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Abstract

In this paper, we introduce a new measure of symme-
try which we call the symmetry ratio of a network, de-
fined to be the ratio of the number of distinct eigenval-
ues of the network to D+1, where D is the diameter.
The symmetry ratio has utility in partially predicting
the robustness of a network in the face of attack. We
prove a number of results placing bounds on the sym-
metry ratio for several families of networks, including
distance-transitive networks, prisms, twisted prisms,
antiprisms, tori, Cayley graphs, and random graphs.
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1 Introduction

In recent work, we studied the robustness of various
critical infrastructure network topologies under mul-
tiple terrorist attacks (Dekker 2005). We modelled
these networks as undirected graphs with limited link
capacity, carrying simulated traffic. Each attack re-
moved the most important (most central) remaining
node, thus causing traffic to be re-routed. We found
that networks began to fail when the number of at-
tacks α was equal to the node connectivity κ (the
smallest number of node-independent paths between
pairs of nodes). The severity of failure was related
to the average degree dave. In particular, the perfor-
mance (percentage of messages successfully received)
could be predicted as a function of log dave and of
the difference α − κ between node connectivity and
number of attacks (we call this difference the relative
attack count).

The vertical axis of the scatter-plot in Figure 1
is the difference between actual and predicted val-
ues of (the logarithm of) performance for numbers of
attacks α ranging from 1 to 6, and 61 different sixty-
node networks (some designed, and some randomly
generated). Each network corresponds to a column
of six squares. The different colours represent differ-
ent networks, and the numbers in each square are the
different values of α. Twelve of the networks used are
highlighted. The variation that remains after taking
dave and α − κ into account is related to symmetry
(which is the horizontal axis in Figure 1).

In general, symmetrical networks performed much
better than random networks. In particular, the
Rhombicosidodecahedron in Figure 1(a) and the Snub
Dodecahedron in Figure 1(c) could absorb 6 attacks
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Graph No. of Symmetry r
Autos Category

Ring 120 1 1
Soccer Ball 120 3 1.5
Random Tree 1.5× 1029 5 1.86
6× 10 Torus 240 3 2.11
Figure 2 2 5 4.52
2-linked SF 1 5 10

Table 1: Some Candidate Symmetry Measures

without failing. However, the Ring in Figure 1(f) and
the Prism in Figure 1(i) performed poorly, for reasons
discussed in Dekker & Colbert (2004a).

The superior performance of the symmetrical net-
works over the random networks leads us to ask: how
can symmetry be quantified?

One obvious answer is to count the number of au-
tomorphisms of a network (i.e. the size of the auto-
morphism group). Most random networks have only
the trivial automorphism (Theorem 9.3 of Bollobás
(2001)), while, for example, the Rhombicosidodeca-
hedron in Figure 1(a) has 120 automorphisms. How-
ever, trees, even randomly generated ones, have many
more automorphisms, e.g. 1.5 × 1029 for the random
tree in Figure 1(j). This approach therefore greatly
exaggerates the symmetry of trees, and does not suf-
ficiently distinguish other graphs.

Another obvious method is to use standard sym-
metry categories, and to rank the symmetry of a net-
work as, for example:

1. for distance-transitive networks, e.g. the ring in
Figure 1(f).

2. for symmetric non-distance-transitive networks.

3. for node-similar (i.e. vertex-transitive) non-
symmetric networks, including the networks
highlighted in Figure 1 except 1(b), 1(d), 1(f),
and 1(j).

4. for regular non-node-similar networks.

5. for all other networks, including those in Figures
1(b), 1(d), and 1(j).

However, this approach does not differentiate be-
tween the partial symmetry of trees, and the lack of
symmetry of random networks. For the purpose of
assessing real-world networks (such as the one in Fig-
ure 2), there are too many categories at the symmet-
rical end of the scale, and not enough at the non-
symmetrical end.

In this paper, we introduce an easily calculated
measure of symmetry which we call the symmetry ra-
tio r of a network, and define it to be:

r =
ε

D + 1



(a) Rhombicosidodecahedron

(b) 2-linked Scale-free

(c) Snub Dodecahedron

(d) 4-linked Scale-free

(e) 6x10 Torus

(l) Soccer+Diagonals(k) Soccer Ball(j) Random Tree(i) Prism(h) Trunc. Dodecahedron(g) Soccer+Stars(f) Ring

Figure 1: Symmetry Ratio and Performance of Various Networks under Attack

where ε is the number of distinct eigenvalues of the
network, and D is the diameter. The horizontal axis
of the scatter-plot in Figure 1 shows the (logarithm
of the) symmetry ratio, which increases as networks
become less symmetrical. Table 1 compares the sym-
metry ratio r for some of the networks in Figure 1
(and the network in Figure 2) against the two less use-
ful candidate symmetry measures we have discussed
(number of automorphisms and standard symmetry
category).

