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Abstract

The development of railway interlocking systems is currently
very labour-intensive. Specialists develop the interlocking de-
sign for a particular area and manually check for completeness
and consistency. The interlocking is implemented in either soft-
ware or using electrical relays. The interlocking has to be tested
against the safety requirements for signalling systems, i.e., the
signalling principles.

The whole process can be supported by various tools, rang-

ing from editors to animators. In this paper we focus on ex-

ploiting model checking to automatically check the design with

respect to safety. The main concerns of this technique are the

problem size and the efficiency of available tools. We have in-

vestigated both of these problems: seeking to work with a min-

imal model of the interlocking design and to improve efficiency

of the model-checking process by exploiting domain knowledge

of our particular application.

Keywords: Railway interlockings, automated verifica-
tion, symbolic model checking, Binary Decision Dia-
grams

1 Introduction

Model checking (Clarke, Grumberg & Peled 2000) is
an automatic technique used to support the validation
and verification of system designs. It is of particular
interest to industry since its application does not rely
on any expertise in the underlying verification tech-
nique.

A model checker explores the full state space of a
given model of the system. Similar to a complete test,
every possible behaviour is investigated. The tool
provides the user with an answer indicating whether
the model violates a given property or requirement.
Most tools provide a counter-example that shows a
possible scenario in the case when a violation occurs,
which proves to be very useful when debugging the
model.

The following tasks have to be solved when set-
ting up a development process that integrates model
checking to support debugging and verifying a system
design.

1. The system design has to be modelled formally
in the input language of the tool.

2. Requirements or properties to be checked have
to be identified and also formalised in the tool’s
input notation for requirements.

3. Both model and requirements have to be care-
fully validated. That is, the user has to make sure
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that both formalisations correspond with the ac-
tual system design and requirements that ought
to be checked.

4. A thorough analysis has to clarify which prob-
lems in the system design can be detected with
model checking and which cannot be detected
due to the given formalisation of system design
and requirements.

Within a specific application, tasks 1 and 2 of the
list above can often be automated once the domain of
interest is well enough understood. This is possible, if
(a) a system design is always provided in a standard
format and (b) the requirements can be derived in a
standard fashion for each particular case.

Railway signalling interlockings are safety criti-
cal systems. They are designed to permit the safe
movement of trains along a railway system. We
are currently investigating the use of model check-
ing for the verification of railway interlocking de-
signs within a collaborative project with Queensland
Rail (QR). It is planned that the interface to the
model checker will become part of a Signalling De-
sign Toolset (Robinson, Barney, Kearney, Nikandros
& Tombs 2001), which includes also a track-layout
editor, a control-table generator, and a control-table
editor (CTE). For this application, both conditions
above are satisfied: the system design (i.e., the inter-
locking design) is specified by experts at QR as tables,
called control tables . The track layout and route table
(Winter & Robinson 2003) provide additional infor-
mation about the position of signals, points, tracks,
and routes between the signals. From these docu-
ments, our tool support automatically generates a
formal model of the interlocking design. The prop-
erties we want to check are the safety requirements of
an interlocking system as specified in the Signalling
Principles1(SAOS Standards 1999). They are generic
for our particular model and can be summarised as
(a) avoidance of train collision and (b) avoidance of
train derailment.

We use the model checker NuSMV (Cimatti,
Clarke, Giunchiglia & Roveri 1999) to check the safety
properties for interlocking designs. NuSMV is a soft-
ware tool for the formal verification of finite state
transition systems. It is a reimplementation and a
re-engineering of the Symbolic Model Verifier (SMV)
developed by McMillan at Carnegie Mellon Univer-
sity (McMillan 1993). The tool checks whether tem-
poral logic properties are satisfied by a given model.
That is, the model has to be specified using (typed)
state variables to model the state space and guarded
transitions that capture the behaviour of the model.
The requirements have to be specified in Computa-
tion Tree Logic (CTL), a propositional branching type

1This is a document of the principles to be applied to all sig-
nalling works in the Brisbane suburban area.



temporal logic (Emerson 1990). Both input nota-
tions are well suited for our problem. Additionally,
NuSMV is a symbolic model checker which means
model and requirements are internally represented by
graph structures, called Binary Decision Diagrams
(BDDs) (Bryant 1986). Generally, BDD-based model
checking has proved to be very efficient (see e.g.,
(Burch, Clarke, McMillan, Dill & Hwang 1992)).

