TRACK: A Novel XML Join Algorithm for Efficient Processing
Twig Queries

Dongyang Li

Chunping Li

School of Software, Tsinghua University
MOE Key Laboratory for information System Security, China
Email: 11dy05@mails.tsinghua.edu.cn

Abstract

In order to find all occurrences of a tree/twig pattern
in an XML database, a number of holistic twig join al-
gorithms have been proposed. However, most of these
algorithms focus on identifying a larger query class or
using a novel label scheme to reduce I/O operations,
and ignore the deficiency of the root-to-leaf strategy.
In this paper, we propose a novel twig join algorithm
called Track, which adopts the opposite leaf-to-root
strategy to process queries. It brings us two bene-
fits: (1)avoiding too much time checking the element
index to make sure all branches are satisfied before
a new element comes. (ii)using the tree structure to
encode final tree matches so as to avoid the merg-
ing process. Further experiments on diverse data sets
show that our algorithm is indeed superior to current
algorithms in terms of query processing performance.

Keywords: XML, Twig Join Algorithm.

1 Introduction

With the increasing amount of XML for exchanging
data on the web, finding useful information efficiently
among these large volumes of data has been a mean-
ingful task. Researchers often represent XML docu-
ments as tree models. Meanwhile, several XML query
languages have been proposed, such as XPath and
XQuery, etc. These query expressions are usually
modeled as tree patterns that specify a set of con-
straints, so the query process is converted to finding
all occurrences of the tree pattern of a query in the
forest of XML documents.

XML query has been extensively studied in recent
years. Previous researches build various structural in-
dexes for XML documents, and expect to use them
to accelerate the query processing time. But in most
cases, we should enlarge the size of the index in order
to increase the query processing time. Furthermore,
because of fixed structure of the index, almost all of
them are proved to be efficient only for a portion of
queries (Cooper 2001, Chung 2002, Goldman 1997,
Kaushik 2002, Kaushik-Shenoy 2002). Hence, a novel
method named region scheme is proposed. It asso-
ciates each XML document element with a 4-tuple
which exclusively identifies the position of the ele-
ment.

Based on region scheme, most existing researches
focus on structural join algorithms to capture the re-

Copyright (©2008, Australian Computer Society, Inc. This pa-
per appeared at the Nineteenth Australasian Database Confer-
ence (ADC2008), Wollongong, Australia, January 2008. Con-
ferences in Research and Practice in Information Technology
(CRPIT), Vol. 75, Alan Fekete and Xuemin Lin, Ed. Repro-
duction for academic, not-for profit purposes permitted pro-
vided this text is included.

lationships between elements. Zhang (Zhang 2002)
proposed the multi-predicate merge join, which is a
variation of the traditional merging join algorithm.
Later Al-Khalifa (AL-Khalifa 2002) pointed out the
bottleneck of algorithms at that time, and then used
stacks to store the intermediate results so as to
avoid repeatedly scanning the input lists. N.Bruno
(Bruno 2002) concluded the stack-based algorithms
and brought forward a holistic join algorithm, named
TwigStack, which uses linked stacks to compactly
represent partial results to path patterns, and then
composes them to obtain matches for the tree pat-
tern.

In this paper, we propose a novel twig join algo-
rithm Track, which first partitions queries into axes,
and then processes each axis individually using the
structural join algorithm. During the processing of
each axis, we selectively recover the tree structure for
one query node and build links between forests to
compactly represent final twig matches for the twig
query. Our algorithm first builds the tree structure
for leaf nodes, and then traces leaf-to-root pathes back
to the root. Because of its leaf-to-root strategy, it
avoids too much time checking the element index to
make sure all branches are satisfied before a new el-
ement comes. Finally, we output all twig matches in
a reverse root-to-leaf manner.

The rest of the paper is organized as follows. In
Section 2, we introduce basic notations and defini-
tions used in the paper. In Section 3, we analysis the
limitation of current algorithms. Section 4 shows the
whole procedure of Track. In Section 5, we show the
experimental results by comparing our algorithm with
other methods. In Section 6, we have the concluding
remarks and the future work.

2 Background

An XML document can be modeled as a rooted, or-
dered tree where each node corresponds to an element
or a value, and each edge represents the element-
subelement or element-value relationship. Figure 1
shows an example of this model.

