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Abstract 

 

 
Power transformers are an integral part of almost all electrical transmission and 

distribution networks. Their reliable service is of the utmost importance in modern 

society which is dependent on a constant electricity supply. There are a range of 

factors that can hinder the operation of a power transformer. This dissertation presents 

the results of investigations into one of these factors through an analysis of the effect 

that direct current has on the operational characteristics of a power transformer. 

 

There are a host of adverse effects that can accompany the presence of a direct current 

in a transformer’s windings. The predominant effect that is witnessed is half cycle 

saturation. This leads to increased harmonic distortion, increased reactive power 

losses, overheating and elevated acoustic noise emissions.  

 

Direct current can be found in a transformer’s windings as a result of imperfections in 

connected equipment and also due to magnetic disturbances of the earth’s field. Tests 

conducted indicate that personal computers are a potentially significant source of DC 

when a large number of units are connected to a common point of coupling. Similarly 

the possibility exists for AC and DC induction motor drives to contribute sizeable 

quantities of DC Bias.   
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Chapter 1 

 

Introduction 

 
Power transformers are an integral part of almost all electrical transmission and 

distribution networks. Their reliable service is of the utmost importance in modern 

society which is dependent on a constant electricity supply. There are a range of 

factors that can hinder the operation of a power transformer. This project aims to 

investigate one of these factors through an analysis of the effect that direct current 

has on the operational characteristics of a power transformer. 

 

Direct current can be found in a transformer’s windings as a result of imperfections 

in connected equipment and also due to magnetic disturbances of the earth’s field. 

There are a host of adverse effects that can potentially accompany the presence of a 

direct current in a transformer’s windings. These include increased harmonic 

distortion, increased reactive power losses, overheating, elevated acoustic noise 

emissions and corrosion. 

 

This project aims to validate, clarify and expand upon the theoretical concepts that 

have been documented through past research. Available literature does not provide 

an in depth analysis of precisely how a transformer’s operational characteristics are 

affected when a DC bias is present. This project aims to bridge this void in the topic 

knowledge base. 
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1.1 Project Objectives 
 

Provided in the following list is an outline of the project objectives which are 

primarily as defined by the project specifications. It should be noted that a number of 

additions have been made to these objectives to cater for broadening of the project 

scope which occurred midway through the research process. 

 

1. Research existing theory pertaining to the affect of DC current on power 

transformers as well as review transformer theory. 

2. Investigate saturation with respect to transformers and detail how DC 

injection induces this phenomenon. 

3. Analyse the variation in transformer magnetising characteristics which occurs 

as a result of biased load currents. 

4. Determine the harmonic distortion that can be attributed to the presence of 

asymmetrical currents in a transformer’s secondary winding. 

5. Explore potential sources of DC biasing and look into the severity of these 

sources. 

6. Examine factors that exacerbate and potentially accelerate the adverse affects 

of DC injection.  

7. Investigate the variation in affect due to DC biasing across the variety of 

transformer construction styles that exist and conduct tests to simulate this. 

8. Examine variation in affects for DC injection common across all three phases 

and localized to one or two of the three phases. 

9. Research methods for the alleviation or elimination of the adverse effects of 

DC biasing. 

10. Investigate the creation of software that could model this phenomenon. 

 

In addressing the objectives as defined above a decision was made to initially focus 

upon single phase concepts.  It is believed that this is a necessary stepping stone that 

must be tackled prior to the progression to the more complex three phase system. 
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1.2 Dissertation Layout 
 

In compiling the research material for this project the objectives as defined in section 

1.1 served as the primary source of direction. The following chapters are arranged 

such that each objective is addressed in a logical format. This section provides a brief 

overview of the content covered by each chapter and how this content strives to fulfil 

the project goals. 

 

Provided in Chapter 2 is a brief overview of what a transformer is and how it is 

intended to operate in the ideal sense. Chapter 3 presents a summary of literature 

pertaining to the affect that direct current has on power transformers. This includes 

details of how a transformer’s operational characteristics are altered through the 

presence of a DC bias.  Also, an outline is provided of potential sources of DC and 

methods that can be employed to mitigate the adverse effects of direct current. 

Chapters 2 and 3 address each of the first five objectives and also the 9th objective. 

 

Chapter 4 details the methodology employed throughout this project. This includes 

what each chapter aims to achieve and why these goals are important and necessary. 

It provides a description of how the goals will be met and in some instances a 

prediction of what results are expected. 

 

Chapter 5 looks into sources of direct current bias, a requirement of objective 5. This 

is achieved through investigating two potential sources in the form of computers and 

AC and DC motor drives. Computers are prevalent in domestic and commercial 

installations whilst motor drives primarily exist in industrial applications. This 

chapter aims to asses the significance of any potential contribution. 

 

Chapter 6 assesses the variation in single phase transformer magnetising 

characteristics when a DC bias is present. This chapter addresses specifications 2, 3, 

6 and 7. It provides an insight into magnetising characteristics with DC injection 

when the transformer is operating under no-load and load conditions. 
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Chapter 7 provides the results of tests undertaken to determine harmonic distortion 

characteristics when a secondary direct current component is introduced into a 

transformer operating at rated load. The level of distortion witnessed is compared to 

relevant standards to determine whether it is within limit. This series of testing is in 

accordance with objective 4. 

  

Presented in Chapter 8 is a comprehensive analysis of hysteresis characteristics in a 

single phase transformer. Included in this chapter is a software simulation that can be 

utilised to predict magnetising currents for a transformer exhibiting biased core flux 

behaviour. This addresses the objectives 2, 3, 6 and 10. 

 

Chapter 9 presents the results of preliminary tests conducted to determine the 

magnetising characteristics of a three phase transformer exposed to load bias. The 

content contained in this chapter fulfils the 5th and 6th specifications. Chapter 10 

presents conclusions and recommendations for future work.  
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Chapter 2 

 

Transformer Theory Background 

 
2.1 Basic Operation 
 

The transformer is a static machine that utilises the principle of electromagnetic 

mutual induction to alter voltage and current levels in an AC circuit without affecting 

frequency. It is comprised of two or more coils situated in such a manner that they 

will be linked by the same magnetic flux when an alternating supply is connected to 

one of the coils. Often these coils are referred to as the primary and secondary 

windings. Several coils may be connected in series or parallel to form a winding. 

  

The coils of a power transformer are positioned on a high permeability iron core in 

an endeavour to ensure that the magnetic flux created links all turns and that there is 

minimal leakage flux (Grainger & Stevenson 1994). The windings of a transformer 

are generally either of the core type or shell type construction. Figure 2.1 depicts two 

windings arranged in a core type construction to form a single-phase transformer. It 

can be seen from this figure that the flux is common to both coils. 

 



 

Page 6 

 
Figure 2.1: Two Winding, Core-Type Single Phase Transformer, Open Circuit Secondary 

 

Figure 2.1 illustrates the ideal transformer condition. That is the core is considered to 

have infinite permeability which in turn results in zero leakage flux. If this 

assumption is upheld and core losses and winding resistance are considered 

negligible, then it can be seen that the terminal voltages PV  and SV  will be equal to 

the voltages PE  and SE  which are induced by the changing flux. Then, through 

application of Faraday’s Law (Grainger & Stevenson 1994) the following 

relationships are found to exist: 

 

dt
dNEV PPP

φ==     (2.1) 

dt
dNEV SSS

φ==    ̀  (2.2) 

 

PN  and SN  represent the number of turns on the primary and secondary coils whilst 

φ  represents the instantaneous value of flux. If a sinusoidal supply is assumed then 

the flux will also vary in a sinusoidal manner. Division of the two equations above 

will yield the following ratios: 

 

S

P

S

P

S

P

N
N

E
E

V
V

==     (2.3) 
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2.1.1  No-Load Operation 

 

The transformer shown in Figure 2.1 is operating under no-load conditions. In this 

state, a small current defined as the no-load current ( OI ) flows. This current is 

comprised of two components and is represented by Equation 2.4 as follows: 

 

cmo III +=      (2.4) 

 

When operating under no-load conditions current oI lags the supply voltage by an 

angle oΦ . Component mI  lags PV  by 90° and represents the magnetisation current 

that creates the magnetic field within the iron core. Component cI is in phase with 

PV  and represents the hysteresis and eddy current losses (Jenneson 1999). The two 

no-load components can be represented as follows: 

 

oom sinII Φ=     (2.5) 

ooc cosII Φ=     (2.6) 

 

2.1.2 Loaded Operation 

 

When a load is applied to the secondary of a transformer a secondary current ( SI ) 

will flow. This is shown in Figure 2.2. As a result of sI  the secondary winding will 

produce a flux (often referred to as the demagnetising flux) which will oppose the 

flux generated by the additional component of primary current (Jenneson 1999). This 

will ensure that the mutual flux remains relatively unchanged. This should be the 

case provided the supply voltage is held constant. 
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Figure 2.2: Two Winding, Core-Type Single-Phase Transformer-Loaded Secondary 

 

Assuming ideal conditions with a symmetric load current, the ratio of primary 

current to secondary current is inversely proportional to the corresponding voltage 

and turns ratios. This relationship is shown in Equation 2.7. 

 

P

S

S

P

S

P

I
I

N
N

V
V

==     (2.7) 

 

Transformer impedances can be referred to either the primary or the secondary. The 

supply side impedance is: 

 

P

P
in I

V
Z =      (2.8) 

 

The load side impedance is: 

 

S

S
L I

V
Z =      (2.9) 

 

It can then be seen that the supply side impedance is related to the load side 

impedance in terms of the turn’s ratio (a =
S

P

N
N

) as shown by Equation 2.10. 

 



 

Page 9 

Lin ZaZ 2=      (2.10) 

 

The transformer configuration depicted in Figure 2.2 can be represented by an 

equivalent circuit as shown in Figure 2.3. This equivalent circuit includes the ideal 

transformer. In the diagram below PR and PX  represent the resistance and reactance 

of the primary winding while SR and SX  represent the resistance and reactance of 

the secondary winding. 

 

 
Figure 2.3: Transformer Equivalent Circuit 

 

Further simplification can be achieved through referring impedances to the primary 

or secondary and collecting like terms. Figure 2.4 illustrates this with the impedances 

referred to the primary side. In this circuit the effect of the shunt impedance has been 

neglected and the resistance and reactance have been represented as follows: 

 

SPep RaRR 2+=     (2.11) 

SPep XaXX 2+=     (2.12) 

 

The primary current is: 

 

a
I

II S
S

'
P ==      (2.13) 
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Figure 2.4: Simplified Equivalent Circuit Referred to the Primary 

 

 

2.2 Core Saturation 
 

Core saturation is one of the primary factors limiting the performance of a 

transformer. The transformer core cannot support an infinite magnetic flux density 

and exhibits the tendency of saturation at a certain level of magnetomotive force. 

Increases in magnetomotive force beyond this level do not yield a proportional 

increase in magnetic field flux. The level at which a transformer will enter saturation 

is generally dependent upon the material that has been utilised in the core as well as 

core construction and dimensions. Some potential causes of core saturation are over 

voltage on the primary winding, operation below rated frequency and/or an offset 

load current (Kuphaldt 2003). 

 

 

2.3 Hysteresis 
 

The flux “flow” within a transformer core changes direction at a rate set by the 

supply frequency. During this change in flux direction the magnetomotive force will 

reach zero. At this same point the magnetisation of the core will not have reduced to 

zero. The magnetisation remaining when the magnetic field has been returned to zero 

is known as the remanence. In order to obtain zero magnetisation a force known as 

the coercive force must be applied in the form of a reverse magnetic field. If an 



 

Page 11 

alternating magnetic field is applied to a magnetic material such as a transformer 

core then the magnetisation will trace out a path known as the hysteresis loop. This 

phenomenon is illustrated in Figure 2.5 (Nave 2000). 

 

 
Figure 2.5: The Hysteresis Loop 

(Nave 2000) 

  

The alternating flux within the transformer core causes corresponding changes in the 

alignment of molecules. The forces causing this change consume energy and thus 

cause a loss in the form of heat. This loss is commonly referred to as the hysteresis 

loss. The hysteresis characteristics of a transformer are very much dependent on the 

type of material used in the core (Jenneson 1999). 
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Chapter 3 

 

Transformer Operation with DC Bias 

 
3.1 Theory of Effect 
 

When a transformer supplies a secondary current containing a DC component, a 

unipolar flux is established in the core. This flux accompanies the bipolar flux that is 

created as a result of the alternating component of current. This is illustrated below 

in Figure 3.1. The direction of this DC flux is dependent on the sign of the DC offset. 

 

 
Figure 3.1: Single Phase Transformer Operating Under Asymmetrical Load Current 

Conditions  

 

Under pure symmetric load current operating conditions a flux is produced in the 

secondary which opposes the flux created by the additional component of primary 
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current. Hence the mutual flux remains relatively unchanged. It can be shown that 

the flux created in the secondary as a result of the DC current component will not be 

reflected to the primary. 

 

Through analysis of the equivalent circuit for a transformer shown in Figure 3.2 it 

can be seen that the DC current in the secondary will not be reflected to the primary 

as a result of the magnetising reactance. The magnetising reactance will appear as a 

dead short to the DC component of current due to the fact that DC has a frequency 

equal to zero. The inductive reactance can be modelled using Equation 3.1. 

 

FLXL Π= 2     (3.1) 

  

With DC current 0=F 0=∴ LX  

 
Figure 3.2: Transformer Equivalent Circuit Showing Secondary DC Current Path 

 

With the magnetising reactance appearing as a dead short, the DC component of 

secondary current will take the path as shown in Figure 3.2. As a result of this there 

will be an excess component of flux present in the secondary that is not being 

cancelled by a corresponding component in the primary. If the transformer is 

operating close to the knee point on the saturation curve or in other words close to its 

limits, it could be pushed into saturation by the additional component of flux. This 

trend is shown in Figure 3.3 where the flux offset is evident. 
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Figure 3.3: Flux Waveform Offset Resulting from Biased Current Waveform 

 

Often the supply to a transformer can be considered as an infinite bus and thus the 

following relationship exists: 

 

φ∝V      (3.2) 

 

Thus it can be assumed that the flux remains constant.  

 

The relationship between flux, magnetising reactance and magnetising current can be 

defined as follows: 

 

mmIX∝φ     (3.3) 
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If the transformer enters saturation as a result of the presence of DC current in the 

secondary then an increase in magnetising current must occur to maintain the 

constant flux. Hence if magnetising current increases a corresponding decrease in 

magnetising reactance will occur in accordance with the relationship described 

above. Another point that must be noted is that Equation 2.7 will not hold since the 

extra secondary DC component of current will not be reflected to the primary. 

 

 

3.2 Specific Affects 
 

The presence of a DC current component in the load current of a power transformer 

can result in a range of adverse affects. Studies conducted, have shown that there is a 

variation in these affects across the range of transformer construction styles 

(Fujiwara et al. 1994). Following is an overview of the effects, however no 

differentiation is made between varying construction styles. 

 

3.2.1 Saturation and Generation of Harmonics 

 

It has been established that one of the major effects on a transformer operating under 

a biased load current is the tendency towards half cycle saturation (Bolduc et al. 

1997). During the saturated half cycle interval an increase in magnetising current 

will be experienced. This will result in a non-linear current waveform containing an 

assortment of odd and even harmonics (Price 2002). This is a particularly 

undesirable condition, one which is recognised in the standard ANSI/IEEE 

C57.12.00-1987, IEEE Standard General Requirements for Liquid Immersed 

Distribution, Power and Regulating Transformers, which states that power 

transformers should not be expected to carry load currents with a harmonic factor 

greater than 5 percent of rating (Baranowski et al. 1996).  

 

With a DC bias present, transformers become a significant source of harmonics (De 

La Ree, Liu & Lu 1993). This harmonic distortion adversely affects the network 
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through degradation of the power quality experienced by other equipment connected 

to the affected transformer. 

