrifugal, variable speed motor	448 Pa
	Return Air Fan	Centrifugal, variable speed motor	312 Pa
AHU Level 8	Supply Air Fan	Centrifugal, variable speed motor	448 Pa
	Return Air Fan	Centrifugal, variable speed motor	312 Pa
AHU Level 9	Supply Air Fan	Centrifugal, variable speed motor	448 Pa
	Return Air Fan	Centrifugal, variable speed motor	312 Pa
AHU Level 10	Supply Air Fan	Centrifugal, variable speed motor	448 Pa
	Return Air Fan	Centrifugal, variable speed motor	312 Pa
AHU Level 11	Supply Air Fan	Centrifugal, variable speed motor	448 Pa
	Return Air Fan	Centrifugal, variable speed motor	312 Pa
AHU Level 12	Supply Air Fan	Centrifugal, variable speed motor	448 Pa
	Return Air Fan	Centrifugal, variable speed motor	312 Pa
AHU Level 13	Supply Air Fan	Centrifugal, variable speed motor	448 Pa
	Return Air Fan	Centrifugal, variable speed motor	312 Pa
AHU Level 14	Supply Air Fan	Centrifugal, variable speed motor	448 Pa
	Return Air Fan	Centrifugal, variable speed motor	312 Pa
AHU Level 15	Supply Air Fan	Centrifugal, variable speed motor	448 Pa
	Return Air Fan	Centrifugal, variable speed motor	312 Pa

The static pressure drops in Table 3.16 were calculated as detailed within Table 3.14. In order to approximate the static pressure drop for the floor supply and return air fans it was assumed that the floor level supply and return air ductwork was configured in the same arrangement as the existing ductwork. The supply and return air fan static pressure drops for the existing systems were averaged and the approximated riser losses were subtracted.

3.3.3 Trigeneration Combined With Zone Mixing Boxes

Trigeneration combined with zone mixing boxes was the next upgrade alternative to be modelled. Trigeneration forms part of the main plant and as such was modelled in the create plants tab within TRACE 700. As a zone mixing boxes system is used within the existing building, the rooms and systems from the existing building model were copied into this model. This ensures that all differences in energy usage between the alternatives are related to the different systems rather than errors in modelling.

As detailed in Section 2.4.3 of this report trigeneration utilises a gas turbine power generator to simultaneously produce electricity and useful heat. The useful heat can be used for either heating or transformed into cooling energy by an absorption chiller.

Table 3.17 details the equipment within the proposed trigeneration plant. A 500 kW gas fired generator shall produce electricity while also producing useful heat to power water cooled chiller 1, which is a two stage absorption chiller. It can be seen that the absorption chiller has a coefficient of performance (COP) of 1.23 which is much lower than that of the existing water cooled chiller which is 5.2. Although the absorption chiller has a lower energy efficiency it uses waste heat from the gas turbine which would otherwise be wasted.

 Table 3.17:
 Trigeneration Equipment Schedule

COOLING PLANT				
Equipment Description	Equipment Type	Capacity	СОР	Sequencing
Water Cooled Chiller-1	2 Stage Absorption	500 kW	1.23	Sidecar
Water Cooled Chiller-2	Centrifugal 2 Stage with VSD	2110 kW	5.2	
Water Cooled Chiller-3	Centrifugal 2 Stage with VSD	1800 kW	5.2	Parallel
Water Cooled Chiller-4	Reciprocating	450 kW	3	
Cooling Tower 1	Single Speed Fans	2450 kW	N/A	Parallel
Cooling Tower 2	Single Speed Fans	2450 kW	N/A	
Chilled Water Pump 1	Constant Volume	40 kW	N/A	Single
Chilled Water Pump 2	Constant Volume	40 kW	N/A	Single
Chilled Water Pump 3	Constant Volume	22 kW	N/A	Single
Chilled Water Pump 4	Constant Volume	22 kW	N/A	Single
Condenser Water Pump 1	Constant Volume	20 kW	N/A	Single
Condenser Water Pump 2	Constant Volume	20 kW	N/A	Single
Condenser Water Pump 3	Constant Volume	11 kW	N/A	Single
Condenser Water Pump 4	Constant Volume	11 kW	N/A	Single
GENERATOR PLANT				
Generator -1	Gas Fired	500 kW	N/A	Single
HEATING PLANT				
Boiler 1	Gas Fired	Calculated by TRACE	83.3%	Single
Heating Water Pump	Constant Volume	15 kW	N/A	Single

3.3.4 Trigeneration Combined with Floor Level Variable Air Volume System

Trigeneration combined with a floor level variable air volume system was the next upgrade alternative modelled. The trigeneration component was modelled in the create plants section of the TRACE 700 software while the variable air volume component was modelled in the create system section.

In order to model this system, the rooms were copied from the existing building model previously created. Furthermore the floor level variable air volume systems and the trigeneration plant were copied from the model detailed in Section 3.3.1.2 & 3.3.3 respectively.

3.3.5 Trigeneration Combined with Floor Level Active Chilled Beam System

The final system modelled was a combination of trigeneration and floor level active chilled beams. To model this system, the rooms were copied from the existing building model previously created. Furthermore the floor level active chilled beams system was copied from the previous model detailed in Section 3.3.2.2.

4. ANALYSIS OF RESULTS

This chapter will discuss and analyse the results of the modelling as detailed in the previous chapters. All energy consumption and greenhouse gas emissions data tabulated in this chapter are based on the mechanical equipment only. For each energy model, the energy associated with the lighting and miscellaneous equipment was subtracted from the total building energy consumption. The difference is the energy used by the mechanical services plant only.

4.1 Actual Usage During Baseline Year

A monthly NABERS tracking report prepared by EP&T in August 2010 details the electrical energy consumed by the buildings mechanical services equipment for a twelve month period between November 2008 and October 2009. The report does not detail the gas consumed by the gas fired boiler for heating purposes. Table 4.1 lists the electrical energy consumed during the baseline year of November 2008 to October 2009. Discussions with building management confirm the building was fully occupied during this period.

Month, Year	Actual Monthly Electricity Consumption (kWh)	
November, 2008	343969	
December, 2008	432360	
January, 2009	366973	
February, 2009	350563	
March, 2009	374136	
April, 2009	333742	
May, 2009	312809	
June, 2009	230541	

Table 4.1: Mechanical Plant Actual Electrical Energy Consumption During Baseline Year

July, 2009	168221
August, 2009	216048
September, 2009	278952
October, 2009	382076
Annual Consumption	3790390

4.2 Existing Building Calculated Energy Usage

The first energy analysis undertaken was that of the existing building. Appendix H contains the TRACE 700 output file for this model. The calculated monthly energy usage associated with the mechanical services is summarised in Table 4.2. The total energy usage consists of both electrical energy and gas energy.

Month	Calculated Monthly Electricity Consumption (kWh)	Calculated Monthly Gas Consumption (kWh)
November	333204	13732
December	396020	9716
January	427776	4523
February	388048	1685
March	386994	7691
April	307441	27162
May	259710	88294
June	210165	151500
July	202278	184253
August	209937	154253
September	225749	87970
October	289788	44723
Annual	3637110	775502

Table 4.2: Calculated Energy Consumption for the Existing Mechanical Plant

The greenhouse gas emissions associated with the electrical and gas energy consumption were calculated using the formulas and emissions factors described in Section 2.2 of this report.

For the month of November the greenhouse gas emissions associated with the electrical energy consumption was calculated as follows:

$$E = EF \times kWh$$

From table 2.1, for Queensland EF=1.02

$$E = 1.02 \times 333204 = 339868 \text{ kg CO}_2\text{-e}$$

Likewise, the greenhouse gas emissions associated with the gas energy consumption for the month of November was calculated as follows:

$$E_{total} = E_{CO2} + E_{CH4} + E_{N20}$$

where,

$$E_{CO2} = Q \times EF = 13732 \times .0036 \times 51.2 = 2531.1 \text{ kg CO}_2\text{-e}$$

$$E_{CH4} = Q \times EF = 13732 \times .0036 \times 0.1 = 4.9 \text{ kg CO}_2\text{-e}$$

$$E_{N20} = Q \times EF = 13732 \times .0036 \times 0.03 = 1.5 \text{ kg CO}_2\text{-e}$$

Therefore,

$$E_{total} = 2531.1 + 4.9 + 1.5 = 2537.5 \text{ kg CO}_2\text{-e}$$

Table 4.3 details the calculated monthly emissions and the calculated annual emissions associated with the existing buildings mechanical services.

Month	Calculated Electricity Consumption Emissions (kg CO ₂ -e)	Calculated Gas Consumption Emissions (kg CO ₂ -e)	Total Calculated Emissions (kg CO ₂ -e)
November	339868	2538	342406
December	403940	1795	405736
January	436332	836	437167
February	395809	311	396120
March	394734	1421	396155
April	313590	5019	318609
May	264904	16316	281220
June	214368	27995	242364
July	206324	34048	240371
August	214136	28504	242640
September	230264	16256	246520
October	295584	8264	303848
Annual Consumption	3709852	143303	<u>3853156</u>

Table 4.3: Calculated Greenhouse Gas Emissions for the Existing Buildings Mechanical Plant.

4.3 Calculated Consumption versus Actual Consumption

In order to verify the results of the energy modelling, the calculated electricity consumption was compared with the actual electricity consumption from the baseline year. The baseline year is from November 2008 to October 2009, as detailed in Table 4.1.

Table 4.4 presents a comparison between the calculated electricity consumption and the actual electricity consumption from the baseline year. It can be seen that the calculated annual electricity consumption is 96% of the actual electricity consumed during the baseline year.

Month	Calculated Monthly Electricity Consumption (kWh)	Actual Monthly Electricity Consumption (kWh)	Calculated Consumption Percentage of the Actual Consumption
November	333204	343969	96.9
December	396020	432360	91.6
January	427776	366973	116.6
February	388048	350563	110.7
March	386994	374136	103.4
April	307441	333742	92.1
May	259710	312809	83.0
June	210165	230541	91.2
July	202278	168221	120.2
August	209937	216048	97.2
September	225749	278952	80.9
October	289788	382076	75.8
Annual Consumption	3637110	3790390	<u>96.0</u>

 Table 4.4: Calculated Electrical Energy Consumption versus Actual Electrical Energy

 Consumption

Figure 4.2 shows a graph of the calculated electricity consumption versus the actual electricity consumption on a month by month basis.

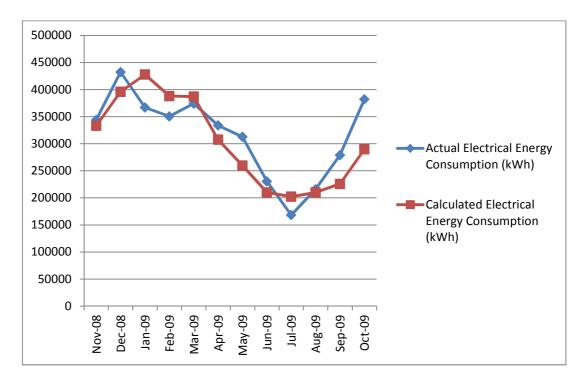


Figure 4.1: Actual Electrical Energy Consumption Versus Calculated Electrical Energy Usage

It can be seen within this graph that the trend of the calculated consumption is similar to that of the actual. The monthly calculated consumption percentage of the actual consumption tabulated in Table 4.4 has been depicted in Figure 4.2.

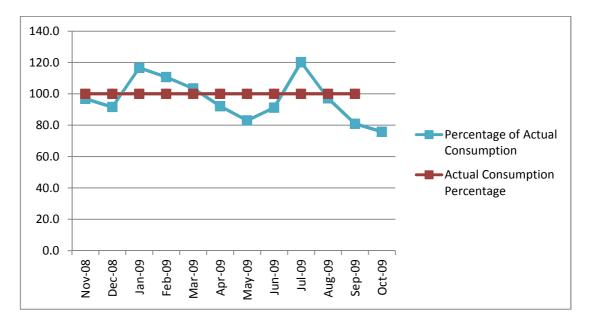


Figure 4.2: Calculated Percentage of Actual Consumption

For all months except October the calculated consumption is within 20% of the actual consumption. In October this increased out to 24%. Differences between the calculated consumption and actual consumption can be a result of the following:

- Ambient air temperatures above or below average for the particular month.
- Occupancy levels above or below the assumed levels.
- Outside air infiltration above or below the assumed levels.
- Activities undertaken within the space.

The comparison between the calculated electrical energy consumption and the actual electrical energy consumption validates the TRACE 700 software and proves the assumptions made during the modelling were accurate. This is due to:

- The calculated annual electricity consumption is 96% of the actual electricity consumed during the baseline year.
- Similar trending between the calculated monthly electricity consumption and the actual electricity consumption during the baseline year.

4.4 Existing Building BCA Compliance

To determine if the existing building and its systems is compliant with Building Code of Australia, the reference building was modelled as detailed in Chapter 3. As the Building Code of Australia requires that the reference building be modelled with the same systems and configuration as the proposed building, the reference building was modelled with zone mixing boxes and central air handling plant. Appendix I contains the TRACE 700 output file for this model.

Table 4.5 details the calculated energy usage and subsequent greenhouse gas emissions associated with the BCA 2010 reference building for a mixing box system with central air handling. Columns 2, 3 & 4 list the monthly electrical, gas and total calculated energy consumptions which are outputs from the TRACE 700 energy model. Using the emissions factors and formulas defined in Section 3.2 the greenhouse gas emissions were calculated and are listed in columns 5, 6 & 7 of Table 4.5.

Month	Calculated Electrical Energy Usage (kWh)	Calculated Gas Energy Usage (kWh)	Calculated Total Energy Usage (kWh)	Calculated Electricity Consumption Emissions (kg CO ₂ -e)	Calculated Gas Consumption Emissions (kg CO ₂ -e)	Calculated Total Emissions (kg CO ₂ -e)
Nov	309358	5376	314734	315545	993	316539
Dec	369536	3834	373370	376927	708	377635
Jan	402352	1339	403691	410399	247	410646
Feb	364408	503	364911	371696	93	371789
March	356456	3261	359717	363585	603	364188
April	280076	12335	292411	285678	2279	287957
May	228087	44221	272308	232649	8172	240820
June	181142	81379	262521	184765	15038	199803
July	170077	108961	279038	173479	20135	193613
Aug	176509	83625	260134	180039	15453	195492
Sep	197552	41218	238770	201503	7617	209120
Oct	266773	22160	288933	272108	4095	276203
Annual Usage	3302326	408212	3710538	3368373	75433	<u>3443805</u>

Table 4.5: BCA 2010 Reference Building Calculated Energy Consumption and Greenhouse GasEmissions for the Existing Mechanical Services

It can be seen in Table 4.5 that for the existing building to be compliant with the Building Code of Australia 2010, its mechanical services annual emissions has to be less than 3443805 kg CO_2 -e. As detailed in Table 4.3 the calculated annual emissions of the existing building is 3853156 kg CO_2 -e which is 12% greater than that of the reference building. As a result the existing building in its current configuration is not compliant with the BCA 2010.

Figure 4.3 presents a graph of the existing buildings calculated greenhouse gas emissions versus the reference buildings calculated gas emissions on a month by month basis. It can be seen in the graph that the reference building is consistently more efficient over each month of the year.

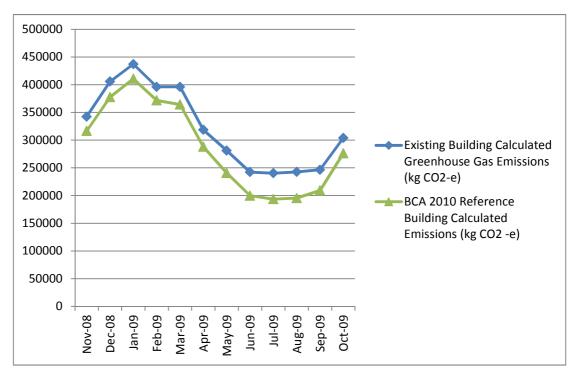


Figure 4.3: Existing Building Calculated Greenhouse Gas Emissions Versus BCA 2010 Reference Building Emissions

4.5 Upgrade Alternatives Energy Usage

4.5.1 Variable Air Volume with Central Air Handling Plant

The first upgrade alternative to be modelled was a variable air volume system with central air handling. The TRACE 700 output file for this system is presented in Appendix J. Similar to the previous model, Table 4.6 presents the calculated energy usage and subsequent greenhouse gas emissions associated with a variable air volume system with central air handling plant.

Month	Calculated Electricity Energy Usage (kWh)	Calculated Gas Energy Usage (kWh)	Calculated Total Energy Usage (kWh)	Calculated Electricity Consumption Emissions (kg CO ₂ -e)	Calculated Gas Consumption Emissions (kg CO ₂ -e)	Calculated Total Emissions (kg CO ₂ -e)
Nov	316818	0	316818	323154	0.0	323154
Dec	382657	0	382657	390310	0.0	390310
Jan	417752	0	417752	426107	0.0	426107
Feb	379378	0	379378	386966	0.0	386966
March	375742	0	375742	383257	0.0	383257
April	286314	0	286314	292040	0.0	292040
May	219897	0	219897	224295	0.0	224295
June	164780	2	164782	168076	0.4	168076
July	155936	1140	157076	159055	210.7	159265
Aug	167239	593	167832	170584	109.6	170693
Sep	194130	0	194130	198013	0.0	198013
Oct	262881	0	262881	268139	0.0	268139
Annual	3323524	1735	3325259	3389994	320.6	<u>3390315</u>

Table 4.6: Calculated Energy Consumption and Greenhouse Gas Emissions for a Variable AirVolume System with Central Air Handling

The calculated annual emissions associated with a variable air volume system with central air handling plant are 3390315 kg CO_2 –e. Upgrading the building to this system would result in an annual greenhouse gas emissions savings of 12% compared with the existing buildings calculated emissions.

To determine if this system is compliant with the Building Code of Australia 2010, a reference building was modelled. The reference building was modelled with a variable air volume system and central air handling plant which is the same system and configuration as the proposed upgrade. The TRACE 700 output file for this system is presented in Appendix K. Similar to previous models, the calculated

energy consumption and subsequent greenhouse gas emissions are presented in Table 4.7.

Month	Calculated Electricity Energy Usage (kWh)	Calculated Gas Energy Usage (kWh)	Calculated Total Energy Usage (kWh)	Calculated Electricity Consumption Emissions (kg CO ₂ -e)	Calculated Gas Consumption Emissions (kg CO ₂ -e)	Calculated Total Emissions (kg CO ₂ -e)
Nov	297700	0	297700	303654	0	303654
Dec	358911	0	358911	366089	0	366089
Jan	393749	0	393749	401624	0	401624
Feb	358355	0	358355	365522	0	365522
March	347134	0	347134	354077	0	354077
April	265038	0	265038	270339	0	270339
May	201874	0	210874	205911	0	205911
June	144555	1338	145893	147446	247	147693
July	135414	468	135882	138122	86	138209
Aug	146475	0	146475	149405	0	149405
Sep	177551	0	177551	181102	0	181102
Oct	249295	0	249295	254281	0	254281
Annual	3076051	1806	3077857	3137572	334	<u>3137906</u>

Table 4.7: BCA 2010 Reference Building Calculated Energy Consumption and Gas Emissionsfor a Variable Air Volume System with Central Air Handling

It can be seen in Table 4.7, that the calculated annual emissions of the reference building is 3137906 kg CO_2 -e. As detailed in Table 4.6, the calculated annual emissions of the proposed upgrade is 3390315 kg CO_2 -e which is 8% greater than that of the reference building. As a result the variable air volume system with central air handling plant is not compliant with the Building Code of Australia.

Figure 4.4 shows a graph which compares the calculated monthly greenhouse gas emissions of the variable air volume system with central air handling plant, the associated reference building and the existing building.

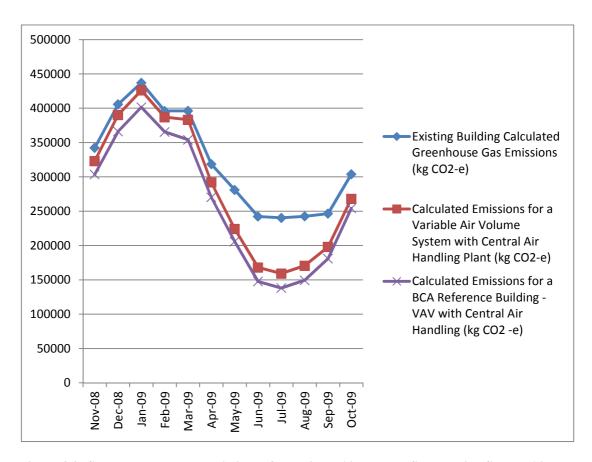


Figure 4.4: Calculated Monthly Emissions of a Variable Air Volume System with Central Air Handling, BCA 2010 Reference Building and Existing Building

It can be seen in Figure 4.4 that the majority of emissions savings associated with the variable air volume system occur in the winter months. As discussed in Section 2.4.1, this is a result of the variable air volume systems ability to provide both fan and refrigeration part load energy savings. When the cooling demand is minimal the variable air volume damper modulates closed which creates an opportunity to reduce the speed of the fan which reduces fan energy. This reduced airflow across the cooling coil reduces the energy demand on the refrigeration system thus saving energy in the main cooling plant (Trane, 2001).

4.5.2 Variable Air Volume System with Floor Air Handling Plant

The next system modelled was a variable air volume system with floor air handling. Appendix L contains the TRACE 700 output file for this alternative. Similar to the previous models, the calculated energy consumption and the associated greenhouse gas emissions are presented in Table 4.8.

Month	Calculated Electricity Energy Usage (kWh)	Calculated Gas Energy Usage (kWh)		Calculated Electricity Consumption Emissions (kg CO ₂ -e)	Calculated Gas Consumption Emissions (kg CO ₂ -e)	Calculated Total Emissions (kgCO ₂ -e)
Nov	304976	0	304976	311076	0	311076
Dec	367453	0	367453	374802	0	374802
Jan	401650	0	401650	409683	0	409683
Feb	366316	0	366316	373642	0	373642
March	359853	0	359853	367050	0	367050
April	273143	0	273143	278606	0	278606
May	208317	0	208317	212483	0	212483
June	158620	139	158759	161792	26	161818
July	148226	844	149070	151191	156	151346
Aug	158704	362	159066	161878	67	161945
Sep	184968	0	184968	188667	0	188667
Oct	252015	0	252015	257055	0	257055
Annual	3184241	1345	3185586	3247926	249	<u>3248174</u>

 Table 4.8: Calculated Energy Consumption and Gas Emissions Associated with a Variable Air

 Volume System with Floor Air Handling

The calculated greenhouse gas emissions associated with a variable air volume system with floor air handling plant is 3248174 kg CO_2 –e. This is a savings of approximately 15.7% compared to the calculated emissions of the existing building.

Similar to previous models, Table 4.9 displays the calculated energy consumption and greenhouse gas emissions of the associated reference building. The reference building was modelled with a variable air volume system and floor air handling plant. The TRACE 700 output file for this system is presented in Appendix M.

Month	Calculated Electricity Energy Usage (kWh)	Calculated Gas Energy Usage (kWh)		Calculated Electricity Consumption Emissions (kg CO ₂ -e)	Calculated Gas Consumption Emissions (kg CO ₂ -e)	Calculated Total Emissions (kg CO ₂ -e)
Nov	289887	0	289887	295685	0	295685
Dec	349873	0	349873	356870	0	356870
Jan	384196	0	384196	391880	0	391880
Feb	349275	0	349275	356261	0	356261
March	337572	0	337572	344323	0	344323
April	257060	0	257060	262201	0	262201
May	195205	0	195205	199109	0	199109
June	140897	0	140897	143715	0	143715
July	131445	42	131487	134074	8	134082
Aug	141234	16	141250	144059	3	144062
Sep	172311	0	172311	175757	0	175757
Oct	241886	0	241886	246724	0	246724
Annual	2990841	58	2990899	3050658	11	<u>3050669</u>

 Table 4.9: BCA 2010 Reference Building Calculated Energy Consumption and Gas Emissions

 for a Variable Air Volume System with Floor Air Handling

The calculated annual emissions associated with the reference building for this upgrade alternative is 3050669 kg CO₂-e. As detailed in Table 4.8 the calculated emissions associated with a variable air volume system with floor air handling plant is 3248174 kg CO_2 -e which is 6.5% greater than that of the reference building. As a

result the variable air volume system with floor air handling plant is not compliant with the Building Code of Australia 2010.

Figure 4.5 shows a graph comparing the calculated monthly emissions of the variable air volume system with floor air handling plant, the associated reference building and the existing building.

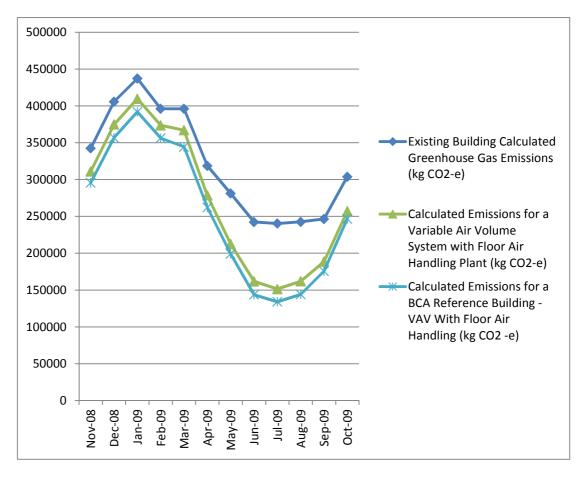


Figure 4.5: Calculated Monthly Emissions of a Variable Air Volume System With Floor Air Handling, BCA 2010 Reference Building and Existing Building

Similar to the variable air volume system with central air handling, the major emissions savings associated with the variable air volume systems occur in the winter months. This is due to the system's ability to provide both fan and refrigeration part load energy savings.

