
Linda Bird and Andrew Goodchild
Distributed Systems Technology Centre (DSTC)

University of Queensland, QLD, 4072,
AUSTRALIA

[bird,andrewg]@dstc.edu.au

Abstract
XML is rapidly becoming the standard method for
sending information across the Internet. XML Schema,
since its elevation to W3C Recommendation on the 2nd
May 2001, is fast becoming the preferred means of
describing structured XML data. However, until recently,
there has been no effective means of graphically
designing XML Schemas without exposing designers to
low-level implementation issues. Bird, Goodchild and
Halpin (2000) proposed a method to address this shortfall
using the ‘Object Role Modelling’ conceptual language
to generate XML Schemas.

This paper seeks to build on this approach by defining a
mapping between the Unified Modeling Language
(UML) class diagrams and XML Schema using the
traditional three level database design approach (ie. using
conceptual, logical and physical design levels). In our
approach, the conceptual level is represented using
standard UML class notation, annotated with a few
additional conceptual constraints, the logical level is
represented in UML, using a set of UML stereotypes, and
the XML Schema itself represents the physical level. The
goal of this three level design methodology is to allow
conceptual level UML class models to be automatically
mapped into the logical level, while minimizing
redundancy and maximizing connectivity.1

Keywords: UML, XML Schema, DTD, XML

1 Introduction
The eXtensible Markup Language (XML) (W3C 2000) is
rapidly becoming the premier method for exchanging
information across the Internet. The Document Type
Definition (DTD) language, which has traditionally been
the most common method for describing the structure of
XML instance documents, lacks enough expressive
power to properly describe highly structured data. XML
Schema (W3C 2001), on the other hand, provides a much
richer set of structures, types and constraints for
describing data and is therefore expected to soon become
the most common method for defining and validating
highly structured XML documents.

Copyright ©2002, Australian Computer Society, Inc. This
paper appeared at the Thirteenth Australasian Database
Conference (ADC2002), Melbourne, Australia. Conferences in
Research and Practice in Information Technology, Vol. 5.
Xiaofang Zhou, Ed. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

A number of software packages currently exist, which are
capable of designing DTDs and XML Schemas using a
graphical, tree-based approach. This allows the user to
visualize the schema more effectively than is possible
with traditional text-based editors. The better-known
packages available are XML Spy and XML Authority2.

The disadvantage of a tree-based approach is that the user
is still exposed to some low-level implementation issues.
A better approach would be to allow the user to generate
the physical data structures, by first designing the
appropriate, conceptual domain model. One such
approach described by Bird, Goodchild and Halpin
(2000), uses an Object Role Modeling conceptual
diagram to algorithmically generate an XML Schema.
This paper aims to build upon this approach by providing
a technique for modeling XML Schemas using Unified
Modeling Language (UML) class diagrams.

UML was chosen because it is a popular method for
designing software and has proven to be valuable for data
modelling. Another benefit of UML is that it is
extensible, using stereotypes in a UML Profile. This
means that a method for designing XML Schemas can be
developed, which is compatible with existing UML tools.
It has been claimed by Booch, Christerson, Fuchs and
Koistinen (1998), that this method can also unify a
development team, by allowing XML developers to work
more closely with other team members by sharing a
common design platform.

A number of approaches to relating XML Schemas and
UML have been described in other works (Booch,
Christerson, Fuchs and Koistinen 1998, Rational 2000,
Conrad, Scheffner and Freytag 2000). However, there are
a number of problems with these existing solutions. One
such approach (Booch, Christerson, Fuchs and Koistinen
1998), is somewhat out of date, as it describes a UML
profile for SOX (a forerunner to XML Schema). Other
papers (Rational 2000, Conrad, Scheffner and Freytag
2000) describe a UML profile for DTDs, and therefore
miss many of the additional structures and constraints,
which can be found in XML Schema. Finally, a common
problem with all these works is that they do not separate
the conceptual level of the model from the logical level of
the model – forcing analysts to make implementation
decisions about the structure of the XML Schema too
early in the design process.

2 http://www.xmlspy.com ; http://www.extensibility.com/

Nicholas Routledge
School of Information Technology and

Electrical Engineering
University of Queensland, QLD, 4072,

AUSTRALIA
nickr@dstc.edu.au

UML and XML Schema

In this paper, we explore an approach in which
conceptual level UML class diagrams are transformed
through successive steps into XML Schemas. In section
2, we briefly describe our three level design approach
using a small example. Section 3 describes the UML
profile for XML schema used at the logical level, in more
detail. In section 4, we describe a general algorithm for
transforming a conceptual level UML diagram into a
logical level UML diagram. Finally, conclusions and
future work are described in section 5.

2 Three Level Design Approach Example
In this section, we describe our three level XML schema
design approach, using a small example. In particular, we
demonstrate how a small university student-rating system
can be modelled using a conceptual level UML diagram,
transformed into a logical level UML diagram based on
an XML schema profile, and mapped into a physical level
XML schema. Figure 1 summarises this design process.

Figure 1: Three level design approach

As mentioned, the Universe of Discourse (UoD) being
modeled in XML schema is a university student-rating
system (as shown in the following two output reports).