 

3.2.2 Power Considerations 

 

An effect which can also stem from core saturation is increased VAR absorption 

(Price 2002). This can be explained by realising that core saturation results in an 

increase in magnetising current which is basically an inductive current. Increases in 

this inductive current will result in greater reactive power loss across the magnetising 

reactance (Ahfock, A 2004, pers. comm., 18 August). Thus if the existing load 

current through the transformer is inductive rather than capacitive (which is often the 

case) then the overall reactive power (VAR absorption) will increase as a result of 

the increased magnetising current. If saturation is severe the VAR absorption will 

become noticeable, along with an associated decrease in displacement power factor. 

This is a particularly undesirable feature is it indicates increased losses. 

 

3.2.3 Overheating 

 

Another effect that can be attributed to biased transformer load currents is 

overheating. Overheating can initially be seen to be manifested in the windings of a 

transformer as a result of the increased harmonic distortion and the skin effect.  

 

When a transformer enters the saturated region of operation as a result of DC bias 

extra harmonics are generated. These harmonics at there elevated frequency levels 

encounter greater resistance as a result of the skin affect. This in turn exacerbates 

heating affects through increased RI 2  losses (Sharma, R 2004, pers. comm., 25 

August).  

 

Another heating effect that has been pinpointed as the cause of transformer failure is 

severe eddy current heating of a winding. This effect is particularly evident in 

transformers with high current windings such as generator transformers. It has been 
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surmised that this effect occurs due to the variation in magnitude and direction of 

leakage flux during the half cycle saturation interval. This is said to cause an 

increased component of flux perpendicular to the major dimension of the winding 

strands (Fujiwara et al. 1994).  

 

When a transformer enters saturation the flux is forced to seek paths exterior to the 

core (De La Ree, Liu & Lu 1993). This often has the affect of overheating of 

components within the transformer such as brackets and bolts and even the 

transformer tank itself (Jewell & Warner 1999). Studies have shown that the tie plate 

within a transformer is particularly susceptible to DC induced saturation, 

experiencing rapid temperature rise as a result (Bolduc et al 1997). 

 

For oil immersed transformers DC saturation induced overheating also has the effect 

of increasing levels of CO and CO² gases (Fujiwara et al. 1994). Accumulation of 

these gases can cause operation of Buckholtz protection, thus removing the 

transformer from service (Cardoso et al. 1998).  

 

3.2.4 Acoustic Noise Emissions 

 

A transformer driven into the saturated operating region as the result of DC bias will 

produce greater levels of acoustical noise. Studies have shown that relatively small 

levels of DC voltage on a transformer’s lines can cause the device to emit greater 

levels of noise.  

 

There are a number of mechanisms that produce this noise. Firstly the Lorentz Force 

Acoustic Signal (LFAS) causes mechanical forces between core laminations hence 

inducing rattling and thus noise. This particular form of noise production is largely 

dependent on construction style. 

 

The next form of noise stems from the rotation of magnetic domains. This form of 

noise becomes a concern when the transformer enters saturation and the 
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magnetostriction becomes large and movement is experienced within core 

laminations (De Leon et al. 2000). 

 

3.2.5 Corrosive Effects 

 

A particularly adverse impact arising from biased transformer load currents is that 

corrosive affects are accelerated. The injection of DC can create ground currents 

which can rapidly corrode equipment (Ledwich & Masoud 1999). 

 

3.2.6 Residual Magnetism 

 

The magnetic history of a transformer operating under asymmetric load conditions 

cannot be discounted. With a DC bias present transformers can exhibit residual 

magnetism. This is particularly evident in those which have a tank. If the gap 

between the tank and the transformer core is small, any residual magnetism is likely 

to impact significantly upon the magnetising currents and hysteresis characteristic 

(Fuchs, Roesler & You 1999).  

 

3.2.7 External Considerations 

 

The effect of asymmetric currents on power transformers will be dependent on a 

number of external factors. If a transformer is operating at or above rated voltage the 

effects of DC offset are likely to be accelerated. Ambient temperatures will govern 

the severity of heating effects as well as transformer loading. 

 

 

3.3 Sources of DC Bias 
 

A DC bias is experienced by a transformer when the load current through that 

transformer is not perfectly symmetrical. Such a bias can originate from a number of 

sources, some of which are listed below. 
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• Geomagnetically induced currents (GIC) 

• Photovoltaic (PV) systems grid connected without mains frequency 

transformers  

• AC and DC drives 

 

3.3.1 Geomagnetically Induced Currents 

 

Geomagnetically induced currents flow on the surface of the earth as a result of solar 

magnetic disturbances (Al-Haj & El-Amin 2000). An example of such a disturbance 

occurred on March 13, 1989 in the form of an intense magnetic storm which 

impacted upon the Northern Hemisphere. This storm was attributed with the general 

failure of the Hydro-Quebec power system (Dutil et al. 1992). These currents can 

flow in power system transmission lines and transformers through entering and 

exiting the earthed neutrals of star connected equipment.  

 

This form of DC bias is characterised by very low frequencies of the range 0.01-

0.001 Hz and as such is often referred to as quasi DC. GIC magnitudes of the order 

of several hundred amperes in neutrals have been observed in Finland and Sweden. 

More typical values of 10-15A were reported in the National Grid Company 

transmission system in England and Wales (Price 2002). 

 

3.3.2 Photovoltaic Systems 

 

Another source of DC bias that can adversely affect transformers stems from the use 

of photovoltaic systems that are directly grid connected without a mains frequency 

transformer. In Queensland the power distribution authority Energex has created a 

policy allowing the direct connection for renewable energy generation up to 30 kVA 

(3-phase) or 10 kVA (1-phase) (Khouzam 1999). Photovoltaic systems that are 

connected via an inverter to the grid can cause a DC bias due to the following 

mechanisms (Ledwich & Masoud 1999): 
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• Imbalance in on state impedances of switches 

• Different switching times for switches 

• Imperfection in implementing timing of drivers 

 

It must be noted that the Australian Standard AS4777.2-2002 (Grid connection of 

energy systems via inverters) does impose strict limits on the level of direct current 

injection. The standard states that the level of DC output current of an inverter shall 

not exceed 0.5% of rated output current or 5 mA, whichever is greater.  This 

however is not a worldwide standard. If a large number of inverter interfaced 

systems are grid connect the DC effect may be cumulative. 

 

3.3.3 AC and DC Drives 

 

AC and DC drives are a significant source of DC injection in industry. Studies have 

shown variable frequency drives to have asymmetrical input current waveforms 

when operated at maximum output (Swamy & Rossiter 1998). The severity of this 

DC injection will be dependent upon the type of conduction devices utilised (e.g. 

diodes and thyristors) and the quality of device matching. 

 

With respect to DC drives there a number of drive topologies that can inject 

significant components of DC. The half-wave rectifier is notorious for injection of 

DC however it’s practical use is limited. The three phase half controlled rectifier can 

also be a source of DC injection (Swamy & Rossiter 1998). 

 

 

3.4 Mitigation of the Effects of DC Injection 
 

Mitigation of the effects of DC can generally be approached from two angles. Firstly 

there are those measures that can be implemented to alleviate effects at the 

transformer. Secondly there are those measures that can be undertaken on equipment 

connected to a transformer to prevent DC injection. 
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3.4.1 Transformer Related Measures 

 

From a transformer construction viewpoint there are a range of measures that can be 

implemented. At the initial design phase allowance can be built into core parameters 

to cater for any DC injection. Where it is known that a load is likely to contain a 

large DC component, use of a Zig-Zag transformer may be advantageous. The main 

benefit of the zigzag connection is that the currents in the two halves of the windings 

on each leg of the transformer flow in opposite directions. Thus any DC component 

is cancelled. The drawback of this method is that it is generally more expensive to 

construct (Sankaran 2000). 

 

Another method that has been proposed to negate the effects of DC bias is to utilize a 

symmetric transformer construction style. Shown below in Figures 3.4 (a) and (b) are 

the horizontal cross sections of the asymmetric and symmetric models.  

                                                                            

      (a)         (b) 
Figure 3.4: (a) Horizontal Cross-Section for an Asymmetric Transformer; (b) Horizontal Cross-

Section for a Symmetric Transformer (Fuchs, Roesler & You 1999) 

 

Studies conducted by Fuchs, You and Roesler (1999) at the University of Colorado, 

Boulder suggested that the magnetising currents of a transformer arranged in a 

symmetric style would generate no triplen harmonics and the effects of any DC bias 

currents would be suppressed. 
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GIC currents find their way into power systems by way of the directly earthed 

neutrals of certain three phase equipment. A method proposed to eliminate the 

effects of this form of DC bias is the installation of a Neutral Blocking Device 

(NBD). An NBD (usually a capacitor) is inserted between the earth point and the 

neutral star point of the effected equipment. The capacitor does not allow the path of 

DC current thus negating the effects of GIC currents (Dutil et al. 1992). 

 

The residual magnetism of a transformer’s core and tank can impact significantly 

upon magnetising current characteristics (Fuchs, Roesler & You 1999). Certain 

studies have shown that non-magnetic steel plate utilised in transformer construction 

does not experience significant temperature rise as a result of DC bias (Bolduc et al 

1997).  Hence use of non-magnetic materials during transformer construction can be 

beneficial in not only reducing residual magnetism but also in alleviating heating 

effects. 

 

3.4.2 Equipment Related Measures 

 

The most successful measure that can be implemented to combat the adverse effects 

of DC injection from an equipment perspective is the creation of standards to govern 

the allowable level of DC injection. There has been some progress along this path 

with standards such as the Australian Standard AS4777.2-2002 (Grid connection of 

energy systems via inverters) stipulating maximum levels of DC injection (Khouzam 

1999). This standard states that the level of DC output current of an inverter shall not 

exceed 0.5% of rated output current or 5 mA, whichever is greater. Also the IEEE 

519 standard proposes limits for voltage and current harmonic distortion as will be 

seen in Chapter 7. 

 

From a technical viewpoint and with respect to directly grid connected photovoltaic 

inverters a number of schemes have been investigated in an attempt to prevent DC 

injection. Examples of these schemes include closed loop control and voltage 

feedback control (Ledwich & Masoud 1999). 
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Chapter 4 

 

Methodology 

 
4.1 Overview 
 

Chapter 2 presented a brief overview of transformer operation based on ideal 

conditions. Chapter 3 provides the results of a literature review which outlines the 

theoretical variation in transformer operation when exposed to a biased secondary 

current. The ideal model for a transformer is shown to be invalidated through the 

presence of a secondary bias current. Specific adverse effects are presented and 

potential sources of DC bias are established. Methods for the mitigation of the 

adverse effects of offset transformer load currents are also explored.  

 

The proceeding chapters aim to validate, clarify and expand upon the theoretical 

concepts that have been documented. This chapter aims to detail the process that 

shall be undertaken to achieve this. The reasoning behind chosen courses of action 

will be detailed and where possible predictions shall be made to pre-empt results. 
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4.2 Outline of Chapter Purpose and Methodology 
 

This section provides an overview of the purpose and methodology employed in 

each of the proceeding chapters.  

 

4.2.1 Chapter 5 – Sources of DC Bias 

 

Section 3.3 listed a number of potential sources of DC bias. That there exists a 

realistic source of DC bias is critical to the relevance of this project. Without a 

credible source of direct current there is little point in pursuing investigations into the 

adverse effects that DC current can have on power transformers. Chapter 3 

established Geomagnetically Induced Currents as a significant source of direct 

current. There have been numerous studies conducted into this phenomenon. As such 

further investigations are unlikely to yield any new contributions. Also equipment 

and time limitations present themselves as considerable obstacles to further analysis 

of the GIC problem. Hence alternate sources of bias will be researched. 

 

Chapter 5 investigates sources of DC that are likely to occur in domestic, 

commercial and industrial applications. Namely the direct current contributions of 

personal computers (PC’s) and AC and DC drives are analysed.  

 

The personal computer can be found in great numbers in commercial establishments 

such as libraries and office buildings and many domestic dwellings have a PC. In 

general, PC’s interface to the 230 V mains via a switch mode power supply. It is 

hypothesised that this interface could potentially act as a source of DC bias.  

 

AC and DC motor drives exist in large numbers in industry and they often represent 

a large portion of the load connected to an establishments supply transformer. As 

such their contributions if significant could potentially represent a serious source of 

direct current bias. 
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The analysis of the DC bias created by AC and DC drives will entail recording a 

minimum and maximum value for DC injection across each unit’s three line side 

phases. Measurement will be achieved through use of a DC current clamp utilising 

hall-effect technology. A range of drives will be tested including both AC and DC 

topologies with a variety of different manufacturers and ratings. The aim is to gain a 

representative cross section of the drives that are in use in industry today. The results 

obtained will be evaluated to determine whether the direct current component present 

(if any) follows a consistent pattern across the test sample. This will provide an 

indication as to whether the combined DC currents of a number of units exhibit a 

cumulative or cancelling affect.  

 

The analysis of the DC offset created by personal computers will be achieved 

through use of an ammeter connected in series with the line side of the PC supply. 

This is possible due to the single phase nature of computers and their relatively low 

current requirements. With the meter in circuit measurement of the direct current 

average, minimum and maximum will be possible. An analysis of the results 

achieved once again will aim to identify whether or not a consistent injection pattern 

exists. That is, is there always a positive offset or does the sign of the offset vary 

from one unit to the next? This will assist in determining whether the effects of 

multiple computers DC injection are cumulative or whether cancellation occurs. 

 

4.2.2 Chapter 6 – Single Phase Analysis – Magnetising Characteristics 

 

The next step undertaken in the fulfilment of the project specifications was to 

determine the effect that a biased secondary current has on a transformer’s 

magnetising characteristics. This initial analysis was conducted on the basic single 

phase case. A solid understanding of single phase concepts should be gained before 

the progression to three phase applications is undertaken. Many of the adverse 

effects that stem from the presence of a direct current in a transformer’s secondary 

winding can be attributed to the variation in the unit’s magnetising characteristics. 
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To begin this analysis, tests will be conducted on a 1.2 kVA single phase transformer 

operating under zero AC load conditions. The only load connected to the unit 

secondary will be via a diode thus creating a half-wave rectifier. The secondary load 

will be variable thus allowing for a variable secondary direct current. For each level 

of secondary bias a number of primary parameters will be recorded. This will allow 

calculation of the magnitude of core loss current and magnetising current. 

 

Existing literature indicates that a biased transformer load current will lead to an 

increase in magnetising current, increased VAR absorption and decreased power 

factor. An evaluation of the test results will be aimed at determining whether the 

effects outlined above actually occur in practice and to what extent.  

 

With the zero AC load magnetising characteristics determined a new series of tests 

will be undertaken where by the magnetising currents will be monitored when the 

transformer is supplying rated AC load in parallel with the half-wave rectified DC 

component. The purpose of this procedure is to ascertain whether there are any 

variations in the transformer magnetising characteristics when operating at full load 

when compared with the zero AC load case. The difficulty with this procedure will 

lie in extracting the magnetising current component from the primary current. 

 

4.2.3 Chapter 7 – Single Phase Analysis – Harmonic Characteristics 

 

It has been established from existing literature that one of the adverse effects that can 

result from biased transformer load currents is increased harmonic distortion. This 

chapter aims to establish the level of harmonic distortion that is generated when a 

transformer’s load current contains a DC component. Prior to presenting the results 

of the harmonic tests, relevant standards pertaining to harmonic distortion limits will 

be researched. An analysis of the factors governing the severity of primary and 

secondary voltage and current harmonic distortion will also be made. 
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Two series of tests will be conducted to determine the harmonic performance of a  

1.2 kVA single phase transformer. Firstly the primary and secondary voltage and 

current harmonic characteristics will be noted, (up to the 9th harmonic and including 

THD) when the transformer is loaded with rated AC current in parallel with a 

variable half-wave rectified current. The relevant trends will be plotted and 

adherence to standards determined. 

