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Abstract 
XML is rapidly becoming the standard method for 
sending information across the Internet. XML Schema, 
since its elevation to W3C Recommendation on the 2nd 
May 2001, is fast becoming the preferred means of 
describing structured XML data. However, until recently, 
there has been no effective means of graphically 
designing XML Schemas without exposing designers to 
low-level implementation issues. Bird, Goodchild and 
Halpin (2000) proposed a method to address this shortfall 
using the ‘Object Role Modelling’ conceptual language 
to generate XML Schemas. 

This paper seeks to build on this approach by defining a 
mapping between the Unified Modeling Language 
(UML) class diagrams and XML Schema using the 
traditional three level database design approach (ie. using 
conceptual, logical and physical design levels). In our 
approach, the conceptual level is represented using 
standard UML class notation, annotated with a few 
additional conceptual constraints, the logical level is 
represented in UML, using a set of UML stereotypes, and 
the XML Schema itself represents the physical level. The 
goal of this three level design methodology is to allow 
conceptual level UML class models to be automatically 
mapped into the logical level, while minimizing 
redundancy and maximizing connectivity.1 
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1 Introduction 
The eXtensible Markup Language (XML) (W3C 2000) is 
rapidly becoming the premier method for exchanging 
information across the Internet. The Document Type 
Definition (DTD) language, which has traditionally been 
the most common method for describing the structure of 
XML instance documents, lacks enough expressive 
power to properly describe highly structured data. XML 
Schema (W3C 2001), on the other hand, provides a much 
richer set of structures, types and constraints for 
describing data and is therefore expected to soon become 
the most common method for defining and validating 
highly structured XML documents.  
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A number of software packages currently exist, which are 
capable of designing DTDs and XML Schemas using a 
graphical, tree-based approach. This allows the user to 
visualize the schema more effectively than is possible 
with traditional text-based editors. The better-known 
packages available are XML Spy and XML Authority2.  

The disadvantage of a tree-based approach is that the user 
is still exposed to some low-level implementation issues. 
A better approach would be to allow the user to generate 
the physical data structures, by first designing the 
appropriate, conceptual domain model. One such 
approach described by Bird, Goodchild and Halpin 
(2000), uses an Object Role Modeling conceptual 
diagram to algorithmically generate an XML Schema. 
This paper aims to build upon this approach by providing 
a technique for modeling XML Schemas using Unified 
Modeling Language (UML) class diagrams. 

UML was chosen because it is a popular method for 
designing software and has proven to be valuable for data 
modelling. Another benefit of UML is that it is 
extensible, using stereotypes in a UML Profile. This 
means that a method for designing XML Schemas can be 
developed, which is compatible with existing UML tools. 
It has been claimed by Booch, Christerson, Fuchs and 
Koistinen (1998), that this method can also unify a 
development team, by allowing XML developers to work 
more closely with other team members by sharing a 
common design platform.   

A number of approaches to relating XML Schemas and 
UML have been described in other works (Booch, 
Christerson, Fuchs and Koistinen 1998, Rational 2000, 
Conrad, Scheffner and Freytag 2000). However, there are 
a number of problems with these existing solutions. One 
such approach (Booch, Christerson, Fuchs and Koistinen 
1998), is somewhat out of date, as it describes a UML 
profile for SOX (a forerunner to XML Schema). Other 
papers (Rational 2000, Conrad, Scheffner and Freytag 
2000) describe a UML profile for DTDs, and therefore 
miss many of the additional structures and constraints, 
which can be found in XML Schema. Finally, a common 
problem with all these works is that they do not separate 
the conceptual level of the model from the logical level of 
the model – forcing analysts to make implementation 
decisions about the structure of the XML Schema too 
early in the design process. 
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In this paper, we explore an approach in which 
conceptual level UML class diagrams are transformed 
through successive steps into XML Schemas. In section 
2, we briefly describe our three level design approach 
using a small example. Section 3 describes the UML 
profile for XML schema used at the logical level, in more 
detail. In section 4, we describe a general algorithm for 
transforming a conceptual level UML diagram into a 
logical level UML diagram. Finally, conclusions and 
future work are described in section 5. 

2 Three Level Design Approach Example 
In this section, we describe our three level XML schema 
design approach, using a small example. In particular, we 
demonstrate how a small university student-rating system 
can be modelled using a conceptual level UML diagram, 
transformed into a logical level UML diagram based on 
an XML schema profile, and mapped into a physical level 
XML schema. Figure 1 summarises this design process. 

 

 

 

 

 

 
 

Figure 1: Three level design approach 

As mentioned, the Universe of Discourse (UoD) being 
modeled in XML schema is a university student-rating 
system (as shown in the following two output reports). 

Subject Title Year NrEnrolled Lecturer 

CS100 Intro to Computer 
Science 

1982 200 P.L. 
Cook 

CS121 Software 
Engineering 

1982 150 L.P. 
Green 

CS100 Intro to Computer  
Science 

1983 250 A.B. 
White 

Table 1: First Subject table for University UoD 

Subject Year Rating NrStudents % 

CS100 1982 7 10 5.00 
  6 10 5.00 
  5 75 37.50 
  4 80 40.00 
CS121 1982 7 4 2.67 
  6 8 5.33 
  5 60 40.00 
  4 70 46.67 
  1 8 5.33 
CS100 1983 7 15 4.00 
  6 30 12.00 
  5 100 40.00 
  4 80 32.00 
  3 30 12.00 

Table 2: Second Subject table for University UoD 

Given this example, our goal is to produce an XML 
Schema that satisfies all major conceptual integrity 

constraints that exist, while at the same time has minimal 
redundancy and maximum connectivity. 

