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Abstract

This paper proves undecidability of type checking
and type inference problems in some variants of
typed lambda calculi with polymorphic and existen-
tial types. First, type inference in the domain-free
polymorphic lambda calculus is proved to be unde-
cidable, and then it is proved that type inference is
undecidable in the negation, conjunction, and exis-
tence fragment of the domain-free typed lambda cal-
culus. Secondly, their variants with multiple quanti-
fier rules are introduced, and their type checking and
type inference are proved to be undecidable. Finally,
it is proved that we can reduce undecidability of type
checking and type inference problems in the Curry-
style lambda calculus in negation, conjunction, and
existential fragment to undecidability of those prob-
lems in another variant of the domain-free polymor-
phic lambda calculus.

Keywords. type checking, type inference, poly-
morphic type, existential type, domain-free style

1 Introduction

The second-order universal and existential quanti-
fiers are important from the point of view of com-
puter science as well as logic. Girard (1972) and
Reynolds (1974) have independently established the
typed lambda calculus with polymorphic types, which
correspond to the second-order universal quantifiers
in logical systems. Since their monumental works,
many papers have been devoted to investigation on
the polymorphic types. The computational mean-
ing of the second-order existential quantifiers has
also been studied actively since the work of Mitchell
and Plotkin (1988) on the abstract data types. In
more recent years, Fujita (2005) and Hasegawa (2006)
pointed out that calculi in negation, conjunction, and
existence fragment can be CPS targets of polymor-
phic typed calculi.

Type checking and type inference problems are im-
portant for type assignment systems. Type checking
(TC) is the problem that asks whether given typ-
ing judgment is derivable. Type inference (TI) asks
whether given term has some type under some con-
text. Strong type inference (STI), which is a gener-
alization of TI, asks whether, for a given term and
a given context, the term has some type under some
extension of the given context. In the usual notation,
TC asks Γ ` M : A? for given Γ, M and A, TI asks
? ` M :? for given M , and STI asks Γ, ? ` M :?
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for given Γ and M . TI is a special case of STI, so
undecidability of TI directly implies undecidability of
STI.

Wells (1999) proved that all these problems are
undecidable in the Curry-style polymorphic lambda
calculus, and it is surprising result due to Schubert
(1998) that TI is undecidable even in the Church
style, where we consider typability of untyped pseudo
terms. Barthe and Sørensen (2000) proved that TC
and STI are undecidable in the domain-free polymor-
phic lambda calculus. In the domain-free style, terms
contain information of applications of quantifier rules
such as ΛX.M for the ∀-introduction rule and MA
for the ∀-elimination rule, while the domain types of
lambda abstractions are not indicated such as λx.M .
Fujita and Schubert (2000) independently proved the
same result in a more direct way.

On the other hand, properties of lambda calculi
with existential types have not been studied enough
yet. The inhabitation problem in the negation, con-
junction, and existence fragment was only recently
proved to be decidable in Tatsuta et al. (2008). The
inhabitation (INH) is the problem that asks `? : A
for given type A. It was also recently that TC and
STI in its domain-free-style variant was proved to be
undecidable in Nakazawa et al. (2008).

This paper studies the type checking and the type
inference problems in several variants of lambda cal-
culi with the polymorphic types and the existen-
tial types, and proves the following: (1) TI is un-
decidable in the domain-free polymorphic lambda
calculus DF-F and the domain-free lambda calculus
DF-λ¬∧∃ in negation, conjunction, and existence frag-
ment, (2) TC and TI are undecidable in their variants
MWDF-F and M-λ¬∧∃ which have multiple applica-
tions of quantifier rules, and MWDF means multiple-
weak-domain-free style, (3) undecidability of TC and
TI in the Curry-style λ¬∧∃ can be reduced to unde-
cidability of those in another variant WDF-F of the
polymorphic lambda calculus.

As for the first result, Barthe and Sørensen (2000)
and Fujita and Schubert (2000) have considered
deeply on DF-F and proved that TC and STI are un-
decidable in DF-F , but undecidability of TI has not
been proved yet.

Although TI and STI may seem to be almost the
same, undecidability of TI is more difficult to prove
than undecidability of STI. In many systems such as
the Curry-style and the domain-free-style F , TC can
be easily reduced to STI. For example, in the Curry-
style F , any given TC problem Γ ` M : A? can be
reduced to a STI problem Γ, f : A → ⊥, ? ` fM :?.
Hence, undecidability of STI directly follows from un-
decidability of TC. On the other hand, undecidability
of TI in the Curry-style F is much more difficult to
prove, because it needs an elaborate technique such
as the proof of Wells (1999) to show that TC can
be reduced to TI. This paper proves that TC can be



reduced to TI in DF-F by an elaborate technique sim-
ilar to the proof of Wells (1999). This result implies
undecidability of TI in DF-F , since TC in DF-F has
been already proved to be undecidable.

Undecidability of TI in DF-F directly implies
undecidability of TI in DF-λ¬∧∃ by the result of
Nakazawa et al. (2008). Nakazawa et al. (2008)
claimed that they showed undecidability of TI in
DF-λ¬∧∃. However, it was not correct, since TI in
DF-F had not been proved at that time and they
used it. The undecidability result of TI in DF-F of
this paper completes their proof of undecidability of
TI in DF-λ¬∧∃.

The systems MWDF-F and M-λ¬∧∃ are variants
of the Curry style calculi. M-λ¬∧∃ is important since
it is one the most implicitly typed systems for the
existential type, that is, terms in M-λ¬∧∃ have less
type information than terms in other styles. Terms
in MWDF-F and M-λ¬∧∃ contain information of mul-
tiple applications of quantifier rules such as

Γ ` N : A[X := B]

Γ ` 〈∃∗, N〉 : ∃X.A
(∃I)

Γ1 ` M : ∃X.A Γ2, x : A ` N : C

Γ1,Γ2 ` M [x.N ] : C
(∃E)

in M-λ¬∧∃, where X denotes a finite list of type vari-
ables. We call such rules multiple quantifier rules.
The multiple existential rules can handle mutual ab-
stract data types even without parameters. MWDF-F
and M-λ¬∧∃ can be considered as an intermediate
style between the domain-free style and the systems
without any type annotation. This paper discusses
M-λ¬∧∃ in two ways. The first proof shows that TC
is undecidable in M-λ¬∧∃ by a direct reduction of
the semi-unification problem to STI of M-λ¬∧∃. The
semi-unification problem has been proved to be un-
decidable in Kfoury et al. (1993). The second proof
shows that TC and TI are undecidable in MWDF-F
by reducing undecidability of TC and TI in the Curry-
style F , and then it is proved that TC and TI in
MWDF-F can be reduced to those in M-λ¬∧∃ by the
method in Nakazawa et al. (2008) with some modifi-
cation.