4.5.3 Active Chilled Beams with Central Air Handling Plant

Active chilled beams with central air handling plant was the next system modelled to determine the energy usage and subsequent greenhouse gas emissions. The TRACE 700 output file for this system is shown in Appendix N. As per the previous models, Table 4.10 details the calculated energy usage and subsequent gas emissions associated with an active chilled beams system with central air handling plant.

Month	Calculated Electrical Energy Usage (kWh)	Calculated Gas Energy Usage (kWh)	Calculated Total Energy Usage (kWh)	Calculated Electricity Consumption Emissions (kg CO ₂ -e)	Calculated Gas Consumption Emissions (kg CO ₂ -e)	Calculated Total Emissions (kg CO ₂ -e)
Nov	320877	5178	326055	327295	957	328251
Dec	374969	3126	378095	382468	578	383046
Jan	400176	696	400872	408180	129	408308
Feb	363082	156	363238	370344	29	370372
March	366853	2410	369263	374190	445	374635
April	301312	15832	317144	307338	2926	310264
May	248897	19082	267979	253875	3526	257401
June	207561	24629	232190	211712	4551	216263
July	204681	46696	251377	208775	8629	217403
Aug	209280	29934	239214	213466	5531	218997
Sep	223455	2426	225881	227924	448	228372
Oct	279230	22987	302217	284815	4248	289062
Annual	3500373	173152	3673525	3570380	31996	<u>3602377</u>

Table 4.10: Calculated Energy Consumption and Greenhouse Gas Emissions for Active ChilledBeams with Central Air Handling

The calculated annual greenhouse gas emissions associated with an active chilled beams system with central air handling plant is 3602377 kg CO_2 -e. This results in a savings of approximately 6.5% compared to the calculated emissions of the existing building.

Table 4.11 displays the calculated energy consumption and greenhouse gas emissions of the associated reference building. The reference building was modelled with an active chilled beams system with central air handling plant which is the same system and configuration as the proposed. The TRACE 700 output file for this system is presented in Appendix O.

 Table 4.11: BCA2010 Reference Building Calculated Energy Consumption and Gas Emissions

 for Active Chilled Beams with Central Air Handling

Month	Calculated Electrical Energy Usage (kWh)	Calculated Gas Energy Usage (kWh)	Calculated Total Energy Usage (kWh)	Calculated Electricity Consumption Emissions (kg CO ₂ -e)	Calculated Gas Consumption Emissions (kg CO ₂ -e)	Calculated Total Emissions (kg CO ₂ -e)
Nov	314140	3329	317469	320423	615	321038
Dec	367588	2654	370242	374940	490	375430
Jan	392012	1060	393072	399852	196	400048
Feb	352491	184	352675	359541	34	359575
March	356775	1898	358673	363911	351	364261
April	288768	11782	300550	294543	2177	296721
May	229145	3083	232228	233728	570	234298
June	183659	4790	188449	187332	885	188217
July	178904	18340	197244	182482	3389	185871
Aug	185190	9082	194272	188894	1678	190572
Sep	205528	0	205528	209639	0	209639
Oct	261460	12746	274206	266689	2355	269045
Annual	3315660	68948	3384608	3381973	12741	<u>3394714</u>

The calculated annual emissions associated with the reference building is 3394714 kg CO₂-e. As detailed in Table 4.10 the calculated emissions associated with the active chilled beams system with central air handling plant is 3602377 kg CO₂-e which is 6.1% greater than that of the reference building. As a result the active chilled beams system with central air handling is not compliant with the Building Code of Australia 2010.

Similar to previously, Figure 4.6 shows a graph which compares the calculated monthly emissions of the active chilled beams system with central air handling plant, the associated reference building and the existing building.

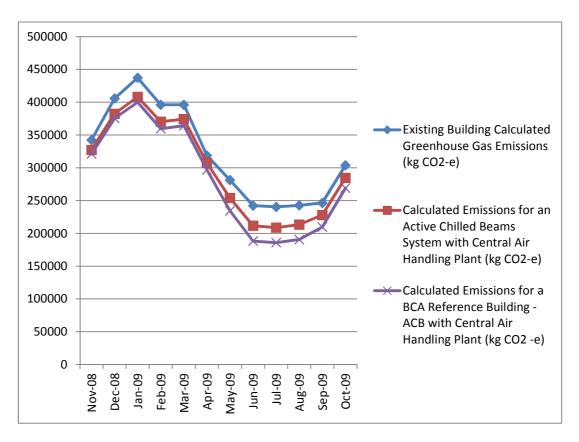


Figure 4.6: Calculated Monthly Emissions of an Active Chilled Beams System with Central Air Handling, BCA 2010 Reference Building and Existing Building.

From this graph it can be seen that the majority of the savings between the existing building and proposed upgrade occur in the middle of the summer and winter periods. In the summer months significant savings can be seen in the months of January and February, while the winter months the major savings can be seen in June, July and August. In comparison the month of April has the lowest savings for this alternative.

4.5.4 Active Chilled Beams with Floor Air Handling Plant

An active chilled beams system with floor air handling plant was modelled as an upgrade alternative. The TRACE 700 output file for this system is shown in Appendix P. Similar to previous models, Table 4.12 details the calculated energy usage and greenhouse gas emissions associated with an active chilled beams system with floor air handling.

Table 4.12: Calculated Energy Consumption and Greenhouse Gas Emissions for Active ChilledBeams with Floor Air Handling Plant

Month	Calculated Electrical Energy Usage (kWh)	Calculated Gas Energy Usage (kWh)	Calculated Total Energy Usage (kWh)	Calculated Electricity Consumption Emissions (kg CO ₂ -e)	Calculated Gas Consumption Emissions (kg CO ₂ -e)	Calculated Total Emissions (kg CO ₂ -e)
Nov	312349	5650	317999	318596	1044	319640
Dec	366810	3475	370285	374146	642	374788
Jan	391278	994	392272	399104	184	399287
Feb	354809	202	355011	361905	37	361943
March	357701	2692	360393	364855	497	365352
April	291971	16107	308078	297810	2976	300787
May	239634	19202	258836	244427	3548	247975
June	198750	25496	224246	202725	4711	207436
July	195631	48346	243977	199544	8934	208477
Aug	200179	30930	231109	204183	5715	209898
Sep	214569	2595	217164	218860	480	219340
Oct	270298	23525	293823	275704	4347	280051
Annual	3393979	179214	3573193	3461859	33117	<u>3494975</u>

It can be seen in the table that the calculated annual emissions associated with this plant is 3494975 kg CO_2 -e. This is a 9.3% savings compared to the existing system.

Table 4.13 displays the calculated energy consumption and greenhouse gas emissions of the associated reference building which was modelled with active chilled beams and floor air handling plant. Appendix Q contains the TRACE 700 output files for this system.

Month	Calculated Electrical Energy Usage (kWh)	Calculated Gas Energy Usage (kWh)	Calculated Total Energy Usage (kWh)	Calculated Electricity Consumption Emissions (kg CO ₂ -e)	Calculated Gas Consumption Emissions (kg CO ₂ -e)	Calculated Total Emissions (kg CO ₂ -e)
Nov	307821	3809	311630	313977	704	314681
Dec	361181	2743	363924	368405	507	368911
Jan	384490	1211	385701	392180	224	392404
Feb	346208	138	346346	353132	26	353158
March	349879	1935	351814	356877	358	357234
April	281550	11633	293183	287181	2150	289331
May	221891	3080	224971	226329	569	226898
June	176722	4916	181638	180256	908	181165
July	171764	18740	190504	175199	3463	178662
Aug	178017	9262	187279	181577	1712	183289
Sep	198492	0	198492	202462	0	202462
Oct	254147	13033	267180	259230	2408	261638
Annual	3232162	70500	3302662	3296805	13028	<u>3309833</u>

 Table 4.13: BCA2010 Reference Building Calculated Energy Consumption and Gas Emissions

 for Active Chilled Beams with Floor Air Handling

٦

1

The calculated greenhouse gas emissions associated with the reference building is 3309833 kg CO_2 -e. The calculated emissions associated with the active chilled beams system with floor air handling plant is 3494975 kg CO_2 -e which is 5.6% greater than that of the reference building. As the upgrade alternative emits more greenhouse gases than the reference building the system is not compliant with the Building Code of Australia 2010.

Figure 4.7 below shows a graph which compares the calculated monthly emissions of the active chilled beams system with floor air handling, the reference building and the existing building.

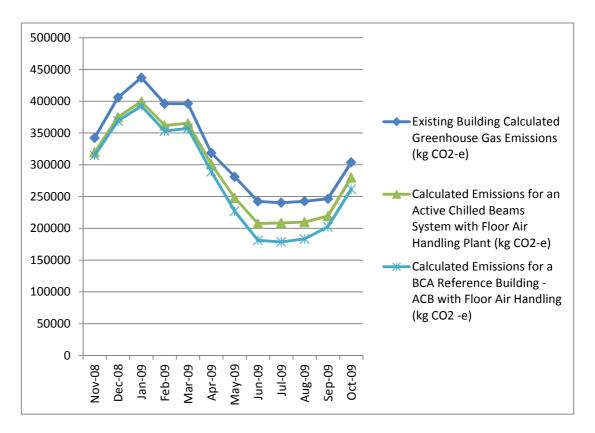


Figure 4.7: Calculated Monthly Emissions of an Active Chilled Beams System with Floor Air Handling, BCA 2010 Reference Building and Existing Building.

Similar to the previous active chilled beams system, the majority of emissions savings between the existing building and proposed upgrade occurs in the middle of the summer and winter periods. In the summer months significant savings can be seen in the months of January and February while the winter months the major savings can be seen in June, July and August. In comparison the month of April results in the lowest savings for this alternative.

4.5.5 Trigeneration Combined With Mixing Boxes

Trigeneration combined with mixing boxes and central air handling was the next upgrade to be modelled. The TRACE 700 output file for this system is shown in Appendix R. Similar to the previous models, the energy usage and gas emissions of the system are detailed in Table 4.14.

Table 4.14: Calculated Energy Consumption and Greenhouse Gas Emissions for TrigenerationCombined with Mixing Boxes

Month	Calculated Electrical Energy Usage (kWh)	Calculated Gas Energy Usage (kWh)	Calculated Total Energy Usage (kWh)	Calculated Electricity Consumption Emissions (kg CO ₂ -e)	Calculated Gas Consumption Emissions (kg CO ₂ -e)	Calculated Total Emissions (kg CO ₂ -e)
Nov	-43824	1247837	1204013	-44700	230585	185885
Dec	-6740	1284958	1278218	-6875	237445	230570
Jan	17255	1279765	1297020	17600	236485	254085
Feb	18399	1153517	1171916	18767	213156	231923
March	-14087	1282933	1268846	-14369	237071	222702
April	-63579	1261267	1197688	-64851	233067	168216
May	-110193	1363536	1253343	-112397	251965	139568
June	-143617	1385605	1241988	-146489	256043	109554
July	-186934	1459495	1272561	-190673	269697	79024
Aug	-172250	1429495	1257245	-175695	264154	88459
Sep	-126099	1322075	1195976	-128621	244304	115683
Oct	-86696	1319965	1233269	-88430	243914	155484
Annual	-918365	15790448	14872083	-936732	2917885	<u>1981153</u>

It can be seen that the calculated annual emissions associated with this plant is 1981153 kg CO_2 -e, which results in a savings of 48.6% compared to the existing building.

As described in Section 3.2.3 of this report a separate reference building was not required to be modelled for this alternative. As trigeneration is an energy production plant it is combined with an air conditioning system previously modelled. For this reason the reference building modelled with mixing boxes and central air handling is suitable.

As per Table 4.5, the annual greenhouse gas emissions of the reference building modelled with zone mixing boxes and central air handling plant is 3443805 kg CO_2 -e. The proposed system emissions are 42.5% less than the reference building emissions and as a result trigeneration combined with zone mixing boxes and central air handling plant is compliant with the Building Code of Australia. Figure 4.8 below is a graph which compares the calculated monthly emissions of the trigeneration system combined with mixing boxes and central air handling, the associated reference building and the existing building.

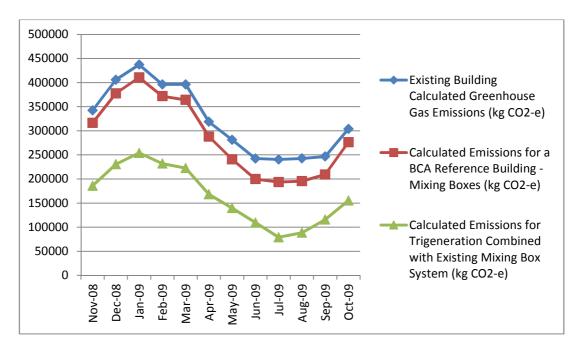


Figure 4.8: Calculated Monthly Emissions of Trigeneration Combined with Mixing Boxes and Central Air Handling, BCA 2010 Reference Building and Existing Building

The graph within Figure 4.8 highlights that this upgrade is significantly more efficient than the existing mechanical system.

4.5.6 Trigeneration Combined With Variable Air Volume Boxes and Floor Air Handling Plant

Trigeneration combined with variable air volume boxes and floor air handling plant was the next upgrade to be modelled. Appendix S contains the output file for this system. Similar to the previous models the calculated energy usage and greenhouse gas emissions associated with a trigeneration system combined with mixing boxes and floor air handling plant is detailed in Table 4.15.

Table 4.15: Calculated Energy Consumption and Greenhouse Gas Emissions for TrigenerationCombined with Variable Air Volume and Floor Air Handling

Month	Calculated Electrical Energy Usage (kWh)	Calculated Gas Energy Usage (kWh)		Calculated Electricity Consumption Emissions (kg CO ₂ -e)	Consumption	Calculated Total Emissions (kg CO ₂ -e)
Nov	-71423	1234105	1162682	-72851	228048	155196
Dec	-35430	1275242	1239812	-36139	235649	199511
Jan	-8869	1275242	1266373	-9046	235649	226603
Feb	-3517	1151831	1148314	-3587	212845	209257
March	-41351	1275242	1233891	-42178	235649	193471
April	-95577	1234105	1138528	-97489	228048	130559
May	-179575	1275242	1095667	-183167	235649	52483
June	-233236	1234244	1001008	-237901	228073	-9827
July	-259538	1276086	1016548	-264729	235805	-28923
Aug	-250053	1275603	1025550	-255054	235716	-19338
Sep	-205200	1234105	1028905	-209304	228048	18744
Oct	-131137	1275242	1144105	-133760	235649	101890
Annual	-1514906	15016289	13501383	-1545204	2774830	<u>1229626</u>

The calculated annual emissions associated with a Trigeneration system combined with variable air volume boxes and floor air handling plant is 1229626 kg CO_2 -e. This is a 68% savings compared to the existing system.

As described in Section 3.2.3 a separate reference building was not required to be modelled for this alternative. As trigeneration is an energy production plant it is combined with an air conditioning system previously modelled. For this reason the reference building modelled with a variable air volume system and floor air handling plant is suitable.

As detailed in Table 4.9, the annual greenhouse gas emissions of the reference building modelled with variable air volume boxes and floor air handling plant is 3050669 kg CO_2 -e. The calculated emissions of the proposed system are 59.7% less than the reference building emissions and as a result trigeneration combined with variable air volume boxes and floor air handling plant is compliant with the Building Code of Australia.

Figure 4.9 below shows a graph which compares the calculated monthly emissions of the trigeneration system combined with variable air volume boxes and floor air handling plant, the associated reference building and the existing building.

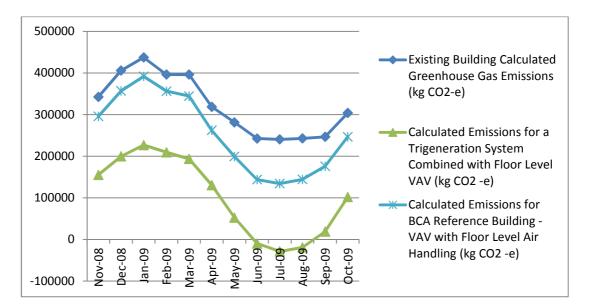


Figure 4.9: Calculated Monthly Emissions for Trigeneration Combined with Variable Air Volume Boxes and Floor Air Handling, BCA 2010 Reference Building and Existing Building.

It can be seen in Figure 4.9 that for the months of June, July & August the proposed system uses negative emissions. As the trigeneration system contains a gas fired turbine to create energy on site any remaining energy not consumed by the mechanical plant can be used for other services within the building such as lighting or if not required returned to the grid. The gas fired turbine reduces the building dependants on mains electricity which has high emissions factors in comparison to energy produced from the gas fired turbine. The savings in emissions between the two energy sources results in the negative gas emissions seen in Figure 4.9.

4.5.7 Trigeneration Combined With Active Chilled Beams and Floor Air Handling

The final system modelled was trigeneration combined with active chilled beams and floor air handling. The TRACE 700 output file for this system is shown in Appendix T. Table 4.16 details the calculated energy usage and greenhouse gas emissions associated with a trigeneration system combined with active chilled beams and floor air handling plant.

Table 4.16: Calculated Energy Consumption and Greenhouse Gas Emissions for Trigeneration
Combined with Active Chilled Beams and Floor Air Handling

Month	Calculated Electrical Energy Usage (kWh)	Calculated Gas Energy Usage (kWh)	Calculated Total Energy Usage (kWh)	Calculated Electricity Consumption Emissions (kg CO ₂ -e)	Calculated Gas Consumption Emissions (kg CO ₂ -e)	Calculated Total Emissions (kg CO ₂ -e)
Nov	-62224	1239755	1177531	-63468	229092	165623
Dec	-33704	1278717	1245013	-34378	236292	201913
Jan	-17159	1276236	1259077	-17502	235833	218331
Feb	-15448	1152034	1136586	-15757	212882	197125
March	-41326	1277933	1236607	-42153	236147	193994
April	-78152	1250214	1172062	-79715	231025	151310
May	-137614	1294444	1156830	-140366	239198	98831

June	-193013	1259601	1066588	-196873	232759	35886
July	-214652	1323587	1108935	-218945	244583	25638
Aug	-205221	1306172	1100951	-209325	241365	32039
Sep	-165040	1236700	1071660	-168341	228527	60187
Oct	-101719	1298766	1197047	-103753	239996	136243
Annual	-1265272	15194159	13928887	-1290577	2807698	<u>1517121</u>

The calculated annual emissions associated with a Trigeneration system combined with active chilled beams and floor air handling plant is 1517121 kg CO₂-e. This is a 60.6% savings compared to the existing systems.

Similar to the previous trigeneration systems a separate reference building was not required to be modelled for this alternative. The reference building previously modelled with active chilled beams and floor air handling plant is suitable for this alternative.

As detailed in Table 4.13 the annual greenhouse gas emissions of the reference building modelled with active chilled beams and floor air handling plant is 3309833 kg CO_2 -e. The proposed system emissions are 54% less than the reference building emissions, and as a result trigeneration combined with active chilled beams and floor air handling plant is compliant with the Building Code of Australia. Figure 4.10 below contains a graph which compares the monthly emissions of the trigeneration system combined with active chilled beams and floor air handling plant, the reference building and the existing building.

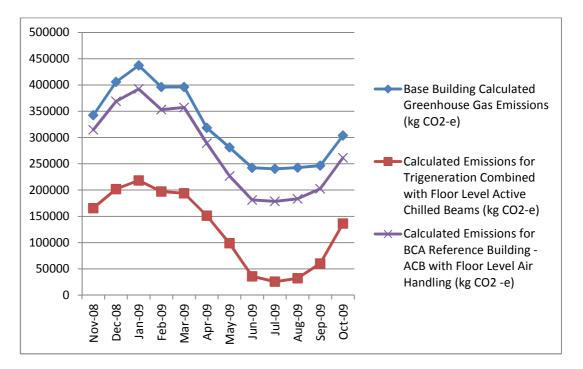


Figure 4.10: Calculated Monthly Emissions of Trigeneration Combined with Active Chilled Beams and Floor Air Handling Plant, BCA 2010 Reference Building and Existing Building.

The graph highlights that the trigeneration system combined with active chilled beams is significantly more efficient than the existing system over every month of the year.

4.6 Building Code of Australia Compliance

As discussed in Section 2.5 of this report, the Building Code of Australia 2010 requires that the annual energy consumption of the proposed building is not more than the annual energy consumption of the reference building. As the objective of this research project is to reduce greenhouse gas emissions, the annual greenhouse gas emissions of the proposed building were compared with that of the reference building. Table 4.17 details the Building Code of Australia compliance if annual energy consumption was compared instead of annual greenhouse gas emissions.

Upgrade Alternative	Calculated Energy Usage (kWh)	Reference Building Calculated Energy Usage (kWh)	Building Code of Australia 2010 Compliance
Existing Building	4412612	3710538	No
VAV - Central Air Handling	3325259	3077857	No
VAV - Floor Air Handling	3185586	2990899	No
Active Chilled Beams - Central Air Handling	3673525	3384608	No
Active Chilled Beams - Floor Air Handling	3573193	3302662	No
Trigeneration Combined with Mixing Boxes	148720083	3710538	No
Trigeneration Combined with VAV and Floor Air Handling	13501383	2990899	No
Trigeneration Combined with Active Chilled Beams and Floor Air Handling	13928887	3302662	No

Table 4.17: BCA2010 Compliance Based on the Calculated Annual Energy Consumption

It can be seen in Table 4.17 that when the annual energy consumption is used to determine compliance with the Building Code of Australia none of the upgrades triggered compliance. When the annual greenhouse gas emissions were used to determine compliance with the Building Code of Australia, the three trigeneration upgrades were compliant.

The trigeneration system utilises a gas turbine to power the site. As discussed in Section 2.2.1 the emissions factors for the consumption of natural gas distributed in a pipeline is approximately 0.185 kg CO₂-e/kWh while the emissions factor for the consumption of electrical energy from the electrical grid in Queensland is 1.02 kg CO_2 -e/kWh. These emissions factors suggest gas energy is a cleaner energy source

than electricity from the grid in Queensland. Although this is the case, for this application a gas turbine is used to create electricity for the site. For a gas turbine the electrical energy output is less than the gas energy input which suggests the gas turbine consumes more gas energy than the electrical energy it produces.

This explains why the trigeneration systems are compliant with the Building Code of Australia when based on the annual greenhouse gas emissions and not when based on the annual energy consumption. As the gas turbine consumes more gas energy than the electrical energy it produces the annual energy consumption of the proposed upgrade was greater than that of the associated reference building. As the consumption of gas is much cleaner than consumption of electricity from the grid the greenhouse gas emissions of the trigeneration systems were lower than their associated reference building even though they consumed more energy.

4.7 Active Chilled Beams versus Variable Air Volume

Figure 4.11 below shows a comparative graph of the two chilled beams systems versus the two variable air volume systems for each month of the year.

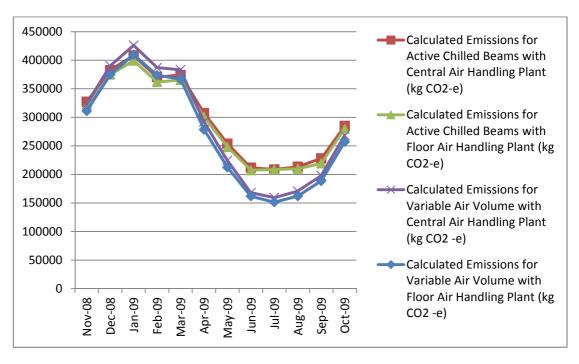


Figure 4.11: Calculated Monthly Emissions Comparison Between the Variable Air Volume Systems and Chilled Beams Systems

As discussed in Section 2.4.2 of this report, a study of the energy performance of active chilled beams and variable air volume for a building in Sydney found similar energy performances for the two buildings (Roth, Dieckmann, Zogg, Brodrick, 2007). During the summer months, the chilled beams system consumed less energy than the VAV system but during the winter months consumed more because of the reduced quantity of supply air precluded the use of an air side economizer (Roth, Dieckmann, Zogg, Brodrick, 2007).

This has proven correct for the analysis undertaken at 295 Ann Street Brisbane. It can be seen in Figure 4.11 that for the summer months the variable air volume systems have slightly greater greenhouse gas emissions. In the winter months the variable air volume systems have a considerably more efficient performance in terms of gas emissions.

4.8 Floor Air Handling Plant Compared to Central Air Handling Plant

For both the active chilled beams system and the variable air volume system floor air handling proved to be slightly more efficient than central air handling over all months of the year. Figure 4.12 below shows the calculated monthly greenhouse gas emissions of the variable air volume alternatives. The annual greenhouse gas emissions of the floor air handling plant is 4.2% less than the emissions of the central air handling. As seen in Figure 4.12, the savings between the central air handling and floor air handling were consistent over each month of the year.

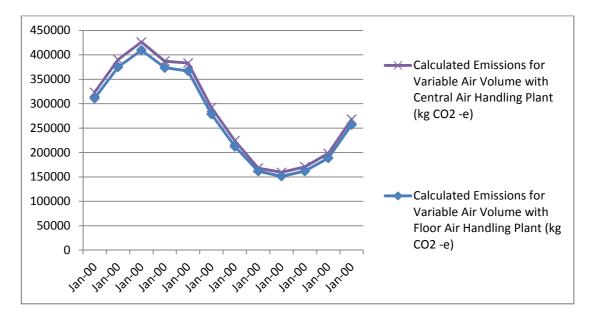


Figure 4.12: Calculated Monthly Emissions Comparison Between the VAV Alternatives

In relation to the active chilled beams systems, Figure 4.13 compares the calculated monthly greenhouse gas emissions of the two active chilled beams alternatives. For these systems the annual greenhouse gas emissions of the floor air handling plant was 3% less than the emissions of the central air handling plant and was consistent over each month of the year.