Subject Title Year NrEnrolled Lecturer

CS100 Intro to Computer
Science

1982 200 P.L.
Cook

CS121 Software
Engineering

1982 150 L.P.
Green

CS100 Intro to Computer
Science

1983 250 A.B.
White

Table 1: First Subject table for University UoD

Subject Year Rating NrStudents %

CS100 1982 7 10 5.00
 6 10 5.00
 5 75 37.50
 4 80 40.00
CS121 1982 7 4 2.67
 6 8 5.33
 5 60 40.00
 4 70 46.67
 1 8 5.33
CS100 1983 7 15 4.00
 6 30 12.00
 5 100 40.00
 4 80 32.00
 3 30 12.00

Table 2: Second Subject table for University UoD

Given this example, our goal is to produce an XML
Schema that satisfies all major conceptual integrity

constraints that exist, while at the same time has minimal
redundancy and maximum connectivity.

2.1 Conceptual Level
The first step, in our proposed approach, is to model the
domain using a conceptual level UML class diagram. A
conceptual diagram is used to describe the UoD in terms
of objects and relationships from the real world. Below,
we show a conceptual level UML class diagram, which
represents the example, university student-rating UoD.

+code : String{P}
+title : String

Subject

+year : Integer{P}

Year

nrEnrolled[1..1] : Integer
lecturer[1..1] : String

SubjectYear

1..*

+subject

0..*

+year offered

+code : Integer{P}

Rating

nrStudents[1..1] : Integer
 /percent[1..1] : double

SubjectYearRating

{Rating::code values
range from 1 to 7}

{Subject::code pattern
= "[A-Z]{2}d{3}"}

University
Student-Rating

System
{CONCEPTUAL

LEVEL}

Figure 2: Example conceptual UML class diagram

Figure 2 uses standard UML class diagram notation – for
example, classes are shown as rectangles, attributes are
listed within the associated class rectangles, and
relationships are shown as lines linking two or more
classes. Attribute and relationship multiplicity constraints
are also represented using standard UML notation. It
should be noted, however, that a number of non-standard
annotations are also required to represent some common
conceptual constraints, such as the primary identification
of a class (attributes suffixed with “{P}”). For a more
detailed discussion on the use of UML for conceptual
data modelling please refer to Halpin (1998).

2.2 Logical Level
Once a conceptual level model has been designed, and
validated with the domain expert, it can be used to
automatically generate a logical level diagram. A logical
level diagram describes the physical data structures in an
abstract and often graphical way. In our approach, the
logical level model is a direct (ie. one-to-one)
representation of the XML Schema data structures. To
this end, we represent the logical level as a UML
diagram, which uses the stereotypes defined in an XML
Schema profile.

In figure 3, we show a logical level UML class diagram,
which has been generated from the conceptual level
diagram from figure 2. The logical level diagram shown
uses stereotypes (such as “element”, “complexType”,
“simpleType”, “elt” and “attr”) that we have defined
within a UML profile for XML Schema (described in
more detail in section 3). This allows the logical level

Conceptual Level: UML Class Diagram
(with additional conceptual constraints)

Logical Level: UML Class Diagram
(using XML schema profile)

Physical Level: XML Schema
(textual representation)

UML diagram to directly capture the components of the
physical level XML Schema.

«schema»
uni.xsd

«element»
report

«XSDSimpleType»
xsd:string

«XSDSimpleType»
xsd:integer

«XSDSimpleType
xsd:double

«elt» +lecturer[1..1] : xsd:string
«elt» +nrEnrolled[1..1] : xsd:integer
«elt» +ratings[1..7] : RatingType

«complexType»
SubjectYearType

{values range from 1 to 7}

«simpleType»
RatingCodeType

University Student-Rating System
{LOGICAL LEVEL}

«restricts»

{pattern = "[A-Z]{2}d{3}"}

«simpleType»
SubjectCodeType

«restricts»

«elt» +subject[0..*] : SubjectType

«complexType»
ReportType

«attr» +code[1..1] : SubjectCodeType{P}
«elt» +title[1..1] : xsd:string
«elt» +year[0..*] : YearType

«complexType»
SubjectType

«has type»
base

«attr» +code[1..1] : RatingCodeType{P}
«elt» +subjectYearRating[1..1] : SubjectYearRatingType

«complexType»
RatingType

«elt» +nrStudents[1..1] : xsd:inte
«elt» +/percent[1..1] : xsd:double

«complexType»
SubjectYearRatingType

«attr» +year[1..1] : xsd:integer{P}
«elt» +subjectYear[1..1] : SubjectYearType

«complexType»
YearType

Figure 3: Example logical level UML class diagram

It is important to note that this logical diagram can be
automatically generated from the conceptual model using
the approach described in section 4. This removes the
need for the data designer to be concerned with
implementation issues. However, because there are many
ways to map a conceptual level model into a logical level
model, this transformation should be configurable with
design options. Similarly, the data modeller may wish to
directly ‘tweak’ the logical design to (for example)
introduce controlled redundancy or make other logical-
level design decisions.

2.3 Physical Level
In appendix A, we show a physical level XML Schema,
which corresponds directly to the logical level diagram
shown in figure 3. A physical level model defines the
data structures using the implementation language – in
this case XML Schema. The physical schema shown in
Appendix A uses the standard textual language defined
by the World Wide Web Consortium (W3C) in its March
2001 XML Schema Recommendation (W3C 2001).