 

The next test undertaken is almost identical in arrangement to the first test. The only 

difference is that a capacitor will be placed across the variable DC load. This 

capacitor will serve to smooth the rectified DC voltage. The purpose of this test is to 

determine whether variation will occur in harmonic distortion when the direct current 

waveform shape is altered. Once again the magnitude of the distortion levels will be 

compared to relevant standards to assess compliance. 

 

4.2.4 Chapter 8 – Single Phase Analysis – Hysteresis Characteristics 

 

Chapter 8 will firstly present plots for the 1.2 kVA single phase transformer 

hysteresis curve for a number of secondary DC levels. The hysteresis curve provides 

a suitable method for the graphical depiction of transformer saturation. This chapter 

will also provide the results of a MATLAB program which given a transformer’s B-

H characteristic and value of flux bias will be able to predict the magnetising current 

waveform and RMS value. The B-H characteristic will be obtained from the 

experimental hysteresis plot that was obtained. 

 

4.2.5 Chapter 9 – Three Phase Analysis – Magnetising Characteristics 

 

Chapter 9 provides the results of preliminary tests conducted on a 7.5 kVA three 

phase transformer to determine magnetising characteristics. In a similar fashion to 

the single phase case, zero AC load tests will be conducted. Each secondary phase to 

neutral combination will be biased with a half-wave rectified component. For each 
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bias test the three phase primary parameters will be monitored. Injection phase to 

phase will then be conducted with similar measurements recorded. 
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Chapter 5 

 

Sources of Direct Current 

 
5.1 Overview 
 

There are numerous potential sources of direct current which can bias a 

transformer’s load current. Section 3.3 outlines three significant sources of DC bias, 

namely Geomagnetically Induced Currents, Photovoltaic systems and AC and DC 

Drives. There are however numerous other sources of DC bias. One other potentially 

serious source of direct current stems from non-linear loads such as computers. This 

chapter aims to investigate the level of DC injection caused by computers and AC 

and DC Drives. The results of tests undertaken will be presented.  

 

 

5.2 Computers 
 

Within computers a potential source of DC bias can be seen to originate from the 

switch mode power supply (SMPS). The switch mode power supply serves as the 

interface between the required computer supply voltages and the 230 V mains 

supply. The primary purpose of the SMPS is to act as a DC to DC converter. It 

initially rectifies the alternating supply voltage then it converts the resulting DC into 
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the voltages as required by the PC through use of a “chopper”. Switch mode power 

supplies are not only restricted to computers as they can also be found in Television, 

Video and Audio equipment. 

 

The ideal switch mode power supply draws a symmetrical current with zero DC 

offset. However, imperfections in conduction devices can lead to asymmetry and 

hence the creation of a DC bias. This section aims to determine the level of DC bias 

(if any) that computers are responsible for. 

 

5.2.1 Test Theory and Method 

 

A total of ten desktop computers were tested to determine if a measurable line side 

DC component actually existed. The aim was to gain a representative sample of the 

PC’s that are in use today. As such the sample tested consisted of a range of different 

manufacturers, ratings and styles (laptop/Desktop). The sample also contained a 

wide range of different aged PC’s. One of the PC’s tested had an INTEL 486 

processor. 

 

The test was conducted with a multimeter set to the DC milliamp range inserted in 

series with the line side active supply. The meter utilised, had the capability of 

monitoring the minimum, maximum and average signal values. To gain an accurate 

picture of these time varying quantities the test was conducted over a ten minute 

period after which the necessary values were recorded. Whist the test was conducted 

a Windows Media application was run on each PC to simulate normal operating 

conditions. 

 

5.2.2 Test Results and Analysis 

 

The results of the tests are provided in Table 5.1. An initial analysis of these results 

indicates that the level of DC noted was by no means constant. The overall trend 

does however exhibit consistency in that every computer tested displayed a positive 
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DC offset in its line side current. In fact for the ten units tested an average DC 

component of 11.3 mA was recorded.  

 

DC Injection Tests for Computers 

Style and Power 

Supply Size 

Minimum Value 

(mA) 

Maximum Value 

(mA) 

Average Value 

(mA) 

Desktop (400 W) -57 56 17 

Desktop (250 W) -44 43 12 

Desktop (200 W) -38 30 6 

Desktop (350 W) -44 43 11 

Desktop (350 W) -41 51 13 

Desktop (250 W) -44 44 13 

Desktop (300 W) -33 34 10 

Desktop (350 W) -42 49 11 

Desktop (400 W) -57 74 16 

Laptop (90 W) -15 26 4 

Average Minimum Value = -41.5 mA 

Average Maximum Value = 45 mA 

PC Average = 11.3 mA 

Table 5.1: Results for Measurement of DC Load Current Component for Computers 

 

There are a number of implications that accompany these findings. Firstly, a 

computer does represent a source of DC bias even though the level is relatively 

small. Secondly, if there are a number of computers connected to a common bus 

there may be a cumulative effect in which the DC bias of each unit is of the same 

sign and hence adds. One must however be cautious in stating this second 

implication. The sample size utilised was only ten. To confidently state that there is a 

consistent cumulative effect would require a test be conducted with a much larger 

sample size with supporting results. Also, increasing the test duration would allow 

greater confidence to be attributed to findings. 

 

These findings are however important. This is particularly the case in commercial 

establishments, such as universities and offices, where it is possible that hundreds of 
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computers will be connected to a common bus and hence a common transformer. If a 

cumulative DC effect does occur the resulting DC bias could be of a considerable 

magnitude. 

 

 

5.3 AC and DC Drives 
 

AC and DC drives are one of the most serious potential sources of DC bias in 

industry. Drives are used in applications where it is necessary to control the speed of 

a motor. This form of control is prevalent throughout industry. There are a variety of 

conduction topologies that can be utilised to achieve either an AC or DC adjustable 

speed drive arrangement. Some of these arrangements are more likely to create DC 

offset than others. This section will present the results of experimental work 

conducted on a range of drives with the aim of quantifying the level of DC that can 

potentially be created. 

 

5.3.1 Test Theory and Method 

 

A range of AC and DC drives were chosen for the test sample at Tully Sugar Mill in 

Far North Queensland. The drives chosen covered a broad range of ratings with a 

number of different manufacturers. Also the applications they were utilised in varied 

considerably from a simple conveyor belt to a mud pump drive. 

 

The measurement of direct current was achieved through use of a DC current clamp 

utilising hall-effect technology. The point of measurement was on the line side of 

each unit. The procedure undertaken to determine the DC bias component entailed 

measuring each phase’s contribution for a five minute period. During each period a 

minimum and maximum value for bias was recorded. 
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5.3.2 Test Results and Analysis 

 

The results of the tests conducted are presented in Table 5.2 and Table 5.3. The level 

of DC figure displayed represents the minimum and maximum value that was 

recorded for all three phases. 

 

AC Drives 
Manufacturer Model Rating (kW) Level of DC( mA) 

Allen-Bradley Powerflex 70 7.5 2-20 

Control Techniques 

 
 
 
 
 
 
 
 
 

Unidrive VTC 

Commander CDV 

Commander CDE 

Unidrive VTC 

Unidrive VTC 

Unidrive VTC 

Unidrive VTC 

5.5 

7.5 

22 

22 

30 

55 

160 

8-14 

10-30 

13-55 

400-1100 

-500-2300 

500-1900 

600-1600 

Toshiba VF-A3 

VF-A3 

Tosvert-130G2 

3.7 

7.5 

4 

-10-30 

30-200 

10-50 

Zener Zener 11 6-10 

Table 5.2: Results for Measurement of DC Load Current Component for AC Drives 

 

DC Drives 
Manufacturer Model Rating Level of DC (A) 

Control Techniques 

(Slat Conveyor) 
Mentor II 75 kW 2.3-4.8 

Control Techniques 

(Rubber Belt) 
Mentor II 75 kW 0.2-1.6 

Control Techniques 

(Bosco Fugal) 
Mentor II 75 kW 0.3-1.2 

Control Techniques 

(High Grade Fugal) 
Mentor II 410 A 0.6-1.7 

Table 5.3: Results for Measurement of DC Load Current Component for DC Drives 
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The results displayed in the Tables on the previous page indicate that in some 

instances the level of DC injected by a unit can be considerable however a large 

amount of variation is also noted. The level of bias does seem to have a loose 

relationship with the size of the drive. 

 

Over the entire sample the sign of the direct current was most often positive; 

however there were isolated cases where the variation in bias extended into the 

negative region. The measurement equipment utilised did not have the capability of 

recording an average value as with the PC test case. As such caution is once again 

taken regarding whether a cumulative effect is likely to occur. Further tests need to 

be conducted with a larger sample size and with equipment that provides an average 

value for direct current. 

 

There however is an indication that AC and DC drives are indeed a significant 

source of DC bias. Assuming a cumulative effect and with magnitudes as depicted in 

the results, the severity of this form of DC source could potentially be substantial. 

When the drive controlled loads represent a large portion of a supply transformer’s 

connected load (as at Tully Sugar Mill) the effect could be magnified. 
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Chapter 6 

 

Single Phase Analysis – Magnetising Characteristics 

 
The initial step in understanding the effect of DC current on power transformers is to 

gain a solid understanding of the effects of direct current on single phase 

transformers. This chapter will present the results and analysis of experimental 

procedures conducted on a single phase transformer under a variety of DC bias 

conditions. To begin with the zero AC load case is analysed. That is, the magnetising 

characteristics for a single phase transformer are analysed when the secondary 

current is purely DC. Next the magnetising characteristics are again analysed 

however this time the secondary is loaded such that rated secondary current flows as 

well as a DC component.  

 

6.1  Zero AC Load Test 
 

The primary aim of this series of tests was to determine the magnetising 

characteristics of a single transformer when exposed to DC biased load current 

conditions. The most accurate way to achieve this is to arrange the transformer such 

that there is no secondary alternating current component. The secondary should only 

have direct current flowing in it. Hence any variations in magnetising characteristics 

are attributed to deviations in the secondary DC component. 
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6.1.1 Test Theory and Method 

 

The test circuit utilised to complete this phase of testing is illustrated below in Figure 

6.1. This circuit illustrates two identical 1.2 kVA single phase transformers 

connected in such a manner that their secondary voltages oppose and as such cancel. 

This technique is utilised so as to ensure that there is no secondary AC current 

present and hence no secondary alternating flux.  

 

The secondary DC component is injected through use of a 12 volt battery and a 

variable resistive load. Diode D1 is in place to ensure that any small amount of 

alternating current is half wave rectified. The presence of a small alternating 

secondary component could potentially occur due to small output voltage 

mismatches between transformers 1 and 2.  

 

 
Figure 6.1: Voltage Cancellation Circuit Utilised for No-Load Test 

 

With the circuit arranged as shown in Figure 6.1 the level of DC injected into the 

secondary can be altered through changing the resistance of the variable load. To 

gain an accurate picture of the effects of DC the secondary current was varied from 0 

to 100 mA in increments of 10 mA. Levels of 200, 300 and 400 mA were also tested. 

The primary side parameters of Transformer 1 were monitored through use of a 

Fluke Power Quality Analyser. 
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6.1.2  Test Results and Analysis 

 

The results of the zero AC load tests are provided in Table B.1 of Appendix B. In 

order to be able to determine the transformer magnetising characteristics under zero 

AC load conditions the magnetising current had to be extracted from the no-load 

current. To solve this problem an expression had to be derived for the primary side 

power loss.  

 

Prior to formulating this expression it must be realised that the secondary circuit will 

have negligible effect on primary power loss as there is no secondary AC component 

(due to dual transformer voltage cancelling) and the secondary DC component will 

not reflect to the primary side. However it should also be mentioned that it is the 

secondary DC component that leads to half cycle saturation and thus increased 

magnetising current. The factors contributing to the primary side power loss will be 

the loss associated with the primary winding resistance and the loss associated with 

the core loss current. Hence an expression for the primary side power loss is as 

follows: 

 

SCWRMS VIRIP += 2      (6.1) 

 

where, 

P   = Primary Side Power Loss 

RMSI  = Primary RMS current 

WR  = Primary Winding Resistance 

CI  = Core Loss Current 

SV  = Supply Voltage 

 

The unknown factor in Equation 6.1 is the core loss current. The other factors were 

either obtained from the power quality analyser or measured separately using a 

multimeter. Hence the core loss current is determined as follows: 
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V
RIP

I WRMS
C

2−
=       (6.2) 

 

With the core loss current calculated the transformer magnetising current can now be 

found. To do this the assumption is made that the primary RMS current is comprised 

totally of the core loss current and the magnetising current. This is true provided 

there is no alternating component present in the secondary. The magnetising current 

can be found using: 

 

22
CRMSM III −=     (6.3) 

 

Figure 6.2 illustrates the effect that a secondary DC bias has on core loss current and 

magnetising current.  
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Figure 6.2: Plot of Core Loss Current and Magnetising Current against a Secondary DC Bias 

 

It is evident that the magnetising current rises significantly as the secondary DC 

component is increased. This effect however is relatively subdued until 
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approximately 30 mA of direct current is injected. That is equivalent to 

approximately 23 % of the transformers magnetising current.  

 

The increases in magnetising current are indicative of the effects explained in section 

3.1. That is, the transformer is entering half cycle saturation as a result of the 

secondary DC component. The excess flux in the secondary is not cancelled by a 

corresponding component in the primary and thus to maintain a constant flux the 

magnetising current increases. 

 

An analysis of the Figure 6.2 indicates that there is very little variation in the core 

loss current. The core loss current is comprised of two primary components; the 

hysteresis losses and the eddy current losses. These losses are functions of frequency 

and maximum flux density, neither of which has changed during this test. Hence it is 

expected that there will be very little variation in the core loss current. The small rise 

that does occur can be attributed to a slight mismatch between the secondary 

voltages of the two transformers connected in an opposing manner. 

 

Shown in Figure 6.3 is a plot of real, reactive and apparent power for an increasing 

secondary direct current. This plot verifies the claim that a transformer operating 

under biased load current conditions will exhibit increased levels of VAR absorption. 

The volt amp reactive trend can be seen to resemble the same behaviour as the 

magnetising current from Figure 6.2. This is in line with expectations as the 

magnetising current is a purely inductive current and hence accounts for all reactive 

losses (assuming negligible primary winding leakage reactance). 

 

The trend exhibited for real power absorption is similar to that displayed by the core 

loss current from Figure 6.2. This is also expected as the core loss current is a major 

factor contributing to real power losses. The level of increase is however slightly 

greater and can be attributed to the RI 2  losses across the primary winding. With 

little increase in real power it is evident that the apparent power trend will mimic the 

behaviour of reactive power. This is in evidence in Figure 6.3. 
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Variation in Real, Reactive and Apparent Power 
with a Secondary DC Bias
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Figure 6.3: Variation in Real, Reactive and Apparent Power with a Secondary DC Bias 

 

Figure 6.4 depicts the relationship between displacement power factor and secondary 

DC current. With the large increase in reactive power illustrated in Figure 6.3 it is no 

surprise that the displacement power factor exhibits a downward trend. Once again it 

is evident that there is little variation in the displacement power factor for the first 30 

mA. An interesting observation that can be made is that the gradient of the 

displacement power factor plot reduces towards the end of the scale tested.   
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Figure 6.4: Variation in Displacement Power Factor with DC Bias 
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The next step in the analysis of the results is to inspect the plots of the no-load 

current waveforms. Before completing this however a better understanding should be 

obtained of the flux paths in the transformer core when the arrangement depicted in 

Figure 6.1 is utilised. The direction of the flux created by the secondary DC 

component can be found through simple application of the right hand thumb rule for 

a solenoid. The direction of the flux in the positive and negative cycles as created by 

the transformer magnetising current can be defined in a similar manner. The flux 

paths are illustrated below in Figure 6.5. On analysis of these paths it is evident that 

the flux established by the secondary DC current will reinforce the flux created 

during the positive cycle of the transformer magnetising current. The secondary DC 

flux will have the opposite effect on the flux created during the negative cycle of 

magnetising current. Hence a flux offset will occur as depicted in Figure 3.3.  