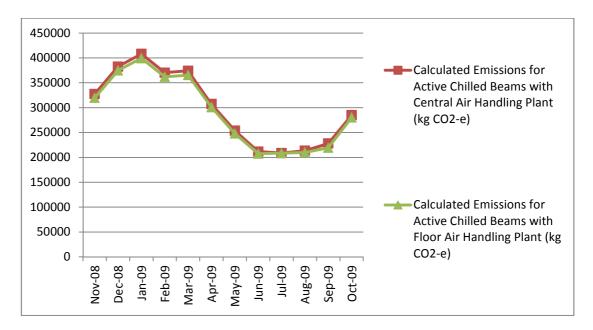


Figure 4.13: Calculated Monthly Emissions Comparison Between the Active Chilled Beams Alternatives

5. CONCLUSION

5.1 Greenhouse Gas Emissions Saving

It was demonstrated that significant greenhouse gas emissions savings can be achieved by upgrading a buildings mechanical services plant. Table 5.1 below summarises the annual greenhouse gas emissions savings associated with each upgrade alternatives as compared to the existing buildings calculated emissions.

Upgrade Alternatives	Calculated Greenhouse Gas Emissions (kg CO ₂ -e)	Percentage Savings
Zone Mixing Boxes with	3853156	N/A
Central Air Handling Plan	3633130	
Active Chilled Beams		
with Central Air Handling	3602377	6.5
Plant		
Active Chilled Beams	3494975	9.3
with Floor Air Handling	0101010	2.5
Variable Air Volume		
With Central Air	3390315	12
Handling Plant		
Variable Air Volume with	3248174	15.7
Floor Air Handling		
Trigeneration Combined		
with Zone Mixing Boxes	1981153	48.6
and Central Air Handling		
Plant		
Trigeneration Combined		
with Active Chilled	1517121	60.6
Beams and Floor Air	1017121	00.0
Handling		
Trigeneration Combined		
with Variable Air Volume	1229626	68
and Floor Air Handling		

Table 5.1: Summary of Upgrade Alternatives Calculated Emissions

Out of the seven upgrade alternatives, Trigeneration combined with a variable air volume system and floor air handling proved to have the lowest greenhouse gas emissions. This system has a 68% savings in total greenhouse gas emissions, in comparison to the existing building calculated emissions.

Out of the upgrades that aren't combined with trigeneration, variable air volume combined with floor air handling has the lowest greenhouse gas emissions. This system results in a 15.7% saving compared to the existing system. An active chilled beams system with central air handling plant has a 6.5% savings of greenhouse gas emissions which is the lowest of the upgrade alternatives. The results of this work are specific to 295 Ann Street, Brisbane, however, they can be used as guidelines for upgrade projects of other buildings of similar style.

5.2 Building Code of Australia Compliance

To determine compliance with the Building Code of Australia the greenhouse gas emissions associated with the proposed upgrades were compared to that of a reference building. As discussed in Chapter 4, the variable air volume systems and the active chilled beams systems on their own did not comply with the Building Code of Australia. As the reference building is required to be modelled with the same airconditioning systems and configuration as the reference building, upgrading the air conditioning system alone did not trigger compliance.

When these air conditioning systems were combined with trigeneration the buildings were compliant with the Building Code of Australia. As trigeneration is an energy production plant it is not an air conditioning system and as a result is not required to be modelled within the reference building.

5.3 Buildings of Similar Style and Usage

For a new construction of similar style and usage as 295 Ann Street, Brisbane, it is expected that the building envelope is compliant with the Building Code of Australia. A trigeneration system would not be required as it would not need to offset a poor performing envelope. Based on the results of this research a variable air volume system with floor air handling plant would be suitable as it was the best performing non trigeneration system.

For an existing building of similar style it is assumed that the building envelope is non-compliant with the Building Code of Australia. In this situation a trigeneration system is required to offset the poor performing building envelope.

5.4 Opportunities for Further Studies

Throughout this project a number of opportunities for further studies have been identified. This research project has investigated the most energy efficient upgrade alternative however the cost of each system has not been considered. To determine if the upgrade alternatives are feasible a complete cost analysis is required. The cost analysis should be undertaken to determine the capital cost, operational cost and maintenance cost for each system. These costs can then be compared with the greenhouse gas emissions savings to determine which option will provide the greatest emissions savings per dollar spent. It would be good to perform the experiment and compare the experimental results with the current model predictions.

Another option for further studies is to model the building and the upgrade alternatives in a range of climate zones around Australia. This study can be used to identify how the climate affects greenhouse gas emissions. It can also be used to determine in what parts of Australia does upgrading buildings mechanical services provide the greatest savings in greenhouse gas emissions.

6. **REFERENCES**

Australian Government, 2010, *What is Climate Change*, Department of Climate Change and Energy Efficiency, viewed 23 March 2011, <www.climatechange.gov.au/en/climate-change.aspx>

Australian Government, 2011, *The Greenhouse Effect and Climate Change*, Bureau of Meteorology, viewed 23 March 2011, <a><www.bom.gov.au/info/GreenhouseEffectAndClimateChange.pdf>

Australian Government, July 2010, *National Greenhouse Accounts (NGA) Factors*, Department of Climate Change and Energy Efficiency, viewed 23 March 2011, <www.climatechange.gov.au/~/media/publications/greenhouse-acctg/nationalgreenhouse-factors-july-2010-pdf.pdf>

Preston, B.L; Jones, R.N, 2006, *Climate Change Impacts on Australia and the Benefits of Early Action to Reduce Global Greenhouse Gas Emissions*, CSIRO, viewed 23 March 2011, <www.csiro.au/files/files/p6fy.pdf>

CSIRO, 2010, *Energy for Buildings*, CSIRO, viewed 26 March 2011, <www.csiro.au/science/Energy-for-buildings.html>

Guan, L, 2006, *The Implications of Global Warming on the Energy Performance and Indoor Thermal Environment of Air-Conditioned Office Buildings in Australia,* Queensland University of Technology.

Bhatia. A, 2011, *Cooling Load Calculations and Principles*, CED Engineering, New York, viewed 25 April 2011,

<https://www.cedengineering.com/upload/Cooling%20Load%20Calculations%20and %20Principles.pdf>

Standards Australia, 1991, Australian Standard 1668.2-1991 The Use of Mechanical Ventilation and Air Conditioning in Buildings, Homebush, NSW

Airah, 2011, *The Essentials of Chilled Beams*, Airah, Australia, viewed 3 April 2011, http://www.airah.org.au/HVACandR_Nation/AM/ContentManagerNet/ContentDisp lay.aspx?Section=HVACandR_Nation&ContentID=7036>

Rumsey, P &Weale J, 2011, Practical Implementation of Chilled Beams for Offices,Oakland,CA,viewed5April2011,<http://www.esmagazine.com/Articles/Feature_Article/BNP_GUID_9-5-</td>2006_A_10000000000000065318>

Roth, Dieckmann, Zogg, Brodrick, 2007, *Chilled Beam Cooling*, ASHRAE, viewed 9 April 2011,

<http://www.grntch.com/images/Emerging_Technologies_article_2045597.pdf>

Clinch, R, Selth, J, 2009, *Innovators in Energy Production*, ARUP, viewed 10 July 2009, <http://www.epa.vic.gov.au/climate-change/carbon-innovators/docs/RobClinch-JamesSelth.pdf>

Australian Government, Feb 2010, *Cogeneration &Trigeneration Systems*, Department of Resources, Energy and Tourism, viewed 15 March 2011, <http://www.ret.gov.au/Department/archive/energyeffx/tech/tri/Pages/default.aspx>

REI, 2011, *Absorption Chillers*, Cogeneration News & Technology, viewed 26 April 2011, http://cogeneration.net/absorption-chillers/

Australian Building Codes Board, 2010, *BCA 2010 – Building Code of Australia,* Canberra, ACT

Trane, 2011, *TRACE 700*, viewed 9 May 2011, <http://www.trane.com/Commercial/Dna/View.aspx?i=1136>

Engineers Australia, 2011, *Code of Ethics*, viewed 9 May 201, <http://www.engineersaustralia.org.au/shadomx/apps/fms/fmsdownload.cfm?file_uui d=F0647595-C7FE-7720-EA17-70AC27062E0B&siteName=ieaust>

Trane, 2001, Air Conditioning Clinic – VAV Systems, USA.

APPENDIX A - PROJECT SPECIFICATION

University of Southern Queensland

FACULTY OF ENGINEERING AND SURVEYING

ENG4111/4112 Research Project PROJECT SPECIFICATION

FOR: JOSHUA SEARLE

TOPIC: The efficient use of BUILDING MECHANICAL SERVICES for saving energy.

SUPERVISOR: Dr Sourish Banerjee, Lecturer, USQ

PROJECT AIM: To analyse and compare a range of air conditioning upgrade alternatives to determine which will provide the greatest energy savings for the building.

PROGRAMME: Issue A, 22 March 2011

- 1. Research the background information relating to building energy efficiency.
- 2. Collect data in relation to the existing air conditioning system at a building located at 295 Ann Street, including reviewing as-installed drawings, Operation & Maintenance Manuals and a physical survey of the site.
- 3. Model the existing air conditioning system serving 295 Ann Street using Trace 700 Energy Load software.
- 4. Validate the software predictions by comparing with actual energy data.
- 5. Explore air conditioning upgrade alternatives suitable for 295 Ann Street Brisbane.
- 6. Model the air conditioning upgrade alternatives using Trace 700 Energy Load software.
- 7. Compare the results for each air conditioning system to determine which would provide the greatest energy savings for the building.
- 8. Submit an academic dissertation on the research.

As time permits:

9. Further analyse the building to determine how the orientation of the building can affect the air conditioning energy load.

AGREED:

(Student)		_ (Supervisor)
Date://	Date://	
Examiner / Co-examiner:		

APPENDIX B – TRACE 700 COMPLIANCE LETTER

Trane C.D.8. 3600 Fammel Creek Rd La Crosse, WI 54601 USA Tel (608)787-3926 Fax (608)787-3005 http://www.tranecds.com

September 8, 2010

Subject: TRACE™ 700 v6.2.6 Compliance with ANSI/ASHRAE Standard 140-2007

Dear TRACE User:

We are pleased to inform you that TRACE 700 v6.2.6 was tested in compliance with ANSI/ASHRAE Standard 140-2007, Standard Method of Test for the Evaluation of Building Energy Analysis Computer Programs. Test results, supplemented by graphs and explanatory notes, accompany this letter.

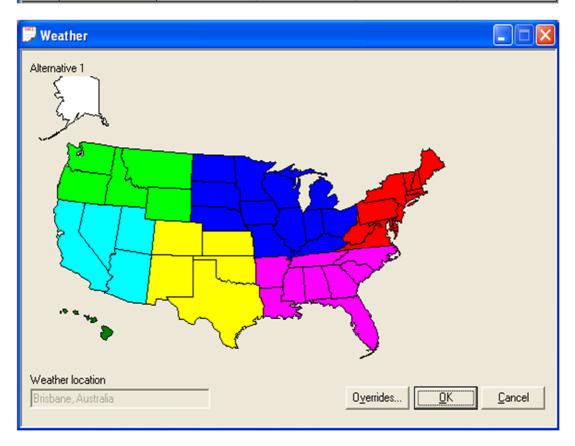
As you may know, ANSI/ASHRAE/IESNA Standard 90.1, Energy Standard for Buildings, Except Low-Rise Residential Buildings, stipulates that any computer program that is used to demonstrate code compliance via the performance path's Energy Cost Budget Method must be tested in accordance with Standard 140. TRACE 700 v6.2.6 has completed the BESTEST validation for calculation and comparison with similar analysis programs as required by ASHRAE Standard 140.

Standard 90.1 defines minimum requirements for the design of energy-efficient buildings and is used by many state and local code-writing bodies as the "standard of care" in their jurisdictions. Buildingenergy simulation programs, such as TRACE 700, are used to estimate the difference in energy costs between the design- and budget-building models specified in Section 11 of Standard 90.1.

If you have questions about the testing documentation that accompanies this letter, or about any of Trane's design and analysis tools, please contact our C.D.S. Support Center by phoning (608) 787-3926 or e-mailing cdshelp@trane.com.

Best regards,

Sic Stim


Eric Sturm ASHRAE Standard 140 Coordinator Trane C.D.S.

Attachments: Results and modeling notes from Standard 140 testing of TRACE 700

APPENDIX C – TRACE700 MODELLING SCREEN SHOTS

roject l	Navigator				
		Alternative 1	Alternative 2	Alternative 3	Alternative 4
8	Enter Project Information	295 Ann Street - Mixing Boxes	295 Ann Street - VAV	295 Ann Street - Active Chilled Beams	295 Ann Street - Trigeneration
\sim	Select Weather Information	Brisbane, Australia	Brisbane, Australia	Brisbane, Australia	Brisbane, Australia
K	Create Templates	9 Templates	Use Alternative 1	9 Templates Based on Alternative 1	Use Alternative 1
€	Create Rooms	288 Rooms	Use Alternative 1	Use Alternative 1	Use Alternative 1
σ.	Create Systems	8 Systems	8 Systems Based on Alternative 1	8 Systems Based on Alternative 1	Use Alternative 1
	Assign Rooms to Systems	288 Assigned Rooms	288 Assigned Rooms	288 Assigned Rooms	288 Assigned Rooms
	Create Plants	2 Plants	Use Alternative 1	Use Alternative 1	3 Plants
3	Assign Systems to Plants	System Assignments	System Assignments	System Assignments	System Assignments
9	Define Economics	No utility rates defined 0(\$)	No utility rates defined 0(\$)	No utility rates defined 0(\$)	No utility rates defined 0(\$)
<u>الله</u>	Calculate and View Results	06/18/2011 - 09:48 PM	06/18/2011 · 09:48 PM	06/18/2011 · 09:48 PM	06/18/2011 - 09:48 PM

💭 Create Rooms -	Single Worksheet							
Alternative 1						Apply		
Room description	evel 1 - Zone 1		•			Close		
Templates		Length	Width					
Room General O	Iffice 💌	Floor 14.5	m 1.5 m			<u>N</u> ew Room		
Internal General O	Iffice Area 📃 💌	Roof 🖲 🛛	m 0 m			Copy		
Airflow General O	Iffice Area 📃 💌	C Equals flo	or			Delete		
Tstat General O	Iffice Area 📃 💌	Wall						
Constr General O	Iffice Area 🛛 💌	escription Length (m)	Height (m) Direction	ı % GlassorQty Ler	ngth (m) Height (m) \	Window		
	_	IW 12	3.65 315	0 1 11.3				
	S	W 4	3.65 225	0 1 4	1.76	v		
	Γ	0	3.65 0		0			
		Internal loads		Airflows				
		People 10	sq m/person 💌	Cooling vent	10 L/s/person	•		
	Lighting 15 W/sq m 💌 Heating vent 10 L/s/person 💌							
	Misc loads 15 W/sq m 💌 VAV minimum 🛛 🎖 Clg Airflow 💌							
Single Sheet	<u>R</u> ooms	Roo <u>f</u> s	<u>W</u> alls	Int Loads	Airflows	Partn/Floors		

💭 Create Rooms - Rooms					
Alternative 1					Apply
Room description Level 1 - Zone 1		•	Design		<u>C</u> lose
Templates	Size		Cooling dry bulb	22.5 °C	
Room General Office 💌	Length	14.5 m	Heating dry bulb	21 °C	New Room
Internal General Office Area 💌	Width	1.5 m	Relative humidity	50 %	Copy
Airflow General Office Area 💌 H	leight		Thermostat		Datata
Tstat 🛛 General Office Area 🗨	Floor to floor	3.65 m	Cooling driftpoint	23.5 °C	Delete
Constr 🛛 General Office Area 🗨	Plenum	0.95 m	Heating driftpoint	20 °C	
	Above ground	m	Cooling schedule	None	•
Duplicate	. Floor multiplier	1	Heating schedule	None	•
	Rooms per zone 🛛	1	Sensor Locations		
Room mass/avg time lag	Time delay based on a	ctual ma: 💌	Thermostat	Room	•
Slab construction type	4" LW Concrete	-	CO2 sensor	None	•
Room type	Conditioned	-	Humidity		
Acoustic ceiling resistance	0.31451 m².°C/W		Moisture capacitance	None	•
Carpeted F	v		Humidistat location	None	•
Circle Chard	Dest.	5.7-II.	Lat so to	A: 0	Det Element
Single Sheet <u>R</u> ooms	Roo <u>f</u> s	<u> </u>	Int Loads	<u>A</u> irflows	Partn/Floors

📁 Create Rooms - Roofs					
Alternative 1					Apply
Room description Level 1 · Zone 1		•			<u>C</u> lose
Templates Roc	of				
Room General Office 💌		Tag	Construct		Vew Roof
Internal General Office Area 💌		C Equals floor	U-factor		Сору
Airflow General Office Area 💌		C Length	Pitch 0 d	eg	Delete
Tstat 🛛 General Office Area 🗨 🚽		Width 0	Direction 0 d	eg	
Constr General Office Area 💌					
	Skylight		Туре		<u></u>
		Length 0	U-factor 0		
		Width 0	Sh. Coef		
		Quantity 0	Ld to RA 0 %		
	Shading				
		Internal			_
		1			_
Single Sheet Rooms	Roo <u>f</u> s	<u>W</u> alls	Int Loads	Airflows	Partn/Floors

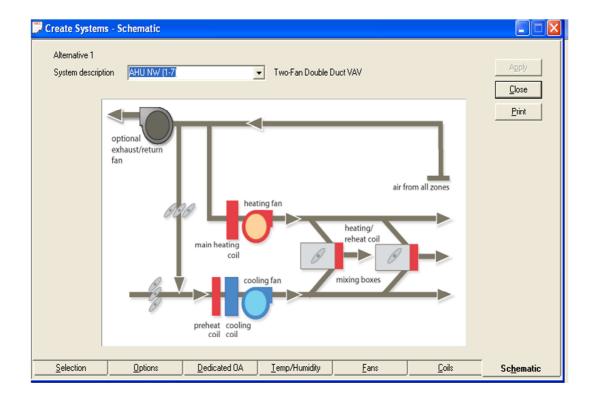
💭 Create Rooms - Walls		
Alternative 1	App	aly
Room description Level 1 · Zone 1		se
Templates Wall		
Boom General Office ▼ NW	Tag NW Construct 200mm Conc Block 20mm Plaster 💌 Net	w
Internal General Office Area 💌	Length 12 m U-factor 1.4479 W/m ² *C	
Airflow General Office Area 💌	Height 3.65 m Tilt 0 deg Cor Wa	
Tstat General Office Area 💌	Grnd reflect 1 Direction 315 deg	ete
Constr General Office Area 💌	Pct wall area to underfloor plenum 2 %	
Openings		
Opening - 1	Tag Opening 1 © Window C Door Net	
	Vall area U % Type Single Clear 1/8"	
	✓ Length 11.2 m Height 1.76 m Quantity 1 Cop Oper	
	U-factor 5.9051 W/m²-°C Sh. Coef 0.8 Ld to RA 0 %	
	Shading Oper	
	Internal None	
	External Combined Horz. & Vert. Fins - 295 Ann Shading 💌	
Single Sheet Rooms Roofs	Walls Int Loads Airflows Partn/Floo	
		15

💭 Create Rooms - Internal Loads	
Alternative 1	Apply
Room description Level 1 - Zone 1	<u>C</u> lose
Templates	
Room General Office 💌 People Activity AS1668.2 - Office Area 💌 Density 10 sq m/person 💌	
Internal General Office Area 💌 Schedule Cooling Only (Design) 💌	
Airflow General Office Area 💌 Sensible 0.078 kW Latent 0.052 kW	
Tstat General Office Area 💌 Workstations	
Constr General Office Area 💌 Density 1 workstation/person 💌	
Lights Type Fluorescent, hung below ceiling, 100% load to space	
Heat gain 15 W/sq m 💌 Schedule Cooling Only (Design) 💌	
Miscellaneous loads	
Misc Load 1 Tag Misc Load 1 Type BCA Class 5 Office	New Load
Energy 15 W/sq m 💌 Schedule Cooling Only (Design) 💌	Copy
Energy meter Electricity	
	Delete
,	
Single Sheet Roofs Walls Int Loads Airflows Par	tn/Floors

📁 Create Rooms - Airflows								
Alternative 1				Adjacent	air transfer fro	m room	A	pply
Room description Level 1 - Zone 1			No ad</th <th>ljacent air trans:</th> <th>>></th> <th></th> <th><u> </u></th> <th>lose</th>	ljacent air trans:	>>		<u> </u>	lose
Templates	Main supply			A	uxiliary supply			
Room General Office 💌	Cooling		To be calculated	-	Cooling	To	be calculated	-
Internal General Office Area 💌	Heating		To be calculated	-	Heating	То	be calculated	•
Airflow General Office Area 💌	Ventilation			S	td 62.1-2004/			_
Tstat General Office Area 💌	Apply ASHR.	AE Std62.1	1-2004/2007 No	-	Clg Ez Ci		v	%
Constr General Office Area 💌	Туре	General	Office Space	•	Htg Ez C	ustom	v	%
	Cooling	10	L/s/person	-	Er D	efault based o	on system typ 💌	~ ~
	Heating	10	L/s/person	-	DCV Min (JA Intake 🗌	None	7
	Schedule	Available	: (100%)	▼ R	oom exhaust.			
	Infiltration				Rate	0 air	changes/hr	•
	Туре	Neutral, I	Poor Const.	•	Schedule	Available (10	00%)	-
	Cooling	1	air changes/hr	• v	AV minimum			
	Heating	1	air changes/hr	-	Rate	8	Clg Airflow	•
	Schedule	Available	: (100%)	•	Schedule	Available (10)0%)	•
					Туре	Default		-
Single Sheet Rooms	Ro	o <u>f</u> s	<u>W</u> alls	Int Load	s	<u>A</u> irflows	Partn/F	loors

Create Systems	Selection					
Alternative 1 System description	AHU NW (1-7)		▼ Two-Fan Double	Duct VAV		Apply Close
System category All Constant Volume Constant Volume Heating Drily Induction Underfloor Air Dis Displacement Ve Chilled Beams	- Mixing		-)		<u>N</u> ew C <u>opy</u> Delete
Changeover-Byp Changeover-Byp Changeover-Byp Double Duct VAV	ass VAV with Local He ass VAV with Reheat ered VAV, Htg Coil on	eat		╡╘╋ ┍ ╺╴		Advanced
Parallel Fan-Powe Series Fan-Powe Two-Fan Double	ered VAV, Htg Coil on ed VAV Duct VAV			F actor		Colocation
Selection	<u>O</u> ptions	Dedicated OA	<u>I</u> emp/Humidity	<u>F</u> ans	<u>C</u> oils	Sc <u>h</u> ematic

Create Rooms - Partitions and Floors		
Alternative 1		Apply
Room description Level 1 - Zone 1		
Templates Partition		
Room General Office 💌	Tag	Adjacent space temperature New Partition
Internal General Office Area 💌	Length 0	Method Copy Part
Airflow General Office Area 🗨	Height 0	Cooling Delete Part
Tstat General Office Area 💌	Constr	Heating
Constr General Office Area 💌	U-factor 0	
	Adj room	Y
Floor		
	Tag	External temperature New Floor
	C Exposed C Slab on grade	Method Copy Floor
	Constr	Cooling Delete Floor
	Area 0 U-factor 0	Heating
	Perim 0 Loss coeff 0	
	Adj room	<u> </u>
Single Sheet <u>R</u> ooms	Roo <u>f</u> s <u>W</u> alls <u>I</u> nt Loads	<u>Airflows</u> <u>Partn/Floors</u>


芦 Create Systems	- Options		
Alternative 1 System description Evaporative Coolin Type Direct efficiency Direct coil scheo Indirect efficienc	y None v 0 %	Two-Fan Double Duct VAV Economizer Type None 'On'' point 'C Max outdoor air 100 % Schedule Available (100%)	Apply Close Advanced Options
Stage 1 Air-to-Air E	nergy Recovery/Transfer	Stage 2 Air-to-Air Energy Recovery/Transfer	
Туре	None (default)	Type None (default)	
Sup-side deck	Ventilation upstream	Sup-side deck Ventilation upstream	
Exh-side deck	Outdoor & room exhaust mix 🖉	Exh-side deck Outdoor & room exhaust mix 🚽	
Schedule	Available (100%)	Schedule Available (100%)	
	Effectiveness Options	Effectiveness Options	
Selection	Options Dedicated OA	Iemp/Humidity <u>F</u> ans <u>C</u> oils	Sc <u>h</u> ematic

芦 Create Systems	- Dedicated Ventilation				
Alternative 1 System description Configuration	AHU NW (1-7)	Two-Fan Double D		×	Apply Close
Cooling/Heating D Cooling supply a Heating supply a Cooling supply a	ir dry bulb C *C	Cooling/Heating S Supply air dry bu Supply air dry bu Cooling SA dew Cooling SA dew	Ib high limit	3" 3" 3" 3" 3"	
Dedicated Ventilal Cooling coil Heating coil Optional ventilation fan	ion Schedules Available (100%) Available (100%) Available (100%)	H =	ion Locations eturn/Dutdoor Deck ystem	•	
Selection	Options Dedicated OA	Iemp/Humidity	<u>F</u> ans	<u>C</u> oils	Sc <u>h</u> ematic