Furthermore, this paper shows that the proof
method of Nakazawa et al. (2008) can be adopted
to the Curry-style λ¬∧∃. The curry-style F is not
suitable to be the source calculus of the continuation-
passing-style (CPS) translation to Curry-λ¬∧∃, so we
introduce another variant WDF-F , which works as
the source calculus. WDF means weak-domain-free
style. It is proved that undecidability of TC and TI
in Curry-λ¬∧∃ is reduced to undecidability of those in
WDF-F . However, undecidability of TC and TI in
WDF-F is an open problem.

Figure 1 summarizes related results about decid-
ability of TC, STI, TI, and INH, where “no” means
that the problem is undecidable. (1) is proved by
Wells (1999), (2) is proved by Barthe and Sørensen
(2000) and Fujita and Schubert (2000), indepen-
dently, (3) is proved by Tatsuta et al. (2008), and (4)
is proved by Nakazawa et al. (2008). “NO” denotes
the main results of this paper.

Section 2 defines the domain-free polymorphic
lambda calculus DF-F , and proves that TI is undecid-
able in DF-F . Section 3 defines the domain-free typed
lambda calculus DF-λ¬∧∃ with negation, conjunction
and existence, and completes the proof of undecidabil-
ity of TI in DF-λ¬∧∃. Section 4 defines their variants
MWDF-F and M-λ¬∧∃ with the multiple quantifier

rules, and proves that TC and TI are undecidable
in them. Section 5 discusses about the Curry-style
λ¬∧∃, and shows that undecidability of TC and TI in
Curry-λ¬∧∃ can be reduced to undecidability of those
problems in the weak-domain-free-style polymorphic
lambda calculus WDF-F .

2 Domain-Free Lambda Calculus with Poly-
morphic Types

In this section, we define the domain-free polymor-
phic lambda calculus DF-F , and prove undecidability
of the type inference problem in DF-F by a similar
technique of Wells (1999).

Definition 2.1 (DF-F ) (1) The types (denoted by A,
B,. . . , and called →∀-types), and the terms (denoted
by M , N ,. . . ) of DF-F are defined by

A ::= X | A→A | ∀X.A,
M ::= x | λx.M | ΛX.M | MM | MA,

where X and x denote a type variable and a term
variable, respectively. In the type ∀X.A, the variable
X is bound in A. In the term λx.M , the variable x
is bound in M . In the term ΛX.M , the variable X is
bound in M . We use ≡ to denote syntactic identity
modulo renaming of bound variables. A variable is
said to be free in a term if it is not bound in the
term. The free variables in types are similarly defined.
FV (M) is defined as the set of the variables which
are free in M . A term M and a type A are said
to be closed if no free variable occurs in M and A,
respectively. We write ∀X.A→B for (∀X.A)→B.

(2) Γ denotes a context, which is a finite set of
type assignments in the form of (x : A). We suppose
that if both (x : A) and (x : B) are in Γ, then A ≡ B
holds. We write Γ, x : A for Γ ∪ {x : A}, and Γ1,Γ2
for Γ1 ∪ Γ2. ¬Γ is defined as {(x : ¬A)|(x : A) ∈ Γ},
and dom(Γ) is defined as {x|(x : A) ∈ Γ}.

(3) The typing rules of DF-F are the following.

Γ, x : A ` x : A
(Ax)

Γ, x : A ` M : B

Γ ` λx.M : A→B
(→I)

Γ1 ` M : A→B Γ2 ` N : A

Γ1,Γ2 ` MN : B
(→E)

Γ ` M : A
Γ ` ΛX.M : ∀X.A

(∀I)

Γ ` M : ∀X.A
Γ ` MB : A[X := B]

(∀E)

A[X := B] is the ordinary capture-avoiding substi-
tution for types. In the rule (∀I), the lower sequent
must not contain X freely. We write Γ `DF-F M : A
to denote that Γ ` M : A is derivable by the typing
rules above.

(4) ⊥ denotes the type ∀X.X.

Type checking (TC) is the problem that asks
whether Γ ` M : A is derivable for given Γ, M , and
A. Type inference (TI) asks whether there exist Γ
and A such that Γ ` M : A is derivable for given M .
Strong type inference (STI) asks whether there exist
Γ and A such that Γ,Γ0 ` M : A is derivable for given
M and Γ0.

Decidability problems of DF-F has been already
discussed in Barthe and Sørensen (2000) and Fu-
jita and Schubert (2000). They proved only that
TC and STI are undecidable in the calculus, and
undecidability of TI in DF-F has not been proved.
In general, undecidability of TI is more difficult to
prove than undecidability of STI. TC can be easily



F TC STI TI INH λ¬∧∃ TC STI TI INH
Curry- no(1) no no(1) no
MWDF- NO NO NO M- NO NO NO yes(3)
WDF- ? ? ? Curry- ? ? ?
DF- no(2) no(2) NO DF- no(4) no NO

Figure 1: Decidability of TC, STI, TI and INH

reduced to STI in DF-F if we consider a STI prob-
lem Γ, f : A → ⊥, ? ` fM :? to solve a TC problem
Γ ` M : A?. On the other hand, undecidability of TI
is much more difficult, because it needs an elaborate
technique such as the proof of Wells (1999) to show
that TC can be reduced to TI in the Curry-style F .

In the rest of this section, we will prove undecid-
ability of TI by showing that TC can be reduced to
TI in DF-F by an elaborate technique similar to Wells
(1999).
Lemma 2.2 For any →∀-type A and any closed
DF-F -term M , there exists a closed DF-F -term J
such that `DF-F M : A is derivable if and only if
`DF-F J : B is derivable for some type B.

Proof. Take J as

J ≡ λx.(λy.x(A→⊥)M)(x(⊥→⊥)x).

It is easily proved that if ` M : A holds then J is
typable, so we will prove the converse direction.

The leftmost variable occurrence lvar(A) and the
left depth ldep(A) of a type A are defined by

lvar(X) = X, ldep(X) = 0,
lvar(A→B) = lvar(A), ldep(A→B) = ldep(A) + 1,
lvar(∀X.A) = lvar(A), ldep(∀X.A) = ldep(A),

and then we have some lemmas: (1) lvar(A) 6= X
implies ldep(A[X := B]) = ldep(A), (2) if ldep(A1) =
ldep(A2) and A1[X := B] ≡ A2→C hold, then we
have lvar(A1) = X. (1) is easily proved by induction
on A. For (2), ldep(A1[X := B]) = ldep(A2) + 1 =
ldep(A1) + 1 holds, so lvar(A1) must be X by (1).

Now suppose that we have a derivation D of ` J :
B for some B. In the following, Cx denotes the type
of the variable x in D.