2.1 Conceptual Level 
The first step, in our proposed approach, is to model the 
domain using a conceptual level UML class diagram. A 
conceptual diagram is used to describe the UoD in terms 
of objects and relationships from the real world. Below, 
we show a conceptual level UML class diagram, which 
represents the example, university student-rating UoD. 

+code : String{P}
+title : String

Subject

+year : Integer{P}

Year

nrEnrolled[1..1] : Integer
lecturer[1..1] : String

SubjectYear

1..*

+subject

0..*

+year offered

+code : Integer{P}

Rating

nrStudents[1..1] : Integer
 /percent[1..1] : double

SubjectYearRating

{Rating::code values
range from 1 to 7}

{Subject::code pattern
= "[A-Z]{2}d{3}"}

University
Student-Rating

System
{CONCEPTUAL

LEVEL}

Figure 2: Example conceptual UML class diagram 

Figure 2 uses standard UML class diagram notation – for 
example, classes are shown as rectangles, attributes are 
listed within the associated class rectangles, and 
relationships are shown as lines linking two or more 
classes. Attribute and relationship multiplicity constraints 
are also represented using standard UML notation. It 
should be noted, however, that a number of non-standard 
annotations are also required to represent some common 
conceptual constraints, such as the primary identification 
of a class (attributes suffixed with “{P}”). For a more 
detailed discussion on the use of UML for conceptual 
data modelling please refer to Halpin (1998). 

2.2 Logical Level 
Once a conceptual level model has been designed, and 
validated with the domain expert, it can be used to 
automatically generate a logical level diagram. A logical 
level diagram describes the physical data structures in an 
abstract and often graphical way. In our approach, the 
logical level model is a direct (ie. one-to-one) 
representation of the XML Schema data structures. To 
this end, we represent the logical level as a UML 
diagram, which uses the stereotypes defined in an XML 
Schema profile.  

In figure 3, we show a logical level UML class diagram, 
which has been generated from the conceptual level 
diagram from figure 2. The logical level diagram shown 
uses stereotypes (such as “element”, “complexType”, 
“simpleType”, “elt” and “attr”) that we have defined 
within a UML profile for XML Schema (described in 
more detail in section 3). This allows the logical level 

Conceptual Level: UML Class Diagram 
(with additional conceptual constraints) 

Logical Level: UML Class Diagram 
(using XML schema profile) 

Physical Level: XML Schema 
(textual representation) 



UML diagram to directly capture the components of the 
physical level XML Schema. 

«schema»
uni.xsd

«element»
report

«XSDSimpleType»
xsd:string

«XSDSimpleType»
xsd:integer

«XSDSimpleType
xsd:double

«elt» +lecturer[1..1] : xsd:string
«elt» +nrEnrolled[1..1] : xsd:integer
«elt» +ratings[1..7] : RatingType

«complexType»
SubjectYearType

{values range from 1 to 7}

«simpleType»
RatingCodeType

University Student-Rating System
{LOGICAL LEVEL}

«restricts»

{pattern = "[A-Z]{2}d{3}"}

«simpleType»
SubjectCodeType

«restricts»

«elt» +subject[0..*] : SubjectType

«complexType»
ReportType

«attr» +code[1..1] : SubjectCodeType{P}
«elt» +title[1..1] : xsd:string
«elt» +year[0..*] : YearType

«complexType»
SubjectType

«has type»
base

«attr» +code[1..1] : RatingCodeType{P}
«elt» +subjectYearRating[1..1] : SubjectYearRatingType

«complexType»
RatingType

«elt» +nrStudents[1..1] : xsd:inte
«elt» +/percent[1..1] : xsd:double

«complexType»
SubjectYearRatingType

«attr» +year[1..1] : xsd:integer{P}
«elt» +subjectYear[1..1] : SubjectYearType

«complexType»
YearType

 
Figure 3: Example logical level UML class diagram 

It is important to note that this logical diagram can be 
automatically generated from the conceptual model  using 
the approach described in section 4. This removes the 
need for the data designer to be concerned with 
implementation issues. However, because there are many 
ways to map a conceptual level model into a logical level 
model, this transformation should be configurable with 
design options. Similarly, the data modeller may wish to 
directly ‘tweak’ the logical design to (for example) 
introduce controlled redundancy or make other logical-
level design decisions. 

2.3 Physical Level 
In appendix A, we show a physical level XML Schema, 
which corresponds directly to the logical level diagram 
shown in figure 3. A physical level model defines the 
data structures using the implementation language – in 
this case XML Schema. The physical schema shown in 
Appendix A uses the standard textual language defined 
by the World Wide Web Consortium (W3C) in its March 
2001 XML Schema Recommendation (W3C 2001). 

