
Translating First-Order Theories into Logic Programs

Heng Zhang∗, Yan Zhang†, Mingsheng Ying∗,‡, Yi Zhou†
∗Department of Computer Science and Technology, Tsinghua University, Beijing, China
†School of Computing and Mathematics, University of Western Sydney, NSW, Australia

‡Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW, Australia

Abstract
This paper focuses on computing first-order theo-
ries under either stable model semantics or circum-
scription. A reduction from first-order theories to
logic programs under stable model semantics over
finite structures is proposed, and an embedding of
circumscription into stable model semantics is also
given. Having such reduction and embedding, rea-
soning problems represented by first-order theories
under these two semantics can then be handled by
using existing answer set solvers. The effective-
ness of this approach in computing hard problems
beyond NP is demonstrated by some experiments.

1 Introduction
For a knowledge representation language, the encoding natu-
ralness and implementation efficiency may be regarded as the
two faces of a coin. For instance, higher-order logic is natu-
ral to represent almost all kinds of mathematical knowledge,
but no practicable solver is available; on the other hand, logic
programming can be implemented efficiently, which is obvi-
ously achieved at the expense of its naturalness to represent
knowledge. It is a challenging task to design a language with
a smart tradeoff between these two aspects.

An appropriate candidate for such a language may be the
first-order language under stable model semantics [Ferraris
et al., 2011; Lin and Zhou, 2011], which provides a unified
framework for answer set programming (ASP), a flourishing
paradigm of declarative programming emerged over the last
decade. First-order quantifiers are introduced so that more
flexible ways for encoding become possible. Interestingly,
with this language, we can easily represent a class of knowl-
edge for which no natural encodings in logic programs are
known.1 However, this also presents a challenge to develop
an answer set solver for first-order theories, which is the main
task of this paper. Another language that we will consider is
first-order circumscription [McCarthy, 1980], a well-known
formalism for knowledge representation and reasoning.

The main contributions of this paper are as follows. Firstly,
we show how first-order theories under stable model seman-
tics over finite structures can be reduced to logic programs,

1For details, please refer to Section 5 of this paper.

which enables us to compute them by using existing answer
set solvers; we also prove that introducing auxiliary predi-
cates in the reduction is essential. Secondly, we discover an
embedding of circumscription into stable model semantics in-
volving no auxiliary predicates. With such an embedding,
we can then compute first-order theories of circumscription
over finite structures via answer set programming. Finally,
by undertaking some experiments, we demonstrate the effec-
tiveness of our approach in computing some hard problems
beyond NP. As far as we know, under either stable model se-
mantics or circumscription, our approach is the first one to
compute arbitrary first-order theories over finite structures.

2 Preliminaries
We assume vocabularies are finite sets of predicate constants
and function constants. Every constant is equipped with a
natural number, its arity. For technical reasons, following
constants are reserved: a binary predicate constant succ, and
two nullary function constants (i.e. individual constants) min
and max. All these constants are called successor constants.

Logic symbols are defined as usual, including a countable
set of predicate variables and a countable set of individual
variables. Predicate constants and variables are simply called
predicates if no confusion occurs. Terms, formulae, and sen-
tences of a vocabulary σ (or shortly, σ-terms, σ-formulae,
and σ-sentences) are built from σ, equality, and variables in a
standard way. The only thing which may be special is that we
treat¬ϕ as a shorthand ofϕ→ ⊥, andϕ↔ ψ as the conjunc-
tion of ϕ → ψ and ψ → ϕ. A (finite) first-order theory is a
(finite) set of first-order sentences. Clearly, a finite first-order
theory can be regarded as a first-order sentence, i.e., a finite
conjunction of the sentences in that set. A first-order formula
is in prenex normal form if it is of the form Q1x1 · · ·Qnxnϕ,
where Qi(i = 1, . . . , n) is ∀ or ∃ and ϕ is quantifier-free.
Given a natural number n, a Σn-formula (Πn-formula) is a
first-order formula in prenex normal form that has a prefix of
n alternating blocks of quantifiers starting with an existential
(universal) block, followed by a quantifier-free formula.

Every structure A of a vocabulary σ (or shortly, σ-structure
A) is accompanied by a nonempty setA, the domain of A, and
interprets each n-ary predicate constant P of σ as an n-ary re-
lation A(P) onA, and interprets each n-ary function constant
f of σ as an n-ary function A(f) onA. Every assignment in a
structure A is a function α that maps each individual variable

to an element of A and that maps each n-ary predicate vari-
able to an n-ary relation on A. Given a σ-formula ϕ and an
assignment α in A, we write A |= ϕ[α] if α satisfies ϕ in A
in the standard way. Specially, if ϕ is a sentence, [α] may be
dropped, and A is said to be a model of ϕ, or in other words,
A satisfies ϕ. Let ϕ(x̄) be a formula with free variables x̄.
We simply write A |= ϕ(ā) if there is an assignment α in A
that assigns x̄ to ā and that satisfies ϕ(x̄) in A.

A structure is finite if its domain is finite. A finite structure
A is a successor structure if following statements hold: (i) the
vocabulary σ of A contains all the successor constants; and
(ii) there is an isomorphism between A and the number sys-
tem Zn (where n = |A|) such that A(succ) is corresponding
to the successor relation on Zn (i.e. the set {0, . . . , n − 1}),
and A(min) and A(max) are corresponding to 0 and n − 1
respectively. A restriction of a structure A to a vocabulary σ,
written by A �σ, is the structure obtained from A by discard-
ing all interpretations for constants which do not belong to σ.
Furthermore, a σ-structure A is said to be an expansion of a
σ0-structure B if σ ⊇ σ0 and B is a restriction of A to σ0.