Figure 1 shows a statistically extremely significant
effect of the symmetry ratio on performance in the
face of attack, and taking the symmetry ratio into ac-
count improves our earlier prediction of performance
from 79% of variance to 84% of variance. This con-
firms that the symmetry ratio is indeed of practical
utility.

Figure 2 shows a real-world telecommunications
network (the Qwest Internet Backbone Network), re-
drawn from Dodge (2004). This network has a sym-
metry ratio of 4.52, which would fall between the
high-symmetry networks on the left of Figure 1 (1 ≤
r ≤ 3), and the low-symmetry networks on the right
of Figure 1 (8.5 ≤ r ≤ 15), as we might expect.

In the body of this paper we prove a number of re-
sults placing bounds on the symmetry ratio for several
families of networks (summarised in Table 4), includ-
ing distance-transitive networks, prisms, and Cayley
graphs.

2 Basic Concepts

Definition 2.1 We model a network as an (undi-
rected) graph, consisting of nodes and links. We re-
strict our attention to connected graphs, and define:

(i) If a graph has n nodes, then we say that the
graph has size n.

Seattle

Portland

.
.

.

.

.

Sacramento.

.

.

.

. .
.

.

.

.

.
.

Los Angeles
.

San Diego

.

.

Boise

Salt Lake City

Las Vegas

PhoenixTucson
El Paso

Denver

.

.

.

.

.

.

.

Houston

.

.

Dallas

.

Tulsa

Kansas City.

.

.

.

.
Minneapolis.

.

.

Chicago

Indianopolis
. .

.

.

.
.

Memphis
Atlanta

.

.

.
.

New Orleans.

.

.

.

Tampa

.

Miami
.

.
.

.

.

Jacksonville

.

.

.

Charlotte.
.

.

.

.

.

.

Detroit

.Clevland

Columbus

.

Cincinnati

.

.

.

New York

Stamford

New Haven
ProvidenceBoston

Albany
Poughkeepsie

White Plains

Jersey City

Trenton

Philadelphia
Pennshauken

Manasquan
Baltimore

Washington DC

Fredericksburg

Richmond

Harrisburgh
Pittsburgh

Utica

Syracuse

Rochester

Buffalo

Erie

Portsmouth

Figure 2: A Real-World Telecommunications Network
with r = 4.52

(ii) If a node has d outgoing links, then we say that
the node has degree d.

(iii) If every node of a graph has the same degree,
then we say that the graph is regular ; in this
case we also speak of the degree d of the graph.

(iv) An automorphism of a graph is a permutation π
of the nodes which preserves links, i.e. a— b is a
link if and only if πa — πb is a link.

(v) A graph is node-similar (more usually, vertex-
transitive) if for any two nodes a and b there is
an automorphism π such that πa = b.



(vi) A graph is symmetric if for any two links a— b
and x— y there is an automorphism π such that
πa = x and πb = y.

(vii) The distance δ(x, y) between two nodes x and y is
the number of links on the shortest path between
them.

(viii) The diameter D of the graph is the largest value
of δ(x, y).

(ix) A graph is distance-transitive if for all nodes a,
b, x, and y such that δ(a, b) = δ(x, y), there is an
automorphism π such that πa = x and πb = y.

The distance-transitive graphs include the com-
pletely connected graphs Kn, rings, hypercubes, ham-
ming graphs (Dekker & Colbert 2004a), and Platonic
polyhedra (the tetrahedron, cube, octahedron, dodec-
ahedron, and the icosahedron in Figure 4(d)).

The spectrum of a graph is the set of eigenvalues
of the adjacency matrix of the graph. We write the
spectrum in the form:

(
λ1 λ2 . . . λε
n1 n2 . . . nε

)

where ni is the multiplicity of the eigenvalue λi.
Clearly

∑
i ni = n, where n is the size of the graph.

Definition 2.2 In order to ensure r ≥ 1 (see Propo-
sition 2.3), we define the symmetry ratio r of a graph
by:

r =
ε

D + 1
where ε is the number of distinct eigenvalues of the
graph, and D is the diameter.