💭 Create Systems -	Design Tem	peratures					
Alternative 1 System description	AHU NW (1	-7	•	Two-Fan Double D	uct VAV		Apply Close
Design Air Temp	erature		Direct/	Indirect Dehumidific	ation Methods (System	Simulation only)	1
Cooling supp	oly Max	D. 10	Туре	None		-	
	Min	°⊂		, Maximum room rela	tive humidity	*	
Leaving coo	ling coil Max Min	0° 0°		(when throttling a c	ninimum allowable leav chilled water coil down ation or ''wild coil'' mod	ward	
			Variable	e Fan Speed for cap	acity control (System S	Simulation only)	
Heating sup	ply Max	D, IC		Number of fan spe	eds None	-	
	Min	°		Percent airflow at I	ow speed		
Supply duct temperature 0 *C difference 0 *C Humidification Design humidity ratio difference g/kg Min %							
]
Selection	<u>Options</u>	<u>D</u> edicated	0A <u>I</u>	emp/Humidity	<u>F</u> ans	<u> </u>	Sc <u>h</u> ematic

🖡 Create Systems - Fan Overrides 📃 🗖 🔀							
Alternative 1 System description Fan cycling schedule	AHU NW (1-7) Two-Fan Double Duct VAV						
Qverrides							
	Туре	Static Pressure (kPa)	Full Load Energy Rate	Full Load Energy Rate Units	Sched	lule	
Primary	BI Centrifugal var spd mtr	0.65	0.00027	kW/Cfm-in wg	Available (100%)		
Secondary	Axial fan with VFD	0.65	0.000258	kW/Cfm-in wg	Available (100%)		
Return	Axial fan with VFD	0.395	0.000258	kW/Cfm-in wg	Available (100%)		
System exhaust	None	0	0	kW	Available (100%)		
Room exhaust	None	0	0	kW	Available (100%)		
Optional ventilation	None	0	0	kW	Available (100%)		
Auxiliary	None	0	0	kW	Available (100%)		
90.1 Primary Fan Power Adjustment 0 kPa							
Selection	<u>Options</u> <u>D</u> edicated OA	<u>I</u> emp/Hur	nidity	<u>F</u> ans	<u>C</u> oils	Sc <u>h</u> ematic	

reate Systems - I Alternative 1 System description Capacity Overrides	AHU NW (1-7)	ooling Coil Overrides Two-	Fan Double [Juct VAV			Apply Close
	Capacity	Capacity Units			Schedule		
Main cooling	100	% of Design Capacity by adjusting a	airflow A	wailable (100%)			
Auxiliary cooling		% of Design Cooling Capacity		vailable (100%)			
Main heating	100	% of Design Capacity	A	vailable (100%)			
Auxiliary heating		% of Design Capacity	A	vailable (100%)			
Preheat	0	% of Design Capacity	A	vailable (100%)			
Reheat	0	% of Design Capacity	A	vailable (100%)			
Humidification	0	% of Design Capacity	A	vailable (100%)			
Warning: The fields marked in red require other entries for a correct simulation. Diversity People 100 % Lights 100 % Misc loads 100 %							
Selection	<u>O</u> ptions	Dedicated OA Temp	/Humidity	<u>F</u> ans		<u>C</u> oils	Sc <u>h</u> ematic

PAssign Zones and Rooms	
Alternative 1 Unassigned Rooms Unassigned Rooms	Eind Close 1-7) -7) 1-7) -7) 8-15) 3-15) 1-5) 2-15) 1-15)
Summary Information	Expand All

💭 Create Plants							
Alternative 1 Equipment Category	Confi	iguration					
Air-cooled Air-cooled Wate chiller unitary co Water source Boiler El heat pump Eiter	er-cooled Water-cooled chiller unitary	Cooling plants Let Cooling plant - 001 St Water-cooled chiller - 002 St Water-cooled chiller - 003 St Water-cooled chiller - 004 Heating plants Let Heating plant - 002 St Boiler - 001	Close Plant Wizard New Clg Plant New Htg Plant Edt Delete Plant Ctrl Energy Mgmt Sequencing				
To assign equipment, drag the desired equipment category to the configuration tree.							
<u>C</u> onfiguration	Cooling Equipment	Heating Equipment	Base Utility / Misc. Accessory				

📁 Create Plants							
Cooling Equipment - Alter	native 1			Heat Reje	ction		
Cooling plant	Cooling plant -	001	•	Туре	Cooling tower for Cent. Ch	illers 💌	Apply
Equipment tag	Water-cooled	chiller - 001	•	Hourly an	nbient wet bulb offset	°C	Close
Category	Water-cooled	chiller	-				
Equipment type	Centrifugal 2-S	tage w/Var Freg Di		Thermal S	torage		New Equip
Sequencing type	Parallel			Туре	None	-	
Energy source			_	Capacity			Copy Equip
) 				1		Delete Equip
Reject condenser heat	Heat rejection	equipment	-	Schedule	Storage	<u>~</u>	
Reject heat to plant	v						Controls
Operating mod	de		Capacity		Energy rate		Packaged Energy
Cooling			kW			mpressor only)	Breakout
Heat recovery			tons		kW/ton kW/ton		
Tank charging Tank charging & heat reco	iveru		tons tons		kW/ton		
Turk onliging whow root	noiy	1	0110		111111		
Pumps		Туре			Full load consum	nption	
Primary chilled water		Cnst vol chill water pump			40 kW		
		Cnst vol cnd water pump - Low Eff			20 kW		
Heat recovery or aux condenser None					0 ft water		
Configuration Cooling Equip			ipment		Heating Equipment	<u>B</u> ase Utility / I	Misc. Accessory

Create Plants	t - Alternative 1 —			Thermal Sto	rage		
Heating plant Equipment tag Category Equipment type Capacity Energy rate	. Мь		-	Type Capacity Schedule Controls Equipment schedule Demand lin	None ton-hr Storage Available (100%) niting priority		<u>Apply</u> <u>C</u> lose <u>New Equip</u> Cogy Equip <u>D</u> elete Equip
Hot Water Pump- Type Full load consumption	Heating water ci	rc pump					
<u>C</u> onfigura	ation	Cooling Eq	uipment	<u>H</u> eati	ng Equipment	<u>B</u> ase Utility / I	Misc. Accessory

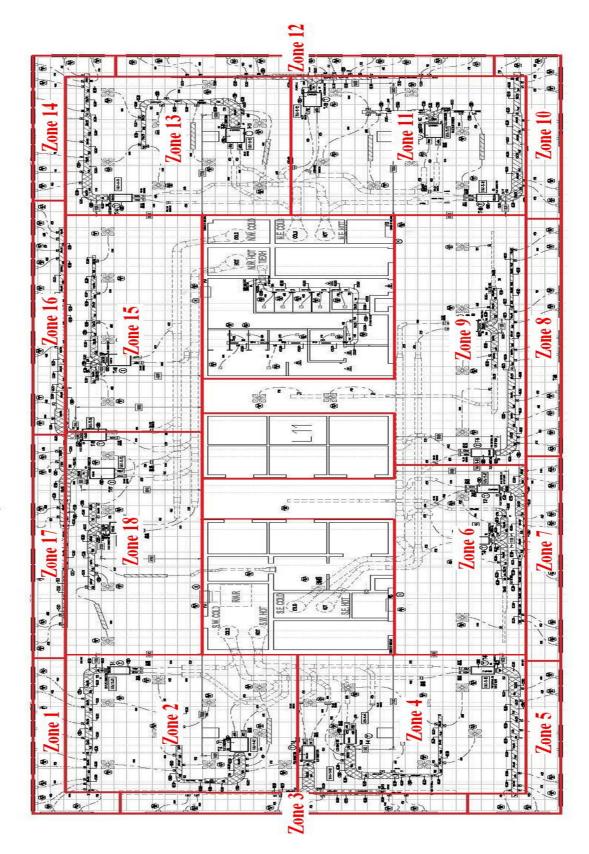
📁 Create Plants			
Alternative 1			[
Miscellaneous accessories			Apply
Plant Equipment tag	Type Energy Schedule	Type None 🗸	
Cooling plant All	None 0 kW 0 ff (0%)	Description	<u>C</u> lose
		Plant Cooling plant - 001	,
		Equipment tag	New <u>M</u> isc
		Energy 0 kW 🔽	Copy Mi <u>s</u> c
		Schedule Off (0%)	elete Misc
Base utility	Hourly		
Plant Type	demand Schedule	Type None 💌	New <u>U</u> tility
Stand-alone None	0 kW 0ff (0%)	Description	Copy Utility
		Plant Stand-alone	
		Hourly 0 kw y	elete U <u>t</u> ility
		Schedule Off (0%)	
		Demand limiting	
		priority	
]			
Configuration	Cooling Equipment	Heating Equipment Base Utility / Misc.	Accessory

APPENDIX D – TRACE 700 BRISBANE WEATHER FILES

			Humidity	Cloud Cover	Wind Speed	Barometric Pressure
Date	OADB	OAWB	Ratio	Modifier	m/s	(kPa)
1 January,	23.7	21.6	15.41	1	3.3	100.99
2 January,	23.3	21.5	15.41	1	3.3	100.99
3 January,	22.9	21.4	15.41	1	3.3	100.99
4 January,	22.7	21.3	15.41	1	3.3	100.99
5 January,	22.6	21.3	15.41	1	3.3	100.99
6 January,	22.8	21.3	15.41	1	3.3	100.99
7 January,	23.2	21.5	15.41	1	3.3	100.99
8 January,	23.9	21.7	15.41	1	3.3	100.99
9 January,	25	22	15.41	1	3.3	100.99
10 January,	26.2	22.3	15.41	1	3.3	100.99
11 January,	27.6	22.7	15.41	1	3.3	100.99
12 January,	28.9	23.1	15.41	1	3.3	100.99
13 January,	29.9	23.4	15.41	1	3.3	100.99
14 January,	30.6	23.5	15.41	1	3.3	100.99
15 January,	30.8	23.6	15.41	1	3.3	100.99
16 January,	30.6	23.5	15.41	1	3.3	100.99
17 January,	30	23.4	15.41	1	3.3	100.99
18 January,	29.1	23.1	15.41	1	3.3	100.99
19 January,	28	22.8	15.41	1	3.3	100.99
20 January,	26.9	22.5	15.41	1	3.3	100.99
21 January,	26	22.3	15.41	1	3.3	100.99
22 January,	25.2	22	15.41	1	3.3	100.99
23 January,	24.6	21.9	15.41	1	3.3	100.99
24 January,	24.1	21.7	15.41	1	3.3	100.99
1 February,	23.5	21.5	15.42	1	3.3	100.99
2 February,	23	21.4	15.42	1	3.3	100.99
3 February,	22.7	21.3	15.42	1	3.3	100.99
4 February,	22.5	21.3	15.42	1	3.3	100.99
5 February,	22.4	21.2	15.42	1	3.3	100.99
6 February,	22.6	21.3	15.42	1	3.3	100.99
7 February,	23	21.4	15.42	1	3.3	100.99
8 February,	23.7	21.6	15.42	1	3.3	100.99
9 February,	24.7	21.9	15.42	1	3.3	100.99
10 February,	26	22.3	15.42	1	3.3	100.99
11 February,	27.3	22.7	15.42	1	3.3	100.99
12 February,	28.6	23	15.42	1	3.3	100.99
13 February,	29.6	23.3	15.42	1	3.3	100.99

14 February,	30.3	23.5	15.42	1	3.3	100.99
15 February,	30.5	23.5	15.42	1	3.3	100.99
16 February,	30.3	23.5	15.42	1	3.3	100.99
17 February,	29.7	23.3	15.42	1	3.3	100.99
18 February,	28.8	23.1	15.42	1	3.3	100.99
19 February,	27.7	22.8	15.42	1	3.3	100.99
20 February,	26.7	22.5	15.42	1	3.3	100.99
21 February,	25.8	22.2	15.42	1	3.3	100.99
22 February,	25	22	15.42	1	3.3	100.99
23 February,	24.3	21.8	15.42	1	3.3	100.99
24 February,	23.9	21.7	15.42	1	3.3	100.99
1 March,	22.2	20.5	14.45	1	3.3	100.99
2 March,	21.8	20.3	14.45	1	3.3	100.99
3 March,	21.4	20.2	14.45	1	3.3	100.99
4 March,	21.2	20.2	14.45	1	3.3	100.99
5 March,	21.1	20.1	14.45	1	3.3	100.99
6 March,	21.3	20.2	14.45	1	3.3	100.99
7 March,	21.7	20.3	14.45	1	3.3	100.99
8 March,	22.5	20.6	14.45	1	3.3	100.99
9 March,	23.6	20.9	14.45	1	3.3	100.99
10 March,	24.9	21.3	14.45	1	3.3	100.99
11 March,	26.3	21.7	14.45	1	3.3	100.99
12 March,	27.7	22.1	14.45	1	3.3	100.99
13 March,	28.8	22.4	14.45	1	3.3	100.99
14 March,	29.4	22.6	14.45	1	3.3	100.99
15 March,	29.7	22.7	14.45	1	3.3	100.99
16 March,	29.4	22.6	14.45	1	3.3	100.99
17 March,	28.8	22.4	14.45	1	3.3	100.99
18 March,	27.9	22.2	14.45	1	3.3	100.99
19 March,	26.8	21.8	14.45	1	3.3	100.99
20 March,	25.7	21.5	14.45	1	3.3	100.99
21 March,	24.7	21.2	14.45	1	3.3	100.99
22 March,	23.9	21	14.45	1	3.3	100.99
23 March,	23.2	20.8	14.45	1	3.3	100.99
24 March,	22.6	20.6	14.45	1	3.3	100.99
1 April,	19.8	18.1	12.34	1	3.3	100.99
2 April,	19.4	18	12.34	1	3.3	100.99
3 April,	19	17.8	12.34	1	3.3	100.99
4 April,	18.7	17.7	12.34	1	3.3	100.99
5 April,	18.6	17.7	12.34	1	3.3	100.99
6 April,	18.8	17.8	12.34	1	3.3	100.99
7 April,	19.3	17.9	12.34	1	3.3	100.99
8 April,	20.1	18.2	12.34	1	3.3	100.99

9 April,	21.3	18.6	12.34	1	3.3	100.99
10 April,	22.7	19.1	12.34	1	3.3	100.99
11 April,	24.3	19.6	12.34	1	3.3	100.99
12 April,	25.8	20	12.34	1	3.3	100.99
13 April,	27	20.4	12.34	1	3.3	100.99
14 April,	27.7	20.6	12.34	1	3.3	100.99
15 April,	28	20.7	12.34	1	3.3	100.99
16 April,	27.7	20.6	12.34	1	3.3	100.99
17 April,	27.1	20.4	12.34	1	3.3	100.99
18 April,	26	20.1	12.34	1	3.3	100.99
19 April,	24.8	19.7	12.34	1	3.3	100.99
20 April,	23.6	19.3	12.34	1	3.3	100.99
21 April,	22.5	19	12.34	1	3.3	100.99
22 April,	21.6	18.7	12.34	1	3.3	100.99
23 April,	20.9	18.5	12.34	1	3.3	100.99
24 April,	20.3	18.3	12.34	1	3.3	100.99
1 May,	16.7	15	9.96	1	6.6	100.99
2 May,	16.2	14.8	9.96	1	6.6	100.99
3 May,	15.8	14.7	9.96	1	6.6	100.99
4 May,	15.5	14.5	9.96	1	6.6	100.99
5 May,	15.4	14.5	9.96	1	6.6	100.99
6 May,	15.6	14.6	9.96	1	6.6	100.99
7 May,	16.1	14.8	9.96	1	6.6	100.99
8 May,	17	15.1	9.96	1	6.6	100.99
9 May,	18.2	15.6	9.96	1	6.6	100.99
10 May,	19.7	16.1	9.96	1	6.6	100.99
11 May,	21.3	16.7	9.96	1	6.6	100.99
12 May,	22.9	17.2	9.96	1	6.6	100.99
13 May,	24	17.6	9.96	1	6.6	100.99
14 May,	24.8	17.9	9.96	1	6.6	100.99
15 May,	25.1	18	9.96	1	6.6	100.99
16 May,	24.8	17.9	9.96	1	6.6	100.99
17 May,	24.1	17.6	9.96	1	6.6	100.99
18 May,	23.1	17.3	9.96	1	6.6	100.99
19 May,	21.8	16.8	9.96	1	6.6	100.99
20 May,	20.5	16.4	9.96	1	6.6	100.99
21 May,	19.5	16	9.96	1	6.6	100.99
22 May,	18.5	15.7	9.96	1	6.6	100.99
23 May,	17.7	15.4	9.96	1	6.6	100.99
24 May,	17.1	15.2	9.96	1	6.6	100.99
1 June,	13.9	12.2	8.13	1	6.6	100.99
2 June,	13.4	12	8.13	1	6.6	100.99
3 June,	13	11.8	8.13	1	6.6	100.99


4 June,	12.7	11.7	8.13	1	6.6	100.99
5 June,	12.6	11.6	8.13	1	6.6	100.99
6 June,	12.8	11.7	8.13	1	6.6	100.99
7 June,	13.3	11.9	8.13	1	6.6	100.99
8 June,	14.2	12.3	8.13	1	6.6	100.99
9 June,	15.6	12.8	8.13	1	6.6	100.99
10 June,	17.1	13.5	8.13	1	6.6	100.99
11 June,	18.8	14.1	8.13	1	6.6	100.99
12 June,	20.5	14.8	8.13	1	6.6	100.99
13 June,	21.7	15.2	8.13	1	6.6	100.99
14 June,	22.5	15.5	8.13	1	6.6	100.99
15 June,	22.8	15.6	8.13	1	6.6	100.99
16 June,	22.5	15.5	8.13	1	6.6	100.99
17 June,	21.8	15.3	8.13	1	6.6	100.99
18 June,	20.7	14.8	8.13	1	6.6	100.99
19 June,	19.3	14.3	8.13	1	6.6	100.99
20 June,	18	13.8	8.13	1	6.6	100.99
21 June,	16.9	13.4	8.13	1	6.6	100.99
22 June,	15.9	13	8.13	1	6.6	100.99
23 June,	15	12.6	8.13	1	6.6	100.99
24 June,	14.4	12.4	8.13	1	6.6	100.99
1 July,	12.5	10.6	7.16	1	6.6	100.99
2 July,	11.9	10.3	7.16	1	6.6	100.99
3 July,	11.4	10.1	7.16	1	6.6	100.99
4 July,	11.1	10	7.16	1	6.6	100.99
5 July,	11	9.9	7.16	1	6.6	100.99
6 July,	11.2	10	7.16	1	6.6	100.99
7 July,	11.8	10.3	7.16	1	6.6	100.99
8 July,	12.8	10.7	7.16	1	6.6	100.99
9 July,	14.2	11.3	7.16	1	6.6	100.99
10 July,	15.9	12	7.16	1	6.6	100.99
11 July,	17.8	12.8	7.16	1	6.6	100.99
12 July,	19.6	13.5	7.16	1	6.6	100.99
13 July,	21	14.1	7.16	1	6.6	100.99
14 July,	21.9	14.4	7.16	1	6.6	100.99
15 July,	22.2	14.5	7.16	1	6.6	100.99
16 July,	21.9	14.4	7.16	1	6.6	100.99
17 July,	21.1	14.1	7.16	1	6.6	100.99
18 July,	19.8	13.6	7.16	1	6.6	100.99
19 July,	18.4	13	7.16	1	6.6	100.99
20 July,	16.9	12.5	7.16	1	6.6	100.99
21 July,	15.7	11.9	7.16	1	6.6	100.99
22 July,	14.6	11.5	7.16	1	6.6	100.99

23 July,	13.7	11.1	7.16	1	6.6	100.99
24 July,	13	10.8	7.16	1	6.6	100.99
1 August,	13.1	10.8	7.12	1	6.6	100.99
2 August,	12.5	10.6	7.12	1	6.6	100.99
3 August,	12.1	10.4	7.12	1	6.6	100.99
4 August,	11.7	10.2	7.12	1	6.6	100.99
5 August,	11.6	10.1	7.12	1	6.6	100.99
6 August,	11.8	10.2	7.12	1	6.6	100.99
7 August,	12.4	10.5	7.12	1	6.6	100.99
8 August,	13.5	11	7.12	1	6.6	100.99
9 August,	15	11.6	7.12	1	6.6	100.99
10 August,	16.7	12.3	7.12	1	6.6	100.99
11 August,	18.7	13.1	7.12	1	6.6	100.99
12 August,	20.6	13.9	7.12	1	6.6	100.99
13 August,	22	14.4	7.12	1	6.6	100.99
14 August,	22.9	14.8	7.12	1	6.6	100.99
15 August,	23.3	14.9	7.12	1	6.6	100.99
16 August,	22.9	14.8	7.12	1	6.6	100.99
17 August,	22.1	14.5	7.12	1	6.6	100.99
18 August,	20.8	14	7.12	1	6.6	100.99
19 August,	19.3	13.4	7.12	1	6.6	100.99
20 August,	17.8	12.8	7.12	1	6.6	100.99
21 August,	16.5	12.2	7.12	1	6.6	100.99
22 August,	15.3	11.8	7.12	1	6.6	100.99
23 August,	14.4	11.4	7.12	1	6.6	100.99
24 August,	13.7	11.1	7.12	1	6.6	100.99
1 September,	15.6	13.2	8.5	1	6.6	100.99
2 September,	15	13	8.5	1	6.6	100.99
3 September,	14.6	12.8	8.5	1	6.6	100.99
4 September,	14.2	12.7	8.5	1	6.6	100.99
5 September,	14.1	12.6	8.5	1	6.6	100.99
6 September,	14.3	12.7	8.5	1	6.6	100.99
7 September,	14.9	12.9	8.5	1	6.6	100.99
8 September,	15.9	13.3	8.5	1	6.6	100.99
9 September,	17.4	13.9	8.5	1	6.6	100.99
10 September,	19.1	14.6	8.5	1	6.6	100.99
11 September,	21	15.3	8.5	1	6.6	100.99
12 September,	22.8	15.9	8.5	1	6.6	100.99
13 September,	24.2	16.4	8.5	1	6.6	100.99
14 September,	25.1	16.8	8.5	1	6.6	100.99
15 September,	25.4	16.9	8.5	1	6.6	100.99
16 September,	25.1	16.8	8.5	1	6.6	100.99
17 September,	24.3	16.5	8.5	1	6.6	100.99

18 September,	23	16	8.5	1	6.6	100.99
19 September,	21.6	15.5	8.5	1	6.6	100.99
20 September,	20.1	15	8.5	1	6.6	100.99
21 September,	18.8	14.5	8.5	1	6.6	100.99
22 September,	17.7	14	8.5	1	6.6	100.99
23 September,	16.8	13.7	8.5	1	6.6	100.99
24 September,	16.1	13.4	8.5	1	6.6	100.99
1 October,	18.5	16.5	10.91	1	6.6	100.99
2 October,	18	16.3	10.91	1	6.6	100.99
3 October,	17.6	16.2	10.91	1	6.6	100.99
4 October,	17.3	16.1	10.91	1	6.6	100.99
5 October,	17.2	16	10.91	1	6.6	100.99
6 October,	17.4	16.1	10.91	1	6.6	100.99
7 October,	17.9	16.3	10.91	1	6.6	100.99
8 October,	18.8	16.6	10.91	1	6.6	100.99
9 October,	20.1	17.1	10.91	1	6.6	100.99
10 October,	21.6	17.6	10.91	1	6.6	100.99
11 October,	23.4	18.2	10.91	1	6.6	100.99
12 October,	25	18.7	10.91	1	6.6	100.99
13 October,	26.2	19.1	10.91	1	6.6	100.99
14 October,	27	19.3	10.91	1	6.6	100.99
15 October,	27.3	19.4	10.91	1	6.6	100.99
16 October,	27	19.3	10.91	1	6.6	100.99
17 October,	26.3	19.1	10.91	1	6.6	100.99
18 October,	25.2	18.8	10.91	1	6.6	100.99
19 October,	23.9	18.3	10.91	1	6.6	100.99
20 October,	22.6	17.9	10.91	1	6.6	100.99
21 October,	21.4	17.5	10.91	1	6.6	100.99
22 October,	20.4	17.2	10.91	1	6.6	100.99
23 October,	19.6	16.9	10.91	1	6.6	100.99
24 October,	19	16.7	10.91	1	6.6	100.99
1 November,	20.9	19.1	13.09	1	3.3	100.99
2 November,	20.4	18.9	13.09	1	3.3	100.99
3 November,	20.1	18.8	13.09	1	3.3	100.99
4 November,	19.8	18.7	13.09	1	3.3	100.99
5 November,	19.7	18.7	13.09	1	3.3	100.99
6 November,	19.9	18.7	13.09	1	3.3	100.99
7 November,	20.4	18.9	13.09	1	3.3	100.99
8 November,	21.2	19.1	13.09	1	3.3	100.99
9 November,	22.4	19.5	13.09	1	3.3	100.99
10 November,	23.8	20	13.09	1	3.3	100.99
11 November,	25.4	20.5	13.09	1	3.3	100.99
12 November,	26.9	20.9	13.09	1	3.3	100.99