Query expressions in XML query languages can
be represented as path patterns or tree patterns for
matching relevant portions of data. For example, the
query expression:

book//author[fn= "jane’ AND In= ’poe’]

asks for the author of a book whose first name is
jane and the last name is poe. In the above instance,
node labels in tree patterns include elements or string
values, and there are two kinds of edges, the single
slash 7/’ which denotes the parent-child relationship,
and the double slash ’//’ which denotes the ancestor-
descendant relationship.

Region scheme is derived from the inverted index
data structure in information retrieval (Salton 1983).
Similar to the technique to deal with text words in



book

LN~

allauthors  year book
/ / \ \ author
author author author o / \\
/ \\\ ’\\\ fn In
fn In fn In fn In -
jane poe

jane poe john doe tom doe

Figure 1: A Sample XML Document and A Query
Pattern

traditional IR systems, Region scheme maps elements
with the same tag name to an inverted list. In other
words, each inverted list records all occurrences of el-
ements with the same tag name in XML documents.
In general, one record is represented as a 4-tuple(doc,
start, end, depth) to identify the position of an el-
ement exclusively. While doc reduces the searching
space to one document, start which is generated by
a pre-order traversal of the document trees exactly
finds the occurrence position. end is the maximal
start of elements in the subtree of current element,
and depth gives additional information to determine
the parent-child relationship of tree elements. Given
two elements u, v, the positional relationship between
them is defined as follows:

1. iff u.end < wv.start, u is a pre-node of v;

2. iff w.start < v.start, and u.end > v.end, u is an
ancestor of v.

3. iff w.start < v.start, u.end > v.end, and u.depth
+ 1 = v.depth, u is a parent of v.

4. iff u.start > wv.start, and u.end < v.end, u is a
descendant of v.

5. iff w.start > v.start, u.end < v.end, and u.depth
— 1 = v.depth, u is a child of v.

6. iff u.start > v.end, u is a sub-node of v.

3 Related works

Bruno (Bruno 2002) designed a stack-based algorithm
TwigStack, which used linked stacks to compactly
represent partial results to path patterns, and then
composed them to obtain matches for the tree pat-
tern. For each query node ¢, we associate a stream
T, and a stack S; with it. The stream T} stores all el-
ements with the same tag name q in XML documents
in {doc, start} sequence. The stack S, temporarily
stores the partial results, and every node in .S, con-
sists of a pair: {an element from Ty, a pointer to a
node of the parent stack}.

Consider a twig query and a document in Figure
2, the elements are processed in the sequence of al,
a2, b1, b2, c1, c2. When the first element al comes,
TwigStack checks the children nodes B, C' of A, and
finds that there exist two elements b1 and cI which
are descendants of al. Hence, al is pushed into the
stack S4. As a2 comes, it does not satisfy the con-
dition. When b1, b2, c1, or c2 comes, we separately
output the partial results {al, b1} , {al, b2} , {al,
c1} , and {al, ¢2}. Finally, all partial results are
merged to generate the final twig results {a1, b1, c1},
{al, b2, c1}, {al, b1, c2}, and {al, b2, c2}.

From above example, we observe that TwigStack
uses the stack structure and pointers between them to
encode relationships of elements, it ensures that one
node is guaranteed to be an ancestor for nodes above

— Tree edge
—= Pointer

I - Forest A ,al
/'dl‘ b2 ---#(ﬂ 7N
b By |
- al
a2 cl bl !

v
1 cl

2 c2

=
-—_

g
Do
-
olol
— ol
7
P/
Ly

W

Y

o

—
oo

Forest B Forest C

Document Twig query Stack structure Tree structure

Figure 2: TwigStack for twig query processing

it in the same stack, and is also an ancestor for nodes
in descendant stacks which point to it. This encoding
scheme not only avoids generating large intermediate
results, but also reduces the query processing cost.

However, TwigStack has to check the element in-
dex to make sure all branches are satisfied before
a new element comes. such as al and a2 in the
above example. Moreover, for using stacks and point-
ers between them to encode relationships, TwigStack
encounters obstacles when following-sibling relation-
ships exist in the query. So it has to output the par-
tial results at first, and then merge them to get the
final twig results. Motivated by the observation, we
want to recover the tree structure of elements. Based
on the tree structure and the pointers between them,
the positional relationships between elements can be
greatly embodied, and the final twig matches can be
easily encoded. Similar to stacks in TwigStack, we
associate a forest with each query node in Track, and
each forest consists of several trees stored in ordered
sequence. Consider the example in Figure 2, we build
F,, Fy, and F, for all query nodes A, B, and C. In ad-
dition, pointers between forests are built to connect
elements in different forests.

