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Abstract

Most current network intrusion detection systems em-
ploy signature-based methods or data mining-based
methods which rely on labelled training data. This
training data is typically expensive to produce. More-
over, these methods have difficulty in detecting new
types of attack. Using unsupervised anomaly detec-
tion techniques, however, the system can be trained
with unlabelled data and is capable of detecting pre-
viously “unseen” attacks. In this paper, we present
a new density-based and grid-based clustering algo-
rithm that is suitable for unsupervised anomaly de-
tection. We evaluated our methods using the 1999
KDD Cup data set. Our evaluation shows that the
accuracy of our approach is close to that of existing
techniques reported in the literature, and has several
advantages in terms of computational complexity.

1 Introduction

With the increased usage of computer networks, se-
curity becomes a critical issue. A network intrusion
by malicious or unauthorised users can cause severe
disruption to networks. Therefore the development
of a robust and reliable network intrusion detection
system (IDS) is increasingly important.

Traditionally, signature based automatic detection
methods have been widely used in intrusion detection
systems. When an attack is discovered, the associated
traffic pattern is recorded and coded as a signature
by human experts, and then used to detect malicious
traffic. However, signature based methods suffer from
their inability to detect new types of attack. Further-
more the database of the signatures is growing as new
types of attack are being detected, which may affect
the efficiency of the detection.

Other methods have been proposed using machine
learning algorithms to train on labelled network data,
i.e., with instances preclassified as being an attack
or not (Lee & Stolfo 1998). These methods can be
classified into two categories: misuse detection and
anomaly detection. In the misuse detection approach,
the machine learning algorithm is trained over the
set of labelled data and automatically builds detec-
tion models. Thus, the detection models are simi-
lar to the signatures described before. Nonetheless
these detection methods have the same weakness as
the signature based methods in that they are vulner-
able against new types of attack.
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In contrast, anomaly detection approaches build
models of normal data and then attempt to detect
deviations from the normal model in observed data.
Consequently these algorithms can detect new types
of intrusions because these new intrusions, by as-
sumption, will deviate from normal network usage
(Javitz & Vadles 1993, Denning 1987). Nevertheless
these algorithms require a set of purely normal data
from which they train their model. If the training
data contains traces of intrusions, the algorithm may
not detect future instances of these attack because it
will assume that they are normal.

In most circumstances, labelled data or purely nor-
mal data is not readily available since it is time con-
suming and expensive to manually classify it. Purely
normal data is also very hard to obtain in practice,
since it is very hard to guarantee that there are no
intrusions when we are collecting network traffic.

To address these problems, we used a new type
of intrusion detection algorithm called unsupervised
anomaly detection. It makes two assumptions about
the data.

Assumption 1 The majority of the network connec-
tions are normal traffic. Only X% of traffic are ma-
licious. (Portnoy, Eskin & Stolfo 2001)

Assumption 2 The attack traffic is statistically dif-
ferent from normal traffic. (Javitz & Vadles 1993,
Denning 1987)

The algorithm takes as input a set of unlabelled
data and attempts to find intrusions buried within
the data. After these intrusions are detected, we can
train a misuse detection algorithm or a traditional
anomaly detection algorithm using the data.

If any of the assumptions fail, the performance of
the algorithm will deteriorate. For example, it will
have difficulties in detecting a bandwidth DoS attack.
The reason is that often under such attacks there are
so many instances of the intrusion that it occurs in a
similar number to normal instances.

We took a similar approach to that presented in
(Oldmeadow, Ravinutala & Leckie 2004) and (Eskin,
Arnold, Prerau, Portnoy & Stolfo 2002) to the prob-
lem, and employed a clustering method for the un-
supervised anomaly detection. In our approach we
chose a clustering method that is designed for deal-
ing with high dimensional data in large data sets. We
evaluated our algorithm over real network data. Both
the training and testing was done using the KDD Cup
1999 data (KDD 1999), which is a very popular and
widely used intrusion attack data set. Our results
show that the accuracy of our algorithm approaches
that of the previous works. Furthermore, the compu-
tational complexity of the algorithm makes this ap-
proach promising. Finally, we are able to infer from
our results some of the requirements of a good intru-
sion detection system.