2.1 Circumscription
We follow the notion of parallel circumscription in [Lifschitz,
1985].2 Let ϕ be a first-order sentence and P̄ a tuple of pred-
icate constants. For each predicate constant P that occurs
in P̄ (or simply P ∈ P̄) we introduce a new predicate vari-
able XP of the same arity, and let X̄P̄ be short for the tuple
(XP)P∈P̄ . Moreover, we write X̄P̄ = P̄ for the conjunc-
tion of formulae ∀x̄(XP (x̄) ↔ P (x̄)) for all predicate con-
stants P ∈ P̄ , and write X̄P̄ ≤ P̄ for the conjunction of
formulae ∀x̄(XP (x̄) → P (x̄)) for all P ∈ P̄ . The circum-
scription CIRC(ϕ; P̄) for ϕ is defined to be the second-order
sentence ϕ ∧ ∀X̄P̄ (X̄P̄ < P̄ → ¬ϕ(X̄P̄)), where ϕ(X̄P̄)
is the formula obtained from ϕ by substituting the variables
X̄P̄ for the constants P̄ , and X̄P̄ < P̄ short for the formula
(X̄P̄ ≤ P̄) ∧ ¬(X̄P̄ = P̄). A structure A is called a P̄ -
minimal model of ϕ if it is a model of CIRC(ϕ; P̄).

2.2 Stable Models
Similarly, stable model semantics is defined by a syntax trans-
lation SM. Given a first-order sentence ϕ and a tuple P̄ of
predicate constants, let SM(ϕ; P̄) stand for the second-order
sentence ϕ ∧ ∀X̄P̄ (X̄P̄ < P̄ → ¬St(ϕ; P̄)), where the for-
mula St(ϕ; P̄) is defined recursively as follows:

- St(P (t̄); P̄) = XP (t̄) if P is a predicate constant in P̄ .
- St(ψ; P̄) = ψ if ψ is an atom not in the previous case.
- St(ψ ◦ χ; P̄) = St(ψ; P̄) ◦ St(χ; P̄) if ◦ ∈ {∧,∨}.
- St(ψ → χ; P̄) = (ψ → χ) ∧ (St(ψ; P̄)→ St(χ; P̄)).
- St(Qxψ; P̄) = QxSt(ψ; P̄) if Q ∈ {∀,∃}.

A structure A is called a P̄ -stable model of ϕ if it is a model
of SM(ϕ; P̄). A predicate constant is said to be intensional
if it occurs in P̄ . Otherwise, it is extensional. An extensional
database of ϕ is a σ-structure such that σ consists of the set of
all the extensional predicate constants and function constants.
For more information, please refer to [Ferraris et al., 2011].

2Since they can be efficiently eliminated by a method in [Cadoli
et al., 1992], we will not consider varying predicates in this paper.

3 Quantifier Elimination
In classical logic, first-order existential quantifiers can be eas-
ily removed by introducing some Skolem functions, and this
process is known as skolemization. But according to the def-
inition, it may be impossible to remove existential quantifiers
in stable model semantics by such an approach. In this sec-
tion, we present a translation to eliminate quantifiers in first-
order theories under stable model semantics. We should note
that our translation works only for finite structures.

As shown in [Cabalar et al., 2005], there is also a transla-
tion that converts every universal theory to a strongly equiva-
lent3 disjunctive logic program. Combining these two transla-
tions, we can then implement a solver for first-order theories
which first reduces the input first-order theory to a disjunctive
logic program; then invokes a traditional ASP solver that uses
the logic program and an extensional database as its input.

Our main idea of quantifier elimination under stable model
semantics is intuitively as follows. Suppose ϕ is a formula
of the form ∀x∃yϑ(x, y) where ϑ is quantifier-free, and P̄ a
tuple of predicates. Then SM(ϕ; P̄) is actually the formula:

∀x∃yϑ(x, y) ∧ ¬∃X̄P̄ (X̄P̄ < P̄ ∧ ∀x∃ySt(ϑ(x, y); P̄) (1)

To remove ∃y from the formula, we simulate ∀x∃yϑ(x, y)
by a formula ∃Sγ and simulate ∀x∃ySt(ϑ(x, y); P̄) by a for-
mula ∃XT %. Then, by some encoding techniques, we care-
fully encode γ and % by a universal formula ψ such that
∃S∃TSM(ψ; P̄ , S, T) is equivalent to SM(ϕ; P̄).

To carry out the simulations mentioned above, we use Eiter
et at.’s idea [1996], which is employed to simulate existential
quantifier in classical logic. Informally, their idea is as fol-
lows. Suppose P is a property on a finite domain D equipped
with a linear order. Define S as an auxiliary property on D
such that a has property S iff there exists b no less than a such
that b has property P . Then if we want to answer the problem
whether there is an element with property P , we need only
check whether the least element has property S. For more
details, please refer to Theorem 2.1 in [Eiter et al., 1996].