13 November,	28	21.2	13.09	1	3.3	100.99
14 November,	28.7	21.5	13.09	1	3.3	100.99
15 November,	29	21.5	13.09	1	3.3	100.99
16 November,	28.7	21.5	13.09	1	3.3	100.99
17 November,	28.1	21.3	13.09	1	3.3	100.99
18 November,	27	21	13.09	1	3.3	100.99
19 November,	25.8	20.6	13.09	1	3.3	100.99
20 November,	24.6	20.2	13.09	1	3.3	100.99
21 November,	23.6	19.9	13.09	1	3.3	100.99
22 November,	22.7	19.6	13.09	1	3.3	100.99
23 November,	21.9	19.4	13.09	1	3.3	100.99
24 November,	21.4	19.2	13.09	1	3.3	100.99
1 December,	22.6	20.8	14.69	1	3.3	100.99
2 December,	22.1	20.6	14.69	1	3.3	100.99
3 December,	21.8	20.5	14.69	1	3.3	100.99
4 December,	21.5	20.4	14.69	1	3.3	100.99
5 December,	21.4	20.4	14.69	1	3.3	100.99
6 December,	21.6	20.5	14.69	1	3.3	100.99
7 December,	22	20.6	14.69	1	3.3	100.99
8 December,	22.8	20.8	14.69	1	3.3	100.99
9 December,	24	21.2	14.69	1	3.3	100.99
10 December,	25.3	21.6	14.69	1	3.3	100.99
11 December,	26.8	22	14.69	1	3.3	100.99
12 December,	28.3	22.4	14.69	1	3.3	100.99
13 December,	29.3	22.7	14.69	1	3.3	100.99
14 December,	30	22.9	14.69	1	3.3	100.99
15 December,	30.3	23	14.69	1	3.3	100.99
16 December,	30	22.9	14.69	1	3.3	100.99
17 December,	29.4	22.8	14.69	1	3.3	100.99
18 December,	28.4	22.5	14.69	1	3.3	100.99
19 December,	27.3	22.1	14.69	1	3.3	100.99
20 December,	26.1	21.8	14.69	1	3.3	100.99
21 December,	25.1	21.5	14.69	1	3.3	100.99
22 December,	24.2	21.3	14.69	1	3.3	100.99
23 December,	23.5	21	14.69	1	3.3	100.99
24 December,	23	20.9	14.69	1	3.3	100.99

APPENDIX E –295 ANN STREET TYPICAL FLOOR PLAN

APPENDIX F - BCA 2010 GLAZING CALCULATOR

Bit N NE SE S SW W NW internal Option A 91.25m ² 216m ³ 91.25m ³ 216m ² 700 Staing area (A) 91.25m ² 216m ³ 91.25m ³ 216m ² 700 Staing area (A) 95.7m ² 95.7m ² 700 700 700 Staing area (A) 95.7m ² 95.7m ² 95.7m ² 95.7m ² 95.7m ² GLA2ING ELEMENTS, ORIENTATION SECTOR, SIZE and PERFORMANCE CHARACTERISTICS SHADING CALCULATED OUTCOMES FAILURES (highlighted before area of the stain area	Building nameldescrip 2	tion	-						<u></u>		<u>0.</u>	IE ONE	Applicat other	tion	-		Climate zone 2
15 N NE E SE S SW N Internal Plant Option A Option B Glazing area (A) 91.25m ² 216m ² 91.25m ² 216m ²			Facada are	20													
Option A Dption B Glazing see(A) 91.25m ² 216m ² 216m ² Glazing see(A)	,			1	C F VOLU	SE	Ú gru	S₩	ŵ warm	NW	internal	IE ONE					
Opion B Opion B <t< td=""><td></td><td>. Option A</td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>THUR I</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		. Option A	-								THUR I						
Glacing area (A) 41.2m ² 95.7m ² Glacing area (A) 41.2m ² 95.7m ² aruber of rows preferred in table below 14 (cor currently displayed) CLAZING ELEMENTS, ORIENTATION SECTOR, SIZE and PERFORMANCE CHARACTERISTICS SHADING CALCULATED OUTCOMES FAIL URES (Highlighted for State of rows preferred in table below Description (optional) Glazing element Facing sector Size Petformance P8H or device Shading Multipliers Size Ductomer sec Total (Dation A Caption B Caption B (m) Min Method be (m) PH PH PH Height Method be (m) Colspan="4">Coling (sal Coling (sal Coling (sal <t< td=""><td></td><td></td><td></td><td>31.2011</td><td></td><td>21011</td><td></td><td>51.2011</td><td></td><td>21011</td><td>als:</td><td>IC OUT</td><td></td><td></td><td></td><td></td><td></td></t<>				31.2011		21011		51.2011		21011	als:	IC OUT					
Interfere Interfere <t< td=""><td></td><td></td><td>A848</td><td>41 2m²</td><td>ABCB</td><td>95 7m²</td><td>A948</td><td>41 4m²</td><td>1948</td><td>95 7m²</td><td>775</td><td>in our</td><td></td><td></td><td></td><td></td><td></td></t<>			A848	41 2m ²	ABCB	95 7m ²	A948	41 4m ²	1948	95 7m ²	775	in our					
14 / securently displayed 6LA2ING ELEMENTS, ORIENTATION SECTOR, SJZE and PERFORMANCE CHARACTERISTICS SHADING CALCUL ATED OUTCOME SFAULURES (Iviahilghing to the secure to		-															
GLAZING ELEMENTS, DRIENTATION SECTOR, SIZE and PERFORMANCE CHARACTERISTICS SHADING CALCULATED OUTCOMES FAIL UPES (highlighted be glazing element) Glazing element) Facing sector Size Performance PRH or device Shading Multipliers Size Outcomes of 28 / 28 / 28 / 28 / 28 / 28 / 28 / 28																	
GLAZING ELEMENTS, DRIENTATION SECTOR, SIZE and PERFORMANCE CHARACTERISTICS SHADING CALCULATED OUTCOMES FAIL UPES (highlighted be glazing element) Glazing element) Facing sector Size Performance PRH or device Shading Multipliers Size Outcomes of 28 / 28 / 28 / 28 / 28 / 28 / 28 / 28																	
Image: Figure Participant Sector Size Performance P8H or device Shading Multipliers Size Dutonene D Description (optional) Option A facades Option A facades Option A facades Option A facades Option A facades Nut Area (m?) Total U-Value SHGC (AFFC) P (m) H He He He He Multipliers Size Dutonme 1 Zone 1 NW 1.76 11.20 5.9 0.80 0.500 1.800 0.28 0.04 1.00 0.77 19.71 19% of 1633 2 Zone 14 NW 1.76 10.40 5.9 0.80 0.500 1.800 0.28 0.04 1.00 0.77 19.71 19% of 1633 3 Zone 17 NW 1.76 15.90 5.9 0.80 0.500 1.800 0.28 0.04 1.00 0.77 2.97.4 31% of 1633 5 Zone 10 NE 1.76 15.90 5.9 0.80	imber of rows prefer	red in table below	<u> 8 101</u>	14 UNE UNE	(as current	ly displayed	Vou		VOLUM		VOLU	MEONE	3	VOLUME OF	NE 🔇	VOLUME	0NE 🛞 V
Description (ppion A) Point A Prior (m)	GLAZING ELE	MENTS, ORIEN	TATION SE	CTOR, SI	ZE and PE	RFORMAN	ICE CHAF	RACTERIS	ICS	SHAD	DING	CALO	ULATEL	ο ουτεο	MES FAI	LURES (I	highlighted be
Description (option A) Option A facades Option A (m) Option A (m) With (m) Area (m) U-Value (AFFC) SHCC (AFFC) PH (m) PH (m) G (m) Heades (GS) G (GS) (GS) Used (m) G (GS) (GS) Used (GS) G (GS) (GS) G (GS) (GS) Used (GS) G (GS) (GS) Used (GS) G (GS) (GS) Used (GS) G (GS) (GS) Used (GS) G (GS) Used (GS) G (GS) Used (GS) G (GS) Used (GS) G (GS) Used (GS) Used (GS) <thused (GS) Used (GS) <thused (GS)<td>Glazing</td><td>element</td><td>Facing</td><td>sector</td><td></td><td>Size</td><td></td><td>Perfor</td><td>nance</td><td>P&H or</td><td>device</td><td>Sha</td><td>ding</td><td>Multip</td><td>oliers</td><td>Size</td><td>Outcomes</td></thused </thused 	Glazing	element	Facing	sector		Size		Perfor	nance	P&H or	device	Sha	ding	Multip	oliers	Size	Outcomes
Description (optional) facades facades<	•							Total								Area	Element sha
I Zone 1 NW 1.76 11.20 5.9 0.80 0.500 1.800 0.28 0.04 1.00 0.77 19.71 21% of f639 2 Zone 14 NW 1.76 10.40 5.9 0.80 0.500 1.800 0.28 0.04 1.00 0.77 19.71 21% of f639 3 Zone 16 NW 1.76 16.90 5.9 0.80 0.500 1.800 0.28 0.04 1.00 0.77 19.71 21% of f639 4 Zone 17 NW 1.76 15.90 5.9 0.80 0.500 1.800 0.28 0.04 1.00 0.77 29.74 31% of f639 5 Zone 10 NE 1.76 15.90 5.9 0.80 0.500 1.800 0.28 0.04 1.00 0.77 29.74 31% of f639 6 Zone 12 NE 1.76 16.00 5.9 0.80 0.500 1.800 0.28 0.04 1.00 0.77 28.86 70% of 2019 8 Zone 1 NE <	-			Option B	Height	Width	Area	U-Value	SHGC	P	н	עוס	G	Heating	Cooling	unad	of 2 of
2 Zone 14 NW 1.76 10.40 5.9 0.80 0.500 1.800 0.28 0.41 1.00 0.77 18.30 19% of 1633 3 Zone 16 NW 1.76 16.90 5.9 0.80 0.500 1.800 0.28 0.04 1.00 0.77 29.74 31% of 1633 4 Zone 17 NW 1.76 15.90 5.9 0.80 0.500 1.800 0.28 0.04 1.00 0.77 29.74 31% of 1633 5 Zone 10 NE 1.76 3.00 5.9 0.80 0.500 1.800 0.28 0.04 1.00 0.77 29.74 31% of 2019 6 Zone 10 NE 1.76 16.40 5.9 0.80 0.500 1.800 0.28 0.04 1.00 0.77 28.86 70% of 2019 7 Zone 14 NE 1.76 4.00 5.9 0.80 0.500 1.800 0.28 0.04 <t< td=""><td>ID Descrir</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>E III</td><td></td><td></td><td>- </td><td></td><td></td></t<>	ID Descrir											E III			-		
3 Zone 16 NW 1.76 16.90 5.9 0.80 0.500 1.800 0.28 0.41 1.00 0.77 29.74 31% of 1633 4 Zone 17 NW 1.76 15.90 5.9 0.80 0.500 1.800 0.28 0.04 1.00 0.77 29.74 31% of 1633 5 Zone 17 NW 1.76 15.90 5.9 0.80 0.500 1.800 0.28 0.04 1.00 0.77 29.74 31% of 1633 6 Zone 10 NE 1.76 16.40 5.9 0.80 0.500 1.800 0.28 0.04 1.00 0.77 28.88 70% of 2019 7 Zone 14 NE 1.76 4.00 5.9 0.80 0.500 1.800 0.28 0.04 1.00 0.77 7.04 17% of 1159 9 Zone 1 SW 1.76 4.00 5.9 0.80 0.500 1.800 0.28 0.04	J.= .	otion (optional)		facades	. /	. ,	(m²)	(AFRC)	(AFRC)	(m)	(m)		(m)	(S _H)	(S _c)	(m²)	allowance us
4 Zone 17 NW 1.76 15.90 5.9 0.80 0.500 1.800 0.28 0.41 1.00 0.77 27.98 29% of 1633 5 Zone 10 NE 1.76 3.00 5.9 0.80 0.500 1.800 0.28 0.41 1.00 0.77 27.98 29% of 1633 6 Zone 12 NE 1.76 16.40 5.9 0.80 0.500 1.800 0.28 0.04 1.00 0.77 5.28 13% of 2019 7 Zone 14 NE 1.76 4.00 5.9 0.80 0.500 1.800 0.28 0.04 1.00 0.77 7.04 17% of 2019 8 Zone 1 SW 1.76 4.00 5.9 0.80 0.500 1.800 0.28 0.04 1.00 0.77 7.04 17% of 2019 9 Zone 3 SW 1.76 4.00 5.9 0.80 0.500 1.800 0.28 0.04 1.00 0.82 7.04 17% of 1159 0.80 0.500 1.800 0.28	1 Zone 1	otion (optional)	NW	facades	1.76	11.20	(m²)	(AFRC) 5.9	(AFRC) 0.80	(m) 0.500	(m) 1.800	0.28	(m) 0.04	(S _H) 1.00	(S _c)	(m²) 19.71	allowance us 21% of 163%
5 Zone 10 NE 1.76 3.00 5.9 0.80 0.500 1.800 0.28 0.4 1.00 0.77 5.28 13% of 2019 6 Zone 12 NE 1.76 16.40 5.9 0.80 0.500 1.800 0.28 0.44 1.00 0.77 5.28 13% of 2019 7 Zone 14 NE 1.76 4.00 5.9 0.80 0.500 1.800 0.28 0.44 1.00 0.77 7.04 17% of 2019 8 Zone 1 SW 1.76 4.00 5.9 0.80 0.500 1.800 0.28 0.04 1.00 0.77 7.04 17% of 2019 9 Zone 3 SW 1.76 4.00 5.9 0.80 0.500 1.800 0.28 0.04 1.00 0.82 7.04 17% of 1159 9 Zone 3 SW 1.76 4.50 5.9 0.80 0.500 1.800 0.28 0.04 1.00	1 Zone 1 2 Zone 14	otion (optional)	NW NW	facades	1.76 1.76	11.20 10.40	(m²)	(AFRC) 5.9 5.9	(AFRC) 0.80 0.80	(m) 0.500 0.500	(m) 1.800 1.800	0.28 0.28	(m) 0.04 0.04	(S _H) 1.00 1.00	(S _c) 0.77 0.77	(m²) 19.71 18.30	allewance us 21% of 163% 19% of 163%
6 Zone 12 NE 1.76 16.40 5.9 0.80 0.500 1.800 0.28 0.04 1.00 0.77 28.86 70% of 2019 7 Zone 14 NE 1.76 4.00 5.9 0.80 0.500 1.800 0.28 0.04 1.00 0.77 28.86 70% of 2019 8 Zone 1 SW 1.76 4.00 5.9 0.80 0.500 1.800 0.28 0.04 1.00 0.77 7.04 17% of 2019 9 Zone 3 SW 1.76 4.00 5.9 0.80 0.500 1.800 0.28 0.04 1.00 0.82 7.04 17% of 2019 9 Zone 3 SW 1.76 15.00 5.9 0.80 0.500 1.800 0.28 0.04 1.00 0.82 7.04 17% of 1159 10 Zone 5 SW 1.76 4.50 5.9 0.80 0.500 1.800 0.28 0.04 1.00 </td <td>1 Zone 1 2 Zone 14 3 Zone 16</td> <td>otion (optional)</td> <td>NW NW NW</td> <td>facades</td> <td>1.76 1.76 1.76</td> <td>11.20 10.40 16.90</td> <td>(m²)</td> <td>(AFRC) 5.9 5.9 5.9</td> <td>(AFRC) 0.80 0.80 0.80</td> <td>(m) 0.500 0.500 0.500</td> <td>(m) 1.800 1.800 1.800</td> <td>0.28 0.28 0.28</td> <td>(m) 0.04 0.04 0.04</td> <td>(S_H) 1.00 1.00 1.00</td> <td>(S_c) 0.77 0.77 0.77</td> <td>(m²) 19.71 18.30 29.74</td> <td>allowance us 21% of 163% 19% of 163% 31% of 163%</td>	1 Zone 1 2 Zone 14 3 Zone 16	otion (optional)	NW NW NW	facades	1.76 1.76 1.76	11.20 10.40 16.90	(m²)	(AFRC) 5.9 5.9 5.9	(AFRC) 0.80 0.80 0.80	(m) 0.500 0.500 0.500	(m) 1.800 1.800 1.800	0.28 0.28 0.28	(m) 0.04 0.04 0.04	(S _H) 1.00 1.00 1.00	(S _c) 0.77 0.77 0.77	(m²) 19.71 18.30 29.74	allowance us 21% of 163% 19% of 163% 31% of 163%
7 Zone 14 NE 1.76 4.00 5.9 0.80 0.500 1.800 0.28 0.4 1.00 0.77 7.04 17% of 2019 8 Zone 1 SW 1.76 4.00 5.9 0.80 0.500 1.800 0.28 0.04 1.00 0.77 7.04 17% of 2019 9 Zone 3 SW 1.76 4.00 5.9 0.80 0.500 1.800 0.28 0.04 1.00 0.82 7.04 17% of 1159 9 Zone 3 SW 1.76 4.50 5.9 0.80 0.500 1.800 0.28 0.04 1.00 0.82 7.04 17% of 1159 10 Zone 5 SW 1.76 4.50 5.9 0.80 0.500 1.800 0.28 0.04 1.00 0.82 7.04 19% of 1159 11 Zone 5 SE 1.76 11.20 5.9 0.80 0.500 1.800 0.28 0.44 1.00	1 Zone 1 2 Zone 14 3 Zone 16 4 Zone 17	tion (optional)	NW NW NW NW	facades	1.76 1.76 1.76 1.76	11.20 10.40 16.90 15.90	(m²)	(AFRC) 5.9 5.9 5.9 5.9 5.9	(AFRC) 0.80 0.80 0.80 0.80	(m) 0.500 0.500 0.500 0.500	(m) 1.800 1.800 1.800 1.800	0.28 0.28 0.28 0.28	(m) 0.04 0.04 0.04 0.04	(S _H) 1.00 1.00 1.00 1.00	(S _c) 0.77 0.77 0.77 0.77	(m²) 19.71 18.30 29.74 27.98	allewance us 21% of 163% 19% of 163% 31% of 163% 29% of 163%
8 Zone 1 SW 1.76 4.00 5.9 0.80 0.500 1.800 0.28 0.41 1.00 0.82 7.04 17% of 115% 9 Zone 3 SW 1.76 15.00 5.9 0.80 0.500 1.800 0.28 0.04 1.00 0.82 7.04 17% of 115% 9 Zone 3 SW 1.76 15.00 5.9 0.80 0.500 1.800 0.28 0.04 1.00 0.82 26.40 64% of 115% 10 Zone 5 SW 1.76 4.50 5.9 0.80 0.500 1.800 0.28 0.04 1.00 0.82 7.02 19% of 115% 11 Zone 5 SE 1.76 11.20 5.9 0.80 0.500 1.800 0.28 0.44 1.00 0.82 7.92 19% of 115% 12 Zone 7 SE 1.76 14.40 5.9 0.80 0.500 1.800 0.28 0.44 1.00<	1 Zone 1 2 Zone 14 3 Zone 16 4 Zone 17 5 Zone 10	tion (optional)	NW NW NW NW NE	facades	1.76 1.76 1.76 1.76 1.76	11.20 10.40 16.90 15.90 3.00	(m²)	(AFRC) 5.9 5.9 5.9 5.9 5.9 5.9 5.9	(AFRC) 0.80 0.80 0.80 0.80 0.80	(m) 0.500 0.500 0.500 0.500 0.500	(m) 1.800 1.800 1.800 1.800 1.800	0.28 0.28 0.28 0.28 0.28 0.28	(m) 0.04 0.04 0.04 0.04 0.04	(S _H) 1.00 1.00 1.00 1.00 1.00	(Sc) 0.77 0.77 0.77 0.77 0.77	(m²) 19.71 18.30 29.74 27.98 5.28	allowance us 21% of 163% 19% of 163% 31% of 163% 29% of 163% 13% of 201%
9 Zone 3 SW 1.76 15.00 5.9 0.80 0.500 1.800 0.28 0.4 1.00 0.82 26.40 64% of 115% 10 Zone 5 SW 1.76 4.50 5.9 0.80 0.500 1.800 0.28 0.4 1.00 0.82 26.40 64% of 115% 10 Zone 5 SW 1.76 4.50 5.9 0.80 0.500 1.800 0.28 0.4 1.00 0.82 7.92 19% of 115% 11 Zone 5 SE 1.76 11.20 5.9 0.80 0.500 1.800 0.28 0.4 1.00 0.82 7.92 19% of 115% 12 Zone 7 SE 1.76 14.40 5.9 0.80 0.500 1.800 0.28 0.4 1.00 0.79 25.34 26% of 131% 13 Zone 8 SE 1.76 16.90 5.9 0.80 0.500 1.800 0.28 0.4 1.00 <td>I Zone 1 2 Zone 14 3 Zone 16 4 Zone 17 5 Zone 10 6 Zone 12</td> <td>tion (optional)</td> <td>NW NW NW NE NE</td> <td>facades</td> <td>1.76 1.76 1.76 1.76 1.76 1.76</td> <td>11.20 10.40 16.90 15.90 3.00 16.40</td> <td>(m²)</td> <td>(AFRC) 5.9 5.9 5.9 5.9 5.9 5.9 5.9</td> <td>(AFRC) 0.80 0.80 0.80 0.80 0.80 0.80</td> <td>(m) 0.500 0.500 0.500 0.500 0.500 0.500</td> <td>(m) 1.800 1.800 1.800 1.800 1.800 1.800</td> <td>0.28 0.28 0.28 0.28 0.28 0.28 0.28</td> <td>(m) 0.04 0.04 0.04 0.04 0.04 0.04</td> <td>(S_H) 1.00 1.00 1.00 1.00 1.00 1.00 1.00</td> <td>(S_c) 0.77 0.77 0.77 0.77 0.77 0.77</td> <td>(m²) 19.71 18.30 29.74 27.98 5.28 28.86</td> <td>allowance us 21% of 163% 19% of 163% 31% of 163% 29% of 163% 13% of 201% 70% of 201%</td>	I Zone 1 2 Zone 14 3 Zone 16 4 Zone 17 5 Zone 10 6 Zone 12	tion (optional)	NW NW NW NE NE	facades	1.76 1.76 1.76 1.76 1.76 1.76	11.20 10.40 16.90 15.90 3.00 16.40	(m²)	(AFRC) 5.9 5.9 5.9 5.9 5.9 5.9 5.9	(AFRC) 0.80 0.80 0.80 0.80 0.80 0.80	(m) 0.500 0.500 0.500 0.500 0.500 0.500	(m) 1.800 1.800 1.800 1.800 1.800 1.800	0.28 0.28 0.28 0.28 0.28 0.28 0.28	(m) 0.04 0.04 0.04 0.04 0.04 0.04	(S _H) 1.00 1.00 1.00 1.00 1.00 1.00 1.00	(S _c) 0.77 0.77 0.77 0.77 0.77 0.77	(m²) 19.71 18.30 29.74 27.98 5.28 28.86	allowance us 21% of 163% 19% of 163% 31% of 163% 29% of 163% 13% of 201% 70% of 201%
10 Zone 5 SW 1.76 4.50 5.9 0.80 0.500 1.800 0.28 0.41 1.00 0.82 7.92 19% of 115% 11 Zone 5 SE 1.76 11.20 5.9 0.80 0.500 1.800 0.28 0.41 1.00 0.82 7.92 19% of 115% 12 Zone 7 SE 1.76 14.40 5.9 0.80 0.500 1.800 0.28 0.44 1.00 0.79 19.71 21% of 131% 13 Zone 8 SE 1.76 16.90 5.9 0.80 0.500 1.800 0.28 0.44 1.00 0.79 25.34 26% of 131% 13 Zone 8 SE 1.76 16.90 5.9 0.80 0.500 1.800 0.28 0.44 1.00 0.79 25.34 26% of 131%	1 Zone 1 2 Zone 14 3 Zone 16 4 Zone 17 5 Zone 10 6 Zone 12 7 Zone 14	tion (optional)	NW NW NW NE NE NE	facades	1.76 1.76 1.76 1.76 1.76 1.76 1.76	11.20 10.40 16.90 15.90 3.00 16.40 4.00	(m²)	(AFRC) 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9	(AFRC) 0.80 0.80 0.80 0.80 0.80 0.80 0.80	(m) 0.500 0.500 0.500 0.500 0.500 0.500 0.500	(m) 1.800 1.800 1.800 1.800 1.800 1.800 1.800	0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28	(m) 0.04 0.04 0.04 0.04 0.04 0.04 0.04	(S _H) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	(S _c) 0.77 0.77 0.77 0.77 0.77 0.77 0.77	(m²) 19.71 18.30 29.74 27.98 5.28 5.28 28.86 7.04	allowance us 21% of 163% 19% of 163% 31% of 163% 29% of 163% 13% of 201% 70% of 201% 17% of 201%
11 Zone 5 SE 1.76 11.20 5.9 0.80 0.500 1.800 0.28 0.41 1.00 0.79 19.71 21% of 1319 12 Zone 7 SE 1.76 14.40 5.9 0.80 0.500 1.800 0.28 0.04 1.00 0.79 19.71 21% of 1319 13 Zone 8 SE 1.76 16.90 5.9 0.80 0.500 1.800 0.28 0.04 1.00 0.79 25.34 26% of 1319 13 Zone 8 SE 1.76 16.90 5.9 0.80 0.500 1.800 0.28 0.04 1.00 0.79 25.34 26% of 1319	1 Zone 1 2 Zone 14 3 Zone 16 4 Zone 17 5 Zone 10 6 Zone 12 7 Zone 14 8 Zone 1	stion (optional)	NW NW NW NE NE NE SW	facades	1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76	11.20 10.40 16.90 15.90 3.00 16.40 4.00 4.00	(m²)	(AFRC) 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9	(AFRC) 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.8	(m) 0.500 0.500 0.500 0.500 0.500 0.500 0.500	(m) 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.800	0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28	(m) 0.04 0.04 0.04 0.04 0.04 0.04 0.04	(S _H) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	(S _o) 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.7	(m²) 19.71 18.30 29.74 27.98 5.28 28.86 7.04 7.04	allowance us 21% of 163% 19% of 163% 31% of 163% 29% of 163% 13% of 201% 70% of 201% 17% of 201% 17% of 115%
12 Zone 7 SE 1.76 14.40 5.9 0.80 0.500 1.800 0.28 0.41 1.00 0.79 25.34 26% of 1319 13 Zone 8 SE 1.76 16.90 5.9 0.80 0.500 1.800 0.28 0.04 1.00 0.79 25.34 26% of 1319 13 Zone 8 SE 1.76 16.90 5.9 0.80 0.500 1.800 0.28 0.04 1.00 0.79 25.74 31% of 1319	I Zone 1 2 Zone 14 3 Zone 16 4 Zone 17 5 Zone 10 6 Zone 12 7 Zone 14 8 Zone 1 9 Zone 3	(optional)	NW NW NW NE NE NE SW SW	facades	1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76	11.20 10.40 16.90 3.00 16.40 4.00 4.00 15.00	(m²) 	(AFRC) 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9	(AFRC) 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.8	(m) 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	(m) 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.800	0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28	(m) 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.0	(S _x) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	(So) 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.7	(m²) 19.71 18.30 29.74 27.98 5.28 28.86 7.04 7.04 26.40	allowance us 21% of 163% 19% of 163% 31% of 163% 29% of 163% 13% of 201% 70% of 201% 17% of 201% 17% of 115% 64% of 115%
13 Zone 8 SE 1.76 16.90 5.9 0.80 0.500 1.800 0.28 0.04 1.00 0.79 29.74 31% of 1319	1 Zone 1 2 Zone 14 3 Zone 16 4 Zone 17 5 Zone 10 6 Zone 12 7 Zone 14 8 Zone 1 9 Zone 3 10 Zone 5	(optional)	NW NW NW NE NE SW SW SW		1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76	11.20 10.40 16.90 15.90 3.00 16.40 4.00 4.00 15.00 4.50		(AFRC) 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9	(AFRC) 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.8	(m) 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	(m) 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.800	0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28	(m) 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04	(S _n) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	(So) 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.7	(m²) 19.71 18.30 29.74 27.98 5.28 28.86 7.04 7.04 26.40 7.92	allowance us 21% of 163% 19% of 163% 31% of 163% 29% of 163% 13% of 201% 70% of 201% 17% of 201% 17% of 115% 64% of 115% 19% of 115%
	1 Zone 1 2 Zone 14 3 Zone 14 4 Zone 16 4 Zone 17 5 Zone 10 6 Zone 12 7 Zone 14 8 Zone 1 9 Zone 3 10 Zone 5 11 Zone 5	(optional)	NW NW NW NE NE NE SW SW SW SE	facades	1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76	11.20 10.40 16.90 15.90 3.00 16.40 4.00 4.00 15.00 4.50 11.20	(m²)	(AFRC) 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9	(AFRC) 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.8	(m) 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	(m) 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.800	0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28	(m) 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.0	(S ₁) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	(So) 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.7	(m²) 19.71 18.30 29.74 27.98 5.28 28.86 7.04 7.04 26.40 7.92 19.71	allowance us 21% of 163% 19% of 163% 31% of 163% 29% of 163% 13% of 201% 70% of 201% 17% of 201% 17% of 201% 17% of 115% 64% of 115% 21% of 131%
14 Zone 10 SE 1.76 11.90 5.9 0.80 0.500 1.800 0.28 0.04 1.00 0.79 20.94 22% of 1319	1 Zone 1 2 Zone 14 3 Zone 16 4 Zone 17 5 Zone 10 6 Zone 12 7 Zone 14 8 Zone 1 9 Zone 3 10 Zone 5 11 Zone 7	(optional)	NW NW NW NE NE SW SW SW SW SE SE		1.76 1.76 1.76 1.76 1.76 1.76 1.76 1.76	11.20 10.40 16.90 15.90 3.00 16.40 4.00 4.00 15.00 4.50 11.20 14.40	(m²)	(AFRC) 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9 5.9	(AFRC) 0.80 0.80 0.80 0.80 0.80 0.80 0.80 0.8	(m) 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500	(m) 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.800 1.800	0.28 0.28 0.28 0.28 0.28 0.28 0.28 0.28	(m) 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.0	(S ₀) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	(So) 0.77 0.77 0.77 0.77 0.77 0.77 0.77 0.7	(m ²) 19.71 18.30 29.74 27.98 5.28 28.86 7.04 7.04 26.40 7.92 19.71 25.34	allowance us 21% of 163% 19% of 163% 31% of 163% 29% of 163% 13% of 201% 17% of 201% 17% of 115% 64% of 115% 19% of 115% 21% of 131% 26% of 131%