2.4 XML Instance
To help the reader understand the logical and physical
models in sections 2.2 and 2.3, we show below an
example XML instance document. This XML instance,
which incorporates some of the information from the
output reports shown earlier, correctly satisfies the XML
Schema definitions presented in figure 3 and appendix A.
<report>
 <subject code="CS100">
 <title>Introduction to Computer Science</title>

 <year year="1982"> <subjectYear>
 <lecturer>P.L.Cook</lecturer>
 <nrEnrolled>200</nrEnrolled>
 <ratings code="7"> <subjectYearRating>
 <nrStudents>10</nrStudents>
 <percent>5.00</percent>
 </subjectYearRating> </ratings>
 <ratings code="6"> <subjectYearRating>
 <nrStudents>10</nrStudents>
 <percent>5.00</percent>
 </subjectYearRating> </ratings>
 <ratings code="5"> <subjectYearRating>
 <nrStudents>75</nrStudents>
 <percent>37.50</percent>
 </subjectYearRating> </ratings>
 <ratings code="4"> <subjectYearRating>
 <nrStudents>80</nrStudents>
 <percent>40.00</percent>
 </subjectYearRating> </ratings>
 <ratings code=”3”> <subjectYearRating>
 <nrStudents>20</nrStudents>
 <percent>10.00</percent>
 </subjectYearRating> </ratings>
 <ratings code="2"> <subjectYearRating>
 <nrStudents>5</nrStudents>
 <percent>2.50</percent>
 </subjectYearRating> </ratings>
 </subjectYear> </year> </subject> </report>

3 XML Schema Profile for UML
In this section, we outline the XML Schema profile,
which we have developed as the basis for logical level
UML class diagrams. It is intended that every concept in
XML Schema has a corresponding representation in the
UML profile (and vice versa). As a result, there is a one-
to-one relationship between the logical and physical
XML Schema representations.

The following set of diagrams graphically describe the
XML Schema UML profile developed by the authors,
using standard UML class diagrams. Figure 4 (section
3.1) shows the relationships between XML Schema
elements and types; figure 5 (section 3.2) shows the
relationships between XML Schema schemas and
namespaces, and figures 6, 7 and 8 (section 3.3) show
how schemas, content models and types are built from
various XML Schema constructs.

3.1 Element-Type Metamodel
The metamodel in figure 4 shows the relationships
between XML Schema concepts such as ‘element’,
‘complexType’, ‘simpleType’ and ‘XSD simpleTypes’
(which represents those primitive types found in the
XML Schema namespace). These XML Schema concepts
are represented as stereotyped classes, allowing them to
be used in logical level UML class diagrams to represent
the corresponding XML Schema concept. Two of the
relationships between these concepts, namely “restricts”,
and “extends”, are represented as stereotyped
specialisations. This was done to allow for instance
substitutability between related user-defined types. The
relationship “has type” is representated as a stereotyped
dependency between an ‘element’ and either a
‘simpleType’ or ‘complexType’. A dependency is a
special type of association in UML, in which the source
element is dependent on the target element.

BaseClass : Class

«stereotype»
complexType

BaseClass : Class

«stereotype»
element

BaseClass : Dependency

«stereotype»
has type

BaseClass : Class

«stereotype»
XSDSimpleType

BaseClass : Class

«stereotype»
simpleType

BaseClass : Specialisation

«stereotype»
restricts

BaseClass : Specialisation

«stereotype»
extends

Constraints:
Natural Language
A simpleType cannot restrict a
complexType.
A complexType cannot restrict
a simpleType or XSDSimpleType

Note:
All association multiplicities are
[1..1]

Figure 4: Element-Type metamodel for XML Schema

BaseClass : Package

«stereotype»
schema

BaseClass : Dependency

«stereotype»
include

1..1

0..*

1..1

0..*

BaseClass : Dependency

«stereotype»
redefine

1..1

0..*

1..1

0..*

BaseClass : Class

«stereotype»
namespace

BaseClass : Dependency

«stereotype»
import

1..1

0..*

0..* 1..1

{acyclic} {acyclic}

String

location

version

Figure 5: XML Schema-Namespace metamodel

3.2 Schema-Namespace Metamodel
The metamodel in figure 5 shows the relationship
between schemas and namespaces in XML Schema. This
model introduces the concept of a ‘schema’ as a
stereotyped package. A schema can ‘include’ or
‘redefine’ another schema. To indicate this, there are two
corresponding ‘ring relationships’ attached to ‘schema’.
These relationships are acyclic, because a schema can not
include or redefine either itself, or another schema, which
includes or redefines itself, etc. Another important
stereotyped class in figure 5 is the ‘namespace’ class. The
‘namespace’ class is associated with a stereotyped
dependency called ‘import’, which in turn is associated

with a ‘schema’. This indicates that a ‘schema’ can
‘import’ schemas from other ‘namespaces’.

3.3 Schemas, Content Models and Types
Figure 6 introduces a number of new stereotyped classes
and stereotyped attributes, each of which represents an
XML Schema construct used to create the structure of a
model (such as ‘choice’, ‘group’, ‘seq’ etc). This diagram
shows how XML Schema content models and types are
built using UML constructs, according to the XML
Schema Part 1: Structures specification (W3C 2001).

BaseClass : Attribute

«stereotype»
attr

BaseClass : Attribute

«stereotype»
elt

BaseClass : Attribute

«stereotype»
elt_ref

BaseClass : Class

«stereotype»
complexType

BaseClass : Class

«stereotype»
group

BaseClass : Class

«stereotype»
attrGroup

BaseClass : Class

«stereotype»
choice

BaseClass : Class

«stereotype»
all

BaseClass : Class

«stereotype»
seq

BaseClass : Attribute

«stereotype»
any

BaseClass : Attribute

«stereotype»
grp_ref

BaseClass : Attribute

«stereotype»
attr_ref

Figure 6: Building content models and complexTypes

«seq» +*1
«attr» +orderDate : xsd:date

«complexType»
PurchaseOrderType

«choice» +*2
«elt_ref» +comment
«elt» +items : Items

«seq»
*1

«group» +shipAndBill
«elt» +singleUSAddress : USAddress

«choice»
*2

«elt» +shipTo : USAddress
«elt» +billTo : USAddress

«group»
shipAndBill

Figure 7: An example XML schema at the logical level

To illustrate how these XML Schema classes are used on
a logical level UML diagram, an example is shown in
figure 7. This logical level diagram represents a fragment
of the ‘PurchaseOrder’ XML Schema code presented in
the XML Schema Part 0: Primer (W3C 2001). Note that
the definitions of the types ‘Items’ and ‘USAddress’, and
the element ‘comment’ are omitted from this example for
the sake of brevity.