The main difficulty in constructing the translation is to find
a proper encoding of γ and %. But we have found one. The
translation τ is defined as follows. Given a first-order sen-
tence ϕ of the form ∀x̄∃ȳϑ(x̄, ȳ), we let τ(ϕ) stand for the
conjunction of all sentences which are obtained from the fol-
lowing formulae by applying the universal closure:

¬¬S(x̄,mın) (2)
(succ(ȳ, z̄) ∧ S(x̄, z̄)) ∨ ϑ¬¬(x̄, ȳ)→ S(x̄, ȳ) (3)

T (x̄,mın) ∨ ϑ(x̄,mın) (4)
¬(succ(ȳ, z̄) ∧ S(x̄, z̄)) ∧ S(x̄, ȳ)

→ (T (x̄,max)↔ ϑ(x̄, ȳ))
(5)

succ(ȳ, z̄)→ (T (x̄, ȳ)↔ ϑ(x̄, z̄) ∨ T (x̄, z̄)) (6)

where S and T are two predicates of arity |x̄|+|ȳ| and have no
occurrence in ϕ, ϑ¬¬(x̄, ȳ) is obtained from ϑ(x̄, ȳ) by sub-
stituting ¬¬P (t̄) for all atoms P (t̄), mın and max denote the

3Given two arbitrary first-order sentences ϕ and ψ, ϕ is strongly
equivalent to ψ if, for any first-order sentence γ and any tuple P̄ of
predicate constants, SM(γ; P̄) is equivalent to SM(γ0; P̄), where
γ0 is obtained from γ by replacing some occurrences of ϕ by ψ.

|ȳ|-tuples (min, . . . ,min) and (max, . . . ,max) respectively,
and succ stands for a formula that describes the successor re-
lation on tuples of length |ȳ|. (Clearly, such a formula can be
easily built from predicate constant succ.)

Remark 1. In above translation, let us assume that ϕ is a Πk-
sentence for some k ≥ 1. By Theorem 6.4 in [Pearce and
Valverde, 2005] and Theorem 8 in [Ferraris et al., 2011], it
is not difficult to see that τ(ϕ) can be written as a strongly
equivalent Πk−1-sentence. So, every first-order sentence in
prenex normal form can be converted to a universal sentence
by applying translation τ and the above procedure repeatedly.

The following proposition says that translation τ is faithful.
Proposition 1. Let ϕ be any first-order sentence of the form
∀x̄∃ȳϑ(x̄, ȳ) without occurrence of any successor constants.
Let P̄ be any tuple of predicates. Then, over successor struc-
tures, ∃S∃TSM(τ(ϕ); P̄ , S, T) is equivalent to SM(ϕ; P̄),
where S and T are the auxiliary predicates introduced by τ .

Proof. Let σ be the vocabulary consisting of all constants oc-
curring in ϕ and of all successor constants. Let σ̂ be the vo-
cabulary of τ(ϕ). Let k = |x̄| and l = |ȳ|. Given any σ-
structure A, define R(A) as a (k + l)-ary relation on A such
that: for all tuples ā ∈ Ak and b̄ ∈ Al, (ā, b̄) ∈ R(A) iff there
is a tuple c̄ ≥ b̄ (wrt the successor relation) such that ϑ(ā, c̄)
is satisfied by A; for each tuple ā ∈ Ak, let =(A, ā) denote
the largest one of all tuples b̄ ∈ Al such that (ā, b̄) ∈ R(A).

We first assume that A is a finite successor σ-structure that
satisfies SM(ϕ; P̄). Let B be a σ̂-expansion of A that inter-
prets S as the relationR(A) and T as the relationAk+l. Then
we want to show that B satisfies SM(τ(ϕ); P̄ , S, T). It is not
difficult to check B satisfies τ(ϕ). Let β be any assignment
in B that satisfies X̄P̄ST < P̄ST . To obtain a contradiction,
assume that β satisfies St(τ(ϕ); P̄ , S, T). Note that the for-
mula ∀x̄ȳz̄St((3); P̄ , S, T) is clearly a logical consequence
of the formula St(τ(ϕ); P̄ , S, T) in classical first-order logic,
and β satisfies the former in B iff β satisfies the formula

∀x̄ȳz̄ ((succ(ȳ, z̄) ∧XS(x̄, z̄)) ∨ ϑ¬¬(x̄, ȳ)→ XS(x̄, ȳ))

in B. So we must have that β(XS) = B(S), and this im-
plies that X̄P̄ < P̄ should be satisfied by β. Otherwise,
for all tuples ā ∈ Ak, St(ϑ(ā,=(A, ā)); P̄) has the same
truth with ϑ(ā,=(A, ā)) (and so is true) in β. Consequently
(ā,A(max)) belongs to β(XT) since the universal closure of

¬(succ(ȳ, z̄) ∧ S(x̄, z̄)) ∧XS(x̄,ȳ)

→ (XT (x̄,max)↔ St(ϑ(x̄, ȳ); P̄))

should be satisfied by β in B (Note that St(τ(ϕ); P̄ , S, T) is
satisfied by β in B by the assumption). Since the formula

∀x̄ȳz̄(succ(ȳ, z̄)→ (XT (x̄, ȳ)↔ St(ϑ(x̄, z̄); P̄)∨XT (x̄, z̄)))

is clearly satisfied by β in B, the above conclusion leads to
β(XT) = B(T), a contradiction. Therefore, we have that β
satisfies X̄P̄ < P̄ . Let α denote the assignment in A obtained
by restricting β to variables in X̄P̄ . Clearly, α satisfies X̄P̄ <
P̄ in A. On the other hand, as β satisfies St(τ(ϕ); P̄ , S, T),
for each tuple ā ∈ Ak, one of the following cases should be
true: (i) St(ϑ(ā,=(A, ā)); P̄ , S, T) is satisfied by β in B; (ii)

there is at least one tuple b̄ ∈ Al such that St(ϑ(ā, b̄); P̄ , S, T)
is satisfies by β in B. In either case, we have that β satisfies
St(∃ȳϑ(ā, ȳ); P̄ , S, T) in B, which will imply that α satisfies
St(∀x̄∃ȳϑ(x̄, ȳ); P̄) in A. But this is impossible since, by the
assumption, A is a model of SM(ϕ; P̄).