IMPORTANT NOTICE AND DISCLAIMER IN RESPECT OF THE GLAZING CALCULATOR The Glazing Calculator has been developed by the ABCB to assist in developing a better understanding of glazing energy efficiency parameters. While the ABCB believes that the Glazing Calculator, if used correctly, will produce accurate results, it is provided "as is" and without any representation or warranty of any kind, including that its ifs first on any purpose or of merchantable quality, or functions as intended or at all. Your use of the Glazing Calculator is entirely at your own risk and the ABCB accepts no liability of any kind.

APPENDIX G - BCA 2010 GLAZING CALCULATOR

5 Ann Street										IE ONE	Applicati				Climate zone
ev	Facade are	as													
15 VOLUME ONE	N	NE	ÚE VOLU	SE	V s ^{rau}	S₩	V WILLIN	NW	internal						
Option A		91.25m ²		216m ²	<u> </u>	91.25m ²		216m ²							
									17/3						
Glazing area (A	A500	. 41.2m ²	AB CB	95.7m ²	A G CR	. 41.4m ²	A D C D	95.7m ²	240						
nber of rows preferred in table below		14	(ly displayed											
iber of rows preferred in table below		UNE UNE	105 CLATER	57 UI SLII BYCU,	🔅 volu	ME ONE	🔅 voluk	EONE	🖏 volu	HE ONE	U.S.	VOLUME	NE 🔇	VOLUME	ONE 🗳 V
GLAZING ELEMENTS, ORIEN	TATION SE	CTOR, SI	ZE and PE	RFORMAN	CE CHAF	RACTERIST	rics	SHAD	ING	C/	LCULA	TED OUT	COMES	OK (if in	puts are valid
Glazing element	Facing	g sector		Size		Perfor	mance	P&H or	device	Sha	ding	Multip	oliers	Size	Outcome
						Total								Area	Element sh
_	Option A		Height	Width	Area	U-Value	SHGC	Р	Н	PłH	-	Heating	-	used	of % of
D Description (optional)	facades	facades	(m)	(m)	(m²)	(AFRC)	(AFRC)	(m)	(m)		(m)	(S _H)	(S _c)	(m²)	allowance u
1 Zone 1	NW		1.76	11.20		3.4	0.48	0.500	1.800	0.28	0.04	1.00	0.77		21% of 99%
2 Zone 14	NW		1.76	10.40		3.4	0.48	0.500	1.800	0.28	0.04	1.00	0.77	18.30	19% of 99%
3 Zone 16	NW		1.76	16.90		3.4	0.48	0.500	1.800	0.28	0.04	1.00	0.77		31% of 99%
4 Zone 17	NW		1.76	15.90		3.4	0.48	0.500	1.800	0.28	0.04	1.00	0.77		29% of 99%
5 Zone 10	NE		1.76	3.00		3.4	0.40	0.500	1.800	0.28	0.04	1.00	0.77		13% of 100%
5 Zone 12	NE		1.76 1.76	16.40		3.4	0.40	0.500	1.800	0.28	0.04	1.00	0.77		70% of 1009 17% of 1009
7 Zone 14	SW		1.76	4.00 4.00		3.4	0.40		1.800	0.28	0.04	1.00	0.77		17% of 100%
7 Zana 4	SW		1.76	4.00		3.4 3.4	0.69	0.500	1.800	0.28	0.04	1.00	0.82		17% of 99%
	SW		1.76	4.50		3.4	0.69	0.500	1.800	0.28	0.04	1.00	0.82		19% of 99%
9 Zone 3	344		1.76	4.50		3.4	0.69	0.500	1.800	0.28	0.04	1.00	0.82		21% of 100%
9 Zone 3 10 Zone 5	22		1.76	14.40		3.4	0.61	0.500	1.800	0.28	0.04	1.00	0.79		21% of 100%
9 Zone 3 10 Zone 5 11 Zone 5	SE			16.90		3.4	0.61	0.500	1.800	0.28	0.04	1.00	0.79		31% of 100%
9 Zone 3 10 Zone 5 11 Zone 5 12 Zone 7	SE		1 76			0.4	0.01	0.000	1.000						
9 Zone 3 10 Zone 5 11 Zone 5			1.76	11.90		3.4	0.61	0.500	1.800	0.28	0.04	1.00	0.79	20.04	22% of 100%

APPENDIX H - MODELLING OUTPUT FOR EXISTING BUILDING

By University of Southern Queensland

						Mont	hly Energy	/ Consum	ption					
Utility		Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Alternat	tive: 1	295 A	Ann Stree	t - Mixing	Boxes									
Electric														
	On-Pk Cons. (kWh)	856,968	775,706	816,186	722,789	688,902	625,513	631,470	639,129	641,097	718,980	748,552	825,212	8,690,506
	On-Pk Demand (kW)	1,483	1,527	1,470	1,361	1,116	1,020	985	1,001	1,062	1,188	1,370	1,431	1,527
Gas														
	On-Pk Cons. (kWh)	4,523	1,685	7,691	27,162	88,294	151,500	184,253	154,253	87,970	44,723	13,732	9,716	775,503
	On-Pk Demand (kW)	39	20	61	173	323	437	474	455	369	262	99	65	474
Water														
	Cons. (kL)	5,592	5,059	5,052	3,951	2,930	1,984	1,735	1,902	2,415	3,494	4,369	5,200	43,682

Ener	gy Consumption	Environ	mental Impact Analysis
Building Source	1,773 MJ/(m2-year) 5,035 MJ/(m2-year)	CO2 SO2 NOX	No Data Available No Data Available No Data Available

Floor Area 19,229 m2

Project Name:Final Year ProjectDataset Name:Final Year Project.trc

TRACE® 700 v6.2.6.5 calculated at 09:48 PM on 06/18/2011 Alternative - 1 Monthly Energy Consumption report Page 1 of 4

295 Ann Street - Mixing Boxes Alternative: 1

				-	Mor	nthly Consu	mption						
Equipment - Utility	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Lights													
Electric (kWh)	214,596.9	193,829.4	214,596.9	207,674.4	214,596.9	207,674.4	214,596.9	214,596.9	207,674.4	214,596.9	207,674.4	214,596.9	2,526,705.3
Peak (kW)	288.4	288.4	288.4	288.4	288.4	288.4	288.4	288.4	288.4	288.4	288.4	288.4	288.4
Misc. Ld													
Electric (kWh)	214,596.9	193,829.4	214,596.9	207,674.4	214,596.9	207,674.4	214,596.9	214,596.9	207,674.4	214,596.9	207,674.4	214,596.9	2,526,705.3
Peak (kW)	288.4	288.4	288.4	288.4	288.4	288.4	288.4	288.4	288.4	288.4	288.4	288.4	288.4
Cooling Coil Condensate													
Recoverable Water (kL)	666.3	599.7	582.6	401.7	224.1	87.4	46.0	49.3	129.3	347.2	464.7	607.3	4,205.5
Peak (kL/Hr)	1.0	1.0	0.9	0.6	0.4	0.2	0.1	0.1	0.2	0.6	0.7	0.9	1.0
Cpl 1: Cooling plant - 001 [S	Sum of dsn o	coil capaciti	es=2,778 k	W]									
Water-cooled chiller - 001 [0	Clg Nominal	Capacity/F	.L.Rate=2,1	110 kW / 40	5.8 kW]	(Cooling E	Equipment)						
Electric (kWh)	192,192.6	172,572.9	174,169.4	140,853.4	92,248.5	57,116.9	49,226.7	54,086.9	72,480.9	117,885.5	156,808.9	182,653.9	1,462,296.5
Peak (kW)	376.2	360.3	358.4	343.9	238.9	167.5	143.2	158.8	207.2	302.0	355.7	357.2	376.2
Cooling tower for Cent. Chil	lers [Design	n Heat Rejeo	ction/F.L.Ra	ate=2,515 k	W / 47.22 k	W]							
Electric (kWh)	35,135.2	31,735.0	35,135.2	34,001.8	35,135.2	33,247.8	31,752.3	32,480.4	34,001.8	35,135.2	34,001.8	35,135.2	406,896.7
Peak (kW)	47.2	47.2	47.2	47.2	47.2	47.2	47.2	47.2	47.2	47.2	47.2	47.2	47.2
Cooling tower for Cent. Chil	lers												
Make Up Water (kL)	4,806.0	4,328.2	4,538.5	3,950.5	2,929.9	1,983.9	1,734.6	1,902.2	2,415.4	3,493.6	4,251.5	4,693.3	41,027.5
Peak (kL/Hr)	8.6	8.4	8.3	8.4	6.8	5.3	4.7	5.2	6.2	7.9	8.5	8.4	8.6
Cnst vol chill water pump	(Misc Aco	cessory Equ	uipment)										
Electric (kWh)	29,760.0	26,880.0	29,760.0	28,800.0	29,760.0	28,800.0	29,760.0	29,760.0	28,800.0	29,760.0	28,800.0	29,760.0	350,400.0
Peak (kW)	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0
Cnst vol cnd water pump - L	ow Eff	(Misc Acces	ssory Equip	oment)									
Electric (kWh)	14,880.0	13,440.0	14,880.0	14,400.0	14,880.0	14,400.0	14,880.0	14,880.0	14,400.0	14,880.0	14,400.0	14,880.0	175,200.0
Peak (kW)	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0
Water-cooled chiller - 002 [0	Clg Nominal	Capacity/F	.L.Rate=1,8	300 kW / 34	6.2 kW]	(Cooling E	Equipment)						
Electric (kWh)	32,101.8	29,719.8	20,281.6	0.0	0.0	0.0	0.0	0.0	0.0	0.0	4,446.6	20,292.9	106,842.6
Peak (kW)	206.0	210.2	192.1	153.8	0.0	0.0	0.0	0.0	0.0	0.0	164.9	190.6	210.2

Project Name: Final Year Project Dataset Name: Final Year Project.trc

TRACE® 700 v6.2.6.5 calculated at 09:48 PM on 06/18/2011 Alternative - 1 Equipment Energy Consumption report page 1 of 19

APPENDIX I - MODELLING OUTPUT FOR REFERENCE BUILDING WITH ZONE MIXING BOXES & CENTRAL AIR HANDLING

By University of Southern Queensland

Monthly Energy Consumption -----------

Utility		Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Alterna	tive: 4	refer	ence buil	ding										
Electric														
	On-Pk Cons. (kWh)	745,706	674,534	699,810	612,354	571,441	513,420	513,431	519,863	529,830	610,127	641,636	712,890	7,345,042
	On-Pk Demand (kW)	1,334	1,352	1,284	1,078	927	832	800	808	884	1,013	1,133	1,284	1,352
Gas														
	On-Pk Cons. (kWh)	1,339	503	3,261	12,335	44,221	81,379	108,961	83,625	41,218	22,160	5,376	3,834	408,212
	On-Pk Demand (kW)	19	6	27	74	183	256	331	271	211	164	44	36	331
Water														
	Cons. (kL)	5,079	4,572	4,487	3,354	2,287	1,401	1,080	1,241	1,835	2,829	3,830	4,672	36,666

	Energy Consumption	Environmental Ir	npact Analysis
Building Source	1,452 MJ/(m2-year) 4,207 MJ/(m2-year)	002	ata Available ata Available
Course			ata Available

19.229 m2 Floor Area

Project Name: Final Year Project Dataset Name: Final Year Project2.trc

TRACE® 700 v6.2.6.5 calculated at 10:51 AM on 07/22/2011 Alternative - 4 Monthly Energy Consumption report Page 3 of 3

Alternative: 4 reference building

				-	Mor	nthly Consu	mption						
Equipment - Utility	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Lights													
Electric (kWh)	128,758.0	116,297.7	128,758.1	124,604.7	128,758.2	124,604.7	128,758.0	128,758.1	124,604.7	128,758.2	124,604.7	128,758.0	1,516,023.1
Peak (kW)	173.1	173.1	173.1	173.1	173.1	173.1	173.1	173.1	173.1	173.1	173.1	173.1	173.1
Misc. Ld													
Electric (kWh)	214,596.9	193,829.4	214,596.9	207,674.4	214,596.9	207,674.4	214,596.9	214,596.9	207,674.4	214,596.9	207,674.4	214,596.9	2,526,705.3
Peak (kW)	288.4	288.4	288.4	288.4	288.4	288.4	288.4	288.4	288.4	288.4	288.4	288.4	288.4
Cooling Coil Condensate													
Recoverable Water (kL)	723.3	652.5	630.8	438.9	253.4	110.8	62.8	68.5	159.1	361.3	509.9	657.8	4,629.1
Peak (kL/Hr)	1.1	1.1	1.0	0.7	0.4	0.2	0.1	0.1	0.3	0.7	0.8	1.0	1.1
Cpl 1: Cooling plant - 001 [S	um of dsn o	coil capaciti	es=2,396 k\	<u>[//</u>									
Water-cooled chiller - 001 [C	lg Nominal	Capacity/F	.L.Rate=2,1	10 kW / 50	2.4 kW]	(Cooling E	Equipment)						
Electric (kWh)	237,883.4	207,305.0	206,892.2	141,758.4	87,662.0	52,903.9	41,888.3	47,782.8	68,585.1	115,001.6	167,657.8	218,044.6	1,593,365.0
Peak (kW)	459.2	461.9	469.5	355.6	232.0	152.6	127.7	140.8	203.4	293.7	406.6	440.0	469.5
Cooling tower for Cent. Chill	ers [Design	n Heat Rejeo	ction/F.L.Ra	ate=2,612 k	W / 49.04 k	[W]							
Electric (kWh)	36,484.5	32,953.7	36,484.4	35,307.6	36,484.5	33,295.2	31,416.8	32,168.0	35,296.2	36,484.5	35,307.5	36,484.5	418,167.3
Peak (kW)	49.0	49.0	49.0	49.0	49.0	49.0	49.0	49.0	49.0	49.0	49.0	49.0	49.0
Cooling tower for Cent. Chill	ers												
Make Up Water (kL)	4,951.3	4,339.3	4,487.0	3,353.8	2,286.5	1,400.9	1,080.2	1,241.1	1,834.8	2,828.9	3,829.7	4,672.1	36,305.7
Peak (kL/Hr)	8.7	8.7	8.8	7.6	5.6	4.0	3.5	3.8	5.1	6.8	8.3	8.6	8.8
Cnst vol chill water pump	(Misc Aco	cessory Equ	ipment)										
Electric (kWh)	29,760.0	26,880.0	29,760.0	28,800.0	29,760.0	28,800.0	29,760.0	29,760.0	28,800.0	29,760.0	28,800.0	29,760.0	350,400.0
Peak (kW)	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0
Cnst vol cnd water pump - L	ow Eff	(Misc Acce	ssory Equip	oment)									
Electric (kWh)	14,880.0	13,440.0	14,880.0	14,400.0	14,880.0	14,400.0	14,880.0	14,880.0	14,400.0	14,880.0	14,400.0	14,880.0	175,200.0
Peak (kW)	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0
Water-cooled chiller - 002 [C	lg Nominal	Capacity/F	.L.Rate=1,8	300 kW / 42	8.6 kW]	(Cooling E	Equipment)						
Electric (kWh)	6,301.5	11,365.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	17,667.2
Peak (kW)	224.2	225.0	202.5	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	207.1	225.0

Final Year Project Project Name: Dataset Name: Final Year Project2.trc

TRACE® 700 v6.2.6.5 calculated at 10:51 AM on 07/22/2011 Alternative - 4 Equipment Energy Consumption report page 13 of 17

APPENDIX J - MODELLING OUTPUT FOR VARIABLE AIR VOLUME WITH CENTRAL AIR HANDLING PLANT

By University of Southern Queensland

----- Monthly Energy Consumption ------

Utility		Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Alternat	tive: 2	295 A	Ann Stree	t - VAV										
Electric														
	On-Pk Cons. (kWh)	846,944	767,036	804,934	701,662	649,089	580,201	585,658	596,886	609,478	692,073	732,166	811,849	8,377,974
	On-Pk Demand (kW)	1,483	1,527	1,469	1,366	1,120	981	943	994	1,072	1,188	1,370	1,431	1,527
Gas														
	On-Pk Cons. (kWh)	0	0	0	0	0	2	1,140	593	0	0	0	0	1,735
	On-Pk Demand (kW)	0	0	0	0	0	0	8	5	0	0	0	0	8
Water														
	Cons. (kL)	5,505	5,004	4,932	3,705	2,416	1,324	1,038	1,258	1,935	3,113	4,218	5,074	39,522

	Energy Consumption	Environ	mental Impact Analysis
Building	1,569 MJ/(m2-year)	CO2	No Data Available
Source	4,707 MJ/(m2-year)	SO2	No Data Available
		NOX	No Data Available

Floor Area 19,229 m2

Project Name: Final Year Project Dataset Name: Final Year Project.trc TRACE® 700 v6.2.6.5 calculated at 09:32 PM on 09/08/2011 Alternative - 2 Monthly Energy Consumption report Page 2 of 4

Alternative: 2 295 Ann Street - VAV

				-	Moi	nthly Consu	mption						
Equipment - Utility	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Lights													
Electric (kWh) Peak (kW)	214,596.9 288.4	193,829.4 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	2,526,705.3 288.4
Misc. Ld													
Electric (kWh) Peak (kW)	214,596.9 288.4	193,829.4 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	2,526,705.3 288.4
Cooling Coil Condensate													
Recoverable Water (kL) Peak (kL/Hr)	661.7 1.0	596.5 1.0	575.2 0.9	388.1 0.6	200.3 0.4	61.8 0.2	26.7 0.1	31.0 0.1	109.5 0.2	316.7 0.6	456.5 0.7	600.5 0.9	4,024.3 1.0
Cpl 1: Cooling plant - 001 [S	Sum of dsn o	coil capaciti	es=2,778 k\	W]									
Water-cooled chiller - 001 [C	Clg Nominal	Capacity/F	.L.Rate=2,1	10 kW / 40	5.8 kW]	(Cooling E	Equipment)						
Electric (kWh) Peak (kW)	182,923.6 375.9	170,647.6 375.9	164,413.0 348.3	132,929.5 347.5	78,408.9 241.7	43,218.2 155.4	33,837.7 131.0	40,340.9 155.7	62,289.9 212.3	107,146.2 301.9	151,885.8 355.7	172,441.3 370.3	1,340,482.6 375.9
Cooling tower for Cent. Chill	lers [Desigr	n Heat Rejeo	ction/F.L.Ra	ate=2,515 k	W / 47.22 k	W]							
Electric (kWh) Peak (kW)	35,135.2 47.2	31,735.0 47.2	35,135.2 47.2	34,001.8 47.2	35,135.2 47.2	31,406.6 47.2	29,993.3 47.2	30,741.5 47.2	33,616.8 47.2	35,135.2 47.2	34,001.8 47.2	35,135.2 47.2	401,172.6 47.2
Cooling tower for Cent. Chill	lers												
Make Up Water (kL) Peak (kL/Hr)	4,594.0 8.5	4,270.9 8.5	4,297.4 8.3	3,705.0 8.4	2,416.1 6.9	1,324.2 4.9	1,037.9 4.3	1,258.1 5.1	1,934.7 6.4	3,112.8 7.9	4,100.5 8.5	4,444.4 8.5	36,496.0 8.5
Cnst vol chill water pump	(Misc Ace	cessory Equ	ipment)										
Electric (kWh) Peak (kW)	29,760.0 40.0	26,880.0 40.0	29,760.0 40.0	28,800.0 40.0	29,760.0 40.0	28,800.0 40.0	29,760.0 40.0	29,760.0 40.0	28,800.0 40.0	29,760.0 40.0	28,800.0 40.0	29,760.0 40.0	350,400.0 40.0
Cnst vol cnd water pump - L	ow Eff	(Misc Acce	ssory Equip	oment)									
Electric (kWh) Peak (kW)	14,880.0 20.0	13,440.0 20.0	14,880.0 20.0	14,400.0 20.0	14,880.0 20.0	14,400.0 20.0	14,880.0 20.0	14,880.0 20.0	14,400.0 20.0	14,880.0 20.0	14,400.0 20.0	14,880.0 20.0	175,200.0 20.0
Water-cooled chiller - 002 [C	Clg Nominal	I Capacity/F	.L.Rate=1,8	300 kW / 34	6.2 kW]	(Cooling E	Equipment)						
Electric (kWh) Peak (kW)	37,204.3 206.0	29,835.8 210.2	25,110.2 191.9	0.0 154.6	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	4,446.0 164.9	25,213.7 190.6	121,810.0 210.2

Project Name: Final Year Project Dataset Name: Final Year Project.trc

TRACE® 700 v6.2.6.5 calculated at 09:32 PM on 09/08/2011 Alternative - 2 Equipment Energy Consumption report page 6 of 19

APPENDIX K - MODELLING OUTPUT FOR REFERENCE BUILDING WITH VARIABLE AIR VOLUME AND CENTRAL AIR HANDLING PLANT

By University of Southern Queensland

----- Monthly Energy Consumption ------

Utility		Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Alterna	tive: 4	refer	ence buil	d vav										
Electric														
	On-Pk Cons. (kWh)	737,103	668,481	690,488	597,316	545,228	476,833	478,768	489,829	509,829	592,649	629,978	702,265	7,118,766
	On-Pk Demand (kW)	1,334	1,351	1,286	1,080	927	821	784	819	894	1,017	1,132	1,284	1,351
Gas														
	On-Pk Cons. (kWh)	0	0	0	0	0	0	1,338	468	0	0	0	0	1,806
	On-Pk Demand (kW)	0	0	0	0	0	0	11	5	0	0	0	0	11
Water														
	Cons. (kL)	5,036	4,545	4,426	3,207	1,980	968	706	907	1,565	2,577	3,738	4,606	34,261

	Energy Consumption	Environmental Impact Analysis	
Building	1,333 MJ/(m2-year)	CO2 No Data Available	
Source	4,000 MJ/(m2-year)	SO2 No Data Available	
		NOX No Data Available	