Proposition 2.3 For any graph of size n ≥ 3:

(i) D + 1 ≤ ε ≤ n.

(ii) 1 ≤ r ≤ n
3 .

(iii) D ≥ d(log(n− 1))/(log d)e, for regular graphs of
degree d.

(iv) r ≤ n/(1 + d(log(n− 1))/(log d)e), for regular
graphs of degree d.

Proof.

(i) By Corollary 2.7 of Biggs (1993).

(ii) From (i), and the fact that the completely con-
nected graph Kn has ε = 2 and D = 1, so r = 1,
but otherwise D ≥ 2, and so r = ε/(D+1) ≤ n/3.

(iii) From the Moore bound for d ≥ 3:

n ≤ d(d− 1)D − 2
d− 2

proved in Theorem 10.1 of Bollobás (2001), we
can derive n − 1 ≤ dD, and the result follows.
For d = 2 the graph is a ring and D =

⌊
n
2

⌋ ≥
d(log(n− 1))/(log d)e.

(iv) From (iii). 2

Definition 2.4 The simplest families of graphs we
consider are the following:

(i) The path graph Pn has n nodes connected in a
straight line (and hence diameter n− 1).

(a) m = 3 (b) m = 2 (c) m = 1 (d) m = 0

Figure 3: Possible Eigenvectors for Simple Eigenval-
ues of the Prism

(ii) The star tree Tn has n ≥ 3 nodes 0, . . . , n − 1,
with the only links from node 0 to the other
nodes.

Proposition 2.5 For the path graph Pn, ε = n and
r = 1.

Proof. Since D = n−1 and ε ≥ D+1 by Proposition
2.3(i). 2

Proposition 2.6 For the star tree Tn, ε = 3 and
r = 1.

Proof. Clearly D = 2, and the result follows since
the spectrum is:

( √
n− 1 0 −√n− 1
1 n− 2 1

)

2

The following important class of graphs includes
the Peterson graph (see Figure 6.14 of Gibbons
(1985)):

Definition 2.7 A strongly regular (n, d, ν, µ) graph
has n nodes, and is regular with degree d, such that
any two adjacent nodes have ν ≥ 0 common neigh-
bours, and and two non-adjacent nodes have µ ≥ 1
common neighbours.

Proposition 2.8 For any strongly regular graph, ε =
3 and r = 1.

Proof. Clearly D = 2. By Note 3d of Biggs (1993),
ε = 3, and so r = 1. 2

Proposition 2.9 For any distance-transitive graph,
r = 1.

Proof. By Theorem 20.7 of Biggs (1993), ε = D+1.2

In fact, the result of Biggs (1993) is proved for
distance-regular graphs, a class which includes both
the strongly regular and distance-transitive graphs.

3 The Prism

Prism graphs, such as the ones shown in Figure 1(i)
and Figure 4(a), have degree 3, and a high degree of
symmetry. In fact, r < 2:

Theorem 3.1 Consider a prism with 2n nodes.
Then:

(i) If n is even, ε ≤ n + 2.

(ii) If n is odd, ε ≤ n + 1.

(iii) r ≤ 2
(⌊

n
2

⌋
+ 1

)
/

(⌊
n
2

⌋
+ 2

)
< 2.

Proof. Let λ be an eigenvalue of multiplicity 1, and
x a corresponding real eigenvector. Let P be a per-
mutation matrix representing an automorphism π of
the prism. By Lemma 15.3 of Biggs (1993), Px = x
or Px = −x, and the entries in x differ only in sign,
since the prism is node-similar (vertex-transitive).



(a) Prism (b) Twisted Prism (c) Antiprism (d) Icosahedron

Figure 4: Some Twelve-Node Graphs

The possible eigenvectors x are then as shown in
Figure 3, where open circles denote nodes correspond-
ing to positive elements of x, and black circles denote
nodes corresponding to negative elements. Cases (c)
and (d) in Figure 3 are possible only if n is even. The
cases can be distinguished by the number m of nodes
adjacent to a given node which have the same corre-
sponding entry xi in x. If A is the adjacency matrix
of the prism:

(Ax)i = mxi − (3−m)xi = (2m− 3)xi = λxi

Hence if n is even, λ is one of −3, −1, 1, or 3, while
if n is odd, λ is 1 or 3. All other eigenvalues have
multiplicity at least 2, and so it follows that ε ≤ (2n−
4)/2+4 = n+2 if n is even, and ε ≤ (2n−2)/2+2 =
n + 1 if n is odd, i.e. ε ≤ 2

⌊
n
2

⌋
+ 2.