Conversely, let us assume that B is a σ̂-structure that sat-
isfies SM(τ(ϕ); P̄ , S, T). Let A be the restriction of B to σ.
Now our task is to show A is a model of SM(ϕ; P̄). Since
B satisfies the universal closure of formula (3), it is true that
B(S) ⊇ R(A). Moreover, we can show that B(S) equals to
R(A). Otherwise, there is an assignment β in B such that:
(i) β(XS) = R(A) and β(XT) = Ak+l, and (ii) β satisfies
both X̄P̄ST < P̄ST and St(τ(ϕ); P̄ , S, T) in B. Obviously,
these contradicts with the assumption. Note also that formula
∀x̄(2) is clearly satisfied by B. So, for each tuple ā ∈ Ak, it
must hold that B(S) contains (ā,B(mın)), or equivalently,
(ā,B(mın)) ∈ R(A). By the definition, there should exist at
least one tuple c̄ ∈ Al such that ϑ(ā, c̄) is true in A. Immedi-
ately, we can obtain that ϕ is satisfied by A.

Let α be any assignment in A that satisfies X̄ < P̄ . To
complete the proof, we need show that St(ϕ; P̄) is unsatisfied
by α in A. To obtain a contradiction, assume this is not true.
Let β be an assignment in B such that: (i) for all P in P̄ ,
β(XP) equals to α(XP); (ii) β(XS) = R(A); and (iii) for
all ā ∈ Ak and all b̄ ∈ Al, (ā, b̄) ∈ β(XT) iff (ā,=(A, ā)) ∈
R(A) or there is some tuple c̄ > b̄ such that St(ϕ(ā, c̄); P̄)
is satisfied by α in A. Then it is not difficult to verify that
β satisfies St(τ(ϕ); P̄ , S, T). Note that X̄P̄ST < P̄ST is
clearly satisfied by β. So the conclusion will imply that B is
not a model of SM(τ(ϕ); P̄ , S, T), a contradiction.

According to Corollary 6.5 in [Pearce and Valverde, 2005]
and Theorem 8 in [Ferraris et al., 2011], under stable model
semantics, there exist some translations which convert ev-
ery first-order sentence into a strongly equivalent sentence in
prenex normal form. Let τ0 be one of those which translate
τ(ϕ) into a Πk−1-sentence for all Πk-sentences ϕ (k ≥ 1).
Let τ∗ be a translation that applies τ0 and τ repeatedly until
the resulting sentence is universal. So, by Proposition 1 and
Remark 1, we have the faithfulness of τ∗:

Theorem 1. Let ϕ be any first-order sentence that has no
occurrence of any successor constants. Let P̄ be any tu-
ple of predicates. Then ∃Q̄SM(τ∗(ϕ); P̄ , Q̄) is equivalent
to SM(ϕ; P̄) over finite successor structures, where Q̄ is the
tuple of auxiliary predicates introduced by τ∗.

In fact, this theorem can be generalized to finite structures.

Corollary 1. For every first-order sentence ϕ, there are a
universal first-order sentence ψ and a tuple Q̄ of new pred-
icates such that ∃Q̄SM(ψ; P̄ , Q̄) is equivalent to SM(ϕ; P̄)
over finite structures for all tuples P̄ of predicate constants.

Proof. (Sketch) Given a first-order sentence ϕ, let $ be a
first-order sentence asserting that a finite σ-structure A sat-
isfies ∃ŌSM($; Ō) iff A is a successor structure,4 where
σ = {succ,min,max} and Ō is the tuple of all predicate
constants which occur in $ and which have no occurrences
in both ϕ and σ. Let ψ = $ ∧ τ∗(ϕ), and let P̄ be any

4One can find such a sentence in [Eiter et al., 1997].

tuple of predicate constants. By Theorem 1, there is a tuple
Q̄ of auxiliary predicates such that SM(ϕ; P̄) is equivalent
to ∃Q̄SM(τ∗(ϕ); P̄ , Q̄). Also by Splitting Lemma in [Fer-
raris et al., 2009], SM(ψ; Ō, P̄ , Q̄) is equivalent to the for-
mula SM(ψ; Ō) ∧ SM(ψ; P̄ , Q̄). By the definition, the latter
is equivalent to the formula SM($; Ō) ∧ SM(τ∗(ϕ); P̄ , Q̄).
Then, it is not difficult to verify that SM(ϕ; P̄) is equivalent
to ∃Ō∃Q̄SM(ψ; Ō, P̄ , Q̄) over finite structures.