Floor Area 19,229 m2

Project Name:Final Year ProjectDataset Name:Final Year Project4.trc

TRACE® 700 v6.2.6.5 calculated at 04:33 PM on 08/14/2011 Alternative - 4 Monthly Energy Consumption report Page 1 of 1

Alternative: 4 reference build vav

				-	Mor	nthly Consu	mption						
Equipment - Utility	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Lights													
Electric (kWh) Peak (kW)	128,758.0 173.1	116,297.7 173.1	128,758.1 173.1	124,604.7 173.1	128,758.2 173.1	124,604.7 173.1	128,758.0 173.1	128,758.1 173.1	124,604.7 173.1	128,758.2 173.1	124,604.7 173.1	128,758.0 173.1	1,516,023.1 173.1
Misc. Ld													
Electric (kWh) Peak (kW)	214,596.9 288.4	193,829.4 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	2,526,705.3 288.4
Cooling Coil Condensate													
Recoverable Water (kL) Peak (kL/Hr)	719.8 1.1	650.3 1.1	625.6 1.0	424.3 0.7	223.8 0.5	74.1 0.2	37.4 0.1	45.9 0.1	133.6 0.3	321.5 0.7	499.1 0.8	652.5 1.0	4,407.8 1.1
Cpl 1: Cooling plant - 001 [S	um of dsn o	coil capaciti	es=2,391 k	W]									
Water-cooled chiller - 001 [C	lg Nominal	Capacity/F	.L.Rate=2,1	 10 kW / 50	2.4 kW]	(Cooling E	Equipment)						
Electric (kWh) Peak (kW)	236,500.5 466.5	206,497.5 462.6	204,633.5 432.6	136,214.8 358.3	80,222.1 237.0	39,183.3 158.9	28,497.9 130.5	35,785.5 151.0	62,789.4 209.9	109,068.1 294.9	164,067.6 406.3	215,630.7 449.5	1,519,090.6 466.5
Cooling tower for Cent. Chill	ers [Design	h Heat Reje	ction/F.L.Ra	ate=2,612 k	W / 49.04 k	W]							
Electric (kWh) Peak (kW)	36,484.5 49.0	32,953.7 49.0	36,484.4 49.0	35,307.6 49.0	36,484.5 49.0	32,346.6 49.0	30,760.1 49.0	31,571.6 49.0	34,624.1 49.0	36,484.5 49.0	35,307.5 49.0	36,484.5 49.0	415,293.5 49.0
Cooling tower for Cent. Chill	ers												
Make Up Water (kL) Peak (kL/Hr)	4,908.2 8.8	4,312.3 8.7	4,425.9 8.4	3,206.6 7.7	1,979.6 5.7	967.6 4.2	706.2 3.6	907.2 4.1	1,565.4 5.3	2,576.5 6.8	3,738.4 8.3	4,606.3 8.6	33,900.3 8.8
Cnst vol chill water pump	(Misc Aco	cessory Equ	uipment)										
Electric (kWh) Peak (kW)	29,760.0 40.0	26,880.0 40.0	29,760.0 40.0	28,800.0 40.0	29,760.0 40.0	28,800.0 40.0	29,760.0 40.0	29,760.0 40.0	28,800.0 40.0	29,760.0 40.0	28,800.0 40.0	29,760.0 40.0	350,400.0 40.0
Cnst vol cnd water pump - L	ow Eff	(Misc Acce	ssory Equip	oment)									
Electric (kWh) Peak (kW)	14,880.0 20.0	13,440.0 20.0	14,880.0 20.0	14,400.0 20.0	14,880.0 20.0	14,400.0 20.0	14,880.0 20.0	14,880.0 20.0	14,400.0 20.0	14,880.0 20.0	14,400.0 20.0	14,880.0 20.0	175,200.0 20.0
Water-cooled chiller - 002 [C	lg Nominal	Capacity/F	.L.Rate=1,8	300 kW / 42	8.6 kW]	(Cooling E	Equipment)						
Electric (kWh) Peak (kW)	6,309.3 224.4	11,367.8 225.0	0.0 203.3	0.0 0.0	0.0 207.2	17,677.1 225.0							

Project Name: Final Year Project Dataset Name: Final Year Project4.trc

TRACE® 700 v6.2.6.5 calculated at 04:33 PM on 08/14/2011 Alternative - 4 Equipment Energy Consumption report page 1 of 4

APPENDIX L - MODELLING OUTPUT FOR VARIABLE AIR VOLUME SYSTEM WITH FLOOR AIR HANDLING PLANT

By University of Southern Queensland

	Monthly Energy Consumption	
--	----------------------------	--

Utility		Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Alternati	ive: 2	295	Ann Stree	t - VAV (fl	oor AHU)									
Electric														
	On-Pk Cons. (kWh)	830,842	753,974	789,045	688,491	637,509	573,968	577,418	587,896	600,316	681,207	720,324	796,645	8,237,635
	On-Pk Demand (kW)	1,452	1,490	1,427	1,316	1,074	944	910	956	1,039	1,157	1,340	1,401	1,490
Gas														
	On-Pk Cons. (kWh)	0	0	0	0	0	139	844	362	0	0	0	0	1,344
	On-Pk Demand (kW)	0	0	0	0	0	1	6	3	0	0	0	0	6
Water														
	Cons. (kL)	5,492	4,991	4,925	3,694	2,416	1,321	1,006	1,237	1,933	3,113	4,203	5,063	39,393
	Energy Consum	ption			Er	vironmen	tal Impact	Analysis						
Building Source	2	3 MJ/(m2-y 3 MJ/(m2-y			CO SO	<u> </u>	No Data Avai No Data Avai							

NOX

No Data Available

Floor Area 19,229 m2

Alternative: 2 295 Ann Street - VAV (floor AHU)

				-	Моі	nthly Consu	imption						
Equipment - Utility	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Lights													
Electric (kWh) Peak (kW)	214,596.9 288.4	193,829.4 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	2,526,705.3 288.4
Misc. Ld													
Electric (kWh) Peak (kW)	214,596.9 288.4	193,829.4 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	2,526,705.3 288.4
Cooling Coil Condensate													
Recoverable Water (kL) Peak (kL/Hr)	672.6 1.0	608.0 1.0	588.2 0.9	399.2 0.7	212.5 0.4	72.6 0.2	33.6 0.1	39.5 0.1	119.2 0.2	329.1 0.6	465.7 0.7	610.9 0.9	4,151.1 1.0
Cpl 1: Cooling plant - 001 [Sum of dsn (coil capaciti	es=2,719 k\	<i>N</i>]									
Water-cooled chiller - 001 [Clg Nominal	Capacity/F	.L.Rate=2,1	10 kW / 40	5.8 kW]	(Cooling E	Equipment)						
Electric (kWh) Peak (kW)	188,385.0 382.2	170,117.7 373.1	169,904.9 370.0	132,381.3 343.4	78,342.5 239.6	43,091.5 155.0	32,502.9 130.3	39,514.4 154.7	62,155.6 210.5	107,029.9 298.8	151,208.9 352.0	177,855.2 375.6	1,352,489.8 382.2
Cooling tower for Cent. Chi	llers [Desigr	Heat Rejeo	ction/F.L.Ra	ate=2,515 k	W / 47.22 k	:W]							
Electric (kWh) Peak (kW)	35,135.2 47.2	31,735.0 47.2	35,135.2 47.2	34,001.8 47.2	35,135.2 47.2	31,401.8 47.2	29,979.9 47.2	30,728.8 47.2	33,631.9 47.2	35,135.2 47.2	34,001.8 47.2	35,135.2 47.2	401,156.8 47.2
Cooling tower for Cent. Chi	llers												
Make Up Water (kL) Peak (kL/Hr)	4,706.0 8.6	4,261.2 8.5	4,413.1 8.5	3,693.9 8.4	2,415.6 6.8	1,320.7 4.9	1,006.0 4.3	1,237.1 5.1	1,932.8 6.3	3,112.8 7.8	4,086.3 8.4	4,556.8 8.5	36,742.3 8.6
Cnst vol chill water pump	(Misc Ace	cessory Equ	uipment)										
Electric (kWh) Peak (kW)	29,760.0 40.0	26,880.0 40.0	29,760.0 40.0	28,800.0 40.0	29,760.0 40.0	28,800.0 40.0	29,760.0 40.0	29,760.0 40.0	28,800.0 40.0	29,760.0 40.0	28,800.0 40.0	29,760.0 40.0	350,400.0 40.0
Cnst vol cnd water pump -	_ow Eff	(Misc Acce	ssory Equip	ment)									
Electric (kWh) Peak (kW)	14,880.0 20.0	13,440.0 20.0	14,880.0 20.0	14,400.0 20.0	14,880.0 20.0	14,400.0 20.0	14,880.0 20.0	14,880.0 20.0	14,400.0 20.0	14,880.0 20.0	14,400.0 20.0	14,880.0 20.0	175,200.0 20.0
Water-cooled chiller - 002 [Clg Nominal	Capacity/F	.L.Rate=1,8	300 kW / 34	6.2 kW]	(Cooling E	Equipment)						
Electric (kWh) Peak (kW)	32,101.9 204.9	29,677.9 208.9	20,213.6 190.7	0.0 153.6	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	4,420.8 163.9	20,257.6 189.6	106,671.7 208.9

Project Name: Final Year Project Dataset Name: Final Year Project2.trc

TRACE® 700 v6.2.6.5 calculated at 10:51 AM on 07/22/2011 Alternative - 2 Equipment Energy Consumption report page 1 of 17

APPENDIX M - MODELLING OUTPUT FOR REFERENCE BUILDING WITH VARIABLE AIR VOLUME AND FLOOR AIR HANDLING PLANT

By University of Southern Queensland

----- Monthly Energy Consumption ------

Utility		Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Alternat	ive: 4	refer	ence buil	ding - VA	V floor AH	IU								
Electric														
	On-Pk Cons. (kWh)	727,550	659,401	680,926	589,338	538,559	473,175	474,799	484,588	504,589	585,240	622,165	693,227	7,033,557
	On-Pk Demand (kW)	1,306	1,320	1,254	1,053	901	802	767	798	874	994	1,112	1,259	1,320
Gas														
	On-Pk Cons. (kWh)	0	0	0	0	0	0	42	16	0	0	0	0	58
	On-Pk Demand (kW)	0	0	0	0	0	0	0	0	0	0	0	0	0
Water														
	Cons. (kL)	5,059	4,562	4,444	3,232	2,009	1,010	743	944	1,596	2,618	3,760	4,626	34,603
	Energy Consum	nption			Er	vironmen	tal Impact	Analysis						
Building	9	7 MJ/(m2-y	,		со	~	No Data Avai							
Source	3,952	2 MJ/(m2-y	ear)		SO	2 1	No Data Avai	lable						

NOX No Data Available

Floor Area 19,229 m2

Alternative: 4 reference building - VAV floor AHU

				-	Моі	nthly Consu	mption						
Equipment - Utility	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Lights													
Electric (kWh) Peak (kW)	128,758.0 173.1	116,297.7 173.1	128,758.1 173.1	124,604.7 173.1	128,758.2 173.1	124,604.7 173.1	128,758.0 173.1	128,758.1 173.1	124,604.7 173.1	128,758.2 173.1	124,604.7 173.1	128,758.0 173.1	1,516,023.1 173.1
Misc. Ld													
Electric (kWh) Peak (kW)	214,596.9 288.4	193,829.4 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	2,526,705.3 288.4
Cooling Coil Condensate													
Recoverable Water (kL) Peak (kL/Hr)	739.8 1.1	667.9 1.2	643.7 1.0	442.9 0.8	246.7 0.5	92.0 0.3	52.0 0.2	61.8 0.2	152.2 0.3	343.2 0.7	516.9 0.9	671.0 1.0	4,629.9 1.2
Cpl 1: Cooling plant - 001 [S	Sum of dsn	coil capaciti	es=2,353 k\	W]									
Water-cooled chiller - 001 [C	Clg Nomina	I Capacity/F	.L.Rate=2,1	10 kW / 50	2.4 kW]	(Cooling I	Equipment)						
Electric (kWh) Peak (kW)	237,561.8 464.7	207,332.3 461.5	205,346.9 473.2	137,293.2 362.3	81,349.0 239.1	41,217.4 160.8	30,372.9 132.2	37,655.7 152.3	64,089.8 211.3	110,544.9 297.4	165,104.1 411.1	216,475.0 474.3	1,534,343.0 474.3
Cooling tower for Cent. Chil	lers [Desigr	n Heat Reje	ction/F.L.Ra	ate=2,612 k	W / 49.04 k	W]							
Electric (kWh) Peak (kW)	36,484.5 49.0	32,953.7 49.0	36,484.4 49.0	35,307.6 49.0	36,484.5 49.0	32,342.6 49.0	30,754.5 49.0	31,567.3 49.0	34,621.9 49.0	36,484.5 49.0	35,307.5 49.0	36,484.5 49.0	415,277.5 49.0
Cooling tower for Cent. Chil	lers												
Make Up Water (kL) Peak (kL/Hr)	4,930.9 8.8	4,330.7 8.7	4,443.9 8.9	3,231.6 7.7	2,009.3 5.8	1,009.8 4.3	743.0 3.7	944.4 4.2	1,596.2 5.3	2,617.6 6.9	3,760.1 8.3	4,626.4 8.9	34,243.6 8.9
Cnst vol chill water pump	(Misc Ac	cessory Equ	uipment)										
Electric (kWh) Peak (kW)	29,760.0 40.0	26,880.0 40.0	29,760.0 40.0	28,800.0 40.0	29,760.0 40.0	28,800.0 40.0	29,760.0 40.0	29,760.0 40.0	28,800.0 40.0	29,760.0 40.0	28,800.0 40.0	29,760.0 40.0	350,400.0 40.0
Cnst vol cnd water pump - L	ow Eff	(Misc Acce	ssory Equip	oment)									
Electric (kWh) Peak (kW)	14,880.0 20.0	13,440.0 20.0	14,880.0 20.0	14,400.0 20.0	14,880.0 20.0	14,400.0 20.0	14,880.0 20.0	14,880.0 20.0	14,400.0 20.0	14,880.0 20.0	14,400.0 20.0	14,880.0 20.0	175,200.0 20.0
Water-cooled chiller - 002 [0	Clg Nomina	I Capacity/F	.L.Rate=1,8	300 kW / 42	8.6 kW]	(Cooling I	Equipment)						
Electric (kWh) Peak (kW)	6,291.9 223.6	11,333.7 224.3	0.0 202.6	0.0 0.0	0.0 0.0	0.0	0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 206.6	17,625.6 224.3

Project Name: Final Year Project Final Year Project6.trc Dataset Name:

TRACE® 700 v6.2.6.5 calculated at 08:37 AM on 08/15/2011 Alternative - 4 Equipment Energy Consumption report page 1 of 6

APPENDIX N - MODELLING OUTPUT FOR ACTIVE CHILLED BEAMS WITH CENTRAL AIR HANDLING PLANT

By University of Southern Queensland

	Monthly	Energy	Consumption	
--	---------	--------	-------------	--

Utility		Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Alternati	ve: 3	295	Ann Stree	t - Active	Chilled B	eams								
Electric														
	On-Pk Cons. (kWh)	829,368	750,740	796,045	716,660	678,089	622,909	633,873	638,472	638,803	708,422	736,225	804,161	8,553,768
	On-Pk Demand (kW)	1,320	1,326	1,292	1,220	1,031	957	928	953	1,004	1,088	1,241	1,291	1,326
Gas														
	On-Pk Cons. (kWh)	696	156	2,410	15,832	19,082	24,629	46,696	29,934	2,426	22,987	5,178	3,126	173,152
	On-Pk Demand (kW)	10	1	29	105	190	149	223	164	55	159	53	31	223
Water														
	Cons. (kL)	5,449	4,940	4,947	3,866	2,631	1,560	1,274	1,493	2,144	3,273	4,300	5,080	40,957
	Energy Consum	ption			Er	vironmen	tal Impact	Analysis						
Building	1,634	1 MJ/(m2-ye	ear)		СО	2 1	No Data Avai	lable						
Source	4,840) MJ/(m2-ye	ear)		SO	2 1	No Data Avai	lable						

No Data Available

NOX

Floor Area 19,229 m2

Alternative: 3 295 Ann Street - Active Chilled Beams

				-	Mor	nthly Consu	mption						
Equipment - Utility	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Lights													
Electric (kWh Peak (kW	, ,	193,829.4 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	2,526,705.3 288.4
Misc. Ld													
Electric (kWh Peak (kW	, ,	193,829.4 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	2,526,705.3 288.4
Cooling Coil Condensate													
Recoverable Water (kL Peak (kL/Hr	,	622.3 1.0	621.2 0.9	460.9 0.7	280.1 0.5	136.6 0.3	92.0 0.2	101.3 0.2	194.2 0.4	371.1 0.6	517.3 0.8	642.2 0.9	4,728.4 1.0
Cpl 1: Cooling plant - 001	[Sum of dsn	coil capaciti	es=2,980 k ^v	W]									
Water-cooled chiller - 001	[Clg Nominal	I Capacity/F	.L.Rate=2,1	10 kW / 40	5.8 kW]	(Cooling I	Equipment)						
Electric (kWh Peak (kW	, -,	168,661.9 380.8	176,264.6 370.3	137,955.1 352.2	84,135.2 239.7	49,001.7 166.4	41,138.1 137.3	47,340.0 161.5	66,848.8 213.2	111,018.6 294.1	159,686.8 352.3	184,017.3 362.5	1,418,816.0 380.8
Cooling tower for Cent. Ch	nillers [Desigr	n Heat Reje	ction/F.L.Ra	ate=2,515 k	W / 47.22 k	:W]							
Electric (kWh Peak (kW	, ,	31,735.0 47.2	35,135.2 47.2	34,001.8 47.2	35,135.2 47.2	31,865.6 47.2	30,276.8 47.2	31,030.6 47.2	33,951.1 47.2	35,135.2 47.2	34,001.8 47.2	35,135.2 47.2	402,538.6 47.2
Cooling tower for Cent. Ch	hillers												
Make Up Water (kL Peak (kL/Hr) 4,806.2	4,236.6 8.5	4,566.4 8.5	3,865.5 8.4	2,630.8 6.8	1,560.0 5.3	1,274.0 4.5	1,492.9 5.3	2,144.0 6.4	3,273.0 7.8	4,300.3 8.4	4,705.1 8.4	38,854.8 8.5
Cnst vol chill water pump	(Misc Ac	cessory Equ	upment)										
Electric (kWh Peak (kW	, ,	26,880.0 40.0	29,760.0 40.0	28,800.0 40.0	29,760.0 40.0	28,800.0 40.0	29,760.0 40.0	29,760.0 40.0	28,800.0 40.0	29,760.0 40.0	28,800.0 40.0	29,760.0 40.0	350,400.0 40.0
Cnst vol cnd water pump -	Low Eff	(Misc Acce	ssory Equip	oment)									
Electric (kWh Peak (kW	, ,	13,440.0 20.0	14,880.0 20.0	14,400.0 20.0	14,880.0 20.0	14,400.0 20.0	14,880.0 20.0	14,880.0 20.0	14,400.0 20.0	14,880.0 20.0	14,400.0 20.0	14,880.0 20.0	175,200.0 20.0
Water-cooled chiller - 002	[Clg Nominal	I Capacity/F	.L.Rate=1,8	300 kW / 34	6.2 kW]	(Cooling I	Equipment)						
Electric (kWh Peak (kW) 26,341.0	28,639.4 198.7	15,066.9 183.2	0.0 149.7	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 159.4	15,072.7 182.4	85,120.0 198.7

APPENDIX O - MODELLING OUTPUT FOR REFERENCE BUILDING WITH ACTIVE CHILLED BEAMS AND CENTRAL AIR HANDLING PLANT

By University of Southern Queensland

	Monthly Energy Consumption		
--	----------------------------	--	--

Utility	,	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Alternative: 4		refere	ence build	d acb										
Electric														
On-Pk Cons. (kW	'h) 73	35,366	662,617	700,129	621,046	572,499	515,937	522,258	528,544	537,806	604,814	646,418	710,942	7,358,374
On-Pk Demand (k)	N) 1	1,223	1,224	1,119	1,007	897	819	790	813	872	952	1,046	1,132	1,224
Gas														
On-Pk Cons. (kW	′h) 1	1,060	184	1,898	11,782	3,083	4,790	18,340	9,082	0	12,746	3,329	2,654	68,946
On-Pk Demand (k)	N)	13	3	19	81	98	49	113	80	0	102	44	24	113
Water														
Cons. (F	:L) 4	4,982	4,492	4,438	3,283	1,943	944	691	885	1,546	2,501	3,791	4,605	34,101

Ene	ergy Consumption	Environ	mental Impact Analysis
Building	1,391 MJ/(m2-year)	CO2	No Data Available
Source	4,148 MJ/(m2-year)	SO2	No Data Available
		NOX	No Data Available

Floor Area 19,229 m2

Project Name:Final Year ProjectDataset Name:Final year project5.trc

Alternative: 4 reference build acb

				-	Моі	nthly Consu	mption						
Equipment - Utility	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Lights													
Electric (kWh)	128,758.0	116,297.7	128,758.1	124,604.7	128,758.2	124,604.7	128,758.0	128,758.1	124,604.7	128,758.2	124,604.7	128,758.0	1,516,023.1
Peak (kW)	173.1	173.1	173.1	173.1	173.1	173.1	173.1	173.1	173.1	173.1	173.1	173.1	173.1
Misc. Ld													
Electric (kWh)	214,596.9	193,829.4	214,596.9	207,674.4	214,596.9	207,674.4	214,596.9	214,596.9	207,674.4	214,596.9	207,674.4	214,596.9	2,526,705.3
Peak (kW)	288.4	288.4	288.4	288.4	288.4	288.4	288.4	288.4	288.4	288.4	288.4	288.4	288.4
Cooling Coil Condensate													
Recoverable Water (kL)	726.7	655.4	650.5	463.3	229.8	81.6	46.2	56.3	146.0	306.5	533.6	672.8	4,568.7
Peak (kL/Hr)	1.0	1.0	0.9	0.7	0.5	0.3	0.2	0.2	0.4	0.6	0.8	1.0	1.0
Cpl 1: Cooling plant - 001 [S	um of dsn	coil capaciti	es=2,781 k ^v	<u>w</u>]									
Water-cooled chiller - 001 [C	Ig Nominal	I Capacity/F	.L.Rate=2,1	110 kW / 50	2.4 kW]	(Cooling E	Equipment)						
Electric (kWh)	239,340.2	215,747.1	204,103.1	139,166.5	79,665.7	39,037.3	28,801.3	35,549.4	62,796.1	106,785.6	166,043.0	214,277.6	1,531,312.6
Peak (kW)	467.4	472.1	458.3	346.6	236.2	158.3	129.6	151.9	211.2	291.0	384.7	471.3	472.1
Cooling tower for Cent. Chill	ers [Desigr	n Heat Reje	ction/F.L.Ra	ate=2,612 k	W / 49.04 k	:W]							
Electric (kWh)	36,484.5	32,953.7	36,484.4	35,307.6	36,484.5	32,305.5	30,722.9	31,537.0	34,617.6	36,484.5	35,307.5	36,484.5	415,174.1
Peak (kW)	49.0	49.0	49.0	49.0	49.0	49.0	49.0	49.0	49.0	49.0	49.0	49.0	49.0
Cooling tower for Cent. Chill	ers												
Make Up Water (kL)	4,981.7	4,492.5	4,437.9	3,283.0	1,942.7	943.9	691.4	885.2	1,546.4	2,501.1	3,791.2	4,604.5	34,101.4
Peak (kL/Hr)	8.7	8.8	8.7	7.5	5.7	4.2	3.6	4.1	5.3	6.7	7.9	8.8	8.8
Cnst vol chill water pump	(Misc Ac	cessory Equ	uipment)										
Electric (kWh)	29,760.0	26,880.0	29,760.0	28,800.0	29,760.0	28,800.0	29,760.0	29,760.0	28,800.0	29,760.0	28,800.0	29,760.0	350,400.0
Peak (kW)	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0
Cnst vol cnd water pump - L		(Misc Acce		,									
Electric (kWh)	14,880.0	13,440.0	14,880.0	14,400.0	14,880.0	14,400.0	14,880.0	14,880.0	14,400.0	14,880.0	14,400.0	14,880.0	175,200.0
Peak (kW)	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0
Water-cooled chiller - 002 [C	0				-	, U	Equipment)						
Peak (kW)	212.2	212.4	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	212.4
Cooling tower for Cent. Chill	- 0			-		-							44.0
Peak (kW)	41.8	41.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	41.8

Project Name: Final Year Project Final year project5.trc Dataset Name:

TRACE® 700 v6.2.6.5 calculated at 10:10 PM on 08/14/2011 Alternative - 4 Equipment Energy Consumption report page 1 of 4

APPENDIX P - MODELLING OUTPUT FOR ACTIVE CHILLED BEAMS WITH FLOOR AIR HANDLING PLANT

By University of Southern Queensland

	Monthly	Energy	Consumption	
--	---------	--------	-------------	--

Utility		Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Alterna	tive: 3	295 A	Ann Stree	t - Chilled	beam flo	or ahu								
Electric														
	On-Pk Cons. (kWh)	820,470	742,467	786,893	707,319	668,826	614,098	624,823	629,371	629,917	699,490	727,697	796,002	8,447,375
	On-Pk Demand (kW)	1,305	1,314	1,279	1,207	1,018	945	916	940	992	1,075	1,228	1,278	1,314
Gas														
	On-Pk Cons. (kWh)	994	202	2,692	16,107	19,202	25,496	48,346	30,930	2,595	23,525	5,650	3,475	179,215
	On-Pk Demand (kW)	13	2	32	107	196	153	229	166	57	162	56	32	229
Water														
	Cons. (kL)	5,431	4,925	4,930	3,851	2,614	1,546	1,263	1,480	2,129	3,257	4,285	5,064	40,773
	Energy Consum	nption			Er	vironmen	tal Impact	Analysis						