Since the subterm x(⊥→⊥)x is typable, we have
Cx ≡ ∀X.C1 and C1[X := ⊥→⊥] ≡ Cx→C2 for
some C1 and C2. ldep(C1) = ldep(∀X.C1) = ldep(Cx)
holds, so we have lvar(C1) = X by the lemma (2).
Hence, C1 is of the form

∀Y n+1(∀Y n.(· · · (∀Y 2.(∀Y 1.
X→A1)→A2)→· · ·An−1)→An),

where each Y i denotes a finite list of type variables
which may be empty, and n ≥ 0. Then C1[X :=
⊥→⊥] is

∀Y n+1(∀Y n.(· · · (∀Y 2.(∀Y 1.
(⊥→⊥)→A′

1)→A′
2)→· · ·A′

n−1)→A′
n),

where A′
i is Ai[X := ⊥→⊥]. Since C1[X := ⊥→⊥] ≡

Cx→C2 holds, ∀X.C1→C2 should be identical to
∀Y n+1(∀Y n.(· · · (∀Y 2.(∀Y 1.

(⊥→⊥)→A′
1)→A′

2)→· · ·A′
n−1)→A′

n).
The leftmost variable of this type is bound imme-
diately outside of it in ⊥ ≡ ∀X.X, so the variable
lvar(∀X.C1→C2) must be bound immediately outside
of it in ∀X.C1→C2. Hence, n must be 0, Y 1 must be
empty, and ∀X.C1 must be ∀X.X.

Since the type of x in D must be ⊥, D contains a
derivation of M : A.

Theorem 2.3 (1) Type checking can be reduced to
type inference in DF-F .

(2) Type inference is undecidable in DF-F .

Proof. (1) A judgment x1 : A1, · · · , xn : An `
M : A holds if and only if ` λx1. · · ·λxn.M :
A1→· · ·→An→A holds, which can be reduced to a
typability problem for some J by Lemma 2.2.

(2) Since it has been proved in Barthe and
Sørensen (2000) and Fujita and Schubert (2000) that
TC is undecidable in DF-F , TI is undecidable by
(1).

3 Domain-Free Lambda Calculus with Exis-
tential Types

In contrast to the polymorphic lambda calculus, the
type inhabitation problem (INH) is decidable in the
negation, conjunction, and existence fragment, which
was proved in Tatsuta et al. (2008). So the prob-
lems such as TC and TI in λ¬∧∃ may seem easier
than those in F . However, TC and TI in DF-λ¬∧∃

are not less difficult than those in DF-F , which was
proved in Nakazawa et al. (2008) by showing that TC
and TI in DF-F can be reduced to those in DF-λ¬∧∃

by a continuation-passing-style (CPS) translation and
type contraction translation.

In this section, combining the undecidability of TI
in DF-F , which is the result of the previous section, we
complete the proof of undecidability of TI in DF-λ¬∧∃.

Definition 3.1 (DF-λ¬∧∃) (1) The types (denoted
by A, B,. . . , and called ¬ ∧ ∃-types) and the terms
(denoted by M , N ,. . . ) of DF-λ¬∧∃ are defined by

A ::= X | ⊥ | ¬A | A ∧ A | ∃X.A,
M ::= x | λx.M | 〈M,M〉 | 〈A,M〉

| MM | Mπ1 | Mπ2 | M [Xx.M ].

In the type ∃X.A, the variable X is bound in A. In
the term λx.M , the variable x is bound in M . In the
term N [Xx.M ], the variables X and x is bound in
M .

(2) The typing rules of DF-λ¬∧∃ are the following.

Γ, x : A ` x : A
(Ax)

Γ, x : A ` M : ⊥
Γ ` λx.M : ¬A

(¬I)

Γ1 ` M : ¬A Γ2 ` N : A

Γ1,Γ2 ` MN : ⊥ (¬E)

Γ1 ` M : A Γ2 ` N : B

Γ1,Γ2 ` 〈M,N〉 : A ∧ B
(∧I)

Γ ` M : A1 ∧ A2

Γ ` Mπ1 : A1
(∧E1)

Γ ` M : A1 ∧ A2

Γ ` Mπ2 : A2
(∧E2)

Γ ` N : A[X := B]
Γ ` 〈B, N〉 : ∃X.A

(∃I)

Γ1 ` M : ∃X.A Γ2, x : A ` N : C

Γ1,Γ2 ` M [Xx.N ] : C
(∃E)

In the rule (∃E), Γ2 and C must not contain X freely.
We write Γ `DF-λ¬∧∃ M : A to denote that Γ ` M : A
is derivable by the typing rules above.



(3) A1 ∧ A2 ∧ · · · ∧ An−1 ∧ An denotes A1 ∧
(A2 ∧ (· · · ∧ (An−1 ∧ An)), 〈M1,M2, · · · ,Mn−1,Mn〉
denotes 〈M1, 〈M2, · · · 〈Mn−1, Mn〉〉〉, and An denotes
A ∧ · · · ∧ A︸ ︷︷ ︸

n

.

Theorem 3.2 Type inference is undecidable in
DF-λ¬∧∃.

Proof. By Proposition 3 of Nakazawa et al. (2008)
we can reduce TI in DF-F to TI in DF-λ¬∧∃. By
Theorem 2.3 TI in DF-F is undecidable, so is TI in
DF-λ¬∧∃.

4 Multiple Quantifier Rules

In this section, we prove that TC and TI are unde-
cidable in another variant M-λ¬∧∃ of the negation,
conjunction, and existence fragment, which contains
the multiple applications of quantifier rules. We call
such rules multiple quantifier rules.

M-λ¬∧∃ is important since it is one of the most
implicitly typed systems for the existential type, that
is, terms in M-λ¬∧∃ have less type information than
terms in other styles. In fact, terms in M-λ¬∧∃ con-
tain only information about possibility to eliminate
quantifiers, and we cannot entirely omit the infor-
mation of use of quantifier rules like the Curry style
F because of the minor premise in the elimination
rule for existence. M-λ¬∧∃ works as a CPS target of
MWDF-F , which can be considered as an intermedi-
ate style between the domain-free style and the Curry
style.

We will prove the undecidability of the problems
in M-λ¬∧∃ in two different ways. First, we directly
reduce undecidability of STI in M-λ¬∧∃ to semi-
unification problem, and prove undecidability of TC
by using it. Secondly, we show that TC and TI are un-
decidable in another variant of F , which will be called
MWDF-F , which means the multiple-weak-domain-
free F . We prove that TC and TI in MWDF-F can
be reduced to those problems in M-λ¬∧∃ by the tech-
nique of Nakazawa et al. (2008).