The diameter of the prism is 1 +
⌊

n
2

⌋
, and so (iii)

follows. 2

The bound here is tight: for the pentagonal prism
(n = 5) with spectrum:

(
3 1+

√
5

2 1 −3+
√

5
2

1−√5
2

−3−√5
2

1 2 1 2 2 2

)

ε = 6 = n+1 and D = 3, so r = 2(2+1)/(2+2) = 1.5.
For the decagonal prism (n = 10), ε = 12 = n+2 and
D = 6, so r = 2(5 + 1)/(5 + 2) = 12

7 .
Analogous results can be proved for other node-

similar graphs. Note that the cube is also a prism,
but (since it is distance-transitive) has the minimum
value of r = 1.

4 The Twisted Prism

A twisted prism resembles a prism, but each face is
replaced by a pair of crossing links, so that the graph
has degree 4, as shown in Figure 4(b).

Theorem 4.1 Consider a twisted prism with 2n
nodes. Then:

(i) ε ≤ 2 +
⌊

n
2

⌋
.

(ii) r ≤ 1 + 1 /
(
1 +

⌊
n
2

⌋) ≤ 4
3 .

Proof.

(i) The graph consists of n pairs of nodes, each with
the same set of neighbours, and hence the eigen-
value 0 has multiplicity n. Also, by Proposition
16.7 of Biggs (1993), since the twisted prism is
symmetric, the only eigenvalues of multiplicity
1 are 4 and −4 (and only 4 if n is odd, i.e. the
graph is not bipartite). Hence ε ≤ 3+(n−2)/2 =
2+

⌊
n
2

⌋
if n is even, and ε ≤ 2+(n−1)/2 = 2+

⌊
n
2

⌋
if n is odd.

(ii) For n ≥ 4, the diameter D =
⌊

n
2

⌋
, and the re-

sult follows, whereas for n = 3 the graph is an
octahedron and r = 1. 2

The bound in this theorem is tight: for the pen-
tagonal twisted prism (n = 5), ε = 4 = 2 +

⌊
n
2

⌋
and

D = 2, so r = 4
3 . For the hexagonal twisted prism

(n = 6), ε = 5 = 2 +
⌊

n
2

⌋
and D = 3, so r = 1.25.

5 Cayley Graphs

Given a group G, and a set S of elements of G, we
say that G is generated by S if the elements of G can
all be built up by using the group binary operation
xy, the group inverse x−1, the group identity 1, and
the elements of S.
Definition 5.1 If the group G is generated by S, we
define:
(i) The closure of S is Ŝ = S ∪ {s−1| s ∈ S} \ {1}.
(ii) The Cayley graph Γ(G,S) is the graph whose

nodes are the elements of G, and whose links are
x— sx for every x ∈ G and s ∈ S.

For example, the group Z5 is generated by the set
{2}, and the corresponding Cayley graph is a pen-
tagon. There are usually multiple Cayley graphs for
a given group G, depending on the choice of S. Con-
versely, different groups may have the same Cayley
graphs.
Proposition 5.2 Let G be generated by S, and let
Γ(G,S) be the corresponding Cayley graph. Then:
(i) Γ(G,S) is regular and node-similar (vertex-

transitive).

(ii) Γ(G,S) has degree |Ŝ|.
Proof.
(i) Proposition 16.2 of Biggs (1993).

(ii) Considering possible links x— sx and
s−1y — y. 2

6 The Antiprism

Antiprism graphs, such as the one shown in Figure
4(c), have degree 4, and are formed from two rings,
connected by a ring of triangles facing alternately up
and down.
Theorem 6.1 Consider an antiprism with 2n nodes.
Then:
(i) ε ≤ n + 1.

(ii) r ≤ (n + 1) /
(⌊

n+1
2

⌋
+ 1

)
< 2

Proof.
(i) The antiprism is in fact a Cayley graph for Z2n,

with even numbers on one ring, and odd num-
bers on the other, generated by e.g. {1, 2}. Con-
sequently, it is a circulant graph, with each row
of the adjacency matrix A being simply the top
row shifted. By Proposition 3.5 of Biggs (1993),
the eigenvalues λi for i = 0 . . . 2n − 1 are given
by:

λi =
2n−1∑

j=1

A0j cos
(

πij

n

)

= cos
(

πi

n

)
+ cos

(
2πi

n

)

+cos
(

(2n− 2)πi

n

)
+ cos

(
(2n− 1)πi

n

)

= 2 cos
(

πi

n

)
+ 2 cos

(
2πi

n

)



So λ0 = 4 cos 0 = 4, λn = 2 cos π +2 cos(2π) = 0,
and similarly λ2n−i = λi for 1 ≤ i ≤ n−1. Hence
there are at most n + 1 distinct eigenvalues.