However, to make our approach of model check-
ing interlocking designs feasible for use in practise,
we have to target the issue of efficiency. Whereas a
small design can be automatically checked quite fast,
as design size increases, the time taken to check the
design increases at a rapid rate and may not return a
result at all. This is often referred to as the state ex-
plosion problem. Run-time and memory usage of the
process have to be improved. This can be done in two
ways: (a) reducing the models of design and require-
ments by stripping information that is not necessary
for the model checker and (b) by improving the model
checking process itself for this particular application.

This paper addresses both issues. In Section 2, we
describe our particular model of the system design
that allows for a generic requirements specification
and how this model could be optimised in terms of
its size. Section 3 shows how the characteristics of
the model checker we use can be exploited to gain
a significant speed-up in run-time by using domain
knowledge. We report on related work in Section 4
and conclude the paper in Section 5.

2 The Model of the Interlocking Design and
its Requirements

Run-time and memory-usage of the model checking
process depend on the size of the model and the com-
plexity of the requirements to be checked. Factors
that determine the model’s size are the number of
state variables, the size of their (enumerated) type,
and the number of transitions that model the be-
haviour. The complexity of the requirements can be
measured in terms of the length of the CTL formula
and the number of nested temporal operators. To op-
timise the complexity of the model-checking process
we have to minimise these factors.

2.1 The Model

Unlike other approaches for verifying interlockings
(see Section 4), our model not only includes a model of
the interlocking design but also of (one or two) trains
moving along the tracks (Winter & Robinson 2003).
As a consequence, the safety requirements become
generic and very easy to validate because they can
be modelled in terms of trains. Trains must not col-
lide and they must not derail. The checking process
verifies that trains, that are moving according to the
constraints permitted by the control tables, do not vi-
olate these safety requirements. The model therefore
consists of a model of the behaviour of trains, in terms
of how they move from one track to the next and how
they react to signalling equipment, and a model of
signalling equipment behaviour, instantiated by the
behaviour prescribed in the control tables.

Our model is instantiated for a specific verification
area which describes a local part of the railway net-
work. Figure 1 depicts the track layout of a small ver-
ification area showing the location of points, signals
and tracks within that area. Each verification area
should be large enough to include at least one route
and all its opposing routes. Ideally, a verification area
would include all the routes and opposing routes for
a particular interlocking. For each verification area,
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Figure 1: Example of a Verification Area

an extract of the control table which includes data
relevant to the area is produced.

Figure 1 is an example track layout. Signals, e.g.
NG5, use colour indications (e.g. green for go), to
give authorities for trains to travel a particular route
through the layout. The difference between signals
that have two circles (e.g. NG5) and those with three
and a dash (e.g. NG8) is not important in this con-
text. Points, e.g. 511, are movable components in
the track that permit a train to move from one track
to another. The position of the points is referred
to by the railway signalling industry as points nor-
mal or points reverse. A route is a path between
two facing signals (a facing signal is a signal that is
’facing’ towards an approaching train), a route can
be locked reverse meaning it is reserved for use, or
normal meaning it is free. NG1C, NG5A, NG8D and
NG8C are tracks, while NG5Aa, NG5Ab and NG8Ba-
d are track-segments, the latter are introduced purely
for the purpose of modelling and are not based on ac-
tual hardware design.