2.4 XML Instance 
To help the reader understand the logical and physical 
models in sections 2.2 and 2.3, we show below an 
example XML instance document. This XML instance, 
which incorporates some of the information from the 
output reports shown earlier, correctly satisfies the XML 
Schema definitions presented in figure 3 and appendix A. 
<report> 
 <subject code="CS100"> 
  <title>Introduction to Computer Science</title> 

  <year year="1982"> <subjectYear> 
    <lecturer>P.L.Cook</lecturer> 
    <nrEnrolled>200</nrEnrolled> 
    <ratings code="7">  <subjectYearRating> 
      <nrStudents>10</nrStudents> 
            <percent>5.00</percent> 
         </subjectYearRating> </ratings> 
        <ratings code="6"> <subjectYearRating> 
      <nrStudents>10</nrStudents> 
           <percent>5.00</percent> 
     </subjectYearRating> </ratings> 
        <ratings code="5"> <subjectYearRating> 
           <nrStudents>75</nrStudents> 
           <percent>37.50</percent> 
     </subjectYearRating> </ratings> 
        <ratings code="4"> <subjectYearRating> 
           <nrStudents>80</nrStudents> 
           <percent>40.00</percent> 
     </subjectYearRating> </ratings> 
    <ratings code=”3”> <subjectYearRating> 
      <nrStudents>20</nrStudents> 
      <percent>10.00</percent> 
     </subjectYearRating> </ratings> 
    <ratings code="2"> <subjectYearRating> 
           <nrStudents>5</nrStudents> 
           <percent>2.50</percent> 
     </subjectYearRating> </ratings> 
   </subjectYear> </year> </subject> </report> 

3 XML Schema Profile for UML 
In this section, we outline the XML Schema profile, 
which we have developed as the basis for logical level 
UML class diagrams. It is intended that every concept in 
XML Schema has a corresponding representation in the 
UML profile (and vice versa). As a result, there is a one-
to-one relationship between the logical and physical 
XML Schema representations. 

The following set of diagrams graphically describe the 
XML Schema UML profile developed by the authors, 
using standard UML class diagrams. Figure 4 (section 
3.1) shows the relationships between XML Schema 
elements and types; figure 5 (section 3.2) shows the 
relationships between XML Schema schemas and 
namespaces, and figures 6, 7 and 8 (section 3.3) show 
how schemas, content models and types are built from 
various XML Schema constructs. 

3.1 Element-Type Metamodel  
The metamodel in figure 4 shows the relationships 
between XML Schema concepts such as ‘element’, 
‘complexType’, ‘simpleType’ and ‘XSD simpleTypes’ 
(which represents those primitive types found in the 
XML Schema namespace). These XML Schema concepts 
are represented as stereotyped classes, allowing them to 
be used in logical level UML class diagrams to represent 
the corresponding XML Schema concept. Two of the 
relationships between these concepts, namely “restricts”, 
and “extends”, are represented as stereotyped 
specialisations. This was done to allow for instance 
substitutability between related user-defined types. The 
relationship “has type” is representated as a stereotyped 
dependency between an ‘element’ and either a 
‘simpleType’ or ‘complexType’. A dependency is a 
special type of association in UML, in which the source 
element is dependent on the target element. 



 

BaseClass : Class

«stereotype»
complexType

BaseClass : Class

«stereotype»
element

BaseClass : Dependency

«stereotype»
has type

BaseClass : Class

«stereotype»
XSDSimpleType

BaseClass : Class

«stereotype»
simpleType

BaseClass : Specialisation

«stereotype»
restricts

BaseClass : Specialisation

«stereotype»
extends

Constraints:
Natural Language
A simpleType cannot restrict a
complexType.
A complexType cannot restrict
a simpleType or XSDSimpleType

Note:
All association multiplicities are
[1..1]

 
Figure 4: Element-Type metamodel for XML Schema 

BaseClass : Package

«stereotype»
schema

BaseClass : Dependency

«stereotype»
include

1..1

0..*

1..1

0..*

BaseClass : Dependency

«stereotype»
redefine

1..1

0..*

1..1

0..*

BaseClass : Class

«stereotype»
namespace

BaseClass : Dependency

«stereotype»
import

1..1

0..*

0..* 1..1

{acyclic} {acyclic}

String

location

version

Figure 5: XML Schema-Namespace metamodel  

3.2 Schema-Namespace Metamodel  
The metamodel in figure 5 shows the relationship 
between schemas and namespaces in XML Schema. This 
model introduces the concept of a ‘schema’ as a 
stereotyped package. A schema can ‘include’ or 
‘redefine’ another schema. To indicate this, there are two 
corresponding ‘ring relationships’ attached to ‘schema’. 
These relationships are acyclic, because a schema can not 
include or redefine either itself, or another schema, which 
includes or redefines itself, etc. Another important 
stereotyped class in figure 5 is the ‘namespace’ class. The 
‘namespace’ class is associated with a stereotyped 
dependency called ‘import’, which in turn is associated 

with a ‘schema’. This indicates that a ‘schema’ can 
‘import’ schemas from other ‘namespaces’. 

3.3 Schemas, Content Models and Types 
Figure 6 introduces a number of new stereotyped classes 
and stereotyped attributes, each of which represents an 
XML Schema construct used to create the structure of a 
model (such as ‘choice’, ‘group’, ‘seq’ etc). This diagram 
shows how XML Schema content models and types are 
built using UML constructs, according to the XML 
Schema Part 1: Structures specification (W3C 2001).  