The corresponding XML schema code fragment for
figure 7 is:
<xsd:complexType name=”PurchaseOrderType”>

<xsd:sequence>
<xsd:choice>

<xsd:group ref=”shipAndBill”/>

<xsd:element name=”singleUSAddress”
type=”USAddress”/> </xsd:choice>

 <xsd:element ref=”comment” minOccurs=”0”/>
 <xsd:element name=”items” type=”Items”/>
 </xsd:sequence>
 <xsd:attribute name=”orderDate” type=”xsd:date”/>
</xsd:complexType>
<xsd:group name=”shipAndBill”>
 <xsd:sequence>
 <xsd:element name=”shipTo” type=”USAddress”/>
 <xsd:element name=”billTo” type=”USAddress”/>
 </xsd:sequence> </xsd:group>

The logical level diagram in figure 7 highlights several
important features of the XML Schema profile, which are
not obvious from the metamodels shown. Firstly, the
concept of nesting XML schema content models (e.g. a
‘choice’ nested inside a ‘sequence’) is represented at the
logical level by introducing separate stereotyped classes,
for each nesting level, linked by a ‘composition’
association. In figure 7, this feature was used to link the
‘choice’ class to the ‘seq’ class with a composition
association. The direction of the composition association
indicates the direction of the nesting, and the ordering of
the attributes within each class indicates the ordering of
the content models.

Note that the default content model for a complexType is
a ‘sequence’. Therefore, when a complexType is mapped
from the logical to the physical level, the “<<elt>>”
attributes within the ‘complexType’ class are
automatically mapped to a sequence of elements within
the physical complexType.

Another important feature of the XML Schema profile, is
that it needs some way of representing anonymous types
and nested content models. In our XML Schema profile,
these are represented in the same way that nesting has
been described, with an additional naming scheme which
ensures uniqueness and the preservation of order. In
particular, anonymous types and content models are
named by appending a sequential number (indicating
order) to an asterix (indicating an anonymous reference).

BaseClass : Class

«stereotype»
complexType

BaseClass : Class

«stereotype»
simpleType

BaseClass : Class

«stereotype»
element

BaseClass : Package

«stereotype»
schema

BaseClass : Class

«stereotype»
group

BaseClass : Class

«stereotype»
attrGroup

Figure 8: Building a schema

Figure 8 shows how the schema constructs used to create
a content model in XML Schema (from figure 6) are
related back to a ‘schema’ package.

4 Conceptual to Logical Level Mapping

4.1 Goals
As XML Schemas are hierarchical in nature, generating a
logical level model from a conceptual level model
requires us to choose one or more conceptual classes to
start the XML Schema tree-hierarhcy. One option would
be to select a single class as the XML root node, and
progressively nest each related class as child elements of
the root node. An example of an XML-instance generated
by choosing the ‘Rating’ class as the root of the XML
hierarchy is:

<?xml version=”1.0” encoding=”UTF-8”?>
<report>
 <rating code=”7”>
 <subject code=”cs100”> <year year=”1982”>
 <nrEnrolled>200</nrEnrolled>
 <lecturer>P.L.Cook</lecturer>
 <nrStudents>5</nrStudents>
 <percent>2.50</percent> </year>
 </subject> </rating>
 <rating code=”6”>
 <subject code=”cs100”> <year year=”1982”>…
 </rating>
</report>

However, as this example illustrates, this approach can
lead to redundant data at the instance level. In this
example, the information relating to a subject is repeated
for each ‘rating’ that has been given in that subject.

Another approach would be to create a relatively flat
schema, in which every class is mapped to a separate
element directly under the root node. The attributes and
associations of each class would be mapped to sub-
elements of these top-level elements. The example below
illustrates this approach:

<?xml version=”1.0” encoding=”UTF-8”?>
<report>
 <subject code=”cs100”>
 <year> 1982</year>
 <year>1983</year> </subject>
 <subject code=”CS121”>
 <year>1982</year> </subject>
 <year code=”1982”>
 <subject code=”CS100”/>
 <subject code=”CS121”/> </year>
 <year code=”1983”>
 <subject code=”CS100”/> </year>
 … </report>

However, as this example illustrates, this approach can
lead to disconnected and difficult to read XML instances,
which also have some degree of redundancy.

In contrast to these two approaches, the approach
presented in this paper aims to minimize redundancy in
the XML-instances, while maximising the connectivity of
the XML data structures as much as possible. The
approach presented in this paper for mapping UML
conceptual models into XML Schema is directly based on
the one defined by Bird, Goodchild and Halpin (2000), in
which Object Role Modeling (ORM) diagrams are
mapped into XML Schema. The algorithm described by

Bird, Goodchild and Halpin (2000) is highly suited to our
goals, as we have reason to believe that it generates an
XML Schema that is in Nested Normal Form (ie. nested
XML Schema with no data redundancy).