Definition 4.1 (M-λ¬∧∃) (1) We use X and A to
denote finite lists of type variables and types, respec-
tively. When X denotes (X1, · · · , Xn) and B denotes
(B1, · · · ,Bn), ∃X.A denotes the type ∃X1 · · · ∃Xn.A,
and A[X := B] denotes the simultaneous substitution
A[X1 := B1, · · · , Xn := Bn]. X and B may denote
the empty list, and then both ∃X.A and A[X := B]
denote the same type A.

(2) The types of M-λ¬∧∃ are the ¬∧∃-types. The
terms (denoted by M , N ,. . . ) of M-λ¬∧∃ are defined
by
M ::= x | λx.M | 〈M,M〉 | 〈∃∗,M〉

| MM | Mπ1 | Mπ2 | M [x.M ].

(3) The typing rules of M-λ¬∧∃ are the same as
those of DF-λ¬∧∃ except for rules of existence, which
are the following.

Γ ` N : A[X := B]

Γ ` 〈∃∗, N〉 : ∃X.A
(∃I)

Γ1 ` M : ∃X.A Γ2, x : A ` N : C

Γ1,Γ2 ` M [x.N ] : C
(∃E)

In the rule (∃E), Γ2 and C must not contain any type
variable in X freely. We write Γ `M-λ¬∧∃ M : A to
denote that Γ ` M : A is derivable by the typing rules
above.

4.1 Undecidability of TC in M-λ¬∧∃

This subsection gives a direct reduction of the semi-
unification problem to STI in M-λ¬∧∃, and prove un-
decidability of TC by using it.
Definition 4.2 (Semi-Unification Problem) (1) The
∧-types are ¬ ∧ ∃-types which contain neither ¬ nor
∃. The ∧-substitutions are simultaneous type substi-
tutions Θ = [X := A] where each element Ai in A is
∧-type.

(2) A pair (A1 ≤ B1,A2 ≤ B2) of inequalities be-
tween two ∧-types is called an instance of the semi-
unification problem. An instance I = (A1 ≤ B1,A2 ≤
B2) has a solution if there exist ∧-substitutions Θ, Θ1
and Θ2 such that A1ΘΘ1 ≡ B1Θ and A2ΘΘ2 ≡ B2Θ.

If we replace ∧ by →, this is a special case of
the original semi-unification problem. It is proved
in Kfoury et al. (1993) that the special case of the
semi-unification is undecidable.
Theorem 4.3 (Kfoury et al. (1993)) It is not possi-
ble to effectively decide whether a given instance of
the semi-unification problem has a solution.
Lemma 4.4 For any instance I of the semi-
unification problem, there exist Γ0 and M such that
I has a solution if and only if Γ0,Γ `M-λ¬∧∃ M : A is
derivable for some Γ and A.

Proof. For given I = (A1 ≤ B1,A2 ≤ B2), take Γ0
and M as

Γ0 = { c : ¬∃X(X ∧ X),
d : ¬((∃X.((A1 ∧ B1) ∧ (A2 ∧ B2))) ∧ ⊥4)},

M ≡ d〈 〈∃∗, 〈x1, x2〉〉, P1, Q1, P2, Q2 〉,
where Pi and Qi for i = 1, 2 are defined as

Pi ≡ c〈∃∗, 〈xi, 〈yi, zi〉〉〉,
Qi ≡ 〈∃∗, zi〉[u.c〈∃∗, 〈yi, u〉〉],

and X denotes the free type variables in A1, B1, A2,
and B2.

(I) Suppose that I has a solution (Θ,Θ1,Θ2), that
is, we have AiΘΘi ≡ BiΘ for i = 1, 2. Let Γi = {xi :
AiΘ ∧ BiΘ, yi : AiΘ, zi : BiΘ}, then we have

Γi ` 〈xi, 〈yi, zi〉〉 : (AiΘ ∧ BiΘ) ∧ (AiΘ ∧ BiΘ)
Γi ` 〈∃∗, 〈xi, 〈yi, zi〉〉〉 : ∃X.(X ∧ X) ,

so we have Γ0,Γi ` Pi : ⊥. Similarly, we have
Γ0,Γi, u : AiΘ ` c〈∃∗, 〈yi, u〉〉 : ⊥. Moreover, since
AiΘΘi ≡ BiΘ holds, Γi ` 〈∃∗, zi〉 : ∃Y .AiΘ is deriv-
able for some Y . We also have Γ0,Γi, u : AiΘ `
c〈∃∗, 〈yi, u〉〉 : ⊥, so Γ0,Γi ` Qi : ⊥ holds. On the
other hand, we have

Γ1,Γ2 ` 〈x1, x2〉 : (A1Θ ∧ B1Θ) ∧ (A2Θ ∧ B2Θ)

Γ1,Γ2 ` 〈∃∗, 〈x1, x2〉〉 : ∃X.(A1 ∧ B1) ∧ (A2 ∧ B2)

Hence, we have Γ0,Γ1,Γ2 ` M : ⊥.
(II) Conversely, suppose that there exist Γ and A

such that Γ0,Γ ` M : A. We write Γ′ for Γ0,Γ. First,
since Γ′ ` 〈∃∗, 〈x1, x2〉〉 : ∃X.(A1 ∧ B1) ∧ (A2 ∧ B2)
holds, the type of xi in Γ must be AiΘ∧BiΘ for some
Θ. Note that Θ is a substitution but it may not a
∧-substitution. Secondly, since Γ′ ` Pi : ⊥ holds, the
type of 〈yi, zi〉 must be the same as the type of xi,
which is AiΘ ∧ BiΘ. So Γ must contain yi : AiΘ and
zi : BiΘ. Thirdly, the derivation of Γ′ ` Qi : ⊥ must
be of the following form.

Γ′ ` zi : CiΘi

Γ′ ` 〈∃∗, zi〉 : ∃Y .Ci

....
Γ′, u : Ci ` c〈∃∗, 〈yi, u〉〉 : ⊥

Γ′ ` Qi : ⊥



Since the right premise holds, yi and u must have the
same type, so we have Ci ≡ AiΘ. Moreover, we have
BiΘ ≡ CiΘi, so we have AiΘΘi ≡ BiΘ.

Finally we construct ∧-substitutions from Θ, Θ1,
and Θ2. Following the idea of Wells (1999), define the
erase function with a fresh type variable Z as follows

e(X) = X,
e(A ∧ B) = e(A) ∧ e(B),
e(¬A) = e(A),
e(∃X.A) = e(A[X := Z]),

and we prove e(AΘ) ≡ e(e(A)Θ) for any ¬∧∃-type A
and any substitution Θ by induction on the size of A
as follows.