The paper is structured as follows. In Section 2,
we give a general survey of the field of anomaly detec-
tion in network intrusion detection. In Section 3, we
describe our clustering algorithm fpMAFIA in detail
and illustrate the algorithm with a running example.
We also analyse the average case and worst case com-
plexity of our algorithm. In Section 4, we describe
the details of our experiment and present the results
graphically. In Section 5, we discuss the results and
its possible implications. In Section 6, we suggest
some possible future directions of the investigation.

2 Related Work

2.1 Unsupervised and Supervised Anomaly
Detection

Applying unsupervised anomaly detection in network
intrusion detection is a new research area that have
already drawn interest in the academic community.
Eskin, et al. (Eskin et al. 2002) investigated the ef-
fectiveness of three algorithms in intrusion detection:
the fixed-width clustering algorithm, an optimised
version of the k-nearest neighbour algorithm, and the
one class support vector machine algorithm. Old-
meadow, et al. (Oldmeadow et al. 2004) carried out
further research based on the clustering method in
(Eskin et al. 2002) and showed improvements in ac-
curacy when the clusters are adaptive to changing
traffic patterns. A different approach using a quarter-
sphere support vector machine is proposed in (Laskov,
Schafer & Kotenko 2004), with moderate success. In
(Eskin 2000), a mixture model for explaining the pres-
ence of anomalies is presented, and machine learning
techniques are used to estimate the probability dis-
tributions of the mixture to detect anomalies. In
(Zanero & Savaresi 2004), a novel two-tier IDS is
proposed. The first tier uses unsupervised cluster-
ing to classify the packets and compresses the infor-
mation within the payload, and the second tier used
an anomaly detection algorithm and the information
from the first tier for intrusion detection. Lane and
Brodley (Lane & Brodley 1997) evaluated unlabelled
data by looking at user profiles and comparing the ac-
tivity during an intrusion to the activity during nor-
mal use.

Supervised anomaly detection in network intru-
sion detection, which uses purely normal instances
as training data, has been studied extensively in the
academic community. A comprehensive survey of var-
ious techniques is given in (Lazarevic, Ertoz, Kumar,
Ozgur & Srivastava 2003). An approach for mod-
elling normal traffic using self-organising maps is pre-
sented in (Gonzalez & Dasgupta 2002), while another
one uses principal component classifiers to obtain the
model (Shyu, Chen, Sarinnapakorn & Chang 2003).
One approach uses graphs for modelling the nor-
mal data and detect the irregularities in the graph
for anomalies (Noble & Cook 2003). Another ap-
proach uses the normal data to generate abnormal
data and uses it as input for a classification algorithm
(Gonzalez & Dasgupta 2003).

2.2 Clustering

Clustering is a well known and studied problem.
There exist a large number of clustering algorithms in
the literature. These methods can be categorised as:
partitioning methods, hierarchical methods, density-
based methods and grid-based methods. We shall
concentrate on algorithms that closely related to our
investigation.

2.2.1 Partitioning Methods

Given a database of n objects, a partitioning method
constructs k partitions of data where each partition
represents a cluster.

One partitioning method that is of interest to our
study is the fixed width clustering algorithm. It is
one of the algorithms used in the studies by Stolfo,
et al. (Eskin et al. 2002) and Oldmeadow, et al.
(Oldmeadow et al. 2004) which we compare our re-
sults against.

The main advantage of the fixed width algorithm
is that it scales linearly with the number of objects
in the data set and the number of attributes of the
objects. Nevertheless the quality of the clusters is
sensitive to the definition of the width of cluster w.
Often the user needs several repetitions of the algo-
rithm to choose the best value of w in any particular
application.

2.2.2 Density-based Methods

Density-based methods are based on a simple assump-
tion: clusters are dense regions in the data space
that are separated by regions of lower density. Their
general idea is to continue growing the given clus-
ter as long as the density in the neighbourhood ex-
ceeds some threshold. In other words, for each data
point within a given cluster, the neighbourhood of
a given radius has to contain at least a minimum
number of points. These methods are good at filter-
ing out outliers and discovering clusters of arbitrary
shapes. Some examples of density-based methods are
DBSCAN (Ester, Kriegel, Sander & Xu 1996) and
OPTICS (Ankerst, Breunig, Kriegel & Sander 1999).