A number of significant modifications to the algorithm,
however, have had to be made to cater for the inherent
differences between ORM and UML. In particular,
because ORM does not distinguish between classes and
attributes (everything in ORM is either an ‘object type’ or
a ‘relationship type’), the algorithm described by Bird,
Goodchild and Halpin (2000) uses the notion of ‘major
object types’ to determine the first nesting operation. In
contrast, however, ‘classes’ in UML are roughly
equivalent to ‘major object types’ in ORM, and therefore
the process used to automatically determine the default
‘major object types’ is no longer necessary.

A second major point of difference is that the concept of
‘anchors’, introduced by Bird, Goodchild and Halpin
(2000) to identify the most conceptually important
player(s) in a relationship type, and to consequently
determine the direction of nesting in some cases, are not
required in our approach. Instead, we use a closely
analogous concept in UML called “navigation”. Defining
navigation on an association indicates that “given an
object at one end, you can easily and directly get to
objects at the other end, usually because the source object
stores some references to objects of the target” (Booch,
Rumbaugh and Jacobson 2000). For this reason,
navigation on a UML association tends to point from the
more important player in the association towards the less
important player (which is the opposite direction to that
of ‘anchors’)

In the remainder of this section, we will describe our
general approach to mapping conceptual UML models
into logical level XML Schemas.

4.2 Methodology
As discussed earlier, the goal of our mapping approach is
to produce an XML Schema, with minimal redundancy
and maximum connectivity in the corresponding instance
documents. The algorithm, that we have designed to
achieve this goal, involves four major steps. Once the
logical level class diagram has been generated from the
conceptual level one, creating the physical XML Schema
is a simple process, due to the direct, one-to-one mapping
between the logical and physical levels.

4.2.1 Step 1: Generate Type Definitions
The first step in the methodology is to create type
definitions for each attribute and class in the conceptual
diagram. The following two rules are used to map
attributes to the appropriate logical level types :

1. Attributes, which have additional constraints
applied to their primitive types (such as integer
and string), map into simpleTypes, which
restrict the associated primitive type. For
example, in figure 9 ‘SubjectCodeType’ restricts
‘string’ by adding a pattern constraint.

2. Primitive types, used by an attribute, are mapped
into XSD simpleTypes from the XML Schema
namespace. For example, the primitive type
‘string’ maps to xsd:string.

Based on the example conceptual model from figure 2,
the following types would be created in this step:

«XSDSimpleType
xsd:string

«XSDSimpleType
xsd:intege

«XSDSimpleType
xsd:doubl

{values range from 1 to

«simpleType
RatingCodeTyp

«restricts»

{pattern = "[A-

«simpleType
SubjectCodeTyp

«restricts»

Figure 9: Types created in Step 1

Next, a logical level complex type definition is created
for each class at the conceptual level. Each conceptual
class is mapped into a complexType, with child elements
representing each of its non-primary attributes. Primary
key attributes (which are based on simple types) are
included in the complexType definition as XML Schema
attributes (i.e with a «attr» stereotype). Based on the
example from figure 2, the following complexTypes
would be created in this step:

«elt» +nrStudents[1..1] : xsd:integer
«elt» +percent[1..1] : xsd:double

«complexType»
SubjectYearRatingType

«elt» +lecturer[1..1] :
d t i«elt» +nrEnrolled[1..1] :
d i

«complexType»
SubjectYearType

«attr» +code[1..1] :
C { C {

«complexType»
RatingType

«attr» +year[1..1] :
{ }

«complexType»
YearType

«attr» +code[1..1] :
S C { }«elt» +title[1..1] :

«complexType»
SubjectType

Figure 10: ComplexTypes generated in Step 1

Note that in future steps, some complexTypes may be
removed and nestings of child attributes may be
performed (including primary key attributes).

4.2.2 Step 2: Determine Class Groupings
The next step is used to determine how best to group and
nest the conceptual classes, based on the associations
between them. The approach taken is based directly on
the approach from Bird, Goodchild and Halpin (2000), in
which a combination of ‘mandatory-functional’
constraints and ‘anchors’ are used to determine the
appropriate nesting choices. In contrast to this, a similar
approach based on UML uses ‘multiplicity’ constraints
and ‘navigation’ to determine an appropriate nesting for
the schema.

An approach to automatically determine the default
navigation directions is summarised below:

1. If no navigation is defined on an association,
then use the multiplicity constraints to
determine the navigation direction.

a. If exactly one association end has a
minimum multiplicity of 1 (i.e. (1..1) or
(1..*)), then define the navigation in the
direction of the opposite association end, or

b. If one association end has a smaller
maximum multiplicity than the other, (e.g.
‘0..7’ is smaller than ‘0..*’) then navigate
towards the end with the smaller maximum
multiplicity, or

c. If exactly one class has only one attribute,
then navigate towards it.

 The nesting is then determined as follows:

1. If exactly one association end has a multiplicity
of ‘(1,1)’ (i.e. it is mandatory and functional),
then nest the class at the other association end
towards it.

2. If both association ends have a multiplicity of
(1,1), then nest the classes in the opposite
direction to the direction of navigation – i.e.
nest the target of the navigation towards the
source of the navigation

The reasoning behind this “mandatory-functional” rule
was first discussed by Bird, Goodchild and Halpin
(2000), and can best be explained using an example.