(Case X) The both sides are equal to e(XΘ).
(Case B∧C) The left-hand side is e(BΘ)∧ e(CΘ),

which is identical to e(e(B)Θ) ∧ e(e(C)Θ) by the in-
duction hypothesis. The right-hand side is e((e(B) ∧
e(C))Θ) ≡ e(e(B)Θ) ∧ e(e(C)Θ).

(Case ¬B) The left-hand side is e(BΘ), which is
identical to e(e(B)Θ) by the induction hypothesis.
The right-hand side is e(e(¬B)Θ) ≡ e(e(B)Θ).

(Case ∃X.B) By renaming bound variables, we
suppose that X does not occur in Θ. The left-
hand side is e(BΘ[X := Z]), which is identical to
e(B[X := Z]Θ) since Z is fresh. By the induction hy-
pothesis, this type is identical to e(e(B[X := Z])Θ),
which is equal to the right-hand side.

Take the ∧-substitutions (Ξ,Ξ1,Ξ2) as XΞ =
e(XΘ) and XΞi = e(XΘi). Since AiΘΘi ≡
BiΘ holds, we have e(AiΘΘi) ≡ e(BiΘ) ≡ Ξ(Bi).
By the claim proved above, we have e(AiΘΘi) ≡
e(e(AiΘ)Θi) ≡ AiΞΞi, so the triple (Ξ,Ξ1,Ξ2) is a
solution of I.

Proposition 4.5 Strong type inference is undecid-
able in M-λ¬∧∃.

Proof. By Theorem 4.3 and Lemma 4.4.

Theorem 4.6 Type checking is undecidable in
M-λ¬∧∃.

Proof. Each STI problem Γ, ? ` M :? is reduced to
a TC problem Γ, c : A ` (λx.c)(λy1. · · ·λyn.M) : A?,
where {y1, · · · , yn} = FV (M) − dom(Γ). In fact,
if Γ, c : A ` (λx.c)(λy1. · · ·λyn.M) : A holds, then
M must have some type under Γ,∆ for some con-
text ∆ for the variables y1, · · · , yn. Conversely, if
Γ,∆ ` M : B holds for some ∆ and B, then we
have Γ, c : A ` (λx.c)(λy1. · · ·λyn.M) : A since
FV (M) − {y1, · · · , yn} ⊆ dom(Γ) holds.

Hence, undecidability of TC in M-λ¬∧∃ is reduced
to that of STI, and it has been proved in Proposition
4.5.

We cannot easily prove undecidability of TI from
the proposition. We will adopt another method to
prove undecidability of TI in M-λ¬∧∃.

4.2 Polymorphic Lambda Calculus with Mul-
tiple Quantifier Rules

The rest of this section will devoted to proof of un-
decidability of TI in M-λ¬∧∃. It also gives another
proof of undecidability of TC in M-λ¬∧∃.

The proof consists of two parts. First, we intro-
duce another polymorphic lambda calculus MWDF-F
with multiple quantifier rules, and prove that TC and
TI are undecidable in MWDF-F . Secondly, we prove
that undecidability of TC and TI in M-λ¬∧∃ can be
reduced to undecidability of TC and TI in MWDF-F
by the method of Nakazawa et al. (2008).

In this subsection, we prove that TC and TI are
undecidable in MWDF-F by showing that it can be

reduced to undecidability of those problems in the
Curry-style polymorphic lambda calculus Curry-F ,
which has been proved in Wells (1999).
Definition 4.7 (MWDF-F ) (1) The types of
MWDF-F are the →∀-types. The terms of MWDF-F
are defined by

M ::= x | λx.M | Λ∗.M | MM | M•∗.
(2) The typing rules of MWDF-F are the same as

those of DF-F except for the rules for the universal
quantifiers given as follows.

Γ ` M : A

Γ ` Λ∗.M : ∀X.A
(∀I) Γ ` M : ∀X.A

Γ ` M•∗ : A[X := B]
(∀E)

The Curry-style F is defined as follows.
Definition 4.8 (Curry-F ) Curry-F is the Curry-style
polymorphic lambda calculus, whose types are →∀-
types, and whose terms are defined as

M ::= x | λx.M | MM .
The typing rules of Curry-F are the same as those of
DF-F except for the rules for the universal quantifiers
given as follows.

Γ ` M : A
Γ ` M : ∀X.A

(∀I)
Γ ` M : ∀X.A

Γ ` M : A[X := B]
(∀E)

Proposition 4.9 Type checking and type inference
are undecidable in MWDF-F .

Proof. Define the map b·c from Curry-F -terms to
MWDF-F -terms by

bxc ≡ Λ∗.x•∗,
bλx.Mc ≡ Λ∗.λx.bMc,
bMNc ≡ Λ∗.bMcbNc•∗,

and we have that Γ ` M : A is derivable in the
Curry style if and only if Γ ` bMc : A is derivable in
MWDF-F . It is easily proved that Γ `MWDF-F bMc :
A implies Γ `Curry-F M : A, so we will prove the con-
verse direction.

We prove the claim by induction on M . Suppose
that we have a derivation of Γ `Curry-F M : A holds.
We can assume that no premise of any use of (∀E)
rule is never a conclusion of a use of (∀I) rule in the
derivation, that is, the derivation enjoys the INST-
before-GEN property in Wells (1999).

(Case M ≡ x) The derivation of Γ `Curry-F x : A
is of the following form.

Γ′, x : B ` x : B.... (∀E) (zero or more times)
.... (∀I) (zero or more times)

Γ′, x : B ` x : A

So we have Γ′, x : B `MWDF-F Λ∗.x•∗ : A.
(Case M ≡ λx.N) The derivation of Γ `Curry-F

λx.N : A is of the following form.

Γ, x : B ` N : C

Γ ` λx.N : B→C.... (∀I) (zero or more times)
Γ ` λx.N : A

By the induction hypothesis, we have Γ, x :
B `MWDF-F bNc : C, so we have Γ `MWDF-F λx.bNc :
B→C. Hence, we have Γ `MWDF-F Λ∗.λx.bNc : A.

(Case M ≡ N1N2) The derivation of Γ `Curry-F
N1N2 : A is of the following form.

Γ ` N1 : C→B Γ ` N2 : C

Γ ` N1N2 : B.... (∀E) (zero or more times)
.... (∀I) (zero or more times)

Γ ` N1N2 : A



By the induction hypotheses, we have Γ `MWDF-F
bN1c : C→B and Γ `MWDF-F bN2c : C, so we
have Γ `MWDF-F bN1cbN2c : B. Hence, we have
Γ `MWDF-F Λ∗.bN1cbN2c•∗ : A.

Therefore undecidability of TC and TI in
MWDF-F is reduced to undecidability of TC and
TI in Curry-F , which has been proved in Wells
(1999).