2.2.3 Grid-based Methods

Grid-based methods divide the object space into a
finite number of cells that form a grid structure.
All of the clustering operations are performed on
the grid structure. The main advantage of this ap-
proach is its fast processing time, which is typically
dependent mainly on the number of cells in each
dimension in the quantised space. Some examples
of grid-based methods are STING (Wang, Yang &
Muntz 1997), WaveCluster (Sheikholeslami, Chat-
terjee & Zhang 1998), CLIQUE (Agrawal, Gehrke,
Gunopulos & Raghavan 1998) and pMAFIA (Nagesh,
Goil & Choudhary 2000).

Our work builds upon the CLIQUE and pMAFIA
algorithms. CLIQUE (CLustering In QUEst)
(Agrawal et al. 1998) is a hybrid clustering method
that combines the idea of both grid-based and
density-based approaches. CLIQUE first partitions
the n-dimensional data space into non-overlapping
rectangular units. It attempts to discover the over-
all distribution patterns of the data set by identifying
the sparse and dense units in the space. The identi-
fication of the candidate search space is based on the
following monotonicity principle: if a k-dimensional
unit is dense, then so are its projections in (k − 1)
dimensional space.

pMAFIA (Nagesh et al. 2000) is an optimised and
improved version of CLIQUE. There are two main
differences between them. First, pMAFIA used the
adaptive grid algorithm to reduce the total number of
potential dense units by merging small 1-dimensional
partitions that have similar densities. Second, it par-
allelised the operation of the generation and popula-
tion of the candidate dense units using a computer
cluster. However, they both scale exponentially to
the dimension of the cluster of the highest dimension
in the data set.



2.3 Mining Frequent Itemsets

Although we focus primarily on clustering techniques,
mining frequent itemsets is one of the intermedi-
ate steps in our algorithm. We shall briefly men-
tion two well known methods, Apriori (Agrawal &
Srikant 1994) and FP-growth (Han, Pei & Yin 2000),
in the following section.

The Apriori algorithm is a well known method for
mining frequent itemsets. It employs an iterative ap-
proach known as a level-wise search. The finding of
each level of itemsets requires one full scan of the
database. To reduce the search space, candidate k-
itemsets are generated only if all of their (k − 1)-
subsets are frequent. Although this approach guar-
antees to find all of the frequent itemsets, the com-
putational complexity is exponential to the number
of maximally frequent itemsets1. It may also need
to repeatedly scan the database and check the large
set of candidate itemsets by pattern matching. This
is infeasible for large databases containing millions of
records with long patterns.

Frequent-pattern growth (FP-growth) is an effi-
cient method for mining frequent itemsets. It avoids
the cost of generating a huge set of candidate itemsets
by building a compact prefix-tree data structure, the
frequent-pattern tree (FP-Tree). First, the algorithm
scans the database and derives the set of frequent
items and their support counts. The set is sorted in
the order of descending support count. Let L denote
the resulting set. To construct the FP-Tree, the algo-
rithm scans the database and processes the items in
each record in L order (i.e., sorted according to de-
scending support count). The processed itemset rep-
resents a branch in the tree, with each frequent item
represented by a node. Add the branch to the tree if
it does not exist. If any prefix of the branch already
exists in the tree, then increment the count of each
node along the common prefix by one and extend the
branch. The algorithm mines the frequent itemsets
from the FP-Tree from nodes deep inside the tree. As
shown in (Hipp, Güntzer & Nakhaeizadeh 2000), the
FP-growth algorithm is about an order of magnitude
faster than Apriori in large databases.

3 Methodology

Our aim is to discover the characteristics of the ma-
jority of connections from records of network traffic
and use the result to classify future connections. This
requires data preprocessing procedures to transform
the log records from a network trace program into a
well formatted set of records for data mining. The
preprocessing step is made easier by using a data set
prepared by the MIT Lincoln Labs for the KDD Cup
competition in 1999 (KDD 1999). It is widely used
and accepted in the academic community and we shall
give a brief description of the data set in Section 4.1.
With the simplification, we reduce our problem to
clustering high dimensional data in a large data set.