BaseClass : Attribute

«stereotype»
attr

BaseClass : Attribute

«stereotype»
elt

BaseClass : Attribute

«stereotype»
elt_ref

BaseClass : Class

«stereotype»
complexType

BaseClass : Class

«stereotype»
group

BaseClass : Class

«stereotype»
attrGroup

BaseClass : Class

«stereotype»
choice

BaseClass : Class

«stereotype»
all

BaseClass : Class

«stereotype»
seq

BaseClass : Attribute

«stereotype»
any

BaseClass : Attribute

«stereotype»
grp_ref

BaseClass : Attribute

«stereotype»
attr_ref

Figure 6: Building content models and complexTypes 

«seq» +*1
«attr» +orderDate : xsd:date

«complexType»
PurchaseOrderType

«choice» +*2
«elt_ref» +comment
«elt» +items : Items

«seq»
*1

«group» +shipAndBill
«elt» +singleUSAddress : USAddress

«choice»
*2

«elt» +shipTo : USAddress
«elt» +billTo : USAddress

«group»
shipAndBill

Figure 7: An example XML schema at the logical level 

To illustrate how these XML Schema classes are used on 
a logical level UML diagram, an example is shown in 
figure 7. This logical level diagram represents a fragment 
of the ‘PurchaseOrder’ XML Schema code presented in 
the XML Schema Part 0: Primer (W3C 2001). Note that 
the definitions of the types ‘Items’ and ‘USAddress’, and 
the element ‘comment’ are omitted from this example for 
the sake of brevity. 

The corresponding XML schema code fragment for 
figure 7 is: 
<xsd:complexType name=”PurchaseOrderType”> 

<xsd:sequence> 
<xsd:choice> 

<xsd:group ref=”shipAndBill”/> 



<xsd:element name=”singleUSAddress” 
type=”USAddress”/> </xsd:choice> 

  <xsd:element ref=”comment” minOccurs=”0”/> 
  <xsd:element name=”items” type=”Items”/> 
 </xsd:sequence> 
 <xsd:attribute name=”orderDate” type=”xsd:date”/> 
</xsd:complexType> 
<xsd:group name=”shipAndBill”> 
 <xsd:sequence> 
  <xsd:element name=”shipTo” type=”USAddress”/> 
  <xsd:element name=”billTo” type=”USAddress”/> 
 </xsd:sequence> </xsd:group> 

The logical level diagram in figure 7 highlights several 
important features of the XML Schema profile, which are 
not obvious from the metamodels shown. Firstly, the 
concept of nesting XML schema content models (e.g. a 
‘choice’ nested inside a ‘sequence’) is represented at the 
logical level by introducing separate stereotyped classes, 
for each nesting level, linked by a ‘composition’ 
association. In figure 7, this feature was used to link the 
‘choice’ class to the ‘seq’ class with a composition 
association. The direction of the composition association 
indicates the direction of the nesting, and the ordering of 
the attributes within each class indicates the ordering of 
the content models. 

Note that the default content model for a complexType is 
a ‘sequence’. Therefore, when a complexType is mapped 
from the logical to the physical level, the “<<elt>>” 
attributes within the ‘complexType’ class are 
automatically mapped to a sequence of elements within 
the physical complexType. 

Another important feature of the XML Schema profile, is 
that it needs some way of representing anonymous types 
and nested content models. In our XML Schema profile, 
these are represented in the same way that nesting has 
been described, with an additional naming scheme which 
ensures uniqueness and the preservation of order. In 
particular, anonymous types and content models are 
named by appending a sequential number (indicating 
order) to an asterix (indicating an anonymous reference). 

BaseClass : Class

«stereotype»
complexType

BaseClass : Class

«stereotype»
simpleType

BaseClass : Class

«stereotype»
element

BaseClass : Package

«stereotype»
schema

BaseClass : Class

«stereotype»
group

BaseClass : Class

«stereotype»
attrGroup

 
Figure 8: Building a schema 

Figure 8 shows how the schema constructs used to create 
a content model in XML Schema (from figure 6) are 
related back to a ‘schema’ package.  

4 Conceptual to Logical Level Mapping 

4.1 Goals 
As XML Schemas are hierarchical in nature, generating a 
logical level model from a conceptual level model 
requires us to choose one or more conceptual classes to 
start the XML Schema tree-hierarhcy. One option would 
be to select a single class as the XML root node, and 
progressively nest each related class as child elements of 
the root node. An example of an XML-instance generated 
by choosing the ‘Rating’ class as the root of the XML 
hierarchy is: 

<?xml version=”1.0” encoding=”UTF-8”?> 
<report> 
 <rating code=”7”> 
  <subject code=”cs100”> <year year=”1982”> 
    <nrEnrolled>200</nrEnrolled> 
    <lecturer>P.L.Cook</lecturer> 
    <nrStudents>5</nrStudents> 
    <percent>2.50</percent> </year>  
  </subject> </rating> 
 <rating code=”6”> 
  <subject code=”cs100”> <year year=”1982”>… 
 </rating> 
</report> 

However, as this example illustrates, this approach can 
lead to redundant data at the instance level. In this 
example, the information relating to a subject is repeated 
for each ‘rating’ that has been given in that subject. 

Another approach would be to create a relatively flat 
schema, in which every class is mapped to a separate 
element directly under the root node. The attributes and 
associations of each class would be mapped to sub-
elements of these top-level elements. The example below 
illustrates this approach: 

<?xml version=”1.0” encoding=”UTF-8”?> 
<report> 
 <subject code=”cs100”> 
  <year> 1982</year> 
  <year>1983</year> </subject> 
 <subject code=”CS121”> 
  <year>1982</year> </subject> 
 <year code=”1982”> 
  <subject code=”CS100”/> 
  <subject code=”CS121”/> </year> 
 <year code=”1983”> 
  <subject code=”CS100”/> </year> 
 … </report> 

However, as this example illustrates, this approach can 
lead to disconnected and difficult to read XML instances, 
which also have some degree of redundancy. 