4.3 Undecidability of TI in M-λ¬∧∃

We will prove that TC and TI in M-λ¬∧∃ can be re-
duced to those in MWDF-F . We borrow the idea of
the contraction translation on types from Nakazawa
et al. (2008). However, we cannot directly apply the
original definition of the translation, and some mod-
ification is needed.

In line with the proof method of Nakazawa et al.
(2008), we define a negative translation (·)• from
→∀-types to ¬ ∧ ∃-types, a CPS translation [[·]] from
MWDF-F to M-λ¬∧∃, and a subsystem M-λ¬∧∃

cps of
M-λ¬∧∃ which is the image of the CPS translation.
Then we prove that M has a type A in MWDF-F if
and only if [[M ]] has the type ¬A• in M-λ¬∧∃

cps . Fur-
thermore, we show that M-λ¬∧∃ is a conservative ex-
tension of M-λ¬∧∃

cps , that is, for any term of the form
[[M ]], if [[M ]] has a type ¬A• in M-λ¬∧∃, then [[M ]] has
the type ¬A• in M-λ¬∧∃

cps . By these facts, we can con-
clude that M has a type A in MWDF-F if and only if
[[M ]] has the type ¬A• in M-λ¬∧∃, so TC in MWDF-F
can be reduced to that in M-λ¬∧∃.
Definition 4.10 (CPS Translation) (1) The negative
translation from →∀-types to ¬ ∧ ∃-types is defined
by

X• ≡ X,
(A→B)• ≡ ¬A• ∧ B•,
(∀X.A)• ≡ ∃X.A•.

Γ• is defined as {(x : A•)|(x : A) ∈ Γ}.
(2) The CPS translation from terms in MWDF-F

to terms in M-λ¬∧∃ is defined by
[[x]] ≡ λk.xk,
[[λx.M ]] ≡ λk.(λx.[[M ]](kπ2))(kπ1),
[[MN ]] ≡ λk.[[M ]]〈[[N ]], k〉,
[[Λ∗.M ]] ≡ λk.k[k′.[[M ]]k′],
[[M•∗]] ≡ λk.[[M ]]〈∃∗, k〉,

where variables k and k′ are supposed to be fresh.
Proposition 4.11 Γ `MWDF-F M : A implies
¬Γ• `M-λ¬∧∃ [[M ]] : ¬A•.

Proof. By induction on the derivation of Γ `MWDF-F
M : A.

Definition 4.12 (M-λ¬∧∃
cps ) (1) The continuation

types (denoted by A, B,. . . ) are defined by
A ::= X | ¬A ∧ A | ∃X.A.

The CPS types are the types of the form ¬A. The
CPS terms (denoted by P , Q,. . . ) are defined by
P ::= λk.xk | λk.(λx.P (kπ2)(kπ1)) | λk.P 〈Q, k〉

| λk.P 〈∃∗, k〉 | λk.k[k′.Pk′],

where occurrences of k and k′ denote those of the
same variable, for example, λk.xk denotes λk1.xk1
but does not denote λk1.xk2 for k1 ≡ k2. We define
the subsystem M-λ¬∧∃

cps of M-λ¬∧∃ by restricting terms
and types to CPS terms and CPS types, respectively.
The judgments of M-λ¬∧∃

cps are restricted to those of
the form ¬Γ ` P : ¬A. The typing rules of M-λ¬∧∃

cps

are the following.

¬Γ, x : ¬A ` λk.xk : ¬A

¬Γ, x : ¬A ` P : ¬B
¬Γ ` λk.(λx.P (kπ2))(kπ1) : ¬(¬A ∧ B)

¬Γ1 ` P : ¬(¬A ∧ B) ¬Γ2 ` Q : ¬A
¬Γ1,¬Γ2 ` λk.P 〈Q, k〉 : ¬B

¬Γ ` P : ¬(∃X.B)

¬Γ ` λk.P 〈∃∗, k〉 : ¬B[X := A]

¬Γ ` P : ¬B
¬Γ ` λk.k[k′.Pk′] : ¬∃X.B

In the last rule, Γ must not contain any type variable
in X freely. We write ¬Γ `cps P : ¬A to denote that
the judgment is derivable by the rules above.

(2)The inverse translation (·)◦ from continuation
types to →∀-types is defined by

X◦ ≡ X,
(¬A ∧ B)◦ ≡ A◦→B◦,
(∃X.A)◦ ≡ ∀X.A◦.
(3) The inverse translation (·)# from CPS terms

to terms of MWDF-F is defined by
(λk.xk)# ≡ x,
(λk.(λx.P (kπ2))(kπ1))

# ≡ λx.P#,
(λk.k[k′.Pk′])# ≡ Λ∗.P#,
(λk.P 〈Q, k〉)# ≡ P#Q#,
(λk.P 〈∃∗, k〉)# ≡ P#•∗.

Lemma 4.13 (1) For any →∀-type A, A• is a con-
tinuation type, and A•◦ ≡ A holds.

(2) For any MWDF-F -term M , [[M ]] is a CPS term,
and [[M ]]# ≡ M holds.

Proof. (1) By induction on A.
(2) By induction on M .

Proposition 4.14 (1) If ¬Γ `cps P : ¬A holds, then
Γ◦ `MWDF-F P# : A◦ holds.

(2) If ¬Γ• `cps [[M ]] : ¬A•, then Γ `MWDF-F M : A
holds.

Proof. (1) By induction on the derivation of ¬Γ `cps
P : ¬A.

(2) By (1), we have Γ•◦ `MWDF-F [[M ]]# : A•◦. By
Lemma 4.3, we have the claim.

In order to prove the conservativeness of M-λ¬∧∃

over M-λ¬∧∃
cps , that is, ¬Γ• `M-λ¬∧∃ [[M ]] : ¬A• im-

plies ¬Γ• `cps [[M ]] : ¬A•, we define the contraction
translation on types, which has been introduced in
Nakazawa et al. (2008). A type derivation of a CPS
term in λ¬∧∃ may contain a non CPS type. For ex-
ample, a CPS term Q ≡ λk′.xk′ can have an arbitrary
negation type ¬A under a context {x : ¬A}, and then
P ≡ λk.(λx.Q(kπ2))(kπ1) has a type ¬(¬A ∧ A) un-
der the empty context. If A is not a continuation
type, the type derivation of P : ¬(¬A ∧ A) is not
in M-λ¬∧∃

cps . However, such a type A which is not a
continuation type cannot be consumed in the type
derivation of a CPS term, so we can replace A by a
continuation type without changing the form of the
derivation. The contraction translation formally real-
izes this replacement, and derivations in M-λ¬∧∃ are
translated by it to those in M-λ¬∧∃

cps . The contraction
translation is defined as (·)c as follows, and we show
that Γc `cps P : Ac holds for any CPS term P and
any type derivation of Γ `λ¬∧∃ P : A.