3.1 Our Clustering Algorithm: fpMAFIA

Our aim is to discover a set of clusters from the large
volume of high dimensional input data. There are
four main challenges: (1) how to efficiently process
the data so that the run time of the algorithm scales
well to the number of records, (2) how to work with
the high dimensionality of the data, (3) how to ac-
curately determine the boundary of the clusters, and
(3) how to ensure that the set of clusters produced by
the algorithm can cover over 95% of the data set.

1A maximally frequent itemset X is a frequent itemset that no
superset of X is also frequent.

3.1.1 Overview

We have developed a grid and density based clustering
algorithm fpMAFIA2 that is similar to pMAFIA for
our application. It is an optimised version of the orig-
inal pMAFIA algorithm, with the modification that
we use the Frequency-Pattern Tree (FP-Tree) in the
intermediate step. Our implementation of fpMAFIA
is able to run with a large data set of 1 million records
on a single PC and terminates in under 11 minutes.

The general structure of our algorithm is as fol-
lows:

1. Find all the frequent baskets using the modified
Adaptive Grid Algorithm.

2. Transform the data instances into a sequence of
frequent baskets and use them to build up the
FP-Tree.

3. Recover the set of candidate clusters using the
count back method.

4. Examine the set of clusters and remove duplicate
clusters.

Once we obtain the set of clusters, we expect that
they cover most but not all of the data set. Therefore
any point that falls inside the clusters will be labelled
as normal. The small percentage of points that do
not belong to any clusters are labelled as abnormal.

We shall illustrate fpMAFIA with the following
set of data points in a two-dimensional space S in
Figure 1. Both dimensions are continuous and range
from 0 to 17 inclusive. For simplicity, the data points
are assumed to have only integer values. There are 34
points in total and each of the points are represented
by a diamond in Figure 1.
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Figure 1: Sample data set S in 2-D feature space

3.1.2 Adaptive Grid

The Adaptive Grid Algorithm is adopted from
pMAFIA, and includes some modifications to suit our
application. The goal of the algorithm is to divide
each dimension into unequal partitions based on the
data distribution. These adaptive intervals are the
basis of the frequent baskets, and determine the for-
mation and the boundary of the clusters. In our adop-
tion of pMAFIA, all parameters and constants are
chosen to be the same set of values used in pMAFIA
unless stated otherwise.

Let D = {d1, d2, d3, ...} denote the set of dimen-
sions in the feature space. For each dimension di

where i denotes the ith dimension, it is divided up
into small equi-length partitions called fine bins (bi,j),
where j denotes the jth bin in the dimension. Let
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vi,min denote the minimum value in dimension di and
vi,max denote the maximum value in dimension di,
then the number of fine bins in dimension di is given
in Formula 1.

|bi| = max(1000, vi,max − vi,min) (1)

The algorithm repeats the process for every dimen-
sion in the feature space. After the process is finished,
the algorithm reads the data once and increments the
frequency of a fine bin if a data point falls in the range
of the fine bin. Starting form the first fine bin, a set
of five consecutive fine bins then from a window w:

wi,j : bi,j ∪ bi,j+1 ∪ bi,j+2 ∪ bi,j+3 ∪ bi,j+4, j < |bi| ∧5|j

The largest histogram value among the fine bins is
taken to represent the value of the window:

v(wi,j) = max(histogram value(bi,k)), k ≤ j < k + 4

The algorithm then examines adjacent windows
and merges the windows if the values of the windows
differ by less than a percentage β. In pMAFIA, β is
chosen to be 20%. Let wi,jm

denote a merged win-
dow, and let v(wi,j) denote the value of window wi,j ,
expressing the idea mathematically:

wi,mj
: wi,j∪wi,j+1, if 1−β < v(wi,j+1)/v(wi,j) < 1+β

The value of the merged window is the average
of all the combined windows. The process is repeated
until the algorithm examines all the windows in all the
dimensions. The windows then become the adaptive
grid bins g.