(ii) The diameter D =
⌊

n+1
2

⌋
, and the result fol-

lows. 2

The bound in this theorem is tight: for the 4-sided
antiprism, ε = 5 = 4 + 1 and D = 2, so r = 5

3 . For
the 7-sided antiprism, ε = 8 = 7 + 1 and D = 4, so
r = 1.6. The method of Theorem 3.1 provides an
alternative proof here.

Analogous results can be proved for other Cayley
graphs of Zn. Note that the octahedron is also an
antiprism, but (since it is distance-transitive) has the
minimum value of r = 1.

7 Group Representations

Each group G can have multiple representations as
complex matrices, where the group binary operator
is implemented by matrix multiplication (i.e. the rep-
resentation is a homomorphism). The character of
a representation is the function that maps each el-
ement of G to the sum of diagonal elements of the
corresponding matrix. The irreducible characters of
a group are the characters of irreducible representa-
tions.

A conjugacy class of a group is a set of elements
closed under conjugation, i.e. if c ∈ C and g ∈ G,
then gcg−1 ∈ C.

The number of irreducible characters is equal to
the number of conjugacy classes (Theorem 15.3 of
James & Liebeck (1993)). For each group we can
therefore form a square character table with (rep-
resentatives of) conjugacy classes as columns, irre-
ducible characters as rows, and values of the irre-
ducible characters on the conjugacy classes as ele-
ments (these values are the same irrespective of which
representative of a conjugacy class is chosen). For
example, the group D3 is generated by {a, b} with
a3 = b2 = 1 and ab = ba2, and has three conjugacy
classes: {1}, {a, a2}, and {b, ba, ba2}. The character
table is:

D3 1 a b

χ1 1 1 1
χ2 1 1 −1
χ3 2 −1 0

Each group has at least one irreducible character
with χ(1) = 1, while for abelian groups, every ir-
reducible character has χ(1) = 1. For every group,∑

i(χi(1))2 = |G|. In the case of D3, 1 + 1 + 22 = 6.
Many software packages for group theory will gener-
ate character tables of groups.

For Cayley graphs, there is a close relationship be-
tween the character tables and the eigenvalues. Since
χ(1) = 1 for every irreducible character of an abelian
group, we consider abelian groups separately:

Proposition 7.1 Let G be a finite abelian group gen-
erated by S. Then the eigenvalues of Γ(G,S) corre-
spond to the irreducible characters of G, and are given
by:

λχ =
∑

s∈Ŝ

χ(s)

Proof. By Theorem 6 of Murty (2003) or Corollary
3.2 of Babai (1979). 2

Proposition 7.2 Let G be a finite non-abelian group
generated by S, with irreducible characters χ1, . . . , χc.
Then the number of distinct eigenvalues of Γ(G, S)
satisfies ε ≤ ∑

i χi(1), where the χi(1) are positive
integers.

Proof. By Note 16h of Biggs (1993) or Theorem 3.1
of Babai (1979). 2

For example, the triangular prism is a Cayley
graph of D3 with spectrum:

(
3 1 0 −2
1 1 2 2

)

and
∑

i χi(1) = 1+1+2 = 4 = ε. As remarked above,∑
i(χi(1))2 = |G| = 6.
If the number of conjugacy classes c is known, the

bound on ε may not need knowledge of the character
table, since |G| will be the sum of c squares, one of
which is 1, and in many cases this is uniquely defined.
For example, with c ≤ 4 and |G| ≤ 50, there are only
4 possible non-unique sums of squares:

28 = 1 + 1 + 1 + 52 = 1 + 32 + 32 + 32

34 = 1 + 22 + 22 + 52 = 1 + 1 + 42 + 42

39 = 1 + 1 + 1 + 62 = 1 + 22 + 32 + 52

42 = 1 + 1 + 22 + 62 = 1 + 32 + 42 + 42

8 The Torus

We can use group representation theory to bound ε
for a torus such as the one shown in Figure 1(e), using
the following result:

Proposition 8.1 For abelian groups P and Q, each
eigenvalue λχ of P ×Q has the form λχ = λχP

+λχQ

for some eigenvalues λχP of P and λχQ of Q.