DEFENITION 3.1 Given two elements n; and no
in the same forest F,, iff ny is an descendant of nq
in the forest, no must be an descendant of n; in the
original document.

DEFENITION 3.2 Given two elements p; and ny
in forest Fj, and F;,, iff p; points to n;, or implic-
itly points to m1, n; must be an descendant of p; in
the original document. (Note that if p; points to an
ancestor of ny, it implicitly points to ny)

Based on TwigStack, some improvements have
been made to identify a larger query class or to modify
it to adapt to various labeling schemes (Jiang 2004,
Lu 2004). A generic algorithm, called TSGeneric+
(Jiang 2003) was proposed, which could skip redun-
dant elements based on extra indexes built on element
labels. Lu proposed TwigStackList which took the
level information of elements into account, and re-
sulted in less intermediate matches for queries with
both ancestor-descendant and parent-child axes(Lu
2004). Other researches have focused on identifying a
larger optimal query class (Jiang 2004, Lu-Ling 2005).

On the other hand, Chen studied the limitation
of basic region scheme (Chen 2005), and then used
both tag and level information to partition the ele-
ments, this strategy avoids unnecessary scan for irrel-
evant portion of XML documents, and reduces use-
less matches. Because Region scheme only encodes
the information of a single label, Lu proposed a novel
algorithm TJFast by using a new labeling scheme (Lu
2005), which called extended Dewey. extended Dewey
enables us to derive all the element names from the
root to current element alone from the label of current
element. For example in Figure 2, we get the ances-
tor sets {al, a2} and {al} for b1 and cI. Hereafter,
the intersection {al} are generated to get the final



match {al, b1, c1}. It is clear that TJFast merely
accesses leaf elements which leads to the reduction of
I/0O operations.

4 Track

In this section, we start with an introduce to nota-
tions used in our approach, and then describe the
main algorithm in TRACK. Finally, we describe the
procedure of building the tree structure and process-
ing one axis in details.

4.1 Notation

Let Q denote a tree pattern. We use following query
node operations: isleaf(n), parent(n), and direct-
BranchOrLeaf (n). Function directBranchOrLeaf (n)
returns the set of all branching nodes and leaf nodes
such that in the path from n to those nodes there
is no branching nodes, e.g., the twig query in Fig-
ure 3, directBranchOrLeaf (A)={B}, and directBran-
chOrLeaf (B)={C,D}.

We define a data stream S, and a forest Fj asso-
ciated with node q in the tree pattern Q. The stream
S, contains the region scheme labels of document el-
ements that match the twig query node g, and these
labels are sorted by their (doc, start) values. Two op-
erations over S, are: end(S,), and current(S,). For
the forest Fy;, we define seven functions: isempty(Fy),
eof (Fy), current(Fy), isroot(n), ancestorpath(n, Fy),
RecoverForest(q), and DeleteNode(q, n), where n is a
node in Fy,. isroot(n) tests whether n is a root node of
a tree in F,, while ancestorpath(n, F,) returns the set
of ancestor nodes for n in Fy. For example in Figure
3, ancestorpath(dl, Fp)={b1} and ancestorpath(d3,
Fy)={d1, d3}.

In this paragraph, we describe the forest operation
RecoverForest() in details. Since elements in streams
are stored in the pre-order sequence, the tree struc-
ture is recovered in a root-to-leaf manner. When a
new element comes, we only need to check the ances-
tor path of last node which has been added in the for-
est, and find the right position to insert the element.
If no ancestor is found, a new tree is built. Consider
the example in Figure 3 again, after d2 has been in-
serted into Fy, we sequentially check whether d3 is
the descendant of the set ancestorpath(d2, Fy)={d2,
d1}. Finally, attach d3 to node dI. When d/ comes,
d3 and dI are checked, but none of them are ances-
tors of d4. So we initialize a new tree whose root is

dJ.