Train behaviour is such that trains only proceed
past a facing signal if that signal is showing pro-
ceed. The trains otherwise move from track to track
according to data extracted automatically from the
track layout. Signal equipment behaviour is generi-
cally described in the Signalling Principles. For exam-
ple, points can only change state if the tracks which
contain the points are not occupied, and for every
route crossing the points, the conditions for holding
the points in their current lie do not apply. The pre-
cise data, giving which routes and what locking con-
ditions are needed, is extracted (automatically) from
the data for the verification area that is under inves-
tigation.

Our model comprises the following entities and en-
tity values: trains and their positions, signals and
their aspects (either stop or proceed), points and
their lie (either normal or reverse), and routes and
their locking and route-usage. These entities are mod-
elled as state variables. Their values can be changed
at each state if the conditions (corresponding to the
general description in the Signalling Principles and
according to the control table entries for the spe-
cific verification area) are satisfied. We adopt a syn-
chronous model , i.e., at each step all possible changes
to the state variables are conducted at the same time.
This model of synchronous conditional updates re-
flects the behaviour of an interlocking system of a
specific verification area as it is permitted by the cor-
responding control tables.

A position of a train is given in terms of a segment.
Each track comprises one or more segments, where
each segment represents a unique way of traversing
the track. For tracks NG5A and NG8B figure 1 shows
the corresponding segments, namely NG5Aa and b,
and NG8Ba-d are shown. Note that for the track



that contains a point, NG8B, we can find four unique
ways to traverse it and therefore get four segments,
NG8Ba-d.

A route may cross a number of tracks. The num-
ber of tracks very much depends on the operational
requirements of the railway. A route is in use when
one of its track sections is occupied by a train. As
the train proceeds into the route, tracks are progres-
sively occupied and subsequently unoccupied, and in
so doing progressively release parts of the route be-
hind the train for other trains to use. Thus a route
may have various stages of usage depending on the
number of tracks. This is modelled by an additional
state variable called route usage.

For the operation of a real interlocking, route and
point settings are requested by the signaller. This is
modelled by an input variable request. When model
checking, the value of this input variable is set arbi-
trarily at each step. Of course, this model includes
quite “unconventional” behaviour of a signaller, since
every possibility is investigated and no assumptions
have been made on the behaviour of the signaller. It is
reasonable to proceed this way since the control table
has to guarantee safe operation in every scenario.

We are able to show by exhaustive testing that
any element missing from the data in the route hold-
ing section of the control of the control tables, leads
to a violation of the safety requirements (that is, a
collision or derailment occurs).

2.1.1 A Minimal Model

For our purpose a simple model of trains and their
movement is sufficient. We consider trains to behave
well, i.e., they do not speed or overrun red signals.
They move according to the state of points and sig-
nals. We abstract from the speed and length of a
train. A train just occupies one segment at a time
and can stop instantly. The direction of a train is
determined through its position, which is a particular
segment that carries information about direction.

Signals can show only two aspects, stop and pro-
ceed. This reduces the specified aspect type but it
does prevent us from checking the aspect sequenc-
ing of the interlocking design. Aspect sequencing en-
sures that the train driver will see a safe sequence
of signal aspects, for example, a yellow aspect be-
fore a red one. This mechanism, however, can also
be checked statically within the Control Table Editor
(CTE) (Robinson et al. 2001).

One part of the control table logic describes the
functionality of approach locking which is the function
that prevents a route that has been set for a train from
changing until it is deemed safe to do so. We decided
to restrict our checking to a model without approach
locking in order to decrease the model’s state space
and behaviour. This also allowed us to simplify the
train movement and signal model as described above.
Approach locking is a safety concern, but the corre-
sponding entries in the table can be checked statically
by the CTE.