Proof. If P is generated by A and Q is generated
by B, then P ×Q is generated by {(a, 1Q)| a ∈ A} ∪
{(1P , b)| b ∈ B}, and so by Proposition 7.1:

λχ =
∑

s∈Ŝ

χ(s) =
∑

a∈Â

χ(a, 1Q) +
∑

b∈B̂

χ(1P , b)

=
∑

a∈Â

χP (a)χQ(1Q) +
∑

b∈B̂

χP (1P )χQ(b)

since irreducible representations of a product group
are direct products of the individual representations,
i.e. every irreducible character χ of P × Q can be
expressed as a product of irreducible characters χP of
P and χQ of Q (Theorem 19.18 of James & Liebeck
(1993)). But χP (1P ) = χQ(1Q) = 1 since P and Q
are abelian, and so:

λχ =
∑

a∈Â

χP (a) +
∑

b∈B̂

χQ(b) = λχP + λχQ

2

Corollary 8.2 For an m× n torus graph,

(i) ε ≤ (⌊
m
2

⌋
+ 1

) (⌊
n
2

⌋
+ 1

)

(ii) r ≤ 1 +
⌊

m
2

⌋⌊
n
2

⌋
/

(⌊
m
2

⌋
+

⌊
n
2

⌋
+ 1

)



Graph Figure 1 Generators ε D r Bound Planar
Reference on r Bound

Rhombicosidodecahedron (a) {a, ab} 13 8 1.444 4 1.778
Snub Dodecahedron (c) {a, ab, b} 15 7 1.875 4 2
Soccer+Stars (g) {a, a2, b} 9 6 1.286 4 —
Trunc. Dodecahedron (h) {ab, b} 13 10 1.182 3.2 1.6
Soccer Ball (k) {a, b} 15 9 1.5 3.2 1.6
Soccer+Diagonals (l) {a, b, a2ba3ba2b} 15 5 2.5 4 —

Table 2: Some Cayley Graphs of A5

Graph Generators ε D r Bound Planar
on r Bound

Truncated Cube {a, b} 8 6 1.143 2.5 1.429
Truncated Octahedron {ab, b} 10 6 1.429 2.5 1.429
Small Rhombicuboctahedron {a, ab} 8 5 1.333 2.5 1.667
Snub Cube {a, ab, b} 9 4 1.8 3.333 2

Table 3: Some Cayley Graphs of S4

Proof. Since the torus is a product of an m-ring
(with ε =

⌊
m
2

⌋
+ 1 and D =

⌊
m
2

⌋
) and an n-ring

(with ε =
⌊

n
2

⌋
+ 1 and D =

⌊
n
2

⌋
). 2

This result generalises to a hypertorus (Dekker &
Colbert 2004a) in the obvious way. The bound is
tight: for the 6× 5 torus,

⌊
m
2

⌋
= 3,

⌊
n
2

⌋
= 2, ε = 12,

D = 5, and r = 2. The method of Theorem 3.1 could
also be applied, but produces a looser bound.

For the square (n× n) torus, we can provide even
tighter bounds:

Corollary 8.3 Consider an n × n square torus.
Then:

(i) ε ≤ 1 + 1
2

⌊
n
2

⌋2 + 3
2

⌊
n
2

⌋
, if n is odd.

(ii) r ≤ 1 +
(⌊

n
2

⌋2 − ⌊
n
2

⌋)
/

(
2 + 4

⌊
n
2

⌋)
, if n is odd.

(iii) ε ≤ 1 + 1
2

⌊
n
2

⌋2 + 3
2

⌊
n
2

⌋− ⌊
n
4

⌋
, if n is even.

(iv) r ≤ 1 +
(⌊

n
2

⌋2 − ⌊
n
2

⌋− 2
⌊

n
4

⌋)
/

(
2 + 4

⌊
n
2

⌋)
, if n

is even.

Proof.

(i) We have λχ = λi + λj , where:

λi =
n−1∑

k=1

A0k cos
(

2πik

n

)
= 2 cos

(
2πi

n

)

i.e. λ0 = 2 and λn−i = λi for 1 ≤ i ≤ ⌊
n
2

⌋
. Then

consider sums λi + λj .

(ii) Since D = 2
⌊

n
2

⌋
.