Remark 2. As seen in the above corollary, it is not necessary
to equip any structure with a successor relation. Notice that
almost all traditional ASP solvers (e.g., CLASP, DLV, etc.)
support a set of built-in arithmetic functions or predicates
which can be used to define the successor relation. There-
fore, when we implement a solver for first-order theories, it is
enough to consider a translation over successor structures.
Remark 3. An exponential growth in the formula size seems
inevitable in the worst case when we convert a universal sen-
tence to a strongly equivalent logic program. It is because we
have to apply rules like “distributive law” frequently (cf. [Ca-
balar et al., 2005]). The situation will slightly improve for a
theory since we can directly apply Cabalar et al.’s translation
to each sentence in the theory. So we should make each sen-
tence in resulting theory of quantifier elimination as short as
possible. τ∗ is not good for this purpose. But fortunately, we
can improve it by the following property, which can be ob-
tained by a slight modification of the proof for Proposition 1.
Proposition 2. Let ϕ and ψ be any first-order sentences with-
out occurrences of successor constants, and in particular ϕ
is of the form ∀x̄∃ȳϑ(x̄, ȳ). Let P̄ be any tuple of predicates.
Then, over successor structures, SM(ϕ ∧ ψ; P̄) is equivalent
to ∃S∃TSM(τ(ϕ)∧ψ; P̄ , S, T), where S and T are auxiliary
predicates introduced by τ and have no occurrences in ψ.

Having this proposition, we can directly apply τ to each
conjunct of the input formula. Based on this idea, we then
devise a new translation τ� which works as follows. For every
first-order sentence ϕ, translation τ� repeatedly do stages 1–3
until the resulting formula is universal already:

1. Lift the conjunctions in ϕ as many as possible. For in-
stance, (ψ∧%)∨γ will be converted to (ψ∨γ)∧(%∨γ).

2. Convert each conjunct of the result of stage 1 to a for-
mula in prenex normal form.

3. Apply τ to each conjunct of the result of stage 2.
Due to the space limit, we simply illustrate it by an example.
Example 1. Let ϕ = ∃x∀yθ(x, y) be a sentence, where
θ(x, y) is a quantifier-free formula to which stage 1 cannot
be applied anymore. Then, on input ϕ, τ� will do stages 1–3
twice. In the first round, ϕ will not change at stages 1–2, but
after stage 3 we will obtain the following theory:

¬¬S1(min) (7)
∀xu((succ(x, u) ∧ S1(u)) ∨ ∀yθ¬¬(x, y)→ S1(x)) (8)

T1(min) ∨ ∀yθ(min, y) (9)
∀xu(¬(succ(x, u) ∧ S1(u)) ∧ S1(x)

→ (T1(max)↔ ∀yθ(x, y)))
(10)

∀xu(succ(x, u)→ (T1(x)↔ ∀yθ(u, y) ∨ T1(u))) (11)

In the second round, we only explain how the translation τ�
works on sentence (8). After stage 1, we will obtain:

∀xu(succ(x, u) ∧ S1(u)→ S1(x)) (12)
∀x(∀yθ¬¬(x, y)→ S1(x)) (13)

And we will have (12) and ∀x∃y(θ¬¬(x, y) → S1(x)) af-
ter stage 2. Furthermore, the resulting theory of stage 3 will
consist of (12) and the following sentences:

∀x¬¬S2(x,min) (14)
∀xyu((succ(y, u) ∧ S2(x, u)) ∨ λ(x, y)→ S2(x, y)) (15)

∀x(T2(x,min) ∨ η(x,min)) (16)
∀xyu(¬(succ(y, u) ∧ S2(x, u)) ∧ S2(x, y)

→ (T2(x,max)↔ η(x, y)))
(17)

∀xyu(succ(y, u)→ (T2(x, y)↔ η(x, u) ∨ T2(x, u))) (18)

where λ(x, y) stands for the formula θ¬¬(x, y) → ¬¬S1(x)
and η(x, y) for the formula θ¬¬(x, y)→ S1(x).
Remark 4. As seen in the above example, each sentence in the
resulting theory is of size5 O(k+n), where k is the number of
quantifier alternating blocks in the original theory and n the
maximum size of conjuncts in the original theory. Since k
is usually very small, this improvement assures the resulting
logic program of the reduction will be of a reasonable size.

With the above results, a natural problem may be: is there
a translation that does not use auxiliary predicates? The fol-
lowing theorem asserts the nonexistence of such a translation
even if we only consider the case of finite structures.
Theorem 2. Over finite structures, there exists a first-order
sentence ϕ involving only one binary predicate constant R
such that, for any universal first-order sentence ψ of the same
vocabulary, SM(ϕ;R) is not equivalent to SM(ψ;R).

Proof. (Sketch) Let σ be a vocabulary consisting of a bi-
nary predicate constant R. Let ODD∗ be the class of finite
σ-structures A such that: (i) |A| is odd or equals to 2, and (ii)
A(R) = A2. Let ζ be the conjunction of following sentences:

∀xR(x, x) ∧ ∀x∀y(R(x, y)→ R(y, x)) (19)
∀x∀y∀z(R(x, y) ∧R(y, z)→ R(x, z)) (20)

∀x∃y(x 6= y ∧R(x, y)) (21)
∀x∀y∀z(x 6= y ∧ x 6= z ∧ y 6= z ∧R(x, y) ∧R(x, z)

→ ∀u∀v(R(u, v) ∨ ¬R(u, v)))
(22)

Let ξ be the sentence ∀w∀w′(¬¬R(w,w′)∧ (R(w,w′)∨ζ)).
Then we can show that SM(ξ;R) encodes exactly ODD∗, i.e.,
a finite σ-structure A is anR-stable model of ξ iff A ∈ ODD∗.