ForestOperation
Function Recover Forest(QueryNode q)
while(—end(q))
let n denote last node added, check
ancestorpath(n, F,) to find ancestors
of current(Sy);
if we find at least one ancestor, attach
current(S,) to the tree;
else create a new tree;

Function DeleteNode(Forest ¢, FNode n)
if (isroot(n))
break up Tree n into several trees whose
roots are children nodes of n;
else
attach children nodes of n to the parent
of n;

In GTrack, we also need to delete nodes from the
forest F, by using DeleteNode(q, n) for the branching

node ¢. Supposing node n is deleted from the forest,
if n is a root node of a tree in Fj, we have to break
up tree n into several trees whose roots are children
nodes of n; or else attach children nodes of n to the
parent of n.

4.2 Main Algorithm

In this section, we put together all functions de-
fined before, and depict the whole procedure of Track.
Given a query Q, we first recursively partition Q into
individual query paths, and then process these query
paths separately in a reverse leaf-to-root sequence by
using function ProEdge(). Lastly when encounter-
ing branching nodes, we use function ProBEdge() to
modify the tree structure of branching nodes to sat-
isfy all children constraints. Detailed description for
ProEdge() and ProBFEdge() are left in the next sec-
tion.

Algorithm Track(root)
foreach node n € direct BranchOr Lea f (root)

Parse(n, root)
ShowSolution()

Function Parse(n, b)
if (— isleaf(n))
foreach node g € directBranchOrLeaf(n)
Parse(q, n)
else RecoverForest(n)
while(parent(n) # b)
ProEdge(n, parent(n))
n = parent(n)
if (isempty(F,)) ProEdge(n, b)
else ProBEdge(n, b)

An inherent property of Track is that nodes in
the upper tree structure must satisfy all subtree con-
straints. In other words, nodes in the upper tree
structure are more selective than the lower ones.
Hence, we make use of ShowSolution() to output twig
matches encoded in the tree structure in a root-to-leaf
manner. For each node in F.oot, ShowSolution() tra-
verses the forests through pointers between them in
the root-to-leaf manner. Consider Figure 3 again, af-
ter the forests are built, ShowSolution() outputs all
matches, {al, b1, (d1,d2,d3,d}), c1}.

An immediate method for processing parent-child
edges in query path patterns is to change ShowSolu-
tion(), which traverses the forests through pointers
between them, and meanwhile checks the depth in-
formation of root nodes for outputs. In Figure 3,
the query is changed to A/B[./D]/C. When function
ShowSolution()is invoked, we get possible matches
{al, b1, (d1,d4), c1}, and then check them for the
final result {al, b1, (d1,d4), c1}.

I/O time of Track is no more than TwigStack,
which needs to read elements in the entire input lists.
In our approach, nodes in the upper tree structure
are more selective than the lower ones, which means
we only need to read elements which satisfy the sub-
tree constraints. On the other hand, compared with
TwigStack, whose memory requirement is just pro-
portional to the document depth, Track may keep all
elements that have the label matching with the query
in the worst case. However, because nodes in the up-
per tree structure is very selective in practice, merely
a small portion of elements are stored in the memory.

4.3 Processing the Query Axis

In Track, we first builds the tree structure for leaf
nodes, and then traces leaf-to-root pathes step by step



Tree A

al al
‘ k Step 3
Tree B ¥
bl /bl\
///‘ \\ / \ , deleted
cl dl W A . / @ \
/\ H btep/_lz\/ \  Step 2
2 b2 B 7N |
/ \
‘ //\\ vy \\ \
&3 D ¢ dl1 / \\ \
VAN \ \
d2 d3 d4 cl
Tree D Tree C
Document Twig query The tree structure

Figure 3: An example for Track

back to the root. In each step, function ProEdge()
is called to process an individual axis n//p. In
ProFEdge(), the main task is to recover the tree struc-
ture F), for the parent node p, and establish links to
represent ancestor-descendant relationships between
nodes in both forests. We first fetch nodes in forest
F,, in the pre-order sequence, and then find all corre-
sponding ancestors for current(F;,) in each recursion.
When current(F,,) is a root node, we first check the
ancestor path of last tree in Fj,. If at least one ances-
tor exists, we merge the last tree and the current one
in F,, and set pointers of ancestors to the new tree.
After it, we check S, for left ancestors still stored in
the stream, add them into the right position in F},
and set pointers of them point to current(F,). When
current(F},) is not a root node, we only check .Sj,.
We take the query step D//B in Figure 3 as an
example. When dI being visited, we find the only
ancestor b1, add it into Fy, and set the pointer of b1 to
d1. When d2 or d3 comes, we only check S, and the
former finds no ancestor and the latter finds b2. As d/
comes, we check the set ancestorpath(dl, Fy)={b1},
and then merge last tree dI and the current one dj.
Finally, set the pointer of b1 to the new tree.