Our model does not distinguish between normal
routes and shunt routes. Shunting is a low speed op-
eration in which trains are joined together. In terms
of our model, however, this describes a train colli-
sion, i.e., a hazard, since we do not consider the speed
of a train. For simplicity, the shunting behaviour of
trains is currently ignored. This can be justified in so
far that shunting does not provide a high safety con-
cern due to the low speed that is involved. Shunting
is certainly a hazardous operation for those directly
involved in the coupling and uncoupling of items of
rolling stock i.e. a significant workplace hazard. It is
not however considered significantly hazardous in the
railway signalling context, as the low speeds involved

should allow trains to stop short of any obstruction,
thus causing either none or minimal damage.

2.1.2 An improved Initialisation

We also improve the initialisation of our model. When
setting the route-usage initially to the lowest values,
the model checking process reveals that the first few
iterations are used only to increase the value of the
route-usage. To avoid these iterations, we initially set
route-usage of each route to its maximal value.

A less restrictive initialisation that leaves values
unspecified where possible can also help to reduce the
checking time due to the fact that the internal rep-
resentation of the initial states becomes smaller (see
also (Huber & King 2002)). In our application we can
leave out the initialisation of the points setting.

2.2 Consequences for the Verification Task

Reducing the model of the interlocking design comes
at a cost and carries two consequences. Firstly, the
model and its behaviour is less intuitive for railway
signal interlocking designers. The counter-examples
that are output by the NuSMV tool, although reveal-
ing real errors in the control table, show in some cases
unexpected or unusual behaviour for the trains due
to our simplified model of train movement. In that
sense, the model checking approach is very different
to testing using simulation that aims at realistic sce-
narios. Our approach is not inclined to do that but
rather to check that the entries in the control tables
prevent train collision and derailment.

This is a problem that requires resolution in order
to achieve acceptance of the tool support by inter-
locking designers. We propose to provide the user
with an interpretation of the counter-examples pro-
duced. In most cases, the necessary information, on
what the cause of the problem and where the hazard
is, can be automatically derived from the counter-
example. This enables us to generate an interpreta-
tion that points the user directly to the right place in
the control table where an entry is missing or flawed,
without inspection of the counter-example. We are
currently discussing and testing this approach with
practitioners from QR.

Secondly, the scope of the verification task is re-
duced. As already discussed in Section 2.1.1, certain
parts of the control tables cannot be checked using
our simplified model. In some cases, e.g., approach
locking and aspect sequencing, it seems reasonable
and more efficient to check those parts using other
approaches, e.g., doing static checks using the CTE.
In other cases, e.g., shunt routes, the benefit of in-
cluding checks on those entries does not outweigh the
benefit of a more efficient model checking process be-
cause they do not carry a significant safety concern.

However, there are issues that we want to include
into our model in the future, like the notion of over-
laps and level crossings . Overlaps are tracks beyond a
signal and are introduced as a safety buffer for trains
that overrun a red signal. Since the trains in our
model always stop at a red signal, missing overlaps
in the control table cannot be detected in our cur-
rent approach. Moreover, including the concept of
overlaps into our model would also allow us to check
for certain liveness conditions on setting signals and
routes.

Level crossings also carry a safety concern. They
are not present in every area but when they are,
the corresponding part of the control table should be
checked. Future work will be to include necessary
concepts, such as gates and gate movement, into the
model.



All the changes on our model are thoroughly dis-
cussed with our industry partners from QR. The
changes and their impact are well documented, es-
pecially the scope of the verification that is provided
by the model checking process.

2.3 The Requirements

Since our model comprises a model of moving
trains, the requirements on an interlocking design are
generic. Rather than expressing, for example, a pos-
sible train collision in terms of routes, signals and
points, we can state this in terms of trains that use
the tracks according to the control table entries.

We check the following safety hazards:

• collisions between trains travelling on the same
track and in the same direction

• collisions between trains travelling on the same
track but in different directions

• derailments caused by points moving underneath
a train

• derailments when a train crosses incorrectly set
trailing points

• trains passing signals with routes set in the op-
posite direction.