In contrast to these two approaches, the approach 
presented in this paper aims to minimize redundancy in 
the XML-instances, while maximising the connectivity of 
the XML data structures as much as possible. The 
approach presented in this paper for mapping UML 
conceptual models into XML Schema is directly based on 
the one defined by Bird, Goodchild and Halpin (2000), in 
which Object Role Modeling (ORM) diagrams are 
mapped into XML Schema. The algorithm described by 



 

Bird, Goodchild and Halpin (2000) is highly suited to our 
goals, as we have reason to believe that it generates an 
XML Schema that is in Nested Normal Form (ie. nested 
XML Schema with no data redundancy). 

A number of significant modifications to the algorithm, 
however, have had to be made to cater for the inherent 
differences between ORM and UML. In particular, 
because ORM does not distinguish between classes and 
attributes (everything in ORM is either an ‘object type’ or 
a ‘relationship type’), the algorithm described by Bird, 
Goodchild and Halpin (2000) uses the notion of ‘major 
object types’ to determine the first nesting operation. In 
contrast, however, ‘classes’ in UML are roughly 
equivalent to ‘major object types’ in ORM, and therefore 
the process used to automatically determine the default 
‘major object types’ is no longer necessary. 

A second major point of difference is that the concept of 
‘anchors’, introduced by Bird, Goodchild and Halpin 
(2000) to identify the most conceptually important 
player(s) in a relationship type, and to consequently 
determine the direction of nesting in some cases, are not 
required in our approach. Instead, we use a closely 
analogous concept in UML called “navigation”. Defining 
navigation on an association indicates that “given an 
object at one end, you can easily and directly get to 
objects at the other end, usually because the source object 
stores some references to objects of the target” (Booch, 
Rumbaugh and Jacobson 2000). For this reason, 
navigation on a UML association tends to point from the 
more important player in the association towards the less 
important player (which is the opposite direction to that 
of ‘anchors’) 

In the remainder of this section, we will describe our 
general approach to mapping conceptual UML models 
into logical level XML Schemas. 

4.2 Methodology 
As discussed earlier, the goal of our mapping approach is 
to produce an XML Schema, with minimal redundancy 
and maximum connectivity in the corresponding instance 
documents. The algorithm, that we have designed to 
achieve this goal, involves four major steps. Once the 
logical level class diagram has been generated from the 
conceptual level one, creating the physical XML Schema 
is a simple process, due to the direct, one-to-one mapping 
between the logical and physical levels. 

4.2.1 Step 1: Generate Type Definitions 
The first step in the methodology is to create type 
definitions for each attribute and class in the conceptual 
diagram. The following two rules are used to map 
attributes to the appropriate logical level types : 

1. Attributes, which have additional constraints 
applied to their primitive types (such as integer 
and string), map into simpleTypes, which 
restrict the associated primitive type. For 
example, in figure 9 ‘SubjectCodeType’ restricts 
‘string’ by adding a pattern constraint. 

2. Primitive types, used by an attribute, are mapped 
into XSD simpleTypes from the XML Schema 
namespace. For example, the primitive type 
‘string’ maps to xsd:string. 

Based on the example conceptual model from figure 2, 
the following types would be created in this step: 

«XSDSimpleType
xsd:string

«XSDSimpleType
xsd:intege

«XSDSimpleType
xsd:doubl

{values range from 1 to

«simpleType
RatingCodeTyp

«restricts»

{pattern = "[A-

«simpleType
SubjectCodeTyp

«restricts»

 
Figure 9: Types created in Step 1 

Next, a logical level complex type definition is created 
for each class at the conceptual level. Each conceptual 
class is mapped into a complexType, with child elements 
representing each of its non-primary attributes. Primary 
key attributes (which are based on simple types) are 
included in the complexType definition as XML Schema 
attributes (i.e with a «attr» stereotype). Based on the 
example from figure 2, the following complexTypes 
would be created in this step: 

«elt» +nrStudents[1..1] : xsd:integer
«elt» +percent[1..1] : xsd:double

«complexType»
SubjectYearRatingType

«elt» +lecturer[1..1] : 
d t i«elt» +nrEnrolled[1..1] : 
d i

«complexType» 
SubjectYearType 

«attr» +code[1..1] :  
C { C {

«complexType»
RatingType

«attr» +year[1..1] : 
{ }

«complexType» 
YearType 

«attr» +code[1..1] : 
S C { }«elt» +title[1..1] : 

«complexType»
SubjectType

 
Figure 10: ComplexTypes generated in Step 1 

Note that in future steps, some complexTypes may be 
removed and nestings of child attributes may be 
performed (including primary key attributes). 

4.2.2 Step 2: Determine Class Groupings 
The next step is used to determine how best to group and 
nest the conceptual classes, based on the associations 
between them. The approach taken is based directly on 
the approach from Bird, Goodchild and Halpin (2000), in 
which a combination of ‘mandatory-functional’ 
constraints and ‘anchors’ are used to determine the 
appropriate nesting choices. In contrast to this, a similar 
approach based on UML uses ‘multiplicity’ constraints 
and ‘navigation’ to determine an appropriate nesting for 
the schema. 

An approach to automatically determine the default 
navigation directions is summarised below: 

1. If no navigation is defined on an association, 
then use the multiplicity constraints to 
determine the navigation direction. 



a. If exactly one association end has a 
minimum multiplicity of 1 (i.e. (1..1) or 
(1..*)), then define the navigation in the 
direction of the opposite association end, or 

b. If one association end has a smaller 
maximum multiplicity than the other, (e.g. 
‘0..7’ is smaller than ‘0..*’) then navigate 
towards the end with the smaller maximum 
multiplicity, or 

c. If exactly one class has only one attribute, 
then navigate towards it. 