If the data in any particular dimension is uniformly
distributed, then most likely the algorithm returns
only one adaptive grid that consisted of the whole
dimension. We need to examine such a dimension
further to make sure that it does not contribute to
any potential clusters. We split the dimension into
five equi-length partitions.

We need to determine whether the adaptive grids
are worth investigating. Hence we calculate a thresh-
old t for each adaptive grid bin to distinguish the
dense adaptive grid bins from the sparse ones. For
dense bins, we expect them to contain more data
points with respect to their sizes. The threshold is
defined as in Formula 2.

ti,j =
αai,jN

Di

(2)

where ai,j is the range of the bin, Di is the range of
the dimension that the bin belongs to and N is the
total number of points in the data set. The density
factor α quantifies the density of the bin, and the
value is chosen be 1.5 in pMAFIA. For the uniformly
distributed dimensions mentioned earlier, their den-
sity factor is lowered to α = 0.9 in our adoption of the
algorithm for further examination. If the frequency
of the adaptive grid bins exceeds the threshold, the
algorithm reports them as frequent baskets f . The hi-
erarchy of the entities in the algorithm is illustrated
in Figure 2.

As mentioned before, we adopted the Adaptive
Grid Algorithm from pMAFIA but it has certain lim-
itations and inherent ambiguity. For example, it does
not specifically deal with dimensions that have only
a limited set of discrete and unrelated values and im-
plicitly assumes that all continuous dimensions have
fractional values. Hence we make the following exten-
sions to the algorithm in order to make it work with
such types of data sets.
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Figure 2: Hierarchy of Entities

For binary and discrete attributes, we map the val-
ues to integers and treat them as continuous dimen-
sions. The range of the dimension is equal to the
number of discrete values in the attribute. Therefore
the number of bins for these dimensions is also equal
to the range of the dimension, and the bins become
the adaptive grid bins directly without any merging.

After some initial analysis on the data set, we char-
acterise the numeric attributes into two categories:

1. attributes that represent a percentage (which
only ranges from 0% to 100%), or attributes with
integer values and range in the hundreds

2. attributes with integer values and ranges in the
millions.

Following the original algorithm to process these two
categories of the attributes is inefficient and makes
little sense. For the first type of attribute, it is mean-
ingless to split the dimensions into 1000 fine bins since
the fine bins between the significant values contain no
data points. In other words, for the attributes of per-
centage type there are only 101 possible significant
values (from 0% to 100% inclusive). The majority
of the fine bins will have a zero frequency count and
defeat the purpose of the adaptive grid bins. Instead
of dividing into fine bins, we allocate enough bins for
all the significant values in the dimension. The bins
then turn into windows directly and these windows
may merge to form adaptive grid bins.

For the second type of attributes, it is memory-
intensive to allocate the number of fine bins required,
and the possible number of frequent baskets reported
is large. Therefore if the size of the dimension exceeds
a predefined large value ε, we transform all the old
values vold on a logarithmic scale using Formula 3.

vnew = ln(vold + 1) (3)

The new values can be mapped into a continuous
dimension that the algorithm can process more effi-
ciently. We set ε = 10, 000 in our algorithm. Both
modifications are illustrated in Figure 3.
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Figure 3: Modification of the Adaptive Grid Algo-
rithm

It is best to illustrate the algorithm using the sam-
ple data space S earlier to see how it works. Since we
are working with a small set of data, we increase the
value of β from 20% to 50% to better illustrate the al-
gorithm. The range of the both dimensions is [0, 17],
the algorithm allocates 18 fine bins and these fine bins
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with their frequency counts are illustrated in Figure 4
and Figure 5.

Since the ranges of both dimensions is small, the
fine bins are turned into windows directly. Starting
from X , the first three windows are merged since they
have the same count of zero points. The fourth win-
dow is merged with the fifth window because the dif-
ference in value is 25% and is within the threshold β.
The sixth window is merged in a similar fashion. The
seventh window is not merged since the difference is
larger than the threshold. The process continues for
the remaining windows and also for dimension Y . The
resulting adaptive grid bins are illustrated in Figure 6
and Figure 7.
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Figure 6: Adaptive grid bins in X

Using the formula 3, we calculate the threshold for
the adaptive grid bins. For example, the threshold for
the second adaptive grid bin is equal to 1.5×3×34

17 = 9.
Since the frequency of this bin is 19, it is reported as
a frequent baskets. Repeating the procedure for all
the adaptive grid bins, we find in total five adaptive
grid bins that are dense and we report them as the
frequent baskets. We shall name the first frequent
basket found in dimension X as x1 and other baskets
in similar fashion. Therefore the complete set of fre-
quent baskets with their frequency count is F = [ x1:
19, x2: 10, y1: 12, y2: 10, y3: 9 ].