For checking collisions on trains, we obviously need
a model with at least two trains. However, a careful
analysis of our approach shows that no more than
two trains are necessary to find all possible errors in
the control tables. Derailment and trains running into
wrongly set routes, on the other hand, can be checked
using one train only. Hence, we run different checks
with different models: two-train models and one-train
models, of which the latter run significantly faster.

We translate the safety hazards into requirements
formalised in CTL, e.g., it is always the case that
the position of train tr1, pos(tr1), is different to the
position of train tr2, pos(tr2). In CTL syntax (note
that AG models always, in every state):

AG (pos(tr1) 6= pos(tr2))

To check derailment caused by points moving un-
derneath a train we want to check that whenever a
train tr is on a track section with a point p (i.e.,
pos(tr) = homeTrack(p)) it should not be possible to
move point p, i.e., to change its setting pointset(p).
Using CTL this can be formalised as follows:

∀p ∈ Points, ∀val ∈ dom(pointset) :
AG (pos(tr) = homeTrack(p) ∧ pointset(p) = val

→ AX (pointset(p) = val))

The quantification on points p and values val have
to be unfolded: val ranges over {setN, setR} and the
set of points Points is specific for the verification area
under investigation. (Note that AX models always in
the next state).

All other requirements can be formalised in CTL in
a similar fashion. However, a close inspection reveals
that all CTL requirements in our model can also be
specified as simple invariants. NuSMV not only sup-
ports model checking for CTL formulas but also for
simple invariant checking. Since the algorithms for
the latter are much more efficient, the use of invari-
ants over temporal logic where possible is preferable.

If a CTL formula contains only the temporal op-
erators AG then this formula is equivalent to an in-
variant (leaving out the temporal operators). In our
case the formula on checking derailment due to mov-
ing points (as shown above) can also be stated as

a

b b

c c c c

d d d d d d d d

1 01 1 1 1 1 1 1 1 11 10 0 0

Figure 2: OBDD for f = (a ↔ b) ∨ (c ↔ d) with
ordering a < b < c < d

invariant if we exploit the knowledge from our inter-
locking model: A point only moves if certain condi-
tions are satisfied, i.e., if the guard pointNGuard, for
setting a point normal (to value setN), or the guard
pointRGuard, for setting a point reverse (to value
setR), is true. The following invariant is equivalent
to the CTL formula above:

∀p ∈ Points :
pos(tr) 6= homeTrack(p) ∨
¬((pointset(p) = setN ∧ pointRGuard(p))
∨ (pointset(p) = setR ∧ pointNGuard(p)))

Again, the quantification on point p has to be
unfolded and the parameters pointRGuard(p) and
pointNGuard(p) replaced according to the verifica-
tion area under investigation. This can be done au-
tomatically.

3 The Model Checking Process

Our model checking process is based on a technique
called symbolic model checking. Symbolic model
checking uses ordered binary decision diagrams (OB-
DDs) as a data structure for the internal representa-
tion of the model and the temporal logic formula to
be checked. OBDDs are a canonic representation for
boolean formulas. They can be reduced into reduced
OBDDs (ROBDDS). ROBDDs provide for most func-
tions a more concise representation than other normal
forms (e.g., KNF and DNF) (Bryant 1986). Very effi-
cient algorithms for building and combining ROBDDs
are available (Somenzi 1998).

3.1 Variable Ordering of ROBDDs

The possibilities for reducing an OBDD depend on
the chosen ordering of variables. Figure 2 shows the
OBDD for the boolean function f = (a ↔ b) ∨ (c ↔
d).2 Nodes of the graph are labelled with the variable
names occurring in f . Nodes on each level are labelled
with the same variable, i.e. the graph is ordered. A
dotted edge from a node marks the evaluation to 0
(or false) of the variable the node is labelled with.
A solid edge marks its evaluation to 1 (or true). The
leaves of the graph are labelled with 0s and 1s indi-
cating the evaluation of the formula f depending on
the evaluation of the variables as represented by the
path in the graph that leads to the leaf.