Function ProFEdge(QNode n, QNode p)
while(—eof(F,))

if (isroot(current(F,)))
let root denote the root of last tree in Fj,, check
ancestorpath(root, F,) to find ancestors of
current(Fy);
if ancestors exist, merge the last tree and the
current one in F,,, and set pointers of ancestors
point to the new tree;

if (current(F,,).start < current(S,).start)
forward current(F,,) to the next node in the
pre-order sequence;

elseif (current(F,).start > current(S,).end)
forward current(S,) to the next element;

else
add current(S,) to be a child of the nearest
ancestor in F},, if no ancestor exists, create
a new tree;
set the pointer of current(F),) point to the node
current(Fy,);
forward current(S,) to the next element;

Suppose that the forest of the child node has been
recovered in previous steps, we only build the tree
structure for the parent node in current step. How-
ever, when the parent node is a branching node, we
have to consider the case in a special way. Such as
node B in Figure 3, before processing the axis C//B,

Function ProBEdge(QNode n, QNode p)
while(—eof(F},))
if (isroot(current(Fy,)))
let root denote the root of last tree in F,,
check ancestorpath(root, F},) to find ancestors
of current(F,);
if ancestors exist, merge last tree and the
current one in F,, and set pointers of ancestors
point to the new tree;
if (current(F),).start < current(F)).start)
forward current(F;,) to the next node in the
pre-order sequence;
elseif (current(F,,).start > current(F)).end)
forward current(F)) to the next element;
DeleteNode(Fp, current(Fp));
else
set the pointer of current(F),) point to the
node current(F,,);
forward current(Fj) to the next element;

the forest F}, has been built when processing D//B,
so we only need to delete nodes in Fj which do not
satisfy the added query constraints. Meanwhile, build
links between nodes in F}, and F,.

We denote the modified function to handle the
case as ProBEdge(). Compared with ProEdge(),
ProBEdge() first replaces all current(S,) with cur-
rent(F,). On the other hand, after forwarding cur-
rent(F,) to the next element as current(F,).start
is larger than current(F)).end, which means cur-
rent(F,) does not satisfy the added constraints, we
use function DeleteNode() to delete current(F),) from
F,. Finally, we need not insert current(F),) which
has been already in F}, when added constraints are
satisfied.

Figure 3 presents a complete running example of
Track. We first recover tree structures for leaf query
nodes C and D by using function RecoverForest(),
and then call function ProEdge() to process the axis
D//B. Note that the detailed description has been
showed in above paragraphs, we omit it here. There-
after, we modify F, to satisfy the axis C'//B in
ProBEdge(). When c! comes, we find only one ances-
tor b1 in existing forest Fj, and use function DeleteN-
ode() to delete b2 from Fj. Finally, we process the
axis B//A, and recover the forest F, which has one
element al.

5 Experiment

We compare two twig join algorithms, TwigStack and
TJFast with Track in C4++ on a 1.73G Pentium IV
processor running Windows XP with 512MB of main
memory. TwigStack is a holistic algorithm which is
proved to be quite efficient, especially when queries
contain only ancestor-descendant relationships. TJ-
Fast adopts a new extended Dewey labeling scheme
which can derive all the element names from the root
to current element alone from the label of current ele-
ment. Hence, the method merely needs to access leaf
elements which leads to the reduction of I/O opera-
tions.