 

 
Figure 6.5: Flux Paths Established due to the Secondary DC and Magnetising Current 

 

With the flux paths defined the transformer no-load current waveforms can be 

analysed. Shown in Figure 6.6 (a) and (b) are the plots for the transformer no-load 

current for zero DC injection and for 80 mA DC injection respectively. The most 

evident variation between the two plots is the duration of the negative cycle. The 

negative cycle duration for zero DC injection is 10 milliseconds as one would expect 

with a 50 Hz supply. However with 80 mA DC injected the negative cycle duration 

is reduced to approximately 7.5 milliseconds. This trend can be seen to be 
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manifested in the other no-load current plots in Appendix B. For 400 mA DC the 

negative cycle duration has further decreased to 4 milliseconds. 

 

 

(a) 

 

(b) 

Figure 6.6: (a) No-Load Current Waveform for Zero DC Injection; (b) No-Load Current 

Waveform for 80 mA DC Injection 

 

The decrease in no-load current negative cycle duration is not at all unexpected when 

the characteristics exhibited in Figure 6.5 are considered. As the DC component is 

increased the negative cycle flux is further reduced whilst the positive cycle flux is 
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reinforced. The result is that the net core flux becomes increasingly positive biased. 

This bias reduces the duration of the negative cycle for the flux waveform and as a 

result the duration of the no-load current negative cycle is diminished. 

 

Another very interesting point that is noticed in Figure 6.6 (b) is the relatively large 

magnitude of the negative peak of the no-load current when 80 ma of direct current 

is injected. An analysis of the no-load current waveforms for larger levels of DC 

injection (provided in Appendix B) shows that the value of this peak becomes 

progressively larger.  

 

Prior to explaining this it must be remembered that the secondary DC component is 

not reflected to the primary. This can be verified by placing a DC ammeter in series 

in the primary circuit. Even when a very large DC component is injected in the 

secondary there will be zero direct current present in the primary. Thus no-load 

current remains symmetrical.  

 

When a positive bias exists in a transformer’s secondary load current the flux 

waveform itself becomes biased. As a result of this the duration of the negative cycle 

of magnetising current is reduced. The waveform of this current must however 

maintain symmetry or in other words the area encompassed by the positive half cycle 

must equal the area encompassed by the negative half cycle. Hence to maintain 

symmetry the peak value of the negative cycle progressively increases to compensate 

for a reduction in negative cycle duration. The converse occurs when a negative flux 

bias is induced. 

 

 

6.2 Magnetising Characteristics at Rated Load 
 

The purpose of this series of tests was to determine the single phase transformer’s 

magnetising characteristics with a secondary DC component and rated AC load 

current in the secondary. It is suggested that the presence of rated load current will 

have little effect on the magnetising characteristics which are flux dependent. 
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6.2.1 Test Theory and Method 

 

The primary difficulty that was encountered in this test was extracting the no-load 

current from the load current. A means had to be found from which the effect of the 

load current could be cancelled out. This was achieved through utilisation of the 

circuit depicted in Figure 6.7. To cancel out the effects of the resistive load current 

the primary and secondary load current components had to appear equal but opposite 

to the Power Quality Analyser (PQA) current clamp. To achieve this, the leads to the 

transformer primary and secondary positive inputs must be coiled in such a manner 

that they reflect the transformer voltage ratio (TVR) which is: 

 

5780415240 .:V:VTVR SP ===    (6.4) 

 

The optimum combination to achieve the ratio shown Equation 6.4 is to create a coil 

of 7 turns on the primary input and 12 turns on the secondary input. This yielded the 

following measurement ratio (MR): 

 

5830127 .:MR TURNSTURNS ==    (6.5) 

 

This results in ratio which is approximately 0.87% greater than the ideal ratio.  

 

 
Figure 6.7: Circuit Used to Determine Transformer Magnetising Characteristics at Rated Load 
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With the primary and secondary measurement coils created the PQA current clamp is 

clamped over both coils. The two coils have to be arranged such that the flux created 

by each in the current clamp flows in opposite directions hence cancelling out. With 

this method utilised the resistive current due to the AC load cancels out and the PQA 

only measures the no-load current. The DC current in the secondary is not a problem 

as the current clamp cannot measure DC. There will be a slight error in the current 

measured due to the slight mismatch between the ideal ratio and measurement ratio. 

 

6.2.2 Test Results and Analysis 

 

The results of this series of tests are provided in Table B.2 of Appendix B. The 

method used to calculate the core loss current and magnetising current differs to that 

which was used in Section 6.2. The method employed in Section 6.2 takes into 

account the contribution to primary power loss made by the primary winding 

resistance losses. This is not necessary using the technique shown in Figure 6.7 as 

these losses have been cancelled. Thus the core loss current can be calculated as 

follows: 

 

DPFII RMSC ×= 1     (6.6) 

 

The values for RMSI1  and DPF  were measured and are provided in Table X of 

Appendix X. With the core loss current calculated the magnetising current can be 

computed as follows: 

 

22
CRMSM III −=     (6.7) 

 

Shown in Figure 6.8 is a plot of the core loss current and magnetising current for a 

secondary DC range of 0 to 400 mA. The trend exhibited in this plot is very similar 

to the trend exhibited Figure 6.2 which depicted the zero AC load case. This 

indicates that the presence of an AC load has little effect on the magnetising 
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characteristics and the presence of a secondary DC component causes a large 

increase in magnetising current which can potentially lead to half cycle saturation.  
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Figure 6.8: Plot of Core Loss Current and Magnetising Current against DC Bias 

 

It is noted that the core loss current shown in Figure 6.8 is slightly enlarged on the 

results shown in Figure 6.2. This is attributed to ratio mismatch. 
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Figure 6.9: Variation in Real, Reactive and Apparent Power with a Secondary DC Bias 
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Shown in Figure 6.9 is the plot of real, reactive and apparent power with a secondary 

DC Bias. This plot emulates the results shown in Figure 6.3. The absorption of volt 

amperes reactive with a secondary DC bias present and rated AC load can be seen to 

rise in a fashion almost identical to that which occurred with the zero AC load case.  

 

Figure 6.10 depicts the relationship between displacement power factor and a 

secondary DC component. This trend differs considerably from that which was 

illustrated in Figure 6.4 for the zero AC load case. With a zero DC component the 

displacement power factor is much larger in this instance at a value of 0.72 as 

opposed to the zero AC load case where the zero DC displacement power factor was 

0.27. This large variation can be attributed to the increased core loss current which is 

shown due to the error in measurement ratios. 
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Figure 6.10: Variation in Displacement Power Factor with a Secondary DC Bias 

 

It can be concluded that the presence of a secondary DC component does have a 

significant affect on a transformer’s magnetising current. This has the potential to 

induce half cycle saturation. The level of load on the transformer has little effect on 

this characteristic. As a result of increased magnetising current, increases in VAR 
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absorption are evident and this also has the effect of decreasing displacement power 

factor. 
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Chapter 7 

 

Single Phase Analysis – Harmonic Effects 

 
Chapter 3 established that a transformer operating under biased load current 

conditions will generate greater levels of harmonic distortion. This chapter aims to 

analyse the level of primary and secondary voltage and current harmonic distortion 

created in a single phase transformer when exposed to a DC bias. The level of 

harmonic distortion created will be analysed and compared to relevant standards. 

The harmonic spectrum will be investigated to determine which harmonic orders 

dominate and why.  

 

7.1  Primaries and Secondary Harmonic Distortion  
 

Increased harmonic distortion of a transformer’s secondary load current is created 

through load asymmetry and non-linearity. When a transformer’s secondary current 

contains a DC component asymmetry is induced and hence harmonics are created. 

The presence of a secondary DC bias results in asymmetrical i-v characteristics 

which in turn results in elevated levels of even harmonics and in particular the 

second harmonic (Emanuel & Orr 2000). 

 

Current Distortion limits have been established within the IEEE 519 – 1992 as a 

guide to restricting the level of distortion created by electrical apparatus. These limits 



 

Page 50 

are illustrated in Table 7.1. The maximum allowable current harmonic distortion is 

taken in percent of LI . LI  represents the maximum demand load current at the point 

of common coupling (PCC). The allowable level of current distortion is dependent 

on the short circuit ratio of the system. The short circuit ratio can be defined as the 

ratio of short circuit current at the PCC to the customer’s maximum demand current 

(Colosino, Hoevenaars & LeDoux 2003). 

 

 
Table 7.1: Current Distortion Limits for General Distribution Limits as Defined by Standard 

IEEE 519 – 1992 (Colosino, Hoevenaars & LeDoux 2003). 

 

The level of voltage harmonic distortion that can be attributed to a particular piece of 

equipment is a function of the harmonic currents drawn by that piece of equipment 

and the impedance of the system at the various harmonic frequencies (Colosino, 

Hoevenaars & LeDoux 2003). The level of voltage harmonic distortion on the 

secondary of a transformer is particularly important as the secondary is often the 

point of common coupling for a range of equipment. If a piece of equipment draws a 

biased load current a certain degree of voltage harmonic distortion is likely to be 

created. Hence the voltage quality experienced by other devices will be 

compromised. Certain computing equipment has been found to be particularly 

sensitive to the level of voltage harmonic distortion. Erratic behaviour has in some 

instances been found to occur when the voltage total harmonic distortion (THD) has 

exceeded 5% (Colosino, Hoevenaars & LeDoux 2003) . 
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The standard IEEE 519 – 1992 proposes limits for voltage THD. These limits are 

illustrated below in Table 7.2. The allowable range of distortion is dependent upon 

application. At the high end of the scale a voltage THD of 10% is allowable for 

dedicated systems. The dedicated system includes those arrangements that are 

comprised only of converter loads. At the low end of the scale there are special 

applications (hospitals, airports) which require a voltage waveform which is not 

more than 3% distorted. General systems, which encompass the majority of 

applications, should be supplied with a voltage with THD not greater than 5% and no 

individual harmonic greater than 3% (Colosino, Hoevenaars & LeDoux 2003). 

 

 
Table 7.2: Low-Voltage System Classification and Distortion Limits as Defined by Standard 

IEEE 519 – 1992 (Colosino, Hoevenaars & LeDoux 2003). 

 

The current harmonic distortion on the primary side is important as it will impact on 

those devices that are connected upstream in the power system. The distortion of the 

primary current reflects not only the distortion in the secondary current but also 

distortion in the transformer magnetising currents when operating in the saturated 

region of the B-H curve. 

 

The severity of the effect of primary side voltage harmonic distortion is dependent 

on the system short circuit ratio. If the system which the transformer is connected to 

is relatively large, infinite bus conditions can be assumed. In this instance the effect 

of primary voltage harmonic distortion will be negligible.  
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7.2 Harmonic Analysis – Half-Wave Rectified DC 
 

The aim of this series of tests was to determine the primary and secondary voltage 

and harmonic characteristics when the transformer was loaded with rated AC load in 

parallel with a half-wave rectified DC component. Harmonic trends are illustrated 

and the harmonic levels are analysed to determine if standards have been exceeded.  

 

7.2.1 Test Theory and Method 

 

As stated above the injection of DC was achieved through use of a half-wave 

rectifier. The circuit utilised for the test is illustrated in Figure 7.1. The single phase 

transformer utilised in this test was rated at 1.2 kVA. 

 

 
 

Figure 7.1: Circuit Configuration for DC Injection via Half-Wave Rectifier 

 

The arrangement of this circuit is such that diode D1 only conducts for half the AC 

cycle. Hence the direct current waveform will be as shown in Figure 7.2. The voltage 

and current harmonic characteristics of both the primary and secondary were 

analysed with a FLUKE Power Quality Analyser. 
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Figure 7.2: CRO Screen Shot of Half-Wave Rectified Direct Current 

 

7.2.2 Test Results and Analysis 

 

The results of the tests conducted on the circuit depicted in Figure 7.1 are provided 

in Appendix C. Table C.1 contains the primary voltage and current harmonic results 

whilst Table C.2 contains the secondary voltage and current harmonic results. In 

recording the results it was decided to truncate the harmonic series at the 9th order. 

This was due in part to time limitations and also the fact that the value of harmonics 

above this were in most instances negligible. 

 

Shown in Figure 7.3 is a graph depicting harmonics of 2nd order through to 6th order 

as well as the total harmonic distortion. Whilst the 7th, 8th and 9th orders were 

measured, little variation occurred over the range of secondary DC currents injected.  
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Figure 7.3: Secondary Current Harmonic Distortion with a Secondary DC Current 

 

The distortion patterns displayed in Figure 7.3 are a result of the waveform 

asymmetry induced by the secondary DC bias. This asymmetry has caused a 

significant percentage increase in the 2nd and 4th even harmonics. The 3rd order zero 

sequence harmonic has also experienced a significant percentage increase. The 5th 

order harmonic, whilst of a relatively high magnitude, has not experienced a 

significant percentage increase for the range of secondary DC covered. Its high 

magnitude can be attributed to the existing distortion of the Engineering Block 

supply voltage waveform. 

 

The distortion levels of the harmonics recorded do not exceed even the strictest 

current distortion limits as defined by Table 7.1 for the range tested. For an infinite 

bus supply the level of current distortion would have to be considerably greater to be 

of any real concern. 

 

Figure 7.4 depicts the secondary voltage harmonic distortion that has resulted due to 

the injection of a secondary DC component. Once again the 7th through to 9th order 

components have been omitted due to lack of significant effect. 
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Figure 7.4: Secondary Voltage Harmonic Distortion with a Secondary DC Current 

 

With respect to the voltage distortion limits as established by the IEEE 519-1992 

standard a number of violations are noted in Figure 7.4. The standard states that the 

value for voltage total harmonic distortion for a general system (which we are 

assumed to be working with) should not exceed 5% nor should it exceed 3% for any 

individual harmonic component. The 5% limit for total harmonic distortion is 

exceeded after approximately 270 mA of secondary direct current is injected. The 5th 

order harmonic can be seen to exceed the 3% limit after approximately 210 mA of 

secondary DC is injected. Hence it can be seen that a certain degree of unacceptable 

voltage harmonic distortion has been created. However the level of DC required to 

exceed the limits is large and of the order of 7% to 9% of the transformer’s rated 

current.  

 

Quite large levels of primary current harmonic distortion are noticed on analysis of 

Figure 7.5. The distortion depicted is a combination of the distortion resulting from 

the distorted secondary current waveform and the distortion of the magnetising 

current due to the transformer entering the saturated region of operation. 

 



 

Page 56 

Primary Current Harmonic Distortion vs 
Secondary DC Current

0
2
4
6
8

10
12
14
16

0 30 60 90 120 150 180 210 240 270 300

Secondary DC Current (mA)

%
 D

is
t.

2nd

3rd

4th

5th

6th

THD

 
Figure 7.5: Primary Current Harmonic Distortion with a Secondary DC Current 

 

The primary current will not contain a DC component since the transformer cannot 

reflect its secondary DC bias. Therefore equipment on the line side of the DC biased 

transformer will not be exposed to a zero order harmonic; however the level of other 

harmonics as depicted in figure 7.5 will certainly be elevated. 

 

Primary Voltage Harmonic Distortion vs 
Secondary DC Current

0

1

2

3

4

5

0 30 60 90 120 150 180 210 240 270 300

Secondary DC Current (mA)

%
 D

is
t.