In the OBDD shown in Figure 2 the variables are
ordered according to their appearance in the formula,
namely a < b < c < d. This ordering is reflected
in the graph through the levels on which a variable
appears as a node label. The reduction algorithm for
OBDDs allows us to eliminate redundant tests on a
variable, isomorphic subgraphs , and leaf nodes with

2Note the the symbols in the formula read as if and only if

(↔), and or (∨).



the same label (and redirecting remaining edges ac-
cordingly). The amount of reduction that can be ap-
plied is obviously essential for the resulting size of
the ROBDD: the more we can reduce the better. In
our example in the figure, we can find two isomor-
phic subgraphs as well as several redundant tests on
variables. For instance, if variable a and variable b
evaluates to 0, then we know that f evaluates to 1; if
both variables evaluate to 1, f evaluates to 1 too. In
these two cases we do not have to test the evaluations
of variables c and d.

The OBDD in Figure 3 shows a different variable
ordering: we evaluate variable c before b. This graph
shows a different pattern of subgraphs and leaf nodes.
It allows for less reduction. In Figure 4 we show the
reduced OBDDs for both orderings. As can be seen
the resulting ROBDD for ordering a < b < c < d is
significantly smaller (given the fact that we are look-
ing at a very small example). It has six (non-leaf)
nodes instead of nine. This number of nodes deter-
mines the complexity of the algorithms used when
model checking.

3.2 Application specific Variable Ordering

The size of the OBDDs influences the time taken for
model checking and the memory usage. In general,
finding an optimal ordering for the variables is infea-
sible (Clarke et al. 2000).

The insight into the issue of variable orderings can
be exploited for generating variable orderings auto-
matically. According to the rules for building and
reducing an OBDD as described above, the following
principles can be observed: When ordering the vari-
ables that occur in a formula, it is beneficial to

• group variables together that are closely inter-
related; often the locality within the formula is
characteristic for close interrelation between vari-
ables;

• place groups of variables, that determine the
overall value of the formula, at the top of the
ordering.

As a default, the NuSMV tool generates a vari-
able ordering according to the order of appearance of
variables within the SMV code. We call this the de-
fault ordering. The NuSMV tool also has a user input
option to generate an ordering and optimise it during
the run of a model checking process, referred to as dy-
namic re-ordering (Cavada, Cimatti, Olivetti, Pistore
& Roveri 2001). However, those automated orderings
did not prove to be successful for our application (see
results below).

Therefore, we additionally use knowledge from our
application domain, namely interlocking design, to
propose alternative ordering strategies. These strate-
gies are not based on the order of appearance of the
variables in the SMV code but rather on the informa-
tion provided through the track layout and the control
tables.

a
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d d d d d d d d
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Figure 3: OBDD for f with ordering a < c < b < d
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Figure 4: Two ROBDDs for (a ↔ b) ∨ (c ↔ d) with
different orderings. Left: a < b < c < d, Right:
a < c < b < d

a.) Geographical ordering: For a model of a spe-
cific verification area we group variables accord-
ing to the locality within the track layout. Sig-
nalling equipment, which determines the vari-
ables of the OBDDs, is placed together in the
ordering if it is geographically close. That is, we
collect the signalling equipment occurring in the
track layout from left to right and place them in
the order of their position. We call this ordering
a geographical ordering.

b.) Causal ordering: We group the variables for a
specific verification area according to causal de-
pendencies between the variables. More specifi-
cally, we group each point with those routes that
cross the point in a facing direction and with
the signals from which those routes are entered.
Routes that do not cross points in a facing direc-
tion are grouped with routes that oppose them.
This results in groups of variables, in which all
members determine the state of all other mem-
bers. The position of a group of entities within
the overall ordering is geographically. We call
this ordering the causal ordering.