3.1.3 Frequent-Pattern Tree

As mentioned in Section 2.2.3, the approach proposed
in both CLIQUE and pMAFIA is similar to the Apri-
ori algorithm (Agrawal & Srikant 1994) used in min-
ing association rules. Hence both algorithms have a
time complexity of O(ck) where k is the highest di-
mensionality of the clusters and c is some constant.
To overcome this problem, we need a different ap-
proach. FP-growth is a recently proposed method for
mining frequent itemsets and we wish to employ the
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fundamental idea of the FP-growth algorithm in our
clustering algorithm.

The set of frequent baskets that we obtained ear-
lier can be thought of as the equivalent of frequent
items in a transaction database. Therefore if the value
of a data point falls inside the range of one of the fre-
quent baskets, the data point can be thought as a
record that contains the frequent item. If we repeat
the process for all the attributes, we are able to trans-
form any data points to a set of frequent baskets.

If we transform the entire data set to a set of
records with various numbers of frequent baskets, the
problem of finding clusters becomes the equivalent of
mining the frequent itemsets in a database of transac-
tions. A k-dimensional cluster C is thus a k frequent
itemset. Using the FP-tree we can efficiently mine
these frequent itemsets.

Let p = (p1, p2, p3, ...) denote a data point in the
data set S and F = {f1,1, f1,2...} be the set of frequent
baskets. If we define a function γ as:

γ(pi, fi,j) =

{

1 pi lies within the range of fi,j

0 pi does not lay within the range of fi,j

Then we can define a transformation Γ on p for all
dimensions as:

Γ(p, F ) =

{

∅ γ(pi, fi,j) = 0, ∀fi,j in F
fi,j γ(pi, fi,j) = 1

After the transformation Γ, we obtain the set of
frequent baskets. We sort the set based on the fre-
quency of the frequent basket from the most frequent
to the least frequent. Apply the transformation for
all the data points in S and we obtain sets of fre-
quent baskets representing the entire data set. We
can construct the FP-Tree accordingly.

We construct the FP-tree as described in (Han
et al. 2000) with the subtle difference that we do not
maintain the node-link (a pointer to the next node in
the FP tree carrying the same frequent item). There
are two reasons for the change:

1. Using the node-link to recover other clusters will
yield many subspace projections of the set of high
dimensional clusters in which we are not inter-
ested.

2. One of the requirements of the clustering algo-
rithm is to cover over 95% of the data set. Us-
ing the original method specified in FP-growth
to mine the frequent itemsets will not guarantee
that we will meet this requirement.

We shall continue our discussion with the data set
S to illustrate the construction of the FP-Tree. After
we obtain the set of frequent baskets F , we sort the
set in the order of descending frequency count. Hence
the new set is F ′ = [ x1: 19, y1: 12, x2: 10, y2: 10,
y3: 9 ]. We transform the data points into sets of
frequent baskets and sort them in F ′ order. Some of
the transformations are shown in Table 1.

After the transformation, we construct the FP-
Tree according to description in (Han et al. 2000).
The final FP-Tree is shown in Figure 8.



Data Frequent
point Baskets
(3,3) {x1,y1}
(3,6) {x1,y1}
(4,2) {x1}
(4,6) {x1,y1}
(4,14) {x1,y3}
(5,15) {x1,y3}
(6,15) {y3}
(7,9) ∅
(9,12) {y2}
(10,11) {x2,y2}
(11,12) {x2,y2}
(11,14) {x2,y3}
(12,13) {x2,y2}

Table 1: Transformation of points into frequent bas-
kets

 root 

y3: 1 x2: 10 y3: 6 y1: 12 

y3: 2 x2: 1 y2: 11 x1: 19 

Figure 8: FP-Tree for S

3.1.4 Cluster Recovery using Count Back

According to the rule of monotonicity stated in
(Agrawal et al. 1998), a k-dimensional cluster C is
also a cluster in any (k−1)-dimensional subspace pro-
jection. Therefore it is conceivable that we will find
many frequent itemsets that describe only a few dis-
tinct clusters. Moreover, we need a method to recover
the clusters such that the clusters cover the majority
of the data set. Therefore we devise a new method to
recover the clusters from our FP-Tree.