2nd

3rd

4th

5th

6th

THD

Figure 7.6: Primary Voltage Harmonic Distortion with a Secondary DC Current 
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The significance of primary voltage harmonic distortion is dependent on the system 

short circuit ratio. The system for which these tests were conducted on is part of a 

very large distribution system. As such it is safe to assume the system is relatively 

“stiff”. As such the effects of this distortion will be negligible. The results for 

primary voltage harmonic distortion are shown in Figure 7.6. 

  

 

7.3 Harmonic Analysis – Smoothed Half-Wave Rectified DC 
 

The purpose of this test was similar to that of the previous test with the exception 

that the half-wave rectified secondary DC component was smoothed through use of a 

capacitor in parallel with the DC load. The aim was to determine if there was any 

significant variation in the harmonic distortion with the altered DC component. 

 

7.3.1 Test Theory and Method 

 

Shown below in Figure 7.7 is the schematic of the circuit utilised to achieve DC 

injection. This circuit differs from that shown in Figure 7.1 in that it has a capacitor 

in parallel with the variable DC load. This capacitor serves to smooth the half-wave 

rectified DC voltage waveform. When the AC cycle reaches its positive peak the 

capacitor will be fully charged. It will then dispense its charge for the remainder of 

the positive cycle and all of the negative cycle. This will increase the average value 

of the DC voltage waveform and hence the direct current waveform. 

 

 
Figure 7.7: Circuit for Capacitor Smoothed DC Injection via Half-Wave Rectifier 
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Shown below in Figure 7.8 is a CRO screen shot of the smoothed half-wave rectified 

direct current waveform. The value of the smoothing capacitor used in this test was 

10 �F. A larger value of capacitance could have been utilised to improve the 

smoothing effect, however the value used was considered adequate for this test as it 

significantly smoothes the waveform compared to the half-wave rectifier.  

 

 
Figure 7.8: CRO Screen Shot of Smoothed Rectified DC Current 

 

7.3.2 Test Results and Analysis 

 

Both the primary and secondary voltage and current harmonic parameters were 

monitored through use of the FLUKE Power Quality Analyser. The primary and 

secondary results are provided in Appendix C, Tables C.3 and C.4 respectively. Also 

provided in Figures C.1 through to C.4 are the plots of the harmonic components that 

were measured for primary and secondary, voltage and current harmonic distortion. 
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A number of interesting trends were noted. Firstly the level of secondary current 

distortion could be seen to be significantly increased using the injection arrangement 

depicted in Figure 7.7 as opposed to the arrangement utilised in Figure 7.1. The 

direct current waveform created through use of capacitor smoothing induces a 

greater level of harmonics when introduced into the secondary AC current compared 

to the simple half-wave rectified version.  

 

Another interesting affect that was noted using the arrangement depicted in Figure 

7.7 was that the majority of secondary current harmonics measured tended to peak at 

around 120-180 mA after which they either levelled off or decreased. The exception 

to this was the secondary harmonic which continued to display a positive gradient 

over the entire range recorded. This continued increase in the secondary harmonic is 

representative of the increased asymmetry that accompanies the increasing secondary 

component.  

 

The flattening off trend exhibited by the remaining harmonics can be attributed to the 

fact that a constant capacitance was utilised in the DC voltage smoothing procedure. 

The effect that this capacitor had on smoothing the secondary direct current 

component decreased as the level of direct current was increased. The harmonic 

content induced by a smooth DC component is greater than that created by a half-

wave rectified component. Hence it is of little surprise that the harmonics associated 

with the capacitor smoothed secondary DC component level off and in some 

instances even reduce as the effect of the capacitor diminishes. 

 

The increased secondary current distortion does not appear to have appreciably 

affected the level of secondary voltage harmonic distortion. The level of secondary 

voltage distortion with the capacitor smoothed DC component is comparable to the 

half-wave rectified version. The level of voltage harmonic distortion appears to be a 

function of the average level of DC. Little correlation can be found to say that 

currents of the same magnitude but with differing harmonic distortion levels will 

have differing impacts on voltage distortion. In terms of adherence to voltage 
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distortion standards the secondary voltage THD remains within the 5% limit over the 

range tested. In terms of individual harmonics the 5th harmonic exceeds the 3% limit 

after 210 mA is injected. 

 

The increase in secondary current harmonics has led to a corresponding significant 

rise in the level of primary current harmonic distortion as is evident in Figure C.2. 

The 2nd, 3rd and 4th harmonics exhibit very similar trends which after about 120 mA 

increase linearly.  

 

Minimal increase in the primary side voltage harmonic distortion is noted. This is 

indicative of a strong supply. 

 

A visual of the effects of the DC induced secondary voltage harmonic distortion can 

be obtained through comparison of Figures 7.9 (a) and (b). Figure 7.9 (a) depicts the 

secondary voltage waveform for a zero secondary DC component. It is noticed that 

there is an existing flat top effect on both the positive and negative cycles. This is 

indicative of the supply provided in the Engineering Block at USQ. No investigation 

has been made into the cause of this.  

 

Shown in Figure 7.9 (b) is a CRO screenshot of the secondary voltage waveform 

when a secondary DC component of 300 mA is injected. It is evident the voltage 

waveform is only affected on the positive cycle. This can be attributed to the fact that 

the half-wave rectifier only conducts during the positive half cycle. During the 

negative half cycle the secondary current should not contain a DC component. 
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(a) 

 

 
(b) 

Figure 7.9: (a) Secondary Voltage Waveform for Zero DC Secondary Component; (b) 

Secondary Voltage Waveform for 300 mA DC Secondary Component 
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Chapter 8 

 

Flux and Magnetising Current Prediction 

 
A transformer’s operational capabilities are limited to a large extent by the 

characteristics of its core. A transformer cannot support an infinite level of flux and 

hence the relationship between magnetizing current and flux is a non-linear one. This 

chapter aims to analyse the relationship between flux and magnetizing current when 

a single phase transformer is exposed to biased load current operating conditions. An 

overview of relevant theory will be conducted. A number of experiments were 

conducted to determine the flux-magnetising current relationship of a 1.2kVA single 

phase transformer. The methodology employed as well as the results obtained will be 

investigated. A MATLAB program called Magnetising_Current_Prediction.m was 

created to predict a transformer’s primary side magnetising current given a certain 

level of flux bias. An analysis of the process will be undertaken and limitations 

established. The results obtained will be compared with actual experimental data. 

 

 

8.1 Theory Overview 
 

Power transformers are characterised by a non-linear φ−i  hysteresis characteristic. 

This trend is displayed in Figure 8.1. On analysis of the mid point locus of this trend 

a number of operating regions can be isolated. For small values of magnetising 
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current either side of the origin a fairly linear increase in flux is witnessed. Around 

the knee of the curve, which is designated by point ‘f’, a distinctly non-linear 

relationship exists between current and flux. This non-linear characteristic is 

maintained and the transformer can be seen to be entering the saturated region of 

operation in the vicinity of point ‘c’. When in the saturated region large increases in 

magnetising current are required to create noticeable increases in flux. The 

characteristic depicted below is very much dependent on the material utilised in the 

core. 

 

 
Figure8.1: Transformer Flux-Magnetising Current Hysteresis Characteristic 

(Huang et al. 1989) 

 

In general the magnetisation trend for a saturable inductor is given by the following: 

 

)i(LRiv +=
dt
di

    (8.1) 

 

Through a process of integration the following can be obtained: 

 

�v �= Ridt �+ )i(Ldt �= Ridi �+ ϕddt  (8.2) 
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Hence, 

 

�=Φ v �− Ridt dt     (8.3) 

 

Often the effect of the winding resistive voltage drop (represented byRi ) is 

neglected. This results in a certain amount of error. The magnitude of this error 

decreases for larger transformers due to the lower winding resistance. The 

magnetisation trend for a transformer must also take into account the effect of 

multiple turns in windings. As such the flux in a transformer can be determined as 

shown in Equation 8.4 (Calabro, Coppadoro & Crepaz 1986). 

 

�=Φ v
N
1

dt      (8.4) 

 

It should be noted that the relationship for flux given in Equation 8.4 cannot account 

for a unidirectional component of flux created by a secondary DC component when 

‘v ’ represents the primary side voltage. The DC component of flux can be derived 

as shown in Equation 8.5. 

 

ℜ
=Φ MMF

     (8.5) 

 

In equation 8.5 ‘MMF ’ represents magnetomotive force whilst ‘ℜ ’ indicates 

reluctance. The relationship for magnetomotive force and reluctance are provided in 

Equations 8.6 and 8.7 respectively. 

 

NIMMF = , Ampere-turns   (8.6) 

A
l

µ
=ℜ      (8.7) 

 

The terms specified in the reluctance equation can be defined as follows: 
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l  =  length of magnetic circuit 

µ  = core permeability 

A  = core cross-sectional area 

 

Hence when a secondary DC current is present in a transformer’s load current, a DC 

flux is created. This flux will induce a net flux bias within the transformer core. This 

is shown in Figure 3.3. The net flux in the core will be given by the following: 

 

dcacnet Φ+Φ=Φ     (8.8) 

 

One final point that can be mentioned in regards to the relationship between AC flux 

and magnetising current is that they are in phase. Equation 8.4 depicts the flux as 

being the integral of the sinusoidal supply voltage. This integral will equate out to a 

negative cosine function which lags the supply voltage by 90 degrees. Similarly the 

magnetising current is purely inductive as it can be attributed entirely to the 

magnetising reactance. This inductive current will also lag the supply voltage by 90 

degrees and thus be in phase with the alternating component of core flux. 

 

 

8.2 Practical Hysteresis Measurements 
 

A transformer’s hysteresis curve provides a graphical representation of the 

magnetisation characteristics of the unit. This section will present actual results of 

hysteresis tests undertaken on a 1.2 kVA single phase transformer. The methodology 

employed as well as the validity of results will be detailed. 

 

8.2.1 Test Theory and Method 

 

The circuit utilised in this experimental procedure relies on the fact that the flux is 

the integral of the applied voltage. The integration of the supply voltage is achieved 

through use of the series RC circuit as shown in Figure 8.2. The series RC circuit has 
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been arranged such that the capacitive reactance at 50 Hz is significantly less than 

the series resistor value, and as such a reasonably accurate integration will be 

obtained. Channel 2 of the Tektronix Cathode Ray Oscilloscope (CRO) has been 

placed across the capacitor. With the CRO set to the x-y plot mode, channel 2 will be 

the ‘y’ co-ordinate for the hysteresis plot. It should also be noted that the connection 

across the capacitor to channel 2 on the CRO was done via a high voltage probe 

interface. This was done as an equipment safety precaution. 

 

As shown below in Figure 8.2 a current clamp has been placed across the neutral 

return of transformer 1 to serve as the channel 1 input to the CRO. With switch S1 

open the current clamp measures the no-load current which is largely comprised of 

the magnetising current component. It should be noted that there is some error 

introduced due to the presence of a core loss current component.  

 

 
Figure 8.2: Circuit Utilised to Conduct Hysteresis Experiment 

 

The dual transformer voltage cancellation technique as described in Chapter 6 is 

once again utilised in this test. This ensures that the secondary alternating current 

component is suppressed. 
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8.2.2 Test Results and Analysis 

 

The first two experiments undertaken using the circuit depicted in Figure 8.2 entailed 

gaining a plot of the hysteresis characteristic (flux vs. magnetising current) at a 

supply voltage equivalent to 1 pu (240 V) then at 1.125 pu (270 V) with switch S1 

open. The hysteresis characteristic at 240 V was necessary to provide an indication 

of the transformer performance when operating under normal conditions. Shown in 

Figure 8.3 is a plot of the resulting hysteresis characteristic. The vertical axis 

represents flux whilst the horizontal axis depicts magnetising current. The 

relationship between flux and magnetising current can be seen to be largely linear 

with a small amount of non-linearity near the peak of the flux waveform. The 

transformer has not entered saturation. 

 

 
Figure 8.3: Hysteresis Characteristic with 240 V Supply and Open Circuit Secondary 
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Figure 8.4 depicts the hysteresis curve when the supply voltage has been elevated to 

270 V with switch S1 still open. A considerably greater level of non-linearity can be 

seen in this plot as opposed to Figure 8.3. The peak magnitude of current has 

increased by approximately 30 % whilst the flux has only increased by about 10 %. 

The transformer is operating in the saturated region and this is indicated by the 

distinct flattening off effect that is evident at both the positive and negative peaks of 

the hysteresis loop. 

 

 
Figure 8.4: Hysteresis Characteristic with 270 V Supply and Open Circuit Secondary 

 

A number of hysteresis measurement experiments were conducted for the case where 

a secondary DC component was injected. The hysteresis plots obtained from these 

tests are provided in Appendix D. It is noted however that these plots are not a true 

representation of the hysteresis characteristic exhibited by the core when DC is 

injected in the secondary. The series RC circuit depicted in Figure 8.2 provides a 
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means of measurement of the integral of the supply voltage. In turn it provides a 

means of measurement of the alternating component of flux. It cannot however 

provide a true representation of the flux in the core when this flux is biased. 

 

 
Figure 8.5: Hysteresis Characteristic with a 100 mA Secondary DC Component 

 

An analysis of the hysteresis results obtained when DC is injected yields some 

interesting findings. Shown above in Figure 8.5 is a plot of the hysteresis 

characteristic when a 100 mA DC component is injected through the secondary. The 

secondary DC component creates a flux bias which is not depicted in this loop as a 

result of the flux measurement method.  

 

What is witnessed though is the large increase in the peak value for the negative 

cycle of magnetising current. A similar trend is noticed in the no-load current plots 

provided in Appendix B. With an applied positive bias this large peak value of 
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negative magnetising current is necessary to maintain symmetry of the primary side 

current. Further analysis is necessary to explain the presence of the distortion which 

is evident at the positive peak of the hysteresis loop displayed in Figure 8.5. Also the 

apparent shift in the hysteresis loop requires further investigation. 

 

 

8.3 Software Simulation of Magnetising Characteristics 
 

Given established theory and the results of tests conducted in this project, an attempt 

was made at simulating magnetising trends for a DC biased single phase transformer 

in a consistent manner through creation of a software program. Given a transformer’s 

core magnetising characteristic and assuming a certain level of bias the program 

returns a graphical approximation of the φ−i  relationship and magnetising current 

waveform. MATLAB was chosen as the language for which the program would be 

created in. This was due to its powerful mathematical capabilities and ease of access. 

 

This section investigates the program methodology employed, simplifying 

assumptions and related limitations. A discussion of the results obtained will also be 

conducted.  

 

8.3.1 Program Methodology, Assumptions and Limitations 

 

Due to time limitations a number of simplifying assumptions were made prior to 

undertaking the program development phase. Firstly the effects of hysteresis were 

neglected and as such it was assumed that the transformer core exhibited zero 

residual magnetisation. Next it was assumed that the supply was a perfect sinusoid, a 

condition that is never matched in practice. Finally the winding resistance effect 

depicted in Equation 8.3 is assumed to be negligible. Implementing these 

assumptions does to a certain extent limit the credibility of results obtained.  
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For the program concept to be feasible it is essential that the magnetising 

characteristics of the transformer core be known for the no-load operating condition. 

This is obtained through gaining a plot of the flux-magnetising current relationship 

as depicted in Figure 8.3. Once the plot is obtained a piecewise linear approximation 

for the mid point locus is made as shown below in Figure 8.6. In this particular 

instance the piecewise approximation consisted of four linear sections. Further 

improvements to the accuracy of this method could be made by simply increasing the 

number of sections used to approximate the mid point locus. 

 

 
Figure 8.6: Hysteresis Plot with Piecewise Linearly Approximated Mid Point Locus 

 

Once the piecewise approximation has been made the peak flux value and slope for 

each section must be determined and entered as data into the program. The user will 

then be prompted to enter the level of bias. This will come in the form of a core flux 

bias. The program currently is limited to the calculation using only positive bias. 

This however is not of serious concern as the case with negative bias is simply the 

reverse of the positive case.  