+nr[1..1] : Integer{P}
+name[1..1] : String

Employee
+code[1..1] : String{P}
+title[1..1] : String

Subject

1..1 0..*

headLecturer

Figure 11: A mandatory, functional relationship

The UML fragment in figure 11 consists of an employee
being the head lecturer of many subjects, and each
subject having exactly one head lecturer. If the
‘headLecturer’ was nested towards ‘Subject’, then the
corresponding logical level representation would be:

«elt» +name[1..1] : xsd:string
«attr» +nr[1..1] : xsd:integer{P}

«complexType»
EmployeeType

«elt» +title[1..1] : xsd:string
«elt» +headLecturer[1..1] : EmployeeType
«attr» +code[1..1] : xsd:string{P}

«complexType»
SubjectType

Figure 12: Logical level mapping of figure 11

For example, an instance of the Subject type might look
like:
<subject code=”INFS4201”>
 <title>Advanced Distributed Databases</title>
 <headLecturer nr=”123456”>
 <name>Joe the Lecturer</name> </headLecturer>
</subject>
<subject code=”COMP4301”>
 <title>Distributed Computing</title>
 <headLecturer nr=”123456”>
 <name>Joe the Lecturer</name> </headLecturer>
</subject>

There are however, a number of problems with this
nesting approach. The first issue is redundancy created by
repeating employee details with each subject occurrence.
This happens because an employee may be the head
lecturer of more than one subject (according to the UML
model in figure 11). The redundancy is clearly evident in
the corresponding XML instance where ‘Joe the

Lecturer’ has his details repeated for both the
‘INFS4201’ and ‘COMP4301’ subjects.

The other issue arising from the above schema is that not
all employees are assigned as head lecturer of a subject
(as is indicated on the conceptual level UML model in
figure 11). Therefore, a separate global element for
employee has to be added to the schema for employees
who aren’t in charge of any subjects. This is undesirable
because it reduces the connectivity of the schema.

The solution to both of these problems is to nest towards
the mandatory-functional end of the association. In the
example, this would mean nesting the Subject class inside
the Employee class, therefore producing the following
logical level representation and XML Schema fragment:

«elt» +name[1..1] : xsd:string
«elt» +subject[0..*] : SubjectType
«attr» +nr[1..1] : xsd:integer{P}

«complexType»
EmployeeType

«elt» +title[1..1] : xsd:string
«attr» +code[1..1] : xsd:string{P}

«complexType»
SubjectType

Figure 13: Nesting SubjectType within EmployeeType

This type of nesting is preferable because:
a) The minimum frequency of 1 at the Employee

end of the association requires that each Subject
be headed by at least one Employee, and

b) The maximum frequency of 1 at the Employee
end of the association requires that each subject
be headed by at most one Employee.

The minimum frequency of 1 (uniqueness constraint) is
very important in this grouping example because if this
constraint didn’t apply to a subject (i.e a subject doesn’t
need a head lecturer), subjects without a head lecturer
allocated would not be represented. Similarly, the
maximum frequency of 1 (mandatory constraint) is vital
because if a subject could be headed by more than 1
lecturer, a subject would be repeated for each
corresponding employee thus introducing redundancy
into the schema. Therefore, when a class A is associated
with exactly 1 instance of class B, class A can be nested
inside class B.

Also note that since each association class has an implicit
“mandatory, functional” relationship with each of the
players of the association (i.e. each association class is
related to exactly one object at each end of the
association), association classes are always nested
towards their association (based on nesting rule 1). These
associations are then nested in the opposite direction of
the navigation (based on rule 2). An example of nesting
the association classes from figure 2 is shown in figure
14.

In this example, the ‘SubjectYearRating’ association
class is nested, together with the ‘Rating’ class, towards
the ‘SubjectYear’ class. Similarly, the ‘SubjectYear’
class, together with the ‘Year’ class, are nested towards
the ‘Subject’ class. Note that the thick-headed arrows in
figure 14 represent the direction of nesting, while the
thin-headed arrows represent the navigation direction.

The dotted line circles indicate classes grouped for
nesting purposes.

University Student-Rating System
{CONCEPTUAL LEVEL}

+code[1..1] : String{P}
+title[1..1] : String

Subject
+year[1..1] : Integer{P}

Year

nrEnrolled[1..1] : Integer
lecturer[1..1] : String

SubjectYear

1..*

+subject

0..*

+code[1..1] : Integer{P}
Rating

nrStudents[1..1] : Integer
/percent[1..1] : Double

SubjectYearRating
1..7+ratings

1..*

{Subject::code pattern = "[A-Z]{2}d{3}"}

{Rating::code values range from 1 to 7}

Figure 14: Nesting the conceptual classes.

If navigation cannot be determined between two classes
(say classes A and B), or both ends of the association are
navigable, then the following option exists:

1. If an association class exists between class A
and class B, merge class A and B into the
association class.

For example, if we take the ‘title’ attribute from Subject,
and change the multiplicity of Subject’s association end
to ‘0..*’, navigation cannot be determined. Figure 2, as
shown previously, illustrates this:

In this case, navigation cannot be established between
Subject and Year because both have optional
participation and unbounded maximum frequencies.
Also, both classes have only one attribute making rule 1c
inapplicable. The solution is to merge Subject and Year
with the association class SubjectYear. This merge is
valid because for every instance of SubjectYear, there is
exactly one instance of the Subject and Year classes.

A final point on the nesting topic is the representation of
conceptual level subtypes on the logical level. In our
approach, subtype relationships will be carried down to
the logical level. Also, a class acting as a supertype for a
class or set of classes must not be eliminated from the
mapping process.