(iii) Similar to (i), but the even ring is bipartite, and
hence its spectrum is symmetrical about 0 (Note
2c of Biggs (1993)), giving

⌊
n
4

⌋
extra cases of the

form λi + λj = 0.

(iv) Since D = 2
⌊

n
2

⌋
. 2

These bounds are tight, e.g. for the 5 × 5 torus,
ε = 6, D = 4, and r = 1.2, while for the 6 × 6 torus,
ε = 9, D = 6, and r = 9

7 .

Corollary 8.4 For a torus of n nodes, r < 1+
√

n/4.

Proof. If n = m2, then r ≤ 1 +
⌊

m
2

⌋
/4 < 1 + m/4 =

1 +
√

n/4 by Corollary 8.3. If n = m1m2 with m1 >
m2, then r ≤ 1 +

⌊
m1
2

⌋⌊
m2
2

⌋
/m1 ≤ 1 + m2/4 < 1 +√

n/4 by Corollary 8.2. 2

For nearly square tori, this bound is approached
asymptotically, e.g. for the 29 × 30 torus, ε = 240,
D = 29, and r = 8, while 1 +

√
870/4 ≈ 8.374.

9 Cayley Graphs of Non-Abelian Groups

Many interesting graphs are Cayley graphs of non-
abelian groups. We have the following corollary to
Proposition 7.2:

Corollary 9.1 Let G be a finite non-abelian group
generated by S, with irreducible characters χ1, . . . , χc.
Then Γ(G,S) has:

r ≤
∑

i χi(1)

1 +
⌈

log(n−1)
log d

⌉

Proof. By Proposition 7.2 and Proposition 2.3(iv).2

For example, consider the group A5 of even per-
mutations on 5 elements, generated by combinations
of a, b, and ab, where a5 = b2 = (ab)3 = 1.
Six Cayley graphs of A5 are shown in Figure 1(a),
1(c), 1(g), 1(h), 1(k), and 1(l), and listed in Ta-
ble 2. The group A5 has 5 conjugacy classes, and
since 60 = 1 + 32 + 32 + 42 + 52 is a unique sum
of 5 squares including 1, we do not need to know
the character table in order to derive the bound
ε ≤ 1+3+3+4+5 = 16. We have dlog 59/ log 3e = 4,
and dlog 59/ log 4e = dlog 59/ log 5e = 3, so we can
calculate the bounds on r in Table 2, which are not
tight. The bounds on r are improved if we restrict our
attention to planar Cayley graphs, which correspond
either to Platonic polyhedra, prisms and antiprisms
(discussed above), rings, or Archimedean polyhedra
(see Section 3.10 of Babai (1996)). Consequently, for
planar Cayley graphs with 60 nodes, D ≥ 12 − d,
giving the bounds in the last column of Table 2.

The group S4 of permutations on 4 elements is
generated by combinations of a, b, and ab, where a3 =
b2 = (ab)4 = 1. Four Cayley graphs of S4 are listed



Proposition 2.3(ii) 1 ≤ r ≤ n
3

Regular, Proposition 2.3(iv) r ≤ n /
(
1 +

⌈
log(n−1)

log d

⌉)

Strongly Regular, Proposition 2.8 r = 1

Distance-Transitive, Proposition 2.9 r = 1

n-sided Prism, Theorem 3.1 r ≤ 2
(⌊

n
2

⌋
+ 1

)
/

(⌊
n
2

⌋
+ 2

)
< 2

n-sided Twisted Prism, Theorem 4.1 r ≤ 1 + 1 /
(
1 +

⌊
n
2

⌋) ≤ 4
3

n-sided Antiprism, Theorem 6.1 r ≤ (n + 1) /
(⌊

n+1
2

⌋
+ 1

)
< 2

m× n Torus, Corollary 8.2 r ≤ 1 +
⌊

m
2

⌋⌊
n
2

⌋
/

(⌊
m
2

⌋
+

⌊
n
2

⌋
+ 1

)

n× n Torus (odd), Corollary 8.3(ii) r ≤ 1 +
(⌊

n
2

⌋2 − ⌊
n
2

⌋)
/

(
2 + 4

⌊
n
2

⌋)

n× n Torus (even), Corollary 8.3(iv) r ≤ 1 +
(⌊

n
2

⌋2 − ⌊
n
2

⌋− 2
⌊

n
4

⌋)
/

(
2 + 4

⌊
n
2

⌋)

Cayley graph, Corollary 9.1 r ≤ (
∑

i χi(1)) /
(
1 +

⌈
log(n−1)

log d

⌉)

Planar Cayley graph, Corollary 9.2 r < 2

Random graph, Corollary 10.3 r ≥ n /
(
4 +

⌈
log n+6
log log n

⌉)

Table 4: Summary of Bounds on Symmetry Ratio

in Table 3. S4 has 5 conjugacy classes, and since
24 = 1+1+22 +32 +32 is a unique sum of 5 squares
including 1, we do not need to know the character
table in order to derive the bound ε ≤ 1 + 1 + 2 + 3 +
3 = 10. This bound on ε is tight for the truncated
octahedron, and hence so is the planar bound on r.