 

With the bias determined the new flux-magnetising current relationship can be 

found. With a positive bias entered the extension into the negative cycle of flux must 

be reduced whilst the positive cycle is increased. This will lead to a corresponding 
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bias in the magnetising current. When the positive flux cycle is extended the flux-

magnetising current relationship is extrapolated past its measured values on a slope 

equivalent to that of the last section. 

 

This biased current can be plotted against time. When this is completed it is evident 

that there is asymmetry present between the positive and negative half cycles. The 

magnetising current that is present on the primary side of the transformer must not 

exhibit this trend as the waveform cannot contain a DC component. As such the 

primary side magnetising current will be the biased magnetising current with the DC 

component removed. 

 

The complete code listing is provided in Appendix E for the program 

Magnetising_Current_Prediction.m. This code includes documentation to explain 

the processes used.  

 

8.3.2 Discussion of Results 

 

Due to the number of simplifying assumptions made it is expected that there may be 

some difficulty in making a valid comparison between the results achieved through 

theoretical means (using program) and those that were obtained through 

experimental work. Following is an analysis of the results achieved from 

Magnetising_Current_Prediction.m.  

 

Shown in Figure 8.7 is a plot of the theoretical flux-magnetising current relationship 

with zero induced flux bias. Since the number of primary and secondary turns for the 

test transformer was unknown, an exact value for the peak value of the alternating 

flux component could only be estimated. The peak value of magnetising current was 

approximately 250 mA. Hence with zero flux bias a symmetrical trend noted for both 

flux and magnetising current. Thus the magnetising current that is read of this curve 

will be symmetrical about the horizontal axis as shown in Figure 8.8.  
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Figure 8.7: Plot of Flux-Magnetising Current Relationship with Zero Flux Bias 
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Figure 8.8: Plot of Biased Magnetising Current with Zero Flux Bias 
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With no asymmetry in the magnetising current shown in Figure 8.8 the primary side 

magnetising current will be an exact replica and this is shown in Figure 8.9. It should 

also be noted that the tendency for the magnetising current to replicate a triangular 

wave can be linked back to the non-linearity that is present in the flux-magnetising 

characteristic. The RMS value for the primary side magnetising current was 

calculated as 155.54 mA.  
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Figure 8.9: Plot of Primary Magnetising Current with Zero Flux Bias 

 

The next results displayed here are for the case where a positive flux bias equivalent 

to 20% of the peak value of alternating flux is induced. As can be seen in Figure 8.10 

this has as expected caused the peak value of positive flux to increase to 1.2 and the 

negative flux peak to increase to -0.8. This flux asymmetry has led to a 

corresponding asymmetry in the magnetising current and this is best displayed when 

the magnetising current is shown as a function of time as in Figure 8.11.  
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Figure 8.10: Plot of Flux-Magnetising Current Relationship with 20% Flux Bias 
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Figure 8.11: Plot of Biased Magnetising Current with 20% Flux Bias 
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The asymmetry that is evident in Figure 8.11 cannot manifest itself on the primary 

side since transformers do not reflect direct current. As a result the average value or 

DC component is removed from it to yield the primary side waveform as shown in 

Figure 8.12. The RMS value of this waveform is 171.29 mA. 
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Figure 8.12: Plot of Primary Magnetising Current with 20% Flux Bias 

 

A careful analysis of Figure 8.12 does yield some interesting observations. From this 

plot it appears that the duration of the negative cycle is increasing at the expense of 

the positive cycle. This is the opposite of what was expected and measured. The no-

load current plots provided in Appendix B indicate that for an increasing positive DC 

bias the duration of the negative cycle should in fact decrease. This trend is expected 

since the flux waveform is spending a greater portion of time in the positive cycle. 

Due to time limitations further investigations into the variation between the 

theoretical and practical results could not be made. 
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Chapter 9 

 

Three Phase Analysis 

 
All prior analysis concerning the effect of DC current on power transformers has 

addressed the single phase case. This is a necessary stepping stone that should be 

completed before progressing to three phase arrangements. Three phase analysis has 

associated with it a number of complexities which are brought about by a range of 

factors. These factors include the interaction of multiple windings, different core 

arrangements (shell type, core type, three phase-three leg and three phase-five leg), 

numerous winding arrangements (Delta, Star, Zig-Zag, different vector groupings) 

and in larger power units the presence of a tank. Hence it is evident that an in depth 

study of the effect of DC on three phase power transformers would require an 

expansive research effort. 

 

This chapter aims to present the findings of preliminary investigations that were 

conducted with a view to determining a three phase transformer’s magnetising 

characteristics with DC bias. A number of tests were conducted on a 7.5 kVA three 

phase Delta/Star connected transformer with a Dyn11 vector group. The transformer 

was of core type construction with three limbs. The tests were arranged such that 

only a secondary DC current was present. This allowed any variations in the units 

magnetising characteristics to be attributed to the changes in the secondary DC 

component. 



 

Page 78 

9.1 Magnetising Characteristics – Phase to Neutral DC Injection 
 

This series of testing covered the case of phase to neutral DC injection. This form of 

DC bias is a potential problem for those three phase transformers that supply a large 

portion of single phase loads. An example could be an office building containing a 

large number of computers (which in Chapter 5 were established as a potential 

source of DC bias) which require a single phase supply. This section aims to pinpoint 

any defining trends.  

 

9.1.1 Test Theory and Method 

 

As previously mentioned this series of experiments aimed to analyse the magnetising 

current performance of the transformer under test when a phase to neutral DC 

component was induced. The test was conducted for each phase to neutral 

combination and it was expected that some differences may be noted due to the 

asymmetrical core construction. Figure 9.1 depicts a schematic of the circuit utilised. 

Once again the injection of DC was achieved through use of a half-wave rectifier 

topology. Also this particular vector grouping meant that primary ‘A’ phase was in 

phase with secondary ‘A’ phase; primary ‘B’ phase was in phase with secondary ‘B’ 

phase and primary ‘C’ phase was in phase with the secondary ‘C’ phase. 

 

 
Figure 9.1: Secondary Phase to Neutral DC Injection 
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9.1.2 Test Results and Analysis 

 

For each phase to neutral combination a range of results were collected and these are 

presented in Appendix F. On analysis of the results presented in Appendix F it is 

evident that the most noticeable primary side affect occurred for the phase for which 

the DC was being injected into. For instance Figure 9.2 depicts the case of primary 

phase current variations when a secondary DC component is induced through ‘A’ 

phase and neutral. A significant increase in the ‘A’ phase primary current is 

witnessed however there appears to be little increase in the other two phase currents.  
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Figure 9.2: Plot of Primary Phase Currents with ‘A’ Phase to Neutral DC Injection 

 

Through analysis of the displacement power factor figures provided in Appendix F it 

is evident that the magnetising current component forms a large portion of the 

primary phase current. Also VAR increases indicate that this magnetising current is 

increasing. Hence the increase in ‘A’ phase primary current which can in part be 

attributed to magnetising current increases is indicative of a transformer that is 

tending toward the saturated region of operation. Similar trends are exhibited in 

Figure 9.3 and Figure 9.4 for the other phase to neutral combinations. It appears that 
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when an individual phase contains a DC component the resulting magnetising 

current effect is largely limited to the corresponding primary phase. 
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Figure 9.3: Plot of Primary Phase Currents with ‘B’ Phase to Neutral DC Injection 
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Figure 9.4: Plot of Primary Phase Currents with ‘C’ Phase to Neutral DC Injection 

 



 

Page 81 

On inspection of the no-load current waveforms for the affected phase some 

similarities are noticed when compared with the single phase case. Figures 9.5 and 

9.6 depict the ‘A’ phase no-load current waveforms for the secondary ‘A’ phase 

unbiased and biased conditions respectively. A reduction in the duration of the 

negative cycle of primary phase current is noted in Figure 9.6 when compared with 

Figure 9.5. This is indicative of a flux bias.  

 

 
Figure 9.5: ‘A’ Phase Primary Current Waveform with Zero Secondary DC Injection 

 

 
Figure 9.6: ‘A’ Phase Primary Current Waveform with 200 mA Secondary DC Injection 
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The peak negative current has extended considerably in magnitude (the vertical scale 

in Figure 9.6 is twice that of Figure 9.5) for the biased secondary case. This is also a 

trait that was witnessed for the single phase DC injection tests. 

 

 

9.2 Magnetising Characteristics – Phase to Phase DC Injection 
 

The next series of tests undertaken aimed to analyse the variation in magnetising 

characteristics with phase to phase DC injection. This form of bias is a potential 

problem in three phase equipment.  

 

9.2.1 Test Theory and Method 

 

The schematic for the circuit utilised to effect phase to phase secondary direct 

current injection is shown below in Figure 9.7. Once again the half-wave rectifier 

arrangement was employed. Each phase to phase combination was tested. When a 

phase to phase combination was tested the direction of injection was reversed (A-C, 

C-A) so as to ascertain whether the direction of injection created any major 

variations. 

 

 
Figure 9.7: Secondary Phase to Phase DC Injection 
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9.2.2 Test Results and Analysis 

 

The results of this series of testing are supplied in Appendix F. A similar method was 

employed to display the predominate effects. The primary phase current variations 

provide the best means of displaying results. It is again noticed that the bulk of the 

effect on the primary side occurs for those phases which are being injected upon on 

the secondary side. This effect is displayed in Figures 9.8, 9.9 and 9.10 which exhibit 

the primary phase current variations for each of the three phase combinations. It is 

interesting to note that reversing the direction of injection had little effect on the 

trends displayed in the following figures.  
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Figure 9.8: Plot of Primary Phase Currents with ‘A’ Phase to ‘B’ Phase DC Injection 

 

It is observed that there is an increase in the phase current for the phase which is not 

directly effected by a secondary DC component. This can be attributed to mutual 

flux linkages. This increase is shown to be greatest for phase ‘B’ when a secondary 

DC injection occurs between ‘A’ and ‘C’ phases. Phase ‘B’ winding is physically 

situated between the other two phase windings. As such it is subject to mutual flux 
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linkages from both windings. In the other instances the majority of the mutual flux 

linkage comes from only one other winding. 
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Figure 9.9: Plot of Primary Phase Currents with ‘C’ Phase to ‘B’ Phase DC Injection 
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Figure 9.10: Plot of Primary Phase Currents with ‘C’ Phase to ‘A’ Phase DC Injection 
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Chapter 10 

 

Conclusions and Recommendations for Future Work 

 
10.1 Achievement of Objectives 
 

This project has sought to investigate the affect that direct current has on power 

transformers. Initial analysis conducted has aimed at addressing this issue from a 

single phase perspective. Some preliminary three phase analyses were conducted. 

 

Each of the objectives defined in Chapter 1 have been addressed. A comprehensive 

review of literature was conducted providing a summary of the affect that direct 

current has on power transformers. The saturation phenomenon has been fully 

explored and the theory behind its occurrence elaborated upon.  

 

An analysis was conducted on computers and AC and DC drives in an attempt to 

establish whether or not they represent a significant source of bias. Results obtained 

indicated that both PC’s and motor drives do represent a credible source. It was 

shown that the potential does exist for a cumulative effect to occur. This would 

magnify the affect of the bias source. It has also been established that tests need to be 

conducted with larger sample sizes before confident assertions can be made 

regarding the presence of a cumulative affect. 
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An in depth single phase analysis was conducted covering three major areas. These 

included magnetising characteristics, harmonic distortion behaviour and hysteresis 

characteristics. In terms of magnetising characteristics it was found that in the single 

phase case the presence of a secondary DC current did induce half cycle saturation. 

Saturation effects were accompanied by significant increases in magnetising current 

levels which in turn resulted in increased VAR absorption. The presence of a rated 

AC load on the secondary appeared to have little affect on magnetising 

characteristics. 

 

A number of tests were conducted to determine the harmonic performance of a 

transformer operating under load conditions and exposed to a secondary direct 

current component. Tests showed increases in secondary voltage distortion beyond 

the 5 % THD limit and 3 % individual harmonic limit as defined by the IEEE519 

standard. The level at which the standard was exceeded was in excess of 100 % of 

the transformer’s magnetising current. Hence while potential exists for undesirable 

increases in secondary voltage distortion due to biased currents, the level of DC 

required to cause this is significant. 

 

An analysis of single phase hysteresis characteristics was conducted in Chapter 8. A 

number of hysteresis measurements were conducted. The results obtained were 

acceptable for the case where there was zero secondary DC current present. However 

when a secondary bias was present the hysteresis measurement method utilised did 

not provide an accurate assessment of the core flux conditions. 

 

Chapter 8 also provided the development and results of the program 

Magnetising_Current_Prediction.m. This program sought to predict the Flux-

Magnetising Current characteristic and magnetising current waveform for a given 

value of flux bias. Due to time limitations a number of simplifying assumptions were 

made. The results for the prediction of the Flux-Magnetising Current relationship 

were as expected. The results for the magnetising current were not as expected and 

future work should focus on rectifying this. 



 

Page 87 

 

Chapter 9 presented the results of preliminary three phase tests aimed at determining 

the magnetising characteristics for a 7.5 kVA Delta/Star three phase transformer. 

Results indicated that for single phase to neutral DC injection the affect on the 

primary side was limited to the phase for which the DC injection was conducted 

upon. A similar occurrence was noted for phase to phase secondary DC injection. 

For phase to neutral injected a reduction in the duration of the negative cycle of the 

affected phase current was witnessed. A similar affect was noted with the single 

phase results. 

 

 

10.2 Future Work 
 

This project has covered a very small portion of the potential research content 

pertaining to the effect of DC current on power transformers. This section aims to 

make recommendations regarding the potential avenues for future research. The 

three main areas for which further work should be conducted in are sources of DC, 

single phase analysis and three phase analysis. 

 

10.2.1 Sources of DC 

 

Chapter 5 provides the results of a series of brief investigations aimed at determining 

the DC bias contributions made by computers and AC and DC drives. The 

experimental data retrieved suggested that computers and AC and DC drives do 

represent a significant source of DC bias. To improve the credibility of these 

findings tests need to be conducted with much larger sample sizes. 

 

Investigations into other potential sources of direct current should be conducted. This 

may include observing the contributions of grid interfaced renewable energy 

schemes such as photovoltaic systems. Where resources permit, further research 

should be performed into the phenomenon of Geomagnetically Induced Currents. 
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Finally an analysis of the mechanisms that create DC injection within equipment 

could be beneficial. It would allow development of methods to counteract the 

undesired occurrence of direct current injection. 
 

10.2.2 Single Phase Analysis 

 

A large portion of this project has concentrated on assessing the problem of direct 

current injection in single phase transformers. This was the primary basis for 

Chapters 6, 7 and 8. There is however still a number of areas that require further 

expansion.  

 

Testing on different core arrangements should be looked at. The single phase 

transformer used in this project was of the core type. Tests should be undertaken on a 

similar sized shell type transformer to determine if there exists any significant 

variation in transformers performance with DC bias that can be traced back to core 

design. 

 

Considerable modifications are required to the Magnetising_Current_Prediction.m 

program which was described in Chapter 8. Hysteresis should be factored into the 

model as well as the effect of winding resistive voltage drop. Investigations should 

be conducted into the variations which occur between the theoretical magnetising 

current waveform and the experimentally obtained magnetising current waveform.  

 

A means of measuring the actual core flux waveform should be determined. This 

may require use of Hall Effect sensing technology placed in the core. From this it 

will become possible to attribute a given flux bias to a level of secondary direct 

current. 
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10.2.3 Three Phase Analysis 

 

There exists considerable scope for further work to be conducted concerning the 

effect of direct current on three phase transformers. Much of that which was 

conducted for the single phase situation can be used to assist in interpretation of 

three phase cases. 

 

The hysteresis model that was derived for the single phase situation should be 

extended to the three phase case. Modelling of core flux distribution needs to be 

conducted and this may require in depth mathematical analysis through use of finite 

element analysis. 