 The nesting is then determined as follows: 

1. If exactly one association end has a multiplicity 
of ‘(1,1)’ (i.e. it is mandatory and functional), 
then nest the class at the other association end 
towards it. 

2. If both association ends have a multiplicity of 
(1,1), then nest the classes in the opposite 
direction to the direction of navigation – i.e. 
nest the target of the navigation towards the 
source of the navigation 

The reasoning behind this “mandatory-functional” rule 
was first discussed by Bird, Goodchild and Halpin 
(2000), and can best be explained using an example.  

+nr[1..1] : Integer{P}
+name[1..1] : String

Employee
+code[1..1] : String{P}
+title[1..1] : String

Subject

1..1 0..*

headLecturer

 
Figure 11: A mandatory, functional relationship 

The UML fragment in figure 11 consists of an employee 
being the head lecturer of many subjects, and each 
subject having exactly one head lecturer. If the 
‘headLecturer’ was nested towards ‘Subject’, then the 
corresponding logical level representation would be: 

«elt» +name[1..1] : xsd:string
«attr» +nr[1..1] : xsd:integer{P}

«complexType»
EmployeeType

«elt» +title[1..1] : xsd:string
«elt» +headLecturer[1..1] : EmployeeType
«attr» +code[1..1] : xsd:string{P}

«complexType»
SubjectType

 
Figure 12: Logical level mapping of figure 11 

For example, an instance of the Subject type might look 
like: 
<subject code=”INFS4201”> 
 <title>Advanced Distributed Databases</title> 
 <headLecturer nr=”123456”> 
  <name>Joe the Lecturer</name> </headLecturer> 
</subject> 
<subject code=”COMP4301”> 
 <title>Distributed Computing</title> 
 <headLecturer nr=”123456”> 
  <name>Joe the Lecturer</name> </headLecturer> 
</subject> 

There are however, a number of problems with this 
nesting approach. The first issue is redundancy created by 
repeating employee details with each subject occurrence. 
This happens because an employee may be the head 
lecturer of more than one subject (according to the UML 
model in figure 11).  The redundancy is clearly evident in 
the corresponding XML instance where ‘Joe the 

Lecturer’ has his details repeated for both the 
‘INFS4201’ and ‘COMP4301’ subjects. 

The other issue arising from the above schema is that not 
all employees are assigned as head lecturer of a subject 
(as is indicated on the conceptual level UML model in 
figure 11). Therefore, a separate global element for 
employee has to be added to the schema for employees 
who aren’t in charge of any subjects. This is undesirable 
because it reduces the connectivity of the schema. 

The solution to both of these problems is to nest towards 
the mandatory-functional end of the association. In the 
example, this would mean nesting the Subject class inside 
the Employee class, therefore producing the following 
logical level representation and XML Schema fragment: 

«elt» +name[1..1] : xsd:string
«elt» +subject[0..*] : SubjectType
«attr» +nr[1..1] : xsd:integer{P}

«complexType»
EmployeeType

«elt» +title[1..1] : xsd:string
«attr» +code[1..1] : xsd:string{P}

«complexType»
SubjectType

 
Figure 13: Nesting SubjectType within EmployeeType 

This type of nesting is preferable because: 
a) The minimum frequency of 1 at the Employee 

end of the association requires that each Subject 
be headed by at least one Employee, and 

b) The maximum frequency of 1 at the Employee 
end of the association requires that each subject 
be headed by at most one Employee. 

The minimum frequency of 1 (uniqueness constraint) is 
very important in this grouping example because if this 
constraint didn’t apply to a subject (i.e a subject doesn’t 
need a head lecturer), subjects without a head lecturer 
allocated would not be represented. Similarly, the 
maximum frequency of 1 (mandatory constraint) is vital 
because if a subject could be headed by more than 1 
lecturer, a subject would be repeated for each 
corresponding employee thus introducing redundancy 
into the schema. Therefore, when a class A is associated 
with exactly 1 instance of class B, class A can be nested 
inside class B. 

Also note that since each association class has an implicit 
“mandatory, functional” relationship with each of the 
players of the association (i.e. each association class is 
related to exactly one object at each end of the 
association), association classes are always nested 
towards their association (based on nesting rule 1). These 
associations are then nested in the opposite direction of 
the navigation (based on rule 2). An example of nesting 
the association classes from figure 2 is shown in figure 
14. 

In this example, the ‘SubjectYearRating’ association 
class is nested, together with the ‘Rating’ class, towards 
the ‘SubjectYear’ class. Similarly, the ‘SubjectYear’ 
class, together with the ‘Year’ class, are nested towards 
the ‘Subject’ class. Note that the thick-headed arrows in 
figure 14 represent the direction of nesting, while the 
thin-headed arrows represent the navigation direction. 



 

The dotted line circles indicate classes grouped for 
nesting purposes. 

University Student-Rating System
{CONCEPTUAL LEVEL}

+code[1..1] : String{P}
+title[1..1] : String

Subject
+year[1..1] : Integer{P}

Year

nrEnrolled[1..1] : Integer
lecturer[1..1] : String

SubjectYear

1..*

+subject

0..*

+code[1..1] : Integer{P}
Rating

nrStudents[1..1] : Integer
/percent[1..1] : Double

SubjectYearRating
1..7+ratings

1..*

{Subject::code pattern = "[A-Z]{2}d{3}"}

{Rating::code values range from 1 to 7}

 
Figure 14: Nesting the conceptual classes. 