Algorithm 1 describes our method in detail:

Algorithm 1 Cluster Recovery using Count Back
Method

while there are nodes under root node not pro-
cessed do

if current node still has unprocessed children
nodes then

traverse down to next level
else

if the number of points in the node > κ then
label node as a potential cluster
deduct the number of points in the node
from all its parent nodes
mark node as processed

else
remove node from tree

end if
end if

end while

The pruning threshold κ, a percentage of the data
set, determines whether a node in the tree has re-
ceived enough support. If it has enough support, it
will be labelled as a “cluster” node. The threshold
κ directly determines the number of data points that

are covered by the clusters and the classification of
data points. If κ is large, we expect that a lot of
nodes in the tree are pruned and the resulting set of
clusters do not cover as much as the data set as we
want. Similarly if κ is small, a lot of nodes that should
be pruned away will be marked as potential clusters.
We varied κ between 0.5% to 50.0% of the data set
for the purpose of evaluation which we shall describe
in Section 4.3.

Once the algorithm has processed the entire FP-
Tree, we can determine the clusters using a straight-
forward method. First we traverse the tree from the
root node to find the nodes that have been marked as
a “cluster” node. The cluster is represented by the set
of frequent baskets along the path from the root to
the “cluster” node. When we find one of these nodes,
we traverse back up the FP-Tree and report the clus-
ter. Any subsequent branches under the “cluster”
node are ignored since they are part of the reported
cluster.

A simple method to determine a “cluster” node
is to compute a threshold for every node in the tree.
The threshold will be a function of the frequent bas-
ket it carries and the depth of the node in the tree. If
the number of points in the node exceeds the thresh-
old, then it is flagged as a “cluster” node. Neverthe-
less we cannot guarantee the number of points that
the resulting clusters will cover. With the count back
method, we have more control over the coverage of the
clusters on the data set using the threshold κ. There-
fore the count back method is the better alternative
under this restriction.

The rationale of the count back method is that we
do not want to discriminate heavily supported nodes
that are high up in the tree. The children nodes may
receive enough support themselves to be classified as
a “cluster” node, however we want to make sure the
eventual clusters can cover enough points in the data
set.

Continuing our demonstration with the FP-Tree
constructed from the data set S, we set κ = 15%
which is equal to 5.1 data points. The first iteration of
the algorithm marks the nodes {x1,y1}, {x1,y3}, and
{y2,x2} as the “cluster” nodes since their frequency
count exceeds the required percentage κ. The nodes
{x2,y3} and {y3} are under the threshold and they
are removed. Once these “cluster” nodes are marked,
we deduct the number of points inside the “cluster”
nodes from their parents. The resulting FP-Tree is
shown in Figure 9.

 root 

x2: 1 y2: 1 x1: 1 

Figure 9: FP-Tree after first iteration of count back
method

All of the nodes left in the tree are under the
threshold and hence they are pruned away. We reach
the terminating condition of the “while” loop. Using
the frequent baskets, the algorithm determines the
range of the clusters and returns the following set of
clusters C:

c1 : {3 ≤ x ≤ 5, 3 ≤ y ≤ 6},
c2 : {3 ≤ x ≤ 5, 14 ≤ y ≤ 15},

c3 : {10 ≤ x ≤ 12, 11 ≤ y ≤ 13}



3.1.5 Duplicate Clusters Removal

Once we obtain the set of the clusters, it is possible
that the set is not orthogonal, i.e., some clusters have
extended in more dimensions than other clusters. Al-
though the method of the recovery of clusters has
eliminated most of them, they can still be reported
as a result of the structure of the FP-Tree. This is
because identical branches are possible at different
levels of the FP-tree. If they both exceed the thresh-
old κ, the algorithm reports both the branches that
made up the cluster.