 

Three phase transformers come in a variety of arrangements. In terms of core design 

future studies may compare the performance of core type and shell type 

constructions that are exposed to biased flux operating conditions. In industry the 

Delta/Star winding arrangement is commonly found. It is believed than an interesting 

comparison would be found between the performances of Delta/Star units that have 

four wire secondaries as opposed to those that have three wire secondaries.  

 

The performance of other winding arrangements such as Star/Star and Star/Delta is 

of more importance to generation and transmission applications. If GIC’s are 

regarded as a potential problem it may be prudent to assess the performance of these 

types of transformers when subject to a DC bias. 

 

Three phase transformers are generally either three limb or five limb. It is expected 

that the potential exists for a variation in the performance of each construction type 

due to the differing flux distributions. 

 

On-load tests should be conducted with varying degrees of secondary DC injection 

to determine the level of harmonic distortion that is created in the three phase 

situation. The secondary DC injected should simulate symmetrical bias conditions as 
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occurs with GIC’s and asymmetrical bias conditions as is commonly created by 

single phase equipment. 
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University of Southern Queensland 
 

FACULTY OF ENGINEERING AND SURVEYING 
 

ENG 4111/4112 Research Project 
PROJECT SPECIFICATION 

 
 
FOR:   ASHLEY ZEIMER 
 
TOPIC: THE EFFECT OF DC CURRENT ON POWER 

TRANSFORMERS 
 
SUPERVISOR: Ron Sharma 
 
PROJECT AIM: This project aims to investigate the affect of the presence of 

DC current on the operational characteristics of power 
transformers.  

 
 
PROGRAMME: Issue A, 10th March 2004 
 

1. Research existing theory pertaining to the affect of DC current on power 
transformers as well as review transformer theory. 

2. Investigate saturation with respect to transformers and detail how DC 
injection induces this phenomenon 

3. Explore potential sources of DC biasing and look into the severity of 
these sources. 

4. Examine factors that exacerbate and potentially accelerate the adverse 
affects of DC injection.  

5. Investigate the variation in affect due to DC biasing across the variety of 
transformer construction styles that exist and conduct tests to simulate 
this. 

6. Examine variation in affects for DC injection common across all three 
phases and localized to one or two of the three phases. 

7. Research methods for the alleviation or elimination of the adverse effects 
of DC biasing. 

 
As time permits: 
 

8. Investigate the creation of software that could model this phenomenon. 
 
AGREED:                                                                                                          

_____________ (Student)     _____________ (Supervisor) 
 

     __ / __ / __       __ / __ / __ 
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DC Inj.(mA) W VA VAR PF DPF 
(Measured) (Measured) (Measured) (Measured) (Measured) (Measured) 

0 11 45 43 0.25 0.27 
10 11 45 43 0.25 0.27 
20 11 46 45 0.25 0.27 
30 11 47 46 0.24 0.27 
40 12 50 49 0.23 0.24 
50 12 52 50 0.23 0.24 
60 12 59 58 0.21 0.23 
70 13 62 61 0.2 0.23 
80 13 71 69 0.18 0.23 
90 13 76 75 0.18 0.22 

100 14 83 82 0.16 0.22 
200 15 166 165 0.12 0.15 
300 18 257 256 0.07 0.12 
400 20 337 337 0.06 0.11 

            
DC Inj.(mA) Irms I1rms Icore (mA) Imag (mA) Ithd 
(Measured) (Measured) (Measured) (Calculated) (Calculated) (Measured) 

0 183 182 46 177 10.2 
10 183 182 46 177 10.1 
20 189 187 46 183 13.3 
30 195 192 46 190 17.2 
40 202 198 50 196 19.7 
50 224 215 50 218 27.3 
60 242 228 50 237 33.2 
70 263 243 54 257 38.3 
80 292 262 54 287 43.6 
90 324 283 53 320 48.8 

100 349 299 57 344 51.4 
200 688 505 59 685 67.9 
300 1048 730 67 1046 71.8 
400 1383 947 69 1381 72.9 

        
Calculation Procedures 

Core Loss Current = (W - Irms²×R) / V 
where R = Primary Winding Resistance =1.81� 

and V = Primary Supply Voltage = 240 V 
Magnetising Current = Square Root(Irms² - Icore²) 

Table B.1: Results of Zero AC Load DC Injection Tests 
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DC 
Inj.(mA) Pri. Volts Vthd Ithd W VA VAR 

(Measured) (Measured) (Measured) (Measured) (Measured) (Measured) (Measured) 
0 240.7 2.9 7.9 36 49 33 

10 241.9 2.9 9.7 34 47 33 
20 242.7 2.7 13.1 36 50 34 
30 240.8 2.6 16.9 36 50 34 
40 240.1 2.5 21.0 36 53 39 
50 240.9 2.8 26.0 36 54 40 
60 242.4 2.7 31.6 37 60 47 
70 240.8 2.7 39.8 36 53 53 
80 239.9 2.6 44.4 37 70 60 
90 242.6 2.9 50.3 37 73 61 

100 241.8 3.0 53.4 39 86 76 
200 241.5 2.8 71.7 39 166 161 
300 241.5 2.9 76.7 41 253 250 
400 239.4 2.9 79.0 37 366 363 

             
DC 

Inj.(mA) Irms (mA) 
I1rms 
(mA) Icore (mA) Imag (mA) PF DPF 

(Measured) (Measured) (Measured) (Calculated) (Calculated) (Measured) (Measured) 
0 196 194 140 137 0.74 0.72 

10 197 197 142 137 0.74 0.72 
20 204 203 146 143 0.71 0.72 
30 209 206 146 149 0.72 0.71 
40 216 210 145 160 0.68 0.69 
50 229 220 145 177 0.68 0.66 
60 246 233 147 197 0.62 0.63 
70 271 250 155 223 0.59 0.62 
80 293 261 154 249 0.52 0.59 
90 329 284 159 287 0.52 0.56 

100 349 294 156 312 0.45 0.53 
200 687 480 163 667 0.22 0.34 
300 1054 677 176 1039 0.16 0.26 
400 1471 901 189 1459 0.12 0.21 

              
Calculation Procedures 

Core Loss Current = I1rms × DPF 
Magnetising Current = Square Root(Irms² - Icore²) 

Table B.2: Results of Rated AC Load DC Injection Tests 
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Figure B.1: Primary Current Waveform with Zero AC Load and Zero Secondary DC Current 
 
 

 
Figure B.2: Primary Current Waveform with Zero AC Load and 10 mA Secondary DC Current 
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Figure B.3: Primary Current Waveform with Zero AC Load and 20 mA Secondary DC Current 
 

 
Figure B.4: Primary Current Waveform with Zero AC Load and 30 mA Secondary DC Current 
 



 

Page 102 

 
Figure B.5: Primary Current Waveform with Zero AC Load and 40 mA Secondary DC Current 
 

 
Figure B.6: Primary Current Waveform with Zero AC Load and 50 mA Secondary DC Current 
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Figure B.7: Primary Current Waveform with Zero AC Load and 60 mA Secondary DC Current 
 

 
Figure B.8: Primary Current Waveform with Zero AC Load and 70 mA Secondary DC Current 
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Figure B.9: Primary Current Waveform with Zero AC Load and 80 mA Secondary DC Current 
 

 
Figure B.10: Primary Current Waveform with Zero AC Load and 90 mA Secondary DC 
Current 
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Figure B.11: Primary Current Waveform with Zero AC Load and 100 mA Secondary DC 
Current 
 

 
Figure B.12: Primary Current Waveform with Zero AC Load and 200 mA Secondary DC 
Current 
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Figure B.13: Primary Current Waveform with Zero AC Load and 300 mA Secondary DC 
Current 
 

 
Figure B.14: Primary Current Waveform with Zero AC Load and 400 mA Secondary DC 
Current 
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Appendix C 

 

Single Phase Analysis – Harmonic Effects Results 
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Primary Side Harmonic Effects with Half-Wave Rectified  
Secondary DC Component 

  
Primary Voltage Harmonic Components 

DC Injected (mA) 2nd 3rd 4th 5th 6th 7th 8th 9th THD 
0 0.1 0.7 0.0 2.1 0.0 0.9 0.0 0.1 2.3 

30 0.1 0.7 0.0 2.1 0.0 0.8 0.0 0.1 2.3 
60 0.2 0.7 0.1 2.0 0.0 0.9 0.0 0.1 2.4 
90 0.3 0.8 0.2 2.1 0.1 0.8 0.0 0.1 2.4 

120 0.5 0.9 0.3 2.3 0.1 0.7 0.1 0.1 2.7 
150 0.6 1.1 0.5 2.4 0.3 0.6 0.2 0.1 2.9 
180 0.9 1.2 0.6 2.5 0.3 0.6 0.2 0.2 3.0 
210 1.0 1.3 0.8 2.7 0.5 0.6 0.2 0.2 3.2 
240 1.3 1.3 0.9 2.7 0.6 0.4 0.2 0.3 3.5 
270 1.5 1.6 1.1 2.9 0.6 0.5 0.3 0.3 4.0 
300 1.7 1.7 1.2 3.1 0.8 0.3 0.3 0.4 4.2 

  
Primary Current Harmonic Components 

DC Injected (mA) 2nd 3rd 4th 5th 6th 7th 8th 9th THD 
0 0.1 0.1 0.0 1.7 0.0 0.7 0.0 0.1 1.9 

30 0.6 0.0 0.1 1.7 0.0 0.7 0.0 0.1 1.9 
60 1.2 0.0 0.3 1.7 0.0 0.7 0.0 0.2 2.3 
90 2.6 0.3 0.8 1.8 0.3 0.7 0.1 0.1 3.2 

120 3.5 0.9 1.4 1.9 0.3 0.6 0.2 0.3 4.4 
150 5.1 1.9 2.2 2.2 0.8 0.7 0.3 0.3 6.3 
180 6.2 2.5 2.8 2.3 1.1 0.8 0.4 0.3 7.8 
210 7.6 3.1 3.3 2.5 1.3 1.0 0.5 0.2 9.5 
240 9.2 4.2 4.2 3.1 1.7 1.1 0.6 0.4 11.5 
270 10.2 4.8 4.8 3.3 2.0 1.3 0.7 0.4 12.9 
300 11.4 5.6 5.3 3.4 2.2 1.3 0.8 0.4 14.2 

Table C.1: Primary Side Harmonic Effects with Half-Wave Rectified Secondary DC 
Component 
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Secondary Side Harmonic Effects with Half-Wave Rectified  

Secondary DC Component 
  

Secondary Voltage Harmonic Components 
DC Injected (mA) 2nd 3rd 4th 5th 6th 7th 8th 9th THD 

0 0.0 0.7 0.0 2.1 0.0 0.7 0.0 0.2 2.3 
30 0.1 0.7 0.0 2.1 0.0 0.6 0.0 0.1 2.3 
60 0.3 0.8 0.1 2.2 0.0 0.6 0.0 0.1 2.4 
90 0.5 0.9 0.3 2.4 0.2 0.5 0.1 0.1 2.6 

120 0.7 1.1 0.5 2.5 0.3 0.3 0.2 0.2 2.8 
150 0.9 1.2 0.7 2.9 0.5 0.4 0.2 0.2 3.3 
180 1.3 1.4 1.1 2.9 0.6 0.3 0.3 0.3 3.8 
210 1.6 1.7 1.2 3.0 0.7 0.2 0.4 0.4 4.1 
240 1.8 1.9 1.5 3.2 0.9 0.1 0.5 0.3 4.6 
270 2.1 2.1 1.7 3.4 1.1 0.2 0.5 0.4 5.0 
300 2.5 2.3 1.9 3.6 1.2 0.1 0.6 0.5 5.5 

  
Secondary Current Harmonic Components 

DC Injected (mA) 2nd 3rd 4th 5th 6th 7th 8th 9th THD 
0 0.5 0.3 0.1 2.0 0.2 0.5 0.1 0.2 2.1 

30 0.5 0.4 0.1 2.0 0.2 0.5 0.1 0.2 2.1 
60 0.2 0.6 0.1 1.9 0.1 0.4 0.1 0.1 2.2 
90 0.4 0.6 0.1 2.0 0.1 0.4 0.1 0.3 2.4 

120 1.2 0.9 0.3 2.1 0.3 0.2 0.1 0.1 2.7 
150 1.3 1.2 0.4 2.6 0.2 0.4 0.1 0.1 3.0 
180 1.9 1.4 0.7 2.4 0.4 0.1 0.1 0.1 3.4 
210 2.2 1.3 0.9 2.8 0.4 0.1 0.1 0.2 3.9 
240 2.5 1.6 1.0 3.1 0.6 0.1 0.1 0.1 4.5 
270 2.9 1.8 1.3 3.2 0.8 0.1 0.3 0.3 5.0 
300 3.2 2.1 1.5 3.4 0.8 0.1 0.3 0.4 5.5 

Table C.2: Secondary Side Harmonic Effects with Half-Wave Rectified Secondary DC 
Component 
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Primary Side Harmonic Effects with a Smoothed Half-Wave Rectified 
Secondary DC Component 

  
Primary Voltage Harmonic Components 

DC Injected (mA) 2nd 3rd 4th 5th 6th 7th 8th 9th THD 
0 0.1 0.7 0.0 2.5 0.0 0.9 0.0 0.1 2.9 

30 0.1 0.8 0.0 2.4 0.0 0.9 0.0 0.1 2.8 
60 0.1 0.8 0.0 2.3 0.0 0.8 0.1 0.1 2.7 
90 0.1 0.9 0.1 2.2 0.1 0.8 0.1 0.0 2.6 

120 0.2 1.1 0.2 2.3 0.1 0.9 0.1 0.3 2.7 
150 0.3 1.1 0.2 2.1 0.1 1.0 0.1 0.2 2.8 
180 0.3 1.1 0.3 2.2 0.2 1.1 0.1 0.4 2.8 
210 0.4 1.2 0.3 2.3 0.2 1.1 0.1 0.3 2.9 
240 0.4 1.3 0.4 2.4 0.2 1.1 0.0 0.3 3.1 
270 0.4 1.3 0.5 2.5 0.2 1.1 0.0 0.3 3.1 
300 0.5 1.4 0.4 2.5 0.2 1.1 0.0 0.2 3.3 

  
Primary Current Harmonic Components 

DC Injected (mA) 2nd 3rd 4th 5th 6th 7th 8th 9th THD 
0 0.1 0.2 0.0 2.3 0.0 0.8 0.0 0.1 2.5 

30 1.4 1.3 1.0 2.6 1.0 1.8 0.9 0.9 5.1 
60 2.9 2.5 2.0 3.1 1.7 2.7 1.6 1.5 7.0 
90 4.5 3.9 3.1 4.3 2.3 3.2 2.2 2.1 9.6 

120 6.3 5.5 4.7 5.6 2.5 3.4 2.5 2.4 12.3 
150 7.3 6.8 5.8 5.7 2.6 3.1 2.5 2.5 14.4 
180 8.5 7.8 6.6 6.0 3.0 2.7 2.2 1.9 15.6 
210 9.5 8.7 7.4 6.3 3.2 1.6 1.4 1.1 16.8 
240 10.7 9.6 8.1 6.6 3.5 0.6 0.4 0.2 18.4 
270 11.6 10.5 8.8 6.8 3.9 0.5 0.5 0.4 19.8 
300 12.8 11.3 9.6 7.2 4.2 1.4 1.1 1.2 21.4 

Table C.3: Primary Side Harmonic Effects with Smoothed Half-Wave Rectified Secondary DC 
Component 
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Secondary Side Harmonic Effects with a Smoothed Half-Wave Rectified 

Secondary DC Component 
  

Secondary Voltage Harmonic Components 
DC Injected (mA) 2nd 3rd 4th 5th 6th 7th 8th 9th THD 