Interestingly, this strategy corresponds with the
way mechanical interlocking design used to be
done, as QR railway engineers pointed out. To
them, our causal ordering strategy seem to be
the natural strategy to choose.

The position of the train is related to the be-
haviour of all signalling entities. In both application-
specific orderings we therefore place variables on the
train position and train movement at the beginning
of the ordering. Input variables to the model, like the
request of a route or point, are placed in the middle of
the variable ordering, preferably between two neigh-
bouring groups of entities. This coincides with the
suggestions in (Moon, Hachtel & Somenzi 2000).

We have tested the different strategies for variable
orderings on various verification areas using an Ultra-
SPARC II 450 MHz processor with 2GByte of RAM
under the operating system Solaris version 8. For ex-
ample, on a medium-sized verification area (29 routes,
13 signals, 22 tracks, and 9 points) we get a results
as shown in Table 1.

ordering strategy run-time
(in hours)

memory usage
(in MByte)

default 13.6 1246
geographical 4.5 1105

causal 2.4 732

Table 1: Statistics for medium-sized problem

The dynamic re-ordering was tested on a small



verification area only (24 routes, 16 signals, 18 tracks,
and 4 points)3 and the results were discouraging: the
model checking process with a dynamic re-ordering
runs for 31.9 hours whereas using the causal ordering
on the same example reduces the run-time to 40 min.

These results illustrate that the strategy of choos-
ing a variable ordering has significant impact on the
applicability of model checking to larger problems.

3.3 Setting the Maximum Cache Size Limit

The NuSMV tool integrates the Colorado University
Decision Diagram (CUDD) package (Somenzi 1998)
which provides a library of efficient algorithms for
all BDD operations. The efficient recursive manip-
ulation of BDDs uses a cache to store computed re-
sults. This cache provides fast access to BDDs, en-
ables re-usability of graphs and supports an efficient
garbage collection if graphs are not used any more.
The CUDD package starts by default with a small
cache, and increases its size until either no further
benefit is achieved, or a limit size is reached. The
user can set the initial and the limit value for the
cache size. The impact of these figures is twofold.
Too small a cache size will lead to a frequent over-
writing of useful results. Too large a cache size will
lead to a bigger overhead used for garbage collection.
The CUDD manual recommends the following: “The
optimal parameters depend on the specific applica-
tion. The default values work reasonably well for a
wide spectrum of applications” (Somenzi 1998).

Although this parameter cannot be set as a user
option to the NuSMV tool we changed its value within
the NuSMV code. Instead of using the default limit
for the cache size (104 MByte), we changed this value
to 512 MByte.

These experiments were done on a new machine
with two Intel 3192 MHz processors, and 4GByte
RAM, running Red Hat Enterprise Linux AS re-
lease 3. On the medium size verification area, using
the causal ordering and a cache size of 104 MByte,
the statistics are 2.1 hours run-time and 578 MByte
memory usage. Increasing the size of the cache to
512MByte, the run-time reduced to 1.2 hours and the
memory usage increased marginally to 596 MByte.

Although the memory usage is slightly increased
we gain a significant speed-up in processor run-time.
We are currently analysing the optimisation of this
value in more detail.

4 Related Work

Model checking has been applied before to the anal-
ysis of interlocking systems: Gnesi et. al (Gnesi,
Lenzini, Latella, Abbaneo, Amendola & Marmo
2000), Bernardeschi et. al (Bernardeschi, Fantechi,
Gnesi & Mongardi 1996), and Cleaveland et. al
(Cleaveland, Luettgen & Natarajan 1996), for in-
stance, have addressed the problem of fault-tolerance
in interlocking systems. In their work, the checking
task is focused on communication issues between com-
ponents of the system rather than the control logic of
the interlocking. The preferred modelling language
for formalising the systems are based on process alge-
bras (e.g., Communicating Sequential Process (CSP),
Calculus of Communication Systems (CCS), Process
Meta Language (PROMELA)). These languages pro-
vide suitable features for modelling communication
between components.