In fact, by checking the remaining Archimedean
polyhedra which are Cayley graphs, we obtain a more
general bound for planar Cayley graphs:

Corollary 9.2 For all finite planar Cayley graphs,
r < 2.

Proof. By Proposition 2.9, Theorem 3.1, Theorem
6.1, and checking the remaining cases. 2

10 Random Graphs

Sufficiently connected random graphs have the max-
imum number of distinct eigenvalues ε = n, since the
adjacency matrix is uncorrelated:

Conjecture 10.1 Consider a graph of n nodes
formed by randomly adding sufficient edges so that the
graph is connected, but dave ≤ n

2 . Then as n → ∞,
the probability approaches 1 that ε = n.

This seems to be a “folk theorem,” with no for-
mal proof in the literature. Since the probability of
non-trivial automorphisms vanishes (Theorem 9.4 of
Bollobás (2001)), the problem is with linearly depen-
dent rows, and the major difficulty is with nodes of
low degree. But by Theorem 7.3 of Bollobás (2001),
dave = log n at the point of connectedness, and since
degrees follow a Poisson distribution, the number of
nodes of degree at most k is bounded by a multiple
of (log n)k, and so (for some p and q) the expected
number of linearly dependent low-degree rows in the
adjacency matrix is p(log n)q/n → 0.

Alternatively, it may be possible to adapt similar
results from random matrix theory (Lévêque 2004).

Empirically the result holds. For example, we gen-
erated a sample of 534 random 60-node connected
graphs with average degree 4 ≤ dave ≤ 9 and all had
ε = 60. An additional sample of 73 random 600-node
connected graphs all had ε = 600. With regards to
the symmetry ratio, we have the following:

Proposition 10.2 Consider a graph of n nodes
formed by randomly adding sufficient edges so that the
graph is connected. Then as n → ∞, the probability
approaches 1 that:

D ≤ 3 +
⌈

log n + 6
log log n

⌉

Proof. By Theorem 10.17 of Bollobás (2001). 2

Corollary 10.3 Consider a graph of n nodes formed
by randomly adding sufficient edges so that the graph
is connected, but dave ≤ n

2 . Then as n → ∞, the
probability approaches 1 that:

r ≥ n

4 +
⌈

log n+6
log log n

⌉

For n = 60, these results give D ≤ 11 and r ≥
5, and indeed for our 534 random 60-node graphs,
3 ≤ D ≤ 9, and hence 6 ≤ r ≤ 15. For n = 600,
we get D ≤ 10 and r ≥ 54, and for our 73 random
600-node graphs, 5 ≤ D ≤ 7 and 75 ≤ r ≤ 100. For
comparison, a 600-node torus has r < 1 +

√
n/4 ≈

7.124. Random graphs are thus associated with very
high values of r.

11 Conclusions

In this paper, we have introduced a measure of sym-
metry which we call the symmetry ratio of a network,
defined to be r = ε /(D + 1), where ε is the number
of distinct eigenvalues of the network, and D is the
diameter. Simulation experiments have shown that
the symmetry ratio has utility in partially predicting
the robustness of a network in the face of attack. We
have proved several bounds on the symmetry ratio,
summarised in Table 4, and considered a number of
examples, shown in Figures 1 and 4, and Tables 2
and 3. The networks we have considered fall into five
families:

(i) Highly symmetrical (e.g. distance-transitive)
networks, with r = 1.



(ii) Prism-like networks and planar Cayley graphs,
with r < 2.

(iii) Tori with r < 1 +
√

n/4 (Corollary 8.4).

(iv) Non-planar Cayley graphs of non-abelian groups,
where r may be higher.

(v) Non-regular (e.g. random) networks, where r
may be much higher.

The proof techniques that we have used in this
paper can also be applied to finding bounds on the
symmetry ratio for other classes of network.
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