4.2.3 Step 3: Build the Complex Type Nestings
After the nesting directions have been identified, the next
step is to perform the complex type nesting. In the
example case study, the ‘SubjectYearRatingType’ class
is nested within the ‘RatingType’ class. The
‘RatingType’ class is then nested as an element within
the ‘SubjectYearType’ class. The result of this operation
is shown below:

«elt» +lecturer[1..1] : xsd:string
«elt» +nrEnrolled[1..1] : xsd:integer
«elt» +ratings[1..7] : RatingType

«complexType»
SubjectYearType

«attr» +code[1..1] :
R ti C d T {P}«elt» +subjectYearRating[1..1] :
S bj Y R i T

«complexType»
RatingType

«elt» +nrStudents[1..1] : xsd:integer
«elt» +/percent[1..1] : xsd:double

«complexType»
SubjectYearRatingType

Figure 15: Nesting SubjectYearRatingType within

RatingType

It is important to note that when the ‘RatingType’
complexType is nested, the multiplicity constraint of the
resulting element is set to ‘1..7’. This is because the
multiplicity constraint on the association end attached to
‘Rating’ is ‘1..7’.

«elt» +lecturer[1..1] : xsd:string
«elt» +nrEnrolled[1..1] : xsd:integer
«elt» +ratings[1..7] : RatingType

«complexType»
SubjectYearType

«attr» +code[1..1] : SubjectCodeType{P}
«elt» +title[1..1] : xsd:string
«elt» +year[0..*] : YearType

«complexType»
SubjectType

«attr» +year[1..1] : xsd:integer{P}
«elt» +subjectYear[1..1] : SubjectYearType

«complexType»
YearType

Figure 16: Final nesting of SubjectYearType

In figure 16, the result of the final operation required in
the case study is shown, in which the ‘SubjectYearType’
class is nested within the ‘YearType’ class, and the
‘YearType’ class is nested in turn within the
‘SubjectType’ class.

Note that we have chosen to represent those primary
keys, which have a simpleType and a maximum
multiplicity of 1, as ‘attributes’ of the parent
complexType. When nesting, primary keys remain an
attribute of their respective class after the nesting takes
place. The only exception to this rule is when attributes
are removed from classes being eliminated from the
mapping process. In this case, the attribute will become a
primary key of its new parent class. This choice was
made to simplify the associated XML instance documents
– however, ideally this should be a configurable option.

4.2.4 Step 4: Create a Root Element
Because each XML document must have a root element,
a root node is introduced in this step, which represents
the conceptual model as a whole. For example, in figure
17, we show that a root element called ‘report’ was
introduced when mapping figure 2 to a logical model.
This root element is then associated with a complexType
(in this case called ‘ReportType’), which represents the
set of complexType groupings generated in step 3. In our
example, the only complexType grouping is called
‘subject’.

«element»
report

«elt» +subject[0..*] : SubjectType

«complexType»
ReportType

«has type»
base

Figure 17: The root node of the schema

4.3 Options and Limitations

4.3.1 Options
A number of options are available when mapping from
the conceptual level to the logical level. For example, an
attribute from the conceptual level can be represented
either as an XML schema attribute or as an XML schema
element at the logical level. By default, we have decided
to map primary key attributes to XML schema attributes,
and non-primary key attributes to XML schema elements.
This decision is suitable in the majority of cases, as
primary key atributes are usually based on simple types,
and have multiplicities of ‘exactly one’ (as are XML
schema attributes).

Other options that may need to be made available to the
data modeller, include the introduction of controlled
redundancy at the logical level, and the decreasing of the
connectivity of the resulting schema.

4.3.2 Limitations
Certain limitations were evident when modelling XML
schemas in UML. These are summarised below:

1. UML is aimed at software design rather than
data modelling, so some new notation for
representing conceptual constraints was required

2. Mixed Content in XML schema is difficult to
express in UML without introducing additional
non-standard notation to the conceptual level.

3. The UML constraint language, OCL, is
syntactically different to the XML schema
regular expression language.

4. Unlike UML, XML Schema does not support
multiple inheritance. Therefore a conceptual
level UML class diagram should not contain
classes with more than one supertype.

5. Some constraints represented on the conceptual
level such as subtype constraints and acyclic
constraints can not be expressed in XML
Schema.

6. In situations where navigation is present in both
directions, the mapping algorithm must be able
to determine the ‘stronger’ of the two
navigations, to determine the most appropriate
direction for nesting.

5 Conclusion
This paper proposes a method for designing XML
Schemas using the Unified Modeling Language (UML).
The UML was chosen primarily because its use is
widespread, and growing. Secondly, the UML is
extensible, so the new notation being written is totally
compatible with existing UML tools.

Presently, there exists a number of tree-based graphical
tools for developing schemas. These tools are perfect for
small and intuitive schemas, but the more complex the
data is, the harder it is for the designer to produce a
correct schema. The UML makes it easier to visualize the

model, and to ensure that integrity constraints are
defined.

The three-level Information Architecture is the
fundamental methodology followed by many data
modellers. This approach allows the data modeller to
begin by focusing on conceptual domain modelling issues
rather than implementation issues.

Because each conceptual level model has many possible
logical level models, there is a need for a mapping
algorithm, which uses sensible data design techniques to
translate from one to the other. However, because of the
different design choices, which can be made in this
mapping process, it would be preferable to allow the
designer to choose between common design options.
Because there is a one-to-one relationship between the
logical and physical levels, however, there is then only
one possible mapping to the physical XML Schema itself.

The authors are currently planing to build a prototype
tool, which uses the algorithm described in this paper to
generate a logical level representation, based on a
conceptual level UML class diagram. A prototype tool
has been built however, that can generate an XML
Schema from a corresponding logical level class diagram
(expressed in XMI). In addition to this we also intend on
exploring the generation of an XML Schema that is in
nested normal form and look at reverse engineering a
conceptual level diagram from the physical level.