Definition 4.15 (Contraction Translation) Let S be
a fixed closed continuation type, such as ∃X.X. The
contraction translation (·)c from ¬ ∧ ∃-types to CPS
types and the auxiliary translation (·)d from ¬ ∧ ∃-
types to continuation types are defined by

(¬A)c ≡ ¬Ad,
Ac ≡ ¬Ad (A is not a negation),
Xd ≡ X,
⊥d ≡ S,
(¬A)d ≡ Ad,
(A ∧ B)d ≡ Ac ∧ Bd,
(∃X.A)d ≡ ∃X.Ad.

Γc is defined as {(x : Ac)|(x : A) ∈ Γ}.
The definition of Ac for non-negation type A is

changed from Nakazawa et al. (2008) because of the
following reason. The contraction translation is ex-
pected to have the following property: Γ `M-λ¬∧∃ P :
A implies Γc `cps P : Ac for any CPS term P . In
the case of P ≡ λk.Q〈∃∗, k〉, Q must have a type of
the form ¬∃X.C, and then P has a type ¬C[X := B]
for some B, so we must show that P has the type
(¬C[X := B])

c ≡ ¬(C[X := B])
d

from that Q has the
type (¬∃X.C)

c ≡ ¬∃X.Cd. That requires the com-
mutativity of the contraction and the substitution,
that is, (C[X := B])

d ≡ Cd[X := B
d
], but the original

contraction does not have this property.
It should be noted that, in the case of DF-λ¬∧∃, we

need only the restricted form of commutativity, that
is (C[X := B])d ≡ Cd[X := B], because the CPS term
corresponding to P above is λk.Q〈B, k〉, where the
type abstracted by the ∃-introduction is restricted to
the continuation type B. The restricted commutativ-
ity can be proved more easily, since any continuation
type is not a negation.

Lemma 4.16 (1) For any continuation type A,
(¬A)c ≡ ¬A and Ad ≡ A hold.

(2) For ¬ ∧ ∃-types A and B, (B[X := A])c ≡
Bc[X := Ad] and (B[X := A])d ≡ Bd[X := Ad] hold.

Proof. (1) By induction on A.
(2) By induction on B. In the following, we write

B[A] for B[X := A], so we will prove (i) (B[A])c ≡
Bc[Ad] and (ii) (B[A])d ≡ Bd[Ad].

(i) Case B ≡ X. We have (X[A])c ≡ Ac and
Xc[Ad] ≡ ¬Ad. If A is not a negation, these are the
same type by the definition. Otherwise, let A ≡ ¬C,
and then we have (¬C)c ≡ ¬Cd and ¬(¬C)d ≡ ¬Cd.

Other cases are proved by (ii).
(ii) Case B ≡ X. In this case, the both sides are

Ad.
Case B ≡ Y (Y 6≡ X). The both sides are Y .
Case B ≡ ¬C. We have (¬C[A])d ≡ (C[A])d, which

is identical to Cd[Ad] by the induction hypothesis. On
the other hand, we have (¬C)d[Ad] ≡ Cd[Ad] by the
definition.

Case B ≡ C ∧ D. If C is a negation, C[A] is a
negation, so this case is easily proved by the induc-
tion hypothesis. If C[A] is not a negation, C is not a
negation either, so this case is also easily proved by
the induction hypothesis. The rest is the case where
C is not a negation and C[A] is a negation, that is,
the case of C ≡ X and A ≡ ¬E. Then we have
(X[¬E] ∧ B[¬E])d ≡ ¬Ed∧(B[¬E])d, which is identical
to ¬Ed ∧ Bd[Ed] by the induction hypothesis. On the
other hand, we have (X ∧ B)d[(¬E)d] ≡ (¬X∧Bd)[Ed],
so the both sides are the same type.

Case B ≡ ∃Y.C. This case is proved by the induc-
tion hypothesis.

Lemma 4.17 For any CPS term P , Γ `M-λ¬∧∃ P : A
implies Γc `cps P : Ac.

Proof. By induction on P . Note that any type of P
is a negation, since any CPS term is a λ-abstraction.
So we will show that Γ `M-λ¬∧∃ P : ¬A implies Γc `cps

P : ¬Ad.
Case P ≡ λk.xk. Any derivation of Γ `M-λ¬∧∃ P :

¬A has the following form.

Γ ` x : ¬A k : A ` k : A
Γ, k : A ` xk : ⊥
Γ ` λk.xk : ¬A

Since we have (x : ¬A) ∈ Γ, (x : ¬Ad) ∈ Γc holds.
Case P ≡ λk.(λx.Q(kπ2))(kπ1). Any derivation of

Γ `λ¬∧∃ P : ¬A has the following form, where A must
be B ∧ C.

Γ, x : B ` Q : ¬C
Γ′ ` k : A

Γ′ ` kπ2 : C

Γ′, x : B ` Q(kπ2) : ⊥
Γ′ ` λx.Q(kπ2) : ¬B

Γ′ ` k : A
Γ′ ` kπ1 : B

Γ′ ` (λx.Q(kπ2))(kπ1) : ⊥
Γ ` λk.(λx.Q(kπ2))(kπ1) : ¬A ,

where Γ′ = Γ, k : A. By the induction hypothesis, we
have Γc, x : Bc `cps Q : ¬Cd, so we have Γc `cps P :
¬(Bc ∧ Cd), where Ad ≡ (B ∧ C)d ≡ Bc ∧ Cd.

Case P ≡ λk.Q〈R, k〉. Any derivation of
Γ `M-λ¬∧∃ P : ¬A has the following form.

Γ ` Q : ¬(B ∧ A)
Γ ` R : B k : A ` k : A
Γ, k : A ` 〈R, k〉 : B ∧ A

Γ, k : A ` Q〈R, k〉 : ⊥
Γ ` λk.Q〈R, k〉 : ¬A

By the induction hypotheses, we have Γc `cps Q :
¬(Bc ∧ Ad) and Γc `cps R : Bc, so we have Γc `cps P :
¬Ad.

Case P ≡ λk.k[k′.Qk′]. Any derivation of
Γ `M-λ¬∧∃ P : ¬A has the following form, where A
must be ∃X.B, and Γ must not contain any type vari-
able in X freely.

k : A ` k : A

Γ ` Q : ¬B k′ : B ` k′ : B

Γ, k′ : B ` Qk′ : ⊥
Γ, k : A ` k[k.Qk′] : ⊥
Γ ` λk.k[k′.Qk′] : ¬A

By the induction hypothesis, we have Γc `cps Q : ¬Bd.
Since Γc does not contain any variable of X freely, we
have Γc `cps P : ¬∃X.Bd, where ∃X.Bd ≡ (∃X.B)

d
.