5.1 Data Sets and Query Type

Four representative data sets are used for the experi-
mental evaluation, including two real data sets DBLP
and TreeBank, and two synthetic data sets XMark
and Random. DBLP is a wide and shallow data set,
with the size 127MB and 3.3 millions elements, while



Table 1: Queries

Data set Path Queries
Q1 DBLP /dblp/inproceedings]. /title] /author
Q2 DBLP /dblp/article[./author][. /title] / /year
Q3 DBLP /dblp/inproceedings|. /author][./ /title] / /booktitle
Q4 TreeBank //S/VP//PP[./ /NP/VBN]/IN
Q5 TreeBank /S[.//VP/IN]//NP
Q6 TreeBank //VP[./DT]//PRP_DOLLAR
Q7 XMark /site/open_auctions|.//bidder/personref]/ /reserve
Q8 XMark //people/ /person]|.//address/zipcode] /profile
Q9 XMark //item]./location]/description/ /keyword
R1 Random //A1//A2//A3//A4
R2 Random //A1//A2//A3[.//A4]
R3 Random //A1//].//A4//AB]//A2//A3

TreeBank has a deep recursive structure which makes
it an interesting case for experiments, the file is 32MB
and has 2.4 millions elements. XMark is a well-known
mark data with the size 111MB and 3.0 millions ele-
ments, while Random is a data set with twenty labels
Al, ... , A20, which are uniformly distributed. We
generate Random by using two parameters: depth,
and fan-out. For all experiments in this paper, we
only generated full binary and ternary trees. We also
increase the size from 30MB to 150MB by 30MB for
the scalability analysis.

Table 1 shows the twig queries used for the exper-
iment. For each data set, three queries are selected.
These queries have diverse structures and combine
both ancestor-descendant relationships and parent-
child relationships to give a more practical evaluation.

5.2 Experiment and Evaluation

Figure 4 shows the performance of three algorithms
for processing different twig queries. For each twig
query, we record the query processing time and 1/0
operations for all three algorithms.

TwigStack vs Track We first compare TwigStack
with Track. From Figure 4, we observe that our algo-
rithm outperforms TwigStack for all types of selected
queries, it is always 3-5 times faster than TwigStack,
but I/O operations of both algorithms are nearly the
same. Hence, we conclude that the I/O operation
does not dominate the query processing time. For
Q1-Q3 in DBLP in Table 1, because DBLP has a
steady structure, TwigStack generates almost no use-
less partial results, so the performance degradation
of TwigStack is primarily due to the checking mecha-
nism and enumerating of partial matches for the final
twig results. Because TreeBank has a deep recursive
structure, Q4-Q6 generate a great amount of useless
intermediate results, which aggravate the degradation
of TwigStack. Like DBLP, XMark also has a steady
structure , so Track shows a similar order of magni-
tude performance gain over TwigStack for Q7-Q9.

TJFast vs Track Since TJFast only needs to
access leaf elements, I/O operations of TJFast are
relatively fewer than the other two algorithms. How-
ever, the new labeling scheme not only increases the
size of the index, but also adds the difficulty to easily
process different query classes. For Q1-Q3 in DBLP,
TJFast saves 14%-17% of 1/O operations, but Track
is 5-6 times faster than TJFast. The reason might be
explained that TJFast needs to analyze the /emphex-
tended Dewey ID using the DTD transducer, and enu-
merate intermediate results for final twig results. For
Q4-Q6 in TreeBank, TJFast saves many I/O opera-
tions compared with Track, but wastes too much time
analyzing the extended Dewey ID because of the re-

cursive structure of TreeBank. TJFast shows the best
performance for Q7-Q9 in XMark. For each query,
about 50% of I/O operations are saved, but Track is
still 2 times faster.

5.3 Scalability and Stability

We first report the scalability of Track in term of
the size of the synthetic data set Random. Figure 5
shows three representative queries which are selected
for testing the scalability of three algorithms as the
size increases from 30MB to 150MB. Clearly, all algo-
rithms grows linearly in terms of the document size.
TJFast shows a little advantage to process the path
query R1, but for R2 and R3, Track has much better
query processing time.

Intuitively, changing the processing sequence of
twig queries may influence the query processing time
in Track. Taking Q2 in Table 1 as an example, we can
process the query path title-author-article, or year-
article first. For each query of Q4-Q9 in Table 1, we
show the influence in Figure 5. An immediate ob-
servation is that changing the sequence nearly does
not influence the efficiency, so Track is stable in most
cases.

6 Conclusion and Future Work

In this paper, we propose a novel twig join algorithm
Track, which selectively recovers the tree structure
of elements for the same query node and uses links
between forests to compactly represent final results
for the twig query. Experiment evaluation shows that
our algorithm is quite efficient in most cases.