If navigation cannot be determined between two classes 
(say classes A and B), or both ends of the association are 
navigable, then the following option exists: 

1. If an association class exists between class A 
and class B, merge class A and B into the 
association class. 

For example, if we take the ‘title’ attribute from Subject, 
and change the multiplicity of Subject’s association end 
to ‘0..*’, navigation cannot be determined. Figure 2, as 
shown previously, illustrates this: 

In this case, navigation cannot be established between 
Subject and Year because both have optional 
participation and unbounded maximum frequencies. 
Also, both classes have only one attribute making rule 1c 
inapplicable. The solution is to merge Subject and Year 
with the association class SubjectYear. This merge is 
valid because for every instance of SubjectYear, there is 
exactly one instance of the Subject and Year classes. 

A final point on the nesting topic is the representation of 
conceptual level subtypes on the logical level. In our 
approach, subtype relationships will be carried down to 
the logical level. Also, a class acting as a supertype for a 
class or set of classes must not be eliminated from the 
mapping process.  

4.2.3 Step 3: Build the Complex Type Nestings 
After the nesting directions have been identified, the next 
step is to perform the complex type nesting. In the 
example case study, the ‘SubjectYearRatingType’ class 
is nested within the ‘RatingType’ class. The 
‘RatingType’ class is then nested as an element within 
the ‘SubjectYearType’ class. The result of this operation 
is shown below: 

«elt» +lecturer[1..1] : xsd:string
«elt» +nrEnrolled[1..1] : xsd:integer
«elt» +ratings[1..7] : RatingType

«complexType»
SubjectYearType

«attr» +code[1..1] :
R ti C d T {P}«elt» +subjectYearRating[1..1] :
S bj Y R i T

«complexType»
RatingType

«elt» +nrStudents[1..1] : xsd:integer
«elt» +/percent[1..1] : xsd:double

«complexType»
SubjectYearRatingType

 
Figure 15: Nesting SubjectYearRatingType within 

RatingType 

It is important to note that when the ‘RatingType’ 
complexType is nested, the multiplicity constraint of the 
resulting element is set to ‘1..7’. This is because the 
multiplicity constraint on the association end attached to 
‘Rating’ is ‘1..7’. 

«elt» +lecturer[1..1] : xsd:string
«elt» +nrEnrolled[1..1] : xsd:integer
«elt» +ratings[1..7] : RatingType

«complexType»
SubjectYearType

«attr» +code[1..1] : SubjectCodeType{P}
«elt» +title[1..1] : xsd:string
«elt» +year[0..*] : YearType

«complexType»
SubjectType

«attr» +year[1..1] : xsd:integer{P}
«elt» +subjectYear[1..1] : SubjectYearType

«complexType»
YearType

 
Figure 16: Final nesting of SubjectYearType 

In figure 16, the result of the final operation required in 
the case study is shown, in which the ‘SubjectYearType’ 
class is nested within the ‘YearType’ class, and the 
‘YearType’ class is nested in turn within the 
‘SubjectType’ class. 

Note that we have chosen to represent those primary 
keys, which have a simpleType and a maximum 
multiplicity of 1, as ‘attributes’ of the parent 
complexType. When nesting, primary keys remain an 
attribute of their respective class after the nesting takes 
place. The only exception to this rule is when attributes 
are removed from classes being eliminated from the 
mapping process. In this case, the attribute will become a 
primary key of its new parent class. This choice was 
made to simplify the associated XML instance documents 
– however, ideally this should be a configurable option. 

4.2.4 Step 4: Create a Root Element  
Because each XML document must have a root element, 
a root node is introduced in this step, which represents 
the conceptual model as a whole. For example, in figure 
17, we show that a root element called ‘report’ was 
introduced when mapping figure 2 to a logical model. 
This root element is then associated with a complexType 
(in this case called ‘ReportType’), which represents the 
set of complexType groupings generated in step 3. In our 
example, the only complexType grouping is called 
‘subject’. 

«element»
report

«elt» +subject[0..*] : SubjectType

«complexType»
ReportType

«has type»
base

 
Figure 17: The root node of the schema 



4.3 Options and Limitations 

4.3.1 Options 
A number of options are available when mapping from 
the conceptual level to the logical level. For example, an 
attribute from the conceptual level can be represented 
either as an XML schema attribute or as an XML schema 
element at the logical level. By default, we have decided 
to map primary key attributes to XML schema attributes, 
and non-primary key attributes to XML schema elements. 
This decision is suitable in the majority of cases, as 
primary key atributes are usually based on simple types, 
and have multiplicities of ‘exactly one’ (as are XML 
schema attributes). 

Other options that may need to be made available to the 
data modeller, include the introduction of controlled 
redundancy at the logical level, and the decreasing of the 
connectivity of the resulting schema.  

4.3.2 Limitations 
Certain limitations were evident when modelling XML 
schemas in UML. These are summarised below: 

1. UML is aimed at software design rather than 
data modelling, so some new notation for 
representing conceptual constraints was required  

2. Mixed Content in XML schema is difficult to 
express in UML without introducing additional 
non-standard notation to the conceptual level. 

3. The UML constraint language, OCL, is 
syntactically different to the XML schema 
regular expression language.  

4. Unlike UML, XML Schema does not support 
multiple inheritance. Therefore a conceptual 
level UML class diagram should not contain 
classes with more than one supertype. 