On the other hand, we can show there is no universal first-
order σ-sentence ψ such that ODD∗ is exactly the class of
finite R-stable models of ψ. Since for every universal first-
order σ-sentence ψ, SM(ψ;R) can be written as a second-
order sentence of the form ∀X̄∀x̄∃ȳϑ, where X̄ is a tuple
of predicate variables, x̄, ȳ two tuples of individual variables,
and ϑ a quantifier-free formula. By a slight modification to
the proof for Theorem 2.2 of [Eiter et al., 1996], we can show
that ODD∗ cannot be defined by any of such sentences.

5We count the occurrences of quantifiers, connectives and atoms.

4 From Circumscription to Stable Models
According to Lin’s transformation (cf. [Lin and Zhou, 2011]),
stable model semantics can be translated to circumscription in
some sense. In this section, we give a translation that embeds
circumscription into stable model semantics. Surprisingly, it
does not involve any auxiliary predicates, and works for ar-
bitrary structures. Together with the reduction in previous
section, we can then translate first-order theories of circum-
scription into logic programs under stable model semantics.

Let ϕ be a first-order sentence, and P̄ a tuple of predicates.
Clearly, ϕ can be converted to a sentence ϕ̂ in negational nor-
mal form without implication (i.e, a formula built from liter-
als by ∧, ∨, ∀ and ∃).6 Then, we define the translation πP̄ as a
mapping that maps each first-order formula ϕ to the formula

ϕ̂¬¬ ∧

ϕ̃ ∨ ∧
R∈P̄

∀ū (R(ū) ∨ ¬R(ū))

 (23)

where ϕ̂¬¬ is same as in the previous section, and ϕ̃ obtained
from ϕ̂ by substituting P (t̄) →

∧
R∈P̄ ∀ū (R(ū) ∨ ¬R(ū))

(denoted by P∼(t̄)) for each literal ¬P (t̄) such that P ∈ P̄ .
Theorem 3. CIRC(ϕ; P̄) is equivalent to SM(πP̄ (ϕ); P̄) for
any first-order sentence ϕ and any tuple P̄ of predicates.

Proof. Clearly, we have that CIRC(ϕ; P̄) is equivalent to
CIRC(ϕ̂; P̄). By definition, CIRC(ϕ̂; P̄) is exactly the sen-
tence ϕ̂ ∧ ∀X̄P̄ (X̄P̄ < P̄ → ¬ϕ̂(X̄P̄)) and SM(πP̄ (ϕ); P̄)
is the sentence πP̄ (ϕ) ∧ ∀X̄P̄ (X̄P̄ < P̄ → ¬St(πP̄ (ϕ); P̄)).
By a routine simplification, the latter is equivalent to

ϕ̂ ∧ ∀X̄P̄

(
X̄P̄ < P̄ → ¬

(
St(ϕ̃; P̄) ∨ δ

))
(24)

where δ denotes
∧

R∈P̄ ∀ū (XR(ū) ∨ ¬R(ū)). Let σ be the
vocabulary of ϕ, and let A be a σ-structure and α an assign-
ment in A that satisfies X̄P̄ < P̄ . It is easy to see that δ is
always false in α. As ϕ̂ is in negational normal form without
implication, it is not difficult to see that α satisfies St(ϕ̃; P̄)
iff α satisfies ϕ̂(X̄P̄) (Notice that α satisfies St(P∼(t̄); P̄)
iff α satisfies ¬XP (t̄) since δ is false in α). So we can con-
clude that formula (24) is equivalent to CIRC(ϕ̂; P̄), which
completes the proof.

As we have seen in the definition of circumscription, no
varying predicates are considered. For some applications of
circumscription (e.g., model update), however, varying predi-
cates may be important. In this case, we should firstly use the
translation given in [Cadoli et al., 1992] to eliminate varying
predicates, and then transform the result to a logic program.

5 Benchmarks and Experiments
Based on the translation approach described earlier, we have
implemented a prototype solver T2LP for first-order ASP.
The input of our solver contains an arbitrary first-order theory
and a class of finite extensional databases. The solver firstly
“compiles” (so only once) the theory to a logic program, and

6By the definition, the equivalence between formulae in classical
first-order logic implies that in circumscription. So, it suffices to find
such a translation in classical first-order logic, which clearly exists.

then computes stable models by invoking a traditional ASP
solver on the logic program and on each extensional database.

Two benchmarks are used to test T2LP. The first one is
the clique coloring problem and the second one the quanti-
fied boolean satisfiability problem. Both benchmarks can be
easily encoded in first-order theories with existential quanti-
fiers. To the best of our knowledge, no natural encodings in
disjunctive logic programs are available for these problems.