3Although the numbers of routes, signals, tracks and points in
our small and medium-size models do not differ much, the num-
ber of resulting state variables and values in the SMV model are
significantly bigger in the medium-sized model.

The work of Simpson, Woodcock and Davies
(Simpson, Woodcock & Davies 1997) describes an-
other approach that uses a process algebra for mod-
elling. The paper describes how the control logic
of an interlocking system is modelled using CSP.
The refinement checker Failure Divergence Refine-
ment (FDR) (For 1996) is used to check the safety
properties. However, their model is at a lower level of
abstraction than ours. The safety invariants, namely
no collision of trains and no derailment, are mod-
elled in terms of the signalling entities such as points,
signals, routes, and segments. This formalisation of
safety invariants has to be manually derived from the
track-layout (in the paper it is not explained how)
and, therefore, it is not obvious if a given set of in-
variants is complete and covers all eventualities.

Closer to our approach are the contributions by
Eisner (Eisner 1999) and Huber et. al (Huber &
King 2002). Both use a symbolic model checker to
analyse the interlocking logic of a given track lay-
out and discuss strategies for optimisation. In both
works, however, the model is significantly different
from our model.

Eisner starts her analysis with a model given as Vi-
tal Logic Code (VLC) (essentially of a set of Boolean
expressions), to specify railway interlocking software
which is then translated into a dialect of the SMV in-
put notation. Therefore, optimising the model is not
an issue discussed in the paper. Her optimisations re-
late to the way in which the safety requirements are
formalised in a sub-language of CTL, called AGAX
formulas. She shows that the model used has certain
general characteristics (called robustness and local-
ity) that render the application particularly suitable
to symbolic model checking of AGAX formulas. Al-
though this is generally a very interesting observation,
since it allows predictions for other applications too,
in our case the requirements are even simpler than
AGAX formulas. For our model the requirements can
be stated as invariants.

Huber et. al model and check the Geographi-
cal Data of a Solid State Interlocking program us-
ing NuSMV. That is, their approach for verification
is placed at program level rather than design level.
Moreover, their model does not contain a model for
train position and movement. Consequently, the re-
quirements have to be formalised based on the sig-
nalling entities. The paper suggests an automated
approach for generating the CTL formulas from the
given principles. In this approach the number of re-
quirements to be checked is rather large. The general
template for the formulas has to be instantiated for
all tracks, and all points, and all routes. To optimise
the variable ordering, the paper suggests using the
dynamic re-ordering of the NuSMV tool. In our case,
however, we were able to significantly improve on this
option by using an application specific ordering.

This work is of particular interest because it
suggests a number of ways to optimise the model-
checking process. In contrast to our work, the in-
put data is not translated into SMV code but rather
into BDD structures (circumventing the compilation
of the NuSMV tool). This provides more direct access
to the BDD structures. Some of the suggestions can
be applied to our approach too. For example, the op-
timisation of initialisation of the model (see Section
2). Other suggestions will be further investigated in
our future work (e.g., the potential of splitting the
transition relation).

5 Conclusion

This work describes an approach to checking the
safety requirements of interlocking designs using a



symbolic model checker. In order to minimise the
state explosion problem and to improve the perfor-
mance of the model checker for larger examples, we
suggest a number of optimisations. We reduce the
model to be checked, where this is possible, without
loss of credibility regarding safety issues. We describe
a strategy for finding a very good variable ordering
based on domain knowledge and we suggest on an im-
provement of parameter settings of the NuSMV tool
and the CUDD package for our specific application.

In future work we will continue to investigate fur-
ther improvements to the model as well as further
optimisations to the settings of the tool’s parameters.
To automate the overall process, we are aiming to de-
velop an automated generator for variable orderings
for specific verification areas, and to provide the user
with support for comprehensive counter-example in-
terpretation.
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