6 References
BOOCH, G., CHRISTERSON, M., FUCHS, M. and

KOISTINEN, J. (1998): UML for XML Schema
Mapping Specification. http://www.rational.com/media/
uml/resources/media/uml_xmlschema33.pdf

RATIONAL. (2000): Migrating from XML DTD to
XML Schema using UML. Rational Rose Whitepapers,
http://www.rational.com/media/whitepapers/TP189draft
.pdf

CONRAD, R., SCHEFFNER D. and FREYTAG, J. C.
(2000): XML Conceptual Modeling Using UML. Proc.
International Conceptual Modeling Conference, Salt
Lake City, USA, 558-571, Springer.

BIRD, L., GOODCHILD, A. and HALPIN, T. (2000):
Object Role Modeling and XML Schema. Proc.
International Conceptual Modeling Conference, Salt
Lake City, USA, 309-322, Springer.

HALPIN, T. (1998): UML Data Models From An ORM
Prospective. Part 1-10.
http://www.orm.net/uml_orm.html

W3C (2000): Extensible Markup Language (XML) 1.0.
W3C XML Working Group,
http://www.w3.org/TR/REC-xml

W3C (2001): XML Schema Parts 0-2: [Primer,
Structures, Datatypes]. W3C XML Schema Working
Group, http://www.w3.org/TR/xmlschema-0/,
http://www.w3.org/TR/xmlschema-1/ ,
http://www.w3.org/TR/xmlschema-2/

HALPIN, T. (2001): Conceptual Schema & Relational
Database Design: 3rd edition, Heidelberg: Springer.

BOOCH, G., RUMBAUGH, J. and JACOBSON, I.
(2000): The Unified Modeling Language User Guide.
Massachusetts: Addison-Wesley.

7 Appendix A: XML Schema for Example
<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema
xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"
elementFormDefault ="qualified">
<!--====== Root Element Definition ===============-->
<xsd:element name="report" type="ReportType">
 <xsd:annotation>
 <xsd:documentation>Displays information regarding

subject grade averages
 </xsd:documentation> </xsd:annotation>
<!-- Key and Uniqueness constraints -->
<xsd:key name="pRatingKey">
 <xsd:selector xpath="report/subject/year/subjectYear/

ratings"/> <xsd:field xpath="@code"/> </xsd:key>
<xsd:key name="pYearKey">
 <xsd:selector xpath="report/subject/year"/>
 <xsd:field xpath="@year"/> </xsd:key>
<xsd:key name="pSubjectKey">
 <xsd:selector xpath="report/subject"/>
 <xsd:field xpath="@code"/> </xsd:key>
</xsd:element>
<!--======= Complex Type Definitions ==============-->
<xsd:complexType name="ReportType">
 <xsd:sequence>

 <xsd:element name="subject" type="SubjectType"
minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence> </xsd:complexType>
<xsd:complexType name="SubjectType">
 <xsd:sequence>
 <xsd:element name="title" type="xsd:string"/>

 <xsd:element name="year" type="YearType"
minOccurs="0" maxOccurs="unbounded"/>

 </xsd:sequence>
 <xsd:attribute name="code" type="SubjectCodeType"/>
</xsd:complexType>
<xsd:complexType name="SubjectYearType">
 <xsd:sequence>
 <xsd:element name="lecturer" type="xsd:string"/>
 <xsd:element name="nrEnrolled" type="xsd:integer"/>
 <xsd:element name="ratings" type="RatingType"

minOccurs="1" maxOccurs="7"/>
 </xsd:sequence> </xsd:complexType>
<xsd:complexType name="YearType">
 <xsd:sequence> <xsd:element name="subjectYear"

type="SubjectYearType"/> </xsd:sequence>
 <xsd:attribute name="year" type="xsd:integer"/>
</xsd:complexType>
<xsd:complexType name="SubjectYearRatingType">
 <xsd:sequence>
 <xsd:element name="nrStudents" type="xsd:integer"/>
 <xsd:element name="percent" type="xsd:double"/>
 </xsd:sequence> </xsd:complexType>
<xsd:complexType name="RatingType">
 <xsd:sequence>
 <xsd:element name="subjectYearRating"

type="SubjectYearRatingType"/> </xsd:sequence>
 <xsd:attribute name="code" type="RatingCodeType"/>
</xsd:complexType>
<!--========= Simple Type Definitions =============-->
<xsd:simpleType name="RatingCodeType">
 <xsd:restriction base="xsd:integer">
 <xsd:minInclusive value="1"/>
 <xsd:maxInclusive value="7"/> </xsd:restriction>
</xsd:simpleType>
<xsd:simpleType name="SubjectCodeType">
 <xsd:restriction base="xsd:string">
 <xsd:length value="5"/>
 <xsd:pattern value="[A-Z]{2}\d{3}"/>
</xsd:restriction></xsd:simpleType>
</xsd:schema>i

.

The work reported in this paper has been funded in part by the Cooperative Research Centres Program through the
Department of the Prime Minister and Cabinet of the Commonwealth Government of Australia.
i Copyright © 2001, Australian Computer Society, Inc. This paper appeared at the Thirteenth Australasian Database
Conference (ADC2002), Melbourne, Australia. Conferences in Research and Practice in Information Technology,
Vol. 5. Xiaofang Zhou, Ed. Reproduction for academic, not-for profit purposes permitted provided this text is
included.