CO2 SO2	No Data Available No Data Available
SO2	No Data Available
	No Data Availabic
NOX	No Data Available
	NOX

Floor Area 19,229 m2

Alternative: 3 295 Ann Street - Chilled beam floor ahu

				-	Moi	nthly Consu	mption						
Equipment - Utility	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Lights													
Electric (kWh) Peak (kW)	214,596.9 288.4	193,829.4 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	2,526,705.3 288.4
Misc. Ld													
Electric (kWh) Peak (kW)	214,596.9 288.4	193,829.4 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	2,526,705.3 288.4
Cooling Coil Condensate													
Recoverable Water (kL) Peak (kL/Hr)	688.9 1.0	622.4 1.0	621.2 0.9	461.1 0.7	279.7 0.5	136.1 0.3	91.7 0.2	101.0 0.2	193.9 0.4	371.1 0.6	517.2 0.8	642.4 0.9	4,726.6 1.0
Cpl 1: Cooling plant - 001 [S	Sum of dsn (coil capaciti	es=2,977 k	W]									
Water-cooled chiller - 001 [0	Clg Nominal	Capacity/F	.L.Rate=2,1	110 kW / 40	5.8 kW]	(Cooling B	Equipment)						
Electric (kWh) Peak (kW)	191,950.0 365.6	168,035.8 378.9	175,540.5 368.5	137,364.5 350.5	83,632.9 238.6	48,695.1 165.6	40,866.1 136.3	47,014.7 160.8	66,443.2 212.3	110,483.8 292.7	159,004.8 352.3	183,340.0 374.7	1,412,371.4 378.9
Cooling tower for Cent. Chil	lers [Desigr	h Heat Reje	ction/F.L.Ra	ate=2,515 k	W / 47.22 k	W]							
Electric (kWh) Peak (kW)	35,135.2 47.2	31,735.0 47.2	35,135.2 47.2	34,001.8 47.2	35,135.2 47.2	31,839.1 47.2	30,260.7 47.2	31,015.1 47.2	33,947.7 47.2	35,135.2 47.2	34,001.8 47.2	35,135.2 47.2	402,477.1 47.2
Cooling tower for Cent. Chil	lers												
Make Up Water (kL) Peak (kL/Hr)	4,789.4 8.4	4,222.7 8.5	4,550.4 8.5	3,850.7 8.4	2,613.8 6.8	1,546.1 5.2	1,262.7 4.5	1,480.3 5.2	2,128.7 6.4	3,257.1 7.7	4,284.6 8.4	4,690.2 8.6	38,676.6 8.6
Cnst vol chill water pump	(Misc Ace	cessory Equ	uipment)										
Electric (kWh) Peak (kW)	29,760.0 40.0	26,880.0 40.0	29,760.0 40.0	28,800.0 40.0	29,760.0 40.0	28,800.0 40.0	29,760.0 40.0	29,760.0 40.0	28,800.0 40.0	29,760.0 40.0	28,800.0 40.0	29,760.0 40.0	350,400.0 40.0
Cnst vol cnd water pump - L	ow Eff	(Misc Acce	ssory Equip	oment)									
Electric (kWh) Peak (kW)	14,880.0 20.0	13,440.0 20.0	14,880.0 20.0	14,400.0 20.0	14,880.0 20.0	14,400.0 20.0	14,880.0 20.0	14,880.0 20.0	14,400.0 20.0	14,880.0 20.0	14,400.0 20.0	14,880.0 20.0	175,200.0 20.0
Water-cooled chiller - 002 [0	Clg Nominal	Capacity/F	.L.Rate=1,8	300 kW / 34	6.2 kW]	(Cooling E	Equipment)						
Electric (kWh) Peak (kW)	26,273.2 194.8	28,569.9 198.9	15,029.2 182.8	0.0 149.3	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 0.0	0.0 158.9	15,034.8 182.0	84,907.1 198.9

TRACE® 700 v6.2.6.5 calculated at 10:51 AM on 07/22/2011 Alternative - 3 Equipment Energy Consumption report page 7 of 17

APPENDIX Q - MODELLING OUTPUT FOR REFERENCE BUILDING WITH ACTIVE CHILLED BEAMS AND FLOOR AIR HANDLING PLANT

By University of Southern Queensland

	Monthly	Energy	Consumption	
--	---------	--------	-------------	--

Utility		Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Alternative: 4		refer	ence buil	ding - ACI	B floor Al	IU								
Electric														
On-Pl	k Cons. (kWh)	727,844	656,334	693,233	613,828	565,245	509,000	515,118	521,371	530,770	597,501	640,099	704,535	7,274,878
On-Pk	Demand (kW)	1,213	1,214	1,108	997	887	809	780	803	862	942	1,035	1,118	1,214
Gas														
On-Pl	k Cons. (kWh)	1,211	138	1,935	11,633	3,080	4,916	18,740	9,262	0	13,033	3,809	2,743	70,502
On-Pk	Demand (kW)	14	1	20	81	98	50	114	80	0	106	45	25	114
Water														
	Cons. (kL)	4,971	4,482	4,426	3,271	1,932	936	684	877	1,537	2,491	3,780	4,593	33,980

	Energy Consump	JIION	 Environi	nemai impaci Analysis
Building Source		MJ/(m2-year) MJ/(m2-year)	 CO2 SO2 NOX	No Data Available No Data Available No Data Available

Floor Area 19,229 m2

Alternative: 4 reference building - ACB floor AHU

				-	Mor	nthly Consu	mption						
Equipment - Utility	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Lights													
Electric (kWh)	128,758.0	116,297.7	128,758.1	124,604.7	128,758.2	124,604.7	128,758.0	128,758.1	124,604.7	128,758.2	124,604.7	128,758.0	1,516,023.1
Peak (kW)	173.1	173.1	173.1	173.1	173.1	173.1	173.1	173.1	173.1	173.1	173.1	173.1	173.1
Misc. Ld													
Electric (kWh)	214,596.9	193,829.4	214,596.9	207,674.4	214,596.9	207,674.4	214,596.9	214,596.9	207,674.4	214,596.9	207,674.4	214,596.9	2,526,705.3
Peak (kW)	288.4	288.4	288.4	288.4	288.4	288.4	288.4	288.4	288.4	288.4	288.4	288.4	288.4
Cooling Coil Condensate													
Recoverable Water (kL)	726.8	655.3	650.1	462.4	228.7	81.1	45.9	55.9	145.2	305.6	533.4	672.7	4,563.3
Peak (kL/Hr)	1.0	1.0	0.9	0.7	0.5	0.3	0.2	0.2	0.4	0.6	0.8	1.0	1.0
Cpl 1: Cooling plant - 001 [S	um of dsn o	coil capaciti	es=2,780 k ^v	<u>~]</u>									
Water-cooled chiller - 001 [C	lg Nominal	I Capacity/F	.L.Rate=2,1	10 kW / 50	2.4 kW]	(Cooling E	Equipment)						
Electric (kWh)	238,749.1	215,147.1	203,498.6	138,655.8	79,342.3	38,812.4	28,598.6	35,315.5	62,466.8	106,414.3	165,544.6	213,689.2	1,526,234.4
Peak (kW)	467.9	471.3	456.8	345.6	235.6	157.6	129.0	151.2	210.5	290.2	383.5	466.6	471.3
Cooling tower for Cent. Chill	ers [Desigr	n Heat Rejeo	ction/F.L.Ra	ate=2,612 k	W / 49.04 k	W]							
Electric (kWh)	36,484.5	32,953.7	36,484.4	35,307.6	36,484.5	32,300.9	30,715.6	31,528.6	34,617.6	36,484.5	35,307.5	36,484.5	415,153.9
Peak (kW)	49.0	49.0	49.0	49.0	49.0	49.0	49.0	49.0	49.0	49.0	49.0	49.0	49.0
Cooling tower for Cent. Chill	ers												
Make Up Water (kL)	4,970.7	4,481.6	4,425.7	3,270.9	1,932.2	936.1	683.7	877.3	1,537.2	2,491.0	3,780.2	4,593.0	33,979.6
Peak (kL/Hr)	8.7	8.8	8.7	7.4	5.7	4.2	3.6	4.1	5.3	6.7	7.9	8.8	8.8
Cnst vol chill water pump	(Misc Ace	cessory Equ	uipment)										
Electric (kWh)	29,760.0	26,880.0	29,760.0	28,800.0	29,760.0	28,800.0	29,760.0	29,760.0	28,800.0	29,760.0	28,800.0	29,760.0	350,400.0
Peak (kW)	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0	40.0
Cnst vol cnd water pump - L	ow Eff	(Misc Acce	ssory Equip	ment)									
Electric (kWh)	14,880.0	13,440.0	14,880.0	14,400.0	14,880.0	14,400.0	14,880.0	14,880.0	14,400.0	14,880.0	14,400.0	14,880.0	175,200.0
Peak (kW)	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0	20.0
Water-cooled chiller - 002 [C	lg Nominal	I Capacity/F	.L.Rate=1,8	300 kW / 42	8.6 kW]	(Cooling E	Equipment)						
Peak (kW)	211.4	212.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	212.0
Cooling tower for Cent. Chill	ers [Desigr	n Heat Rejeo	ction/F.L.Ra	ate=2,228 k	W / 41.83 k	W]							
Peak (kW)	41.8	41.8	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	41.8

Final Year Project Project Name: Dataset Name: Final Year Project7.trc

TRACE® 700 v6.2.6.5 calculated at 09:19 AM on 08/15/2011 Alternative - 4 Equipment Energy Consumption report page 1 of 6

APPENDIX R - MODELLING OUTPUT FOR TRIGENERATION WITH ZONE MIXING BOXES AND CENTRAL AIR HANDLING

By University of Southern Queensland

----- Monthly Energy Consumption ------

Utility		Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Alternat	ive: 4	295 A	Ann Stree	t - Trigen	eration									
Electric														
	On-Pk Cons. (kWh)	446,447	406,057	415,105	351,769	318,999	271,731	242,258	256,942	289,249	342,496	371,524	422,452	4,135,028
	On-Pk Demand (kW)	954	998	873	744	597	512	480	494	549	649	754	825	998
Gas														
	On-Pk Cons. (kWh)	1,279,765	1,153,517	1,282,933	1,261,267	1,363,536	1,385,605	1,459,495	1,429,495	1,322,075	1,319,965	1,247,837	1,284,958	15,790,446
	On-Pk Demand (kW)	1,753	1,734	1,775	1,887	2,037	2,151	2,188	2,169	2,083	1,976	1,813	1,779	2,188
Water														
	Cons. (kL)	7,094	6,413	6,537	5,366	4,380	3,354	3,076	3,283	3,827	4,963	5,795	6,689	60,778
	Energy Consun	nption			Er	vironmen	tal Impact	Analysis						
Building	g 3,73	1 MJ/(m2-ye	ear)		CO	2 1	No Data Avai	lable						

 Source
 5,436 MJ/(m2-year)
 SO2
 No Data Available

 NOX
 No Data Available

Floor Area 19,229 m2

Alternative: 4 295 Ann Street - Trigeneration

				-	Mor	nthly Consu	mption						
Equipment - Utility	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Lights													
Electric (kWh) Peak (kW)	214,596.9 288.4	193,829.4 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	2,526,705.3 288.4
Misc. Ld													
Electric (kWh) Peak (kW)	214,596.9 288.4	193,829.4 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	2,526,705.3 288.4
Cooling Coil Condensate													
Recoverable Water (kL) Peak (kL/Hr)	666.3 1.0	599.7 1.0	582.6 0.9	401.7 0.6	224.1 0.4	87.4 0.2	46.0 0.1	49.3 0.1	129.3 0.2	347.2 0.6	464.7 0.7	607.3 0.9	4,205.5 1.0
Cgn 1: Cogeneration Plant													
Cgn 1: Caterpillar gas 500 k	W (Cog	gen Equipm	ent)										
Gas (kWh) Peak (kW)	1,275,241.8 1,714.0	1,151,831.3 1,714.0	1,275,241.8 1,714.0	1,234,104.9 1,714.0	1,275,241.8 1,714.0	1,234,104.9 1,714.0	1,275,241.8 1,714.0	1,275,241.8 1,714.0	1,234,104.9 1,714.0	1,275,241.8 1,714.0	1,234,104.9 1,714.0	1,275,241.8 1,714.0	15,014,943.0 1,714.0
Cgn 1: Caterpillar gas 500 k	W (Mis	c Accessor	y Equipmen	it)									
Electric (kWh) Peak (kW)	744.0 1.0	672.0 1.0	744.0 1.0	720.0 1.0	744.0 1.0	720.0 1.0	744.0 1.0	744.0 1.0	720.0 1.0	744.0 1.0	720.0 1.0	744.0 1.0	8,760.0 1.0
Cgn 1: Caterpillar gas 500 k	W (Mis	c Accessor	y Equipmen	it)									
Make Up Water (kL)	685.1	613.6	669.3	632.3	626.8	589.4	602.0	615.5	617.6	651.8	643.4	674.9	7,621.8
Peak (kL/Hr)	1.2	1.2	1.2	1.2	1.2	1.1	1.1	1.2	1.2	1.2	1.2	1.2	1.2
Cpl 1: Cooling plant - 001 [S			•	<u> </u>									
Water-cooled chiller - 001 [C	-						quipment)						
Steam (kWh) Peak (kW)	298,198.9 409.2	269,112.5 408.8	294,724.0 405.4	278,407.1 396.8	278,120.9 385.3	260,350.1 375.1	248,067.7 370.4	256,757.3 372.1	264,767.4 380.6	283,051.8 391.3	281,242.7 400.3	295,761.0 406.7	3,308,561.5 409.2
Cooling Tower for 2-stage A	bs. [Design	Heat Reject	ction/F.L.Ra	te=906.5 k	W / 14.44 k	W]							
Electric (kWh) Peak (kW)	10,742.0 14.4	9,702.5 14.4	10,742.0 14.4	10,395.5 14.4	10,742.0 14.4	10,395.5 14.4	10,593.1 14.4	10,723.0 14.4	10,395.5 14.4	10,742.0 14.4	10,395.5 14.4	10,742.0 14.4	126,310.7 14.4
Cooling Tower for 2-stage A	bs.												
Make Up Water (kL) Peak (kL/Hr)	2,308.7 3.1	2,084.5 3.1	2,296.8 3.1	2,199.2 3.1	2,239.6 3.1	2,136.2 3.0	2,067.1 3.0	2,127.4 3.0	2,152.2 3.0	2,256.6 3.1	2,209.0 3.1	2,300.3 3.1	26,377.6 3.1

Project Name: Final Year Project

Dataset Name: Final Year Project.trc

TRACE® 700 v6.2.6.5 calculated at 09:32 PM on 09/08/2011 Alternative - 4 Equipment Energy Consumption report page 14 of 19

APPENDIX S - MODELLING OUTPUT FOR TRIGENERATION COMBINED WITH VARIABLE AIR VOLUME AND FLOOR AIR HANDLING

By University of Southern Queensland

	Monthly	Energy	Consumption	
--	---------	--------	-------------	--

Utility		Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Alternat	ive: 2	295 A	Ann Stree	t - Trigene	eration V	V Floor								
Electric														
	On-Pk Cons. (kWh)	420,323	384,141	387,841	319,771	249,617	182,112	169,654	179,139	210,148	298,055	343,925	393,762	3,538,487
	On-Pk Demand (kW)	923	962	827	699	554	436	406	449	526	620	723	794	962
Gas														
	On-Pk Cons. (kWh)	1,275,242	1,151,831	1,275,242	1,234,105	1,275,242	1,234,244	1,276,086	1,275,603	1,234,105	1,275,242	1,234,105	1,275,242	15,016,288
	On-Pk Demand (kW)	1,714	1,714	1,714	1,714	1,714	1,715	1,720	1,717	1,714	1,714	1,714	1,714	1,720
Water														
	Cons. (kL)	6,994	6,345	6,409	5,118	3,812	2,460	2,162	2,410	3,197	4,563	5,632	6,551	55,653

Ene	ergy Consumption	Environ	mental Impact Analysis
Building	3,474 MJ/(m2-year)	CO2	No Data Available
Source	4,948 MJ/(m2-year)	SO2	No Data Available
		NOX	No Data Available

Floor Area 19,229 m2

Alternative: 2 295 Ann Street - Trigeneration VAV Floor

				-	Mor	nthly Consu	mption						
Equipment - Utility	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Lights													
Electric (kWh) Peak (kW)	214,596.9 288.4	193,829.4 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	2,526,705.3 288.4
Misc. Ld													
Electric (kWh) Peak (kW)	214,596.9 288.4	193,829.4 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	2,526,705.3 288.4
Cooling Coil Condensate													
Recoverable Water (kL)	672.6	608.0	588.2	399.2 0.7	212.5	72.6	33.6	39.5 0.1	119.2 0.2	329.1	465.7 0.7	610.9	4,151.1
Peak (kL/Hr)	1.0	1.0	0.9	0.7	0.4	0.2	0.1	0.1	0.2	0.6	0.7	0.9	1.0
Cgn 1: Cogeneration Plant													
Cgn 1: Caterpillar gas 500 k Gas (kWh)		gen Equipm 1,151,831.3	,	1,234,104.9	1,275,241.8	1,234,104.9	1,275,241.8	1,275,241.8	1,234,104.9	1,275,241.8	1,234,104.9	1,275,241.8	15,014,943.0
Peak (kW)	1,714.0	1,714.0	1,714.0	1,714.0	1,714.0	1,714.0	1,714.0	1,714.0	1,714.0	1,714.0	1,714.0	1,714.0	1,714.0
Cgn 1: Caterpillar gas 500 k	W (Mis	c Accessor	y Equipmen	nt)									
Electric (kWh)	744.0	672.0	744.0	720.0	744.0	720.0	744.0	744.0	720.0	744.0	720.0	744.0	8,760.0
Peak (kW)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
Cgn 1: Caterpillar gas 500 k	•		y Equipmen										
Make Up Water (kL) Peak (kL/Hr)	685.1 1.2	613.6 1.2	669.3 1.2	632.3 1.2	626.8 1.2	637.0 1.4	754.7 1.5	713.6 1.4	626.5 1.3	651.8 1.2	643.4 1.2	674.9 1.2	7,928.9 1.5
Cpl 1: Cooling plant - 001 [S Water-cooled chiller - 001 [C					6 5 k\//1	(Cooling F	Equipment)						
Steam (kWh)	298,198.9	269,112.5	294,724.0	278,407.1	264,387.2	176,436.0	140,599.4	160,789.8	222,080.3	277,958.1	281,242.7	295,761.0	2,959,697.0
Peak (kW)	409.2	408.8	405.4	396.8	385.3	375.1	370.4	372.1	380.6	391.3	400.3	406.7	409.2
Cooling Tower for 2-stage A	bs. [Design	Heat Rejeo	ction/F.L.Ra	te=906.5 k	W / 14.44 k	W]							
Electric (kWh)	10,742.0	9,702.5	10,742.0	10,395.5	10,742.0	8,951.1	7,958.5	8,500.9	10,109.0	10,742.0	10,395.5	10,742.0	119,723.2
Peak (kW)	14.4	14.4	14.4	14.4	14.4	14.4	14.4	14.4	14.4	14.4	14.4	14.4	14.4
Cooling Tower for 2-stage A Make Up Water (kL)	bs. 2,308.7	2,084.5	2,296.8	2,199.2	2,138.9	1,477.1	1,188.2	1,351.2	1,829.6	2,219.5	2,209.0	2,300.3	23,603.1
Peak (kL/Hr)	3.1	2,084.5 3.1	3.1	2,199.2 3.1	2,138.9 3.1	3.0	3.0	3.0	3.0	3.1	2,209.0 3.1	3.1	3.1

Project Name: Final Year Project Dataset Name: Final Year Project3.trc

TRACE® 700 v6.2.6.5 calculated at 12:40 PM on 07/22/2011 Alternative - 2 Equipment Energy Consumption report page 1 of 14

APPENDIX T - MODELLING OUTPUT FOR TRIGENERATION COMBINED WITH ACTIVE CHILLED BEAMS AND FLOOR AIR HANDLING

By University of Southern Queensland

----- Monthly Energy Consumption ------

Utility		Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Alternat	tive: 3	295	Ann Stree	t - Tri Chi	lled Beam	s Floor								
Electric														
	On-Pk Cons. (kWh)	412,033	372,210	387,866	337,196	291,578	222,335	214,540	223,971	250,308	327,473	353,124	395,488	3,788,124
	On-Pk Demand (kW)	697	717	667	587	499	436	411	433	478	540	607	660	717
Gas														
	On-Pk Cons. (kWh)	1,276,236	1,152,034	1,277,933	1,250,214	1,294,444	1,259,601	1,323,587	1,306,172	1,236,700	1,298,766	1,239,755	1,278,717	15,194,159
	On-Pk Demand (kW)	1,727	1,716	1,746	1,821	1,910	1,867	1,943	1,880	1,771	1,876	1,770	1,746	1,943
Water														
	Cons. (kL)	6,929	6,277	6,411	5,270	4,053	2,740	2,405	2,672	3,456	4,733	5,709	6,550	57,205

	Energy Consumption	Environ	Environmental Impact Analysis				
Building	3,555 MJ/(m2-year)	CO2	No Data Available				
Source	5,123 MJ/(m2-year)	SO2	No Data Available				
		NOX	No Data Available				

Floor Area 19,229 m2

Project Name: Final Year Project Final Year Project3.trc Dataset Name:

Alternative: 3 295 Ann Street - Tri Chilled Beams Floor

Monthly Consumption														
Equipment - L	Jtility	Jan	Feb	Mar	Apr	May	June	July	Aug	Sept	Oct	Nov	Dec	Total
Lights														
-	Electric (kWh) Peak (kW)	214,596.9 288.4	193,829.4 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	2,526,705.3 288.4
Misc. Ld														
	Electric (kWh) Peak (kW)	214,596.9 288.4	193,829.4 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	207,674.4 288.4	214,596.9 288.4	2,526,705.3 288.4
Cooling Coil C	Condensate													
Recove	rable Water (kL)	688.9	622.4	621.2	461.1	279.7	136.1	91.7	101.0	193.9	371.1	517.2	642.4	4,726.6
	Peak (kL/Hr)	1.0	1.0	0.9	0.7	0.5	0.3	0.2	0.2	0.4	0.6	0.8	0.9	1.0
Cgn 1: Cogen														
Cgn 1: Caterp	oillar gas 500 k		gen Equipm	,										
	Gas (kWh) Peak (kW)	1,275,241.8 1,714.0	1,151,831.3 1,714.0	1,275,241.8 1,714.0	1,234,104.9 1,714.0	1,275,241.8 1,714.0	1,234,104.9 1,714.0	1,275,241.8 1,714.0	1,275,241.8 1,714.0	1,234,104.9 1,714.0	1,275,241.8 1,714.0	1,234,104.9 1,714.0	1,275,241.8 1,714.0	15,014,943.0 1,714.0
Cgn 1: Caterp	oillar gas 500 k	W (Mis	c Accessor	y Equipmer	t)									
	Electric (kWh)	744.0	672.0	744.0	720.0	744.0	720.0	744.0	744.0	720.0	744.0	720.0	744.0	8,760.0
	Peak (kW)	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0	1.0
• •	oillar gas 500 k	•	c Accessor		,									
Mak	ke Up Water (kL) Peak (kL/Hr)	685.1 1.2	613.6 1.2	669.3 1.2	632.3 1.2	626.8 1.2	606.6 1.3	645.4 1.4	647.0 1.4	617.6 1.2	651.8 1.2	643.4 1.2	674.9 1.2	7,713.8 1.4
						1.2	1.3	1.4	1.4	1.2	1.2	1.2	1.2	1.4
	g plant - 001 [S													
Water-cooled	chiller - 001 [C	0	. ,			-		Equipment)						
	Steam (kWh) Peak (kW)	298,198.9 409.2	269,112.5 408.8	294,724.0 405.4	278,407.1 396.8	277,056.3 385.3	204,159.3 375.1	174,825.8 370.4	190,714.1 372.1	243,576.1 380.6	283,051.8 391.3	281,242.7 400.3	295,761.0 406.7	3,090,829.8 409.2
	· · · · ·							370.4	372.1	360.6	391.3	400.3	406.7	409.2
Cooling Towe	r for 2-stage A							0.074.0	0.040.4	10 005 5	10 7 10 0	10 005 5	10 7 10 0	100 507 0
	Electric (kWh) Peak (kW)	10,742.0 14.4	9,702.5 14.4	10,742.0 14.4	10,395.5 14.4	10,742.0 14.4	9,667.3 14.4	8,971.8 14.4	9,349.4 14.4	10,395.5 14.4	10,742.0 14.4	10,395.5 14.4	10,742.0 14.4	122,587.6 14.4
	()		17.7	17.7	17.7	17.7	17.7						17.7	17.7
U	r for 2-stage A	DS. 2,308.7	2,084.5	2,296.8	2,199.2	2,231.8	1,704.2	1,480.2	1,604.1	1,995.5	2,256.6	2,209.0	2,300.3	24,670.9
Ivian	Peak (kL/Hr)	3.1	3.1	3.1	3.1	3.1	3.0	3.0	3.0	3.0	3.1	3.1	3.1	3.1

Project Name: Final Year Project Dataset Name: Final Year Project3.trc TRACE® 700 v6.2.6.5 calculated at 12:40 PM on 07/22/2011

Alternative - 3 Equipment Energy Consumption report page 8 of 14