Case P ≡ λk.Q〈∃∗, k〉. Any derivation of
Γ `M-λ¬∧∃ P : ¬A has the following form for some
list of ¬ ∧ ∃-types B, where A must be C[X := B].

Γ ` Q : ¬∃X.C

k : A ` k : A

k : A ` 〈∃∗, k〉 : ∃X.C

Γ, k : A ` Q〈∃∗, k〉 : ⊥
Γ ` λk.Q〈∃∗, k〉 : ¬A



By the induction hypothesis, Γc `cps Q : ¬∃X.Cd

holds, so we have Γc `cps P : ¬Cd[X := B
d
] by letting

k : Cd[X := B
d
], where Cd[X := B

d
] is identical to

(C[X := B])
d

by Lemma 4.16 (2).

By Lemma 4.17, we can reduce TC and TI of
MWDF-F to those of M-λ¬∧∃, and then conclude un-
decidability of TC and TI in M-λ¬∧∃.

Proposition 4.18 (1) Γ `MWDF-F M : A holds if
and only if ¬Γ• `M-λ¬∧∃ [[M ]] : ¬A• holds.

(2) Γ `MWDF-F M : A holds for some Γ and A if
and only if Γ′ `M-λ¬∧∃ [[M ]] : A′ holds for some Γ′ and
A′.

Proof. (1) The only-if part is Proposition 4.11, so
we will show the if part. If ¬Γ• `M-λ¬∧∃ [[M ]] : ¬A•

holds, by Lemma 4.17, we have (¬Γ•)c `cps [[M ]] :
(¬A•)c, from which ¬Γ• `cps [[M ]] : ¬A• follows by
Lemma 4.16 (1). By Proposition 4.14 (2), Γ `MWDF-F
M : A holds.

(2) The only-if part follows from the only-if part
of (1). For the if part, suppose Γ′ `M-λ¬∧∃ [[M ]] : A′

holds for some Γ′ and A′. By Lemma 4.17, we have
Γ′c `cps [[M ]] : A′c, so [[M ]]# is typable by Proposition
4.14 (2), where [[M ]]# is identical to M by (2).

Theorem 4.19 Type inference is undecidable in
M-λ¬∧∃.

Proof. By Proposition 4.9 and 4.18 (2).

Proof. (Another proof of Theorem 4.6.) By Propo-
sition 4.9 and 4.18 (1).

5 TC and TI in Curry-Style λ¬∧∃

The negation, conjunction, and existence fragment
Curry-λ¬∧∃ in the Curry style is defined as follows.
Curry-λ¬∧∃ is the same as the system introduced in
Tatsuta et al. (2008), and a subsystem of the system
in Tatsuta (2007).

Definition 5.1 (Curry-λ¬∧∃) (1) The types of
Curry-λ¬∧∃ are ¬ ∧ ∃-types, and the terms (denoted
by M , N ,. . . ) of Curry-λ¬∧∃ are defined by

M ::= x | λx.M | 〈M,M〉 | 〈∃,M〉
| MM | Mπ1 | Mπ2 | M [x.M ],

In the term λx.M , the variable x is bound in M . In
the term N [x.M ], the variable x is bound in M .

(2) The typing rules of Curry-λ¬∧∃ are the same
as those of DF-λ¬∧∃ except for the rules of existence,
which are the following.

Γ ` N : A[X := B]
Γ ` 〈∃, N〉 : ∃X.A

(∃I)

Γ1 ` M : ∃X.A Γ2, x : A ` N : C

Γ1,Γ2 ` M [x.N ] : C
(∃E)

In the rule (∃E), Γ2 and C must not contain X freely.

The proof method in the previous section for
M-λ¬∧∃ can be adopted to Curry-λ¬∧∃, and we can
prove that undecidability of TC and TI in Curry-λ¬∧∃

can be reduced to undecidability of a variant of F . It
should be noted that Curry-F is not suitable to be the
source calculus of the CPS translation to Curry-λ¬∧∃,

because terms in Curry-λ¬∧∃ does not contain any in-
formation of applications of (∀I). So we define another
variant of polymorphic lambda calculus, which we will
call the weak-domain-free-style polymorphic lambda
calculus WDF-F . The proof is almost the same as
that in the previous section, so here we give the defi-
nition of WDF-F and the CPS translation only.

Definition 5.2 (WDF-F ) (1) The types of WDF-F
are the →∀-types. The terms of WDF-F are defined
by

M ::= x | λx.M | Λ.M | MM | M•.
(2) The typing rules of WDF-F are the same as

those of DF-F except for the rules of universal quan-
tifiers.

Γ ` M : A
Γ ` Λ.M : ∀X.A

(∀I)
Γ ` M : ∀X.A

Γ ` M• : A[X := B]
(∀E)

Definition 5.3 (CPS Translation) The CPS trans-
lation from WDF-F -terms to Curry-λ¬∧∃-terms is de-
fined by

[[x]] ≡ λk.xk,
[[λx.M ]] ≡ λk.(λx.[[M ]](kπ2))(kπ1),
[[MN ]] ≡ λk.[[M ]]〈[[N ]], k〉,
[[Λ.M ]] ≡ λk.k[k′.[[M ]]k′],
[[M•]] ≡ λk.[[M ]]〈∃, k〉,

Theorem 5.4 (1) If type checking is undecidable
in WDF-F , then type checking is undecidable in
Curry-λ¬∧∃.

(2) If type inference is undecidable in WDF-F ,
then type inference is undecidable in Curry-λ¬∧∃.

6 Concluding Remarks

In this paper, we proved undecidability of the fol-
lowing problems: (1) type inference in DF-F and
DF-λ¬∧∃, (2) type checking and inference in MWDF-F
and M-λ¬∧∃. Moreover, we proved that undecidabil-
ity of the type checking and inference in Curry-λ¬∧∃

can be reduced to undecidability of those problems in
WDF-F .

It is an important problem whether type check-
ing and inference in Curry-λ¬∧∃ are decidable or not.
As it is proved in this paper, their undecidability di-
rectly follows from undecidability of those problems
in WDF-F . Although WDF-F is similar to MWDF-F
and DF-F , in which type checking and inference have
been proved to be undecidable, we cannot adopt the
existing proof methods to WDF-F . For example, the
proofs in Wells (1999) and Section 4.1 of this paper
use the undecidability of the semi-unification prob-
lem. It is essential for this approach that the terms
in the systems do not contain any information of the
number of use of the quantifier rules. We have to
find another approach to prove undecidability of type
checking and inference in Curry-λ¬∧∃ and WDF-F ,
and it is future work.
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