5. Some constraints represented on the conceptual 
level such as subtype constraints and acyclic 
constraints can not be expressed in XML 
Schema. 

6. In situations where navigation is present in both 
directions, the mapping algorithm must be able 
to determine the ‘stronger’ of the two 
navigations, to determine the most appropriate 
direction for nesting. 

5 Conclusion 
This paper proposes a method for designing XML 
Schemas using the Unified Modeling Language (UML). 
The UML was chosen primarily because its use is 
widespread, and growing. Secondly, the UML is 
extensible, so the new notation being written is totally 
compatible with existing UML tools. 

Presently, there exists a number of tree-based graphical 
tools for developing schemas. These tools are perfect for 
small and intuitive schemas, but the more complex the 
data is, the harder it is for the designer to produce a 
correct schema. The UML makes it easier to visualize the 

model, and to ensure that integrity constraints are 
defined.  

The three-level Information Architecture is the 
fundamental methodology followed by many data 
modellers. This approach allows the data modeller to 
begin by focusing on conceptual domain modelling issues 
rather than implementation issues.  

Because each conceptual level model has many possible 
logical level models, there is a need for a mapping 
algorithm, which uses sensible data design techniques to 
translate from one to the other. However, because of the 
different design choices, which can be made in this 
mapping process, it would be preferable to allow the 
designer to choose between common design options. 
Because there is a one-to-one relationship between the 
logical and physical levels, however, there is then only 
one possible mapping to the physical XML Schema itself. 

The authors are currently planing to build a prototype 
tool, which uses the algorithm described in this paper to 
generate a logical level representation, based on a 
conceptual level UML class diagram. A prototype tool 
has been built however, that can generate an XML 
Schema from a corresponding logical level class diagram 
(expressed in XMI). In addition to this we also intend on 
exploring the generation of an XML Schema that is in 
nested normal form and look at reverse engineering a 
conceptual level diagram from the physical level. 
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7 Appendix A: XML Schema for Example 
<?xml version="1.0" encoding="UTF-8"?> 
<xsd:schema 
xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"  
elementFormDefault ="qualified"> 
<!--====== Root Element Definition ===============--> 
<xsd:element name="report" type="ReportType"> 
 <xsd:annotation> 
  <xsd:documentation>Displays information regarding 

subject grade averages  
  </xsd:documentation> </xsd:annotation> 
<!--  Key and Uniqueness constraints  --> 
<xsd:key name="pRatingKey"> 
 <xsd:selector xpath="report/subject/year/subjectYear/ 

ratings"/>  <xsd:field xpath="@code"/>  </xsd:key> 
<xsd:key name="pYearKey"> 
 <xsd:selector xpath="report/subject/year"/>  
 <xsd:field xpath="@year"/> </xsd:key> 
<xsd:key name="pSubjectKey"> 
 <xsd:selector xpath="report/subject"/>  
 <xsd:field xpath="@code"/> </xsd:key> 
</xsd:element> 
<!--======= Complex Type Definitions ==============--> 
<xsd:complexType name="ReportType"> 
 <xsd:sequence> 

  <xsd:element name="subject" type="SubjectType" 
minOccurs="0" maxOccurs="unbounded"/> 

 </xsd:sequence> </xsd:complexType> 
<xsd:complexType name="SubjectType"> 
 <xsd:sequence> 
  <xsd:element name="title" type="xsd:string"/> 

  <xsd:element name="year" type="YearType" 
minOccurs="0" maxOccurs="unbounded"/>  

 </xsd:sequence> 
 <xsd:attribute name="code" type="SubjectCodeType"/>  
</xsd:complexType> 
<xsd:complexType name="SubjectYearType"> 
 <xsd:sequence> 
  <xsd:element name="lecturer" type="xsd:string"/>  
  <xsd:element name="nrEnrolled" type="xsd:integer"/> 
  <xsd:element name="ratings" type="RatingType" 

minOccurs="1" maxOccurs="7"/>  
 </xsd:sequence> </xsd:complexType> 
<xsd:complexType name="YearType"> 
 <xsd:sequence> <xsd:element name="subjectYear" 

type="SubjectYearType"/> </xsd:sequence> 
 <xsd:attribute name="year" type="xsd:integer"/> 
</xsd:complexType> 
<xsd:complexType name="SubjectYearRatingType"> 
 <xsd:sequence> 
    <xsd:element name="nrStudents" type="xsd:integer"/> 
     <xsd:element name="percent" type="xsd:double"/>  
 </xsd:sequence> </xsd:complexType> 
<xsd:complexType name="RatingType"> 
 <xsd:sequence>  
  <xsd:element name="subjectYearRating" 

type="SubjectYearRatingType"/> </xsd:sequence> 
 <xsd:attribute name="code" type="RatingCodeType"/>  
</xsd:complexType> 
<!--========= Simple Type Definitions =============--> 
<xsd:simpleType name="RatingCodeType"> 
 <xsd:restriction base="xsd:integer"> 
  <xsd:minInclusive value="1"/> 
  <xsd:maxInclusive value="7"/> </xsd:restriction> 
</xsd:simpleType> 
<xsd:simpleType name="SubjectCodeType"> 
 <xsd:restriction base="xsd:string"> 
  <xsd:length value="5"/> 
  <xsd:pattern value="[A-Z]{2}\d{3}"/>  
</xsd:restriction></xsd:simpleType> 
</xsd:schema>i

.  
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