0 0.0 0.7 0.0 2.5 0.0 1.0 0.0 0.1 2.7 
30 0.1 0.8 0.1 2.2 0.1 0.9 0.2 0.1 2.7 
60 0.2 1.0 0.2 1.9 0.3 0.8 0.4 0.2 2.6 
90 0.4 1.2 0.4 2.0 0.4 0.9 0.6 0.4 2.9 

120 0.6 1.5 0.7 2.1 0.6 1.3 0.7 0.6 3.3 
150 0.7 1.6 0.8 2.4 0.5 1.5 0.7 0.9 3.9 
180 0.8 1.8 1.0 2.9 0.6 1.5 0.7 0.9 4.2 
210 0.9 1.9 1.1 3.0 0.7 1.5 0.5 0.8 4.5 
240 1.0 2.1 1.3 3.3 0.8 1.3 0.1 0.4 4.7 
270 1.2 2.2 1.5 3.5 0.8 1.1 0.0 0.2 4.8 
300 1.3 2.3 1.6 3.8 1.0 0.7 0.3 0.1 5.0 

  
Secondary Current Harmonic Components 

DC Injected (mA) 2nd 3rd 4th 5th 6th 7th 8th 9th THD 
0 0.1 0.8 0.1 2.1 0.2 0.8 0.1 0.2 2.5 

30 0.9 1.2 1.1 2.8 0.9 1.8 0.8 0.8 4.3 
60 1.9 1.7 2.0 3.6 1.7 2.7 1.5 1.3 6.5 
90 2.9 2.2 3.1 4.9 2.6 3.1 1.9 1.9 8.5 

120 4.4 2.8 3.5 6.0 3.3 3.8 2.4 2.2 10.5 
150 5.0 3.1 3.9 6.5 3.9 3.7 2.5 1.9 11.6 
180 5.6 3.6 4.3 6.5 4.2 3.5 2.5 2.1 12.1 
210 6.4 3.9 4.2 6.1 4.2 3.0 1.8 0.7 11.6 
240 6.8 3.9 4.0 5.8 3.9 2.3 1.7 0.8 12.1 
270 7.3 3.9 3.7 5.4 3.6 1.6 1.1 1.0 11.5 
300 7.8 3.9 3.8 4.9 3.3 1.1 1.0 1.5 11.6 

Table C.4: Secondary Side Harmonic Effects with Smoothed Half-Wave Rectified Secondary 
DC Component 
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Primary Voltage Harmonic Distortion vs 
Secondary Smoothed DC Current
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Figure C.1: Variation in Primary Voltage Harmonic Distortion for Secondary Smoothed Half-
Wave Rectified Current 
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Primary Current Harmonic Distortion vs 
Secondary Smoothed DC Current
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Figure C.2: Variation in Primary Current Harmonic Distortion for Secondary Smoothed Half-
Wave Rectified Current 
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Secondary Voltage Harmonic Distortion vs 
Secondary Smoothed DC Current
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Figure C.3: Variation in Secondary Voltage Harmonic Distortion for Secondary Smoothed 
Half-Wave Rectified Current 
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Figure C.4: Variation in Secondary Current Harmonic Distortion for Secondary Smoothed 
Half-Wave Rectified Current 
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Appendix D 

 

Experimental Hysteresis Results 
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Figure D.1: Hysteresis Characteristic with 240 V Supply and Open Circuit Secondary 

 

 
Figure D.2: Hysteresis Characteristic with 270 V Supply and Open Circuit Secondary 
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Figure D.3: Hysteresis Characteristic with 240 V Supply and 25 mA Secondary DC Component 

 

 
Figure D.4: Hysteresis Characteristic with 240 V Supply and 50 mA Secondary DC Component 
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Figure D.5: Hysteresis Characteristic with 240 V Supply and 75 mA Secondary DC Component 

 

 
Figure D.6: Hysteresis Characteristic with 240 V Supply and 100 mA Secondary DC 
Component 
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Appendix E 

 

MATLAB CODE –

Magnetising_Current_Prediction.m 
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Appendix F 

 

Three Phase Analysis Results 
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A Phase to Neutral DC Injection 
              

DC Level (mA) 
IL A 
(mA) 

IL B 
(mA) 

IL C 
(mA) 

IP A 
(mA) 

IP B 
(mA) IP C (mA) 

0 188 171 152 89 112 104 
20 187 175 151 90 112 103 
40 190 183 153 94 113 104 
60 192 188 154 97 113 105 
80 194 195 153 101 115 107 

100 199 204 154 107 115 106 
200 231 251 157 142 122 112 

         
  W (A) VA (A) VAR (A) W (B) VA (B) VAR (B) 

0 10 33 31 15 42 39 
20 12 33 31 14 40 37 
40 15 35 32 16 43 40 
60 16 34 30 15 41 38 
80 18 38 33 14 40 38 

100 21 39 33 15 41 38 
200 32 52 41 15 44 41 

              

  W (C ) VA (C) VAR (C) 
Ithd % 
(A) 

Ithd % 
(B) 

Ithd %  
(C) 

0 30 39 24 7.7 9.3 7.4 
20 29 37 22 10.8 9.1 7 
40 30 39 24 15.3 10.5 6.4 
60 29 37 23 17.3 11.5 8.7 
80 30 38 23 19.6 11.4 8.5 

100 30 40 24 24.9 12.1 8.7 
200 32 40 24 39.8 17.8 15.3 

         
  PF (A) PF (B) PF (C ) DPF (A) DPF (B) DPF (C ) 

0 0.29 0.37 0.78 0.31 0.38 0.81 
20 0.36 0.37 0.8 0.36 0.36 0.81 
40 0.41 0.38 0.79 0.43 0.38 0.8 
60 0.48 0.38 0.78 0.49 0.38 0.8 
80 0.49 0.35 0.8 0.53 0.36 0.8 

100 0.54 0.37 0.79 0.57 0.35 0.81 
200 0.62 0.35 0.81 0.69 0.35 0.83 

Table F.1: Results of ‘A’ Phase to Neutral DC Injection 
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B Phase to Neutral DC Injection 
              

DC Level (mA) 
IL A 
(mA) 

IL B 
(mA) 

IL C 
(mA) 

IP A 
(mA) 

IP B 
(mA) IP C (mA) 

0 187 171 152 88 112 103 
20 190 170 160 89 114 104 
40 189 170 165 88 118 105 
60 192 172 174 90 122 107 
80 192 174 182 90 127 107 

100 194 176 189 89 130 107 
200 199 201 235 95 168 113 

         
  W (A) VA (A) VAR (A) W (B) VA (B) VAR (B) 

0 10 32 31 16 42 39 
20 8 33 32 18 43 39 
40 10 32 30 19 42 37 
60 4 31 30 22 43 37 
80 10 33 31 24 47 41 

100 9 33 31 30 53 43 
200 10 34 33 39 61 47 

              

  W (C ) VA (C) VAR (C) 
Ithd % 
(A) 

Ithd % 
(B) 

Ithd %  
(C ) 

0 30 39 25 8.1 9.2 7 
20 29 36 22 7.8 8.6 7.3 
40 30 40 27 9.7 9.9 7.6 
60 30 38 23 10.4 11.7 9.5 
80 30 38 23 11.8 14.4 10.5 

100 30 39 24 14.9 16.1 12.7 
200 32 41 27 23.3 27.1 18.4 

         
  PF (A) PF (B) PF (C ) DPF (A) DPF (B) DPF (C ) 

0 0.3 0.38 0.77 0.34 0.39 0.8 
20 0.29 0.43 0.8 0.3 0.44 0.83 
40 0.3 0.46 0.75 0.3 0.47 0.79 
60 0.27 0.5 0.79 0.3 0.53 0.8 
80 0.3 0.52 0.79 0.3 0.54 0.8 

100 0.29 0.57 0.78 0.28 0.58 0.79 
200 0.3 0.64 0.77 0.31 0.67 0.79 

Table F.2: Results of ‘B’ Phase to Neutral DC Injection 
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C Phase to Neutral DC Injection 
              

DC Level (mA) 
IL A 
(mA) 

IL B 
(mA) 

IL C 
(mA) 

IP A 
(mA) 

IP B 
(mA) IP C (mA) 

0 193 175 157 91 116 107 
20 195 171 154 89 113 109 
40 195 168 153 88 112 115 
60 207 171 158 89 114 121 
80 216 173 161 91 116 128 

100 220 170 166 90 115 135 
200 266 174 203 94 122 175 

         
  W (A) VA (A) VAR (A) W (B) VA (B) VAR (B) 

0 3 32 31 15 41 38 
20 10 33 31 17 43 39 
40 8 33 31 15 41 38 
60 4 32 31 17 44 41 
80 8 32 31 15 40 37 

100 5 33 31 16 43 40 
200 6 35 35 21 48 44 

              

  W (C ) VA (C) VAR (C) 
Ithd % 
(A) 

Ithd % 
(B) 

Ithd %  
(C ) 

0 30 37 23 9.6 8.9 6.4 
20 32 40 23 7.4 8.5 7.5 
40 35 43 24 7.4 9.6 10.1 
60 37 45 26 9 10.6 12.6 
80 39 45 24 10.2 12.2 15.1 

100 41 50 27 10.8 12.6 19.1 
200 53 63 33 18.3 21.6 30.4 

         
  PF (A) PF (B) PF (C ) DPF (A) DPF (B) DPF (C ) 

0 0.28 0.37 0.8 0.27 0.38 0.81 
20 0.3 0.4 0.81 0.31 0.39 0.83 
40 0.27 0.37 0.83 0.3 0.38 0.85 
60 0.29 0.39 0.82 0.28 0.39 0.85 
80 0.27 0.38 0.85 0.3 0.39 0.87 

100 0.26 0.37 0.84 0.3 0.36 0.87 
200 0.22 0.44 0.85 0.2 0.46 0.9 

Table F.3: Results of ‘C’ Phase to Neutral DC Injection 
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DC Injection Between A and B Phases 
              

DC Level (mA) 
IL A 
(mA) 

IL B 
(mA) 

IL C 
(mA) 

IP A 
(mA) 

IP B 
(mA) IP C (mA) 

0 189 171 153 89 113 104 
20 187 178 160 87 118 105 
40 188 188 169 90 125 105 
60 189 198 176 90 132 108 
80 190 211 184 93 141 110 

100 196 226 192 100 150 111 
200 235 321 243 137 205 126 

         
  W (A) VA (A) VAR (A) W (B) VA (B) VAR (B) 

0 10 32 31 11 41 38 
20 12 32 30 14 47 44 
40 14 33 30 21 46 42 
60 17 36 32 21 48 43 
80 18 34 29 22 54 49 

100 20 36 30 26 57 50 
200 33 51 39 32 75 68 

              

  W (C ) VA (C) VAR (C) 
Ithd % 
(A) 

Ithd % 
(B) 

Ithd %  
(C ) 

0 32 41 25 8.8 9.7 7 
20 31 39 23 10.9 8.8 7.5 
40 30 39 24 15.4 10.9 8.8 
60 31 39 24 24.4 13.5 11.2 
80 30 40 26 30.3 15.9 13.3 

100 31 39 24 36.6 18.8 18.1 
200 32 42 28 55.8 29.4 28.6 

         
  PF (A) PF (B) PF (C ) DPF (A) DPF (B) DPF (C ) 

0 0.31 0.38 0.79 0.31 0.38 0.81 
20 0.37 0.37 0.8 0.38 0.39 0.81 
40 0.43 0.44 0.79 0.44 0.44 0.8 
60 0.46 0.44 0.79 0.49 0.47 0.8 
80 0.53 0.42 0.77 0.57 0.46 0.8 

100 0.56 0.47 0.79 0.61 0.47 0.81 
200 0.65 0.43 0.76 0.78 0.46 0.81 

Table F.4: Results of DC Injection between ‘A’ and ‘B’ Phases 
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DC Injection Between C and B Phases 
              

DC Level (mA) 
IL A 
(mA) 

IL B 
(mA) 

IL C 
(mA) 

IP A 
(mA) 

IP B 
(mA) IP C (mA) 

0 189 171 153 89 113 104 
20 196 170 163 90 114 113 
40 207 167 175 91 113 121 
60 214 164 187 90 116 129 
80 224 161 203 91 120 137 

100 235 163 221 92 124 148 
200 290 190 316 100 175 193 

         
  W (A) VA (A) VAR (A) W (B) VA (B) VAR (B) 

0 10 32 31 11 41 38 
20 9 32 31 17 41 37 
40 4 33 32 19 41 36 
60 6 33 32 21 43 38 
80 8 34 33 23 46 39 

100 9 34 33 25 41 33 
200 6 38 37 42 57 39 

              

  W (C ) VA (C) VAR (C) 
Ithd % 
(A) 

Ithd % 
(B) 

Ithd %  
(C ) 

0 32 41 25 8.8 9.7 7 
20 33 41 25 8.6 10.3 8 
40 35 45 28 10.2 13.3 11.7 
60 37 47 29 13.3 16.2 15.6 
80 39 50 32 15.5 20.5 18.1 

100 41 54 35 18.3 24.8 21.7 
200 52 73 51 33.2 39.1 32.5 

         
  PF (A) PF (B) PF (C ) DPF (A) DPF (B) DPF (C ) 

0 0.31 0.38 0.79 0.31 0.38 0.81 
20 0.27 0.42 0.8 0.3 0.44 0.8 
40 0.27 0.46 0.79 0.3 0.49 0.81 
60 0.27 0.49 0.79 0.3 0.54 0.8 
80 0.24 0.52 0.77 0.27 0.58 0.8 

100 0.27 0.61 0.76 0.27 0.64 0.79 
200 0.16 0.74 0.71 0.18 0.78 0.76 

Table F.5: Results of DC Injection between ‘C’ and ‘B’ Phases 

 

 

 

 

 



 

Page 130 

DC Injection Between A and C Phases 
              

DC Level (mA) 
IL A 
(mA) 

IL B 
(mA) 

IL C 
(mA) 

IP A 
(mA) 

IP B 
(mA) IP C (mA) 

0 189 171 153 89 113 104 
20 195 178 151 93 114 107 
40 206 186 150 99 114 112 
60 219 195 151 107 115 114 
80 234 206 154 118 118 122 

100 247 214 158 122 118 132 
200 342 276 196 171 139 177 

         
  W (A) VA (A) VAR (A) W (B) VA (B) VAR (B) 

0 10 32 31 11 41 38 
20 11 33 31 15 41 39 
40 12 35 33 15 42 39 
60 15 38 35 17 45 42 
80 19 42 38 13 44 41 

100 21 46 41 15 41 38 
200 32 65 57 47 50 46 

              

  W (C ) VA (C) VAR (C) 
Ithd % 
(A) 

Ithd % 
(B) 

Ithd %  
(C ) 

0 32 41 25 8.8 9.7 7 
20 33 41 24 10.6 9.3 8.1 
40 33 39 21 11.3 11.3 11.5 
60 36 45 26 17.8 12.8 14.6 
80 39 45 21 20.4 16.7 18.3 

100 43 48 22 22.1 19.6 22.4 
200 57 65 32 33.7 36.5 36.5 

         
  PF (A) PF (B) PF (C ) DPF (A) DPF (B) DPF (C ) 

0 0.31 0.38 0.79 0.31 0.38 0.81 
20 0.34 0.35 0.81 0.36 0.38 0.83 
40 0.34 0.35 0.85 0.38 0.36 0.87 
60 0.4 0.37 0.82 0.42 0.39 0.87 
80 0.44 0.37 0.88 0.46 0.38 0.91 

100 0.46 0.36 0.89 0.47 0.36 0.92 
200 0.49 0.34 0.87 0.47 0.39 0.94 

Table F.6: Results of DC Injection between ‘A’ and ‘C’ Phases 

 

 
 