There are some promising directions in the future.
Our algorithm processes all axes using the struc-
tural join algorithm. However, the structural join
algorithm is inefficient for processing parent-children
axes. Enlighten by the extended Dewey labeling
scheme in TJFast, we propose a new labeling scheme,
which limits the ancestor path information for each
element to its parent element alone. Combined
with Track, it not only maintains the index in an
acceptable size, but also significantly accelerates the
processing of parent-children axes.

Acknowledgement. This work was supported

by Chinese 973 Research Project under grant
No0.2002CB312006.

References

Cooper, B., Sample, N., Franklin, M., Hjaltason,
and G., Shadmon, M. (2001), A Fast Index For



B TwigStack [l TJFast [] Track

Query Time (s)

10

35

30

Elements read

1600000

1400000

1200000

1000000

S800000
600000
100000
200000
o
Q1 QL2 QL3 Q1 QS QLS Q7 Qs QO
Figure 4: Experimental evaluation
Y-axis:Time X-axis:Data size —— TwigStack —— TJFast Track

R1 R3

60

50

40

[ ——
30M 60M 90M 120M 150M 30M 60M 90M 120M 150 ! 30M 60M 90M 120M 150M
Scalability
Query processing time (=)
3. 5
3
2. 5
2
1.5
1
oO. 5
o
Qa Qs Q6 Q7 Qs Qo
Stability

Figure 5: Scalability and Stability



Semistructured Data. In Proceedings of VLDB,
pages 341-350.

Chung, C., Min, J., and Shim, K., (2001), APEX: An
Adaptive Path Index for XML Data. In Proceedings
of SIGMOD, pages 121-132.

Zhang, C., Naughton, J., Dewitt, Q.Luo, D., and
Lohman, G.(2001), On Supporting Containment
Queries in Relational Database Management Sys-
tems. In Proceedings of SIGMOD, pages 425-436.

Salton, G. and McGill, M.J.(1983), Introduction to
modern information retrieval. McGraw-Hill, New
York.

Jiang, H., Lu, H., and Wang, W.(2004), Efficient Pro-
cessing of XML Twig Queries With OR-predicates.
In Proceedings of SIGMOD, pages 274-285.

Jiang, H., Wang, W., and Lu, W.(2003), Holistic
Twig Joins on Indexed XML Documents. In Pro-
ceedings of VLDB, pages 273-248.

Lu, J., Chen, T., and Ling, T.(2004), Efficient Pro-
cessing of XML Twig Patterns with Parent Child
edges: A Look-Ahead Approach. In Proceedings of
CIKM, pages 533-542.

Lu, J., Ling, T., Yu, T., Li, C. and Ni, W.(2005),
Efficient Processing of Ordered XML Twig Pattern
Matching. In Proceedings of DEXA, pages 300-309.

Lu, J., Ling, T.W., Chan, C.Y., and Chen, T.(2005),
From Region Encoding To Extend Dewey: On Effi-
cient Processing of XML Pattern Matching. In Pro-
ceedings of VLDB, pages 193-204.

Bruno, N., Koudas, N., and Srivastava, D.(2002),
Holistic Twig Joins: Optimal XML Pattern Match-
ing. In Proceedings of SIGMOD, pages 310-321.

Goldman, R., and Widom, J. (1997), DataGuides:
Enabling Query Formulation and Optimization
in Semistructured Databases. In Proceedings of
VLDB, pages 436-445.

Kaushik, R., Bohannon, P., Naughton, J., and Ko-
rth, H.(2002), Covering indexes for branching path
queries. In Proceedings of SIGMOD, pages 133-144.

Kaushik, R., Shenoy, P., Bohannon, P., and Gudes,
E.(2002), Exploiting Local Similarity for Efficient
Indexing of Paths in Graph Structured Data. In
Proceedings of ICDE, pages 129-140.

Al-Khalifa, S., Jagadish, N.Koudas, H., Patel, J., Sri-
vastana, D.; and WU, Y.(2002), Structural joins: A
Primitive for Efficient XML Query Pattern Match-
ing. In Proceedings of ICDE, pages 141-152.

Chen, T., Lu, J. and Ling, T., (2005), On boost-
ing holism in XML Twig Pattern Matching Using

Structural Indexing Techniques. In Proceedings of
SIGMOD, pages 455-466.