5.1 Clique Coloring Problem
The problem of clique coloring is Σp

2-complete and has been
thoroughly studied in graph theory. Here we consider only the
version of 2-color that still remains Σp

2-complete (cf. [Schae-
fer and Umans, 2002]). The problem is defined as follows.
Given a graph G = (V,E), does G have a 2-clique-coloring?
Herein, a 2-clique-coloring is a function from V to {0, 1}
such that each maximal clique of G contains two vertices of
different colors. Let Γ denote the following first-order theory:

∀x(col(x) ∨ col(x)) ∧ ∀x(set(x) ∨ set(x)) (25)
∃x∃y(set(x) ∧ set(y) ∧ col(x) ∧ col(y))→ ok (26)

∃x∃y(set(x) ∧ set(y) ∧ x 6= y ∧ ¬edg(x, y))→ ok (27)
∃x(set(x) ∧ ∀y(set(y) ∨ edg(x, y)))→ ok (28)
∀x∀y(x 6= y → set(x) ∨ set(y))→ ok (29)

(ok→ ∀x(set(x) ∧ set(x))) ∧ ¬¬ok (30)

where the vocabulary of Γ consists of unary predicate con-
stants col, col, set, set, of a binary predicate constant edg,
of a nullary predicate constant ok. Let P̄ denote the tuple of
above predicate constants of arity less than 2. Every graph
G = (V,E) is encoded to be a {edg}-structure AG such that
the domain is V and edg is interpreted as E. By a reason
similar to that in Examples 2 of [Eiter et al., 1997], AG is a
model of ∃P̄SM(Γ; P̄) iff G has a 2-clique-coloring.

5.2 QBF Satisfiability Problem
It is well-known that the following problem is Σp

2-complete:
Given a quantified boolean formula ∀p̄ϕ where p̄ is a tuple
of propositional variables and ϕ is quantifier-free and in dis-
junctive normal form, is the formula satisfiable? To show our
solver works well for theories with more quantifier alterna-
tions, we modify the original problem by allowing ϕ to be a
conjunction of a CNF-formula and a DNF-formula. Clearly,
the new problem remains Σp

2-complete. Let tr, tr and un
be unary predicate constants, let pc, nc, pd and nd be binary
predicate constants, and let ok be a nullary predicate constant.
Then ∆ is defined as the following first-order theory:

∀x(tr(x) ∨ tr(x)) (31)
∀x∃y((pc(x, y) ∧ tr(y)) ∨ (nc(x, y) ∧ tr(y)))→ ok (32)

∃x∀y((pd(x, y)→ tr(y)) ∧ (nd(x, y)→ tr(y)))→ ok (33)
∀x(ok ∧ un(x)→ tr(x) ∧ tr(x)) ∧ ¬¬ok (34)

Let σ denote the set of predicate constants un,pc,nc,pd,nd.
For every input, i.e., a formula ∀p̄ϕ of the form mentioned
previously, we can construct a σ-structure A to encode it in
the following way: (i) the domain A of A is the integer set
Zn = {0, . . . , n − 1}, where n is the largest of the num-
ber of clauses of the CNF-formula, the number of clauses

of the DNF-formula, and the number of propositional vari-
ables occurring in ϕ; (ii) (i, k) ∈ A(pc) ((i, k) ∈ A(nc))
if the k-th variable has a positive (negative) occurrence in
the i-th clause of the CNF-formula; (iii) (i, k) ∈ A(pd)
((i, k) ∈ A(nd)) if the k-th variable has a positive (nega-
tive) occurrence in the i-th clause of the DNF-formula; (iv)
i ∈ A(un) iff pi ∈ p̄. Similarly, it is easy to show that A
satisfies ∃tr∃tr∃okSM(∆;σ, tr, tr, ok) iff ∀p̄ϕ is satisfiable.

5.3 Experimental Results
Experimental results for these two benchmarks are presented
in Tables 1 and 2 respectively. The parameter n in Table 1
(Table 2) denotes the number of vertices in the graph G (the
number of propositional variables in the formula ϕ). Each in-
stance for either experiment is randomly generated. In partic-
ular, in the experiment of QBF satisfiability, both the number
of CNF clauses and the number of DNF clauses equals to n.
Non-integer real numbers in the tables figure the run time (in
seconds) of the solver to compute the first stable model. If the
time exceeds one hour, we simply write it as “> 1h” in the
table. All experiments were run on a 2.7GHz PC on Linux.

As we can see in the tables, each instance of each bench-
mark is computed twice by our translation calling different
ASP solvers: CLASPD and DLV. In general, the solver using
CLASPD is faster than that using DLV. Though our trans-
lation is of general purpose and both benchmarks are Σp

2-
complete, the experimental results seem quite optimistic.

Instance 1 Instance 2 Instance 3 Instance 4 Instance 5
n T2LP+ T2LP+ T2LP+ T2LP+ T2LP+ T2LP+ T2LP+ T2LP+ T2LP+ T2LP+

CLASPD DLV CLASPD DLV CLASPD DLV CLASPD DLV CLASPD DLV
20 0.087 2.017 0.138 1.573 0.118 7.399 0.111 13.739 0.047 3.110
30 0.526 3.140 0.497 283.430 0.363 378.220 0.459 1125.382 0.312 299.324
40 0.690 > 1h 1.369 3153.779 1.462 > 1h 1.436 > 1h 1.290 > 1h
50 2.882 > 1h 1.855 > 1h 4.484 > 1h 3.111 > 1h 3.201 > 1h
60 9.693 > 1h 4.325 > 1h 9.202 > 1h 6.233 > 1h 6.532 > 1h
70 11.274 > 1h 8.990 > 1h 14.094 > 1h 20.276 > 1h 11.105 > 1h
80 20.213 > 1h 23.434 > 1h 31.515 > 1h 28.726 > 1h 25.913 > 1h
90 37.344 > 1h 51.002 > 1h 33.364 > 1h 66.847 > 1h 56.597 > 1h
100 77.961 > 1h 88.103 > 1h 54.882 > 1h 82.426 > 1h 85.403 > 1h

Table 1: Experimental Results for Clique Coloring

Instance 1 Instance 2 Instance 3 Instance 4 Instance 5
n T2LP+ T2LP+ T2LP+ T2LP+ T2LP+ T2LP+ T2LP+ T2LP+ T2LP+ T2LP+

CLASPD DLV CLASPD DLV CLASPD DLV CLASPD DLV CLASPD DLV
20 0.088 0.135 0.146 0.721 0.121 0.595 0.090 0.091 0.161 1.465
30 0.243 0.232 0.348 181.403 0.158 4.853 0.209 0.700 0.457 0.238
40 0.404 > 1h 0.883 82.879 1.426 123.955 1.542 3099.264 0.417 0.414
50 0.627 1.223 1.502 > 1h 0.619 0.904 0.689 2.728 0.661 1.293
60 2.306 > 1h 0.867 3.027 1.001 1.678 16.643 > 1h 1.863 > 1h
70 2.318 2.965 1.335 4.445 1.812 > 1h 1.547 383.764 1.338 4.374
80 2.102 8.958 1.935 > 1h 6.718 > 1h 3.869 1682.686 2.773 7.252
90 2.598 17.494 2.585 4.126 6.801 > 1h 6.234 > 1h 7.035 > 1h
100 3.354 19.555 3.926 > 1h 11.701 > 1h 16.919 > 1h 4.656 > 1h
110 4.265 23.991 4.552 13.251 4.545 35.358 4.790 38.355 4.297 7.030
120 14.947 37.958 176.136 > 1h 5.527 > 1h 5.458 74.476 5.776 14.701

Table 2: Experimental Results for QBF satisfiability

6 Conclusion and Related Work
In this paper, we proposed an approach to reduce first-order
theories to logic programs under stable model semantics over
finite structures. The effectiveness of our approach was
demonstrated by both theoretical analysis and experiments.
We also discovered an embedding of circumscription into sta-
ble model semantics. These results provide useful insights for
developing practical solvers for arbitrary first-order theories
under either stable model semantics or circumscription.

Two different translations from first-order theories to logic
programs were presented in [Kim et al., 2009; Lee and Palla,
2009] and [Cabalar, 2009] respectively. However, their trans-
lations only work on some fragments, and it is not clear how
their work can be soundly extended to the general case (or
fragments that contain the benchmarks in this paper). In addi-
tion, even restricted to those fragments, our translation is sig-
nificantly different from theirs. Also, the translation from cir-
cumscription to logic programs was considered by Janhunen
and Oikarinen [2004] in the propositional case, which, in our
opinion, seems not easy to be extended to the first-order case.

References
[Cabalar et al., 2005] P. Cabalar, D. Pearce, and A. Valverde.

Reducing propositional theories in equilibrium logic to
logic programs. In Proc. EPIA’05, pages 4–17, 2005.

[Cabalar, 2009] P. Cabalar. Existential quantifiers in the rule
body. In Proc. WLP’09, pages 59–74, 2009.

[Cadoli et al., 1992] M. Cadoli, T. Eiter, and G. Gottlob. An
efficient method for eliminating varying predicates from a
circumscription. Artificial Intelligence, 54:397–410, 1992.

[Eiter et al., 1996] T. Eiter, G. Gottlob, and Y. Gurevich.
Normal forms for second-order logic over finite structures,
and classification of NP optimization problems. Annals of
Pure and Applied Logic, 78:111–125, 1996.

[Eiter et al., 1997] T. Eiter, G. Gottlob, and H. Mannila. Dis-
junctive datalog. ACM Transactions on Database Sys-
tems,, 22:364–418, 1997.

[Ferraris et al., 2009] P. Ferraris, J. Lee, V. Lifschitz, and
R. Palla. Symmetric splitting in the general theory of sta-
ble models. In Proc. IJCAI’09, pages 797–803, 2009.

[Ferraris et al., 2011] P. Ferraris, J. Lee, and V. Lifschitz.
Stable models and circumscription. Artificial Intelligence,
175:236–263, 2011.

[Janhunen and Oikarinen, 2004] T. Janhunen and E. Oikari-
nen. Capturing parallel circumscription with disjunctive
logic programs. In Proc. JELIA’04, pages 134–146, 2004.

[Kim et al., 2009] T.-W. Kim, J. Lee, and R. Palla. Circum-
scriptive event calculus as answer set programming. In
Proc. IJCAI’09, pages 823–829, 2009.

[Lee and Palla, 2009] J. Lee and R. Palla. System F2LP –
computing answer sets of first-order formulas. In Proc.
LPNMR’09, pages 515–521, 2009.

[Lifschitz, 1985] V. Lifschitz. Computing circumscription.
In Proc. IJCAI’85, pages 121–127, 1985.

[Lin and Zhou, 2011] F. Lin and Y. Zhou. From answer set
logic programming to circumscription via logic of GK. Ar-
tificial Intelligence, 175:264–277, 2011.

[McCarthy, 1980] J. McCarthy. Circumscription – A form of
non-monotonic reasoning. Artificial Intelligence, 13:27–
39, 1980.

[Pearce and Valverde, 2005] D. Pearce and A. Valverde. A
first order nonmonotonic extension of constructive logic.
Studia Logica, 80:321–346, 2005.

[Schaefer and Umans, 2002] M. Schaefer and C. Umans.
Completeness in the polynomial-time hierarchy: A com-
pendium. SIGACT News, 33:32–49, 2002.