To eliminate the sub-clusters (reported clusters
that have extended in more dimensions than other
clusters), Algorithm 2 describes the steps in detail.

Algorithm 2 Sub-cluster Elimination

sort the set of clusters C in order of the least num-
ber of dimensions first
for i = 0 to (length of set - 1) do

for j = i + 1 to (length of set) do
if cluster[j] is a sub-cluster of cluster[i] then

remove cluster[j]
end if

end for
end for

From the set of clusters C, there are no duplicate
clusters. Therefore we shall illustrate the part of the
algorithm with another simple example. A FP-Tree
F ′ is shown in Figure 10. The corresponding set of
clusters is C2 = [ {x1,y1}, {x1,y2}, {y2} ]. Following
the elimination algorithm, we sort the clusters and
obtain the set C ′

2 = [ {y2}, {x1,y1}, {x1,y2} ]. Then
starting from the first cluster {y2}, we examine the
subsequent two clusters. Since the last cluster {x1,y2}
is a sub-cluster of {y2}, we remove it from the set. It
leaves us only two clusters in the set and the algorithm
terminates.

 root 

y1: 6 y2: 8 

y2: 6 x1: 15 

Figure 10: Example of FP-Tree F ′

3.2 Complexity Analysis

The time complexity of the algorithm is dependent on
three stages of execution of pfMAFIA: (1) the discov-
ery of frequent baskets and the transformation of data
points into sets of frequent baskets, (2) the building
and the mining of the clusters from the FP-Tree, and
(3) the elimination of sub-clusters.

To find all the frequent baskets, fpMAFIA requires
two passes of the data set. The first pass determines
the range of the dimensions and the second pass de-
termines the histogram count of the fine bins in the
dimensions. To transform the data points into fre-
quent baskets, fpMAFIA requires another pass of the
data set. Thus, the time complexity of the first stage
is O(N), where N is the total number of data points
in the data set.

To analyse the complexity of the second stage, we
first make the following definitions. Let Nfb denote
the number of frequent baskets found, Nd denote the
total number of dimensions in the feature space, and
Nd(fb) denote the total number of dimensions that
contain frequent baskets. In other words, if there are
n dimensions in the feature space but frequent baskets
are found only in m dimensions, then Nd(fb) = m.
Therefore Nd ≥ Nd(fb). We define µ as the average
number of frequent baskets per contributing dimen-

sion, hence µ =
Nfb

Nd(fb)
and µ ≥ 1. We shall consider

the average case first then the worst case.
We assume that: (1) each level of the tree contains

frequent baskets from only one of the dimensions in
the feature space, and (2) Nd(fb) = Nd. The compu-
tational complexity of any operations performed on
the tree is dependent on the size of the tree. Follow-

ing the assumptions above, the nth level of the tree
contains µn nodes. Since there are Nd levels in the
tree, the total number of the nodes is O(µNd). 3

The worst case analysis is different to the average
case. The first assumption is no longer valid, but we
first consider the special case that every dimension
contains only one frequent basket, hence Nfb = Nd

and µ = 1. First all allowable combinations of the fre-
quent baskets are presented and hence the FP-Tree
is populated with many nodes and branches to fit
these combinations. We shall consider the frequent
basket that ranked lowest (fNfb

). Given a set of n
frequent baskets, the total number of possible combi-

nation with fNfb
is

(

Nfb − 1
n − 1

)

. Therefore the total

number of possible combinations with fNfb
is the sum

of all combinations of the set of frequent baskets from
zero to the number of frequent baskets Nfb.

Nfb−1
∑

i=0

(

Nfb − 1
i

)

= 2Nfb

Therefore the number of nodes that carry fNfb
is

2Nfb . Similarly, counting the possible number of com-
binations for the second lowest ranked frequent basket
(without fNfb

), we know that the number of nodes

that carry the frequent basket is 2Nfb−1. Extending
the arguments for other frequent baskets, we can pre-
cisely compute the size of the tree which is equal to
2Nfb+1. In our special case where Nfb = Nd, the size
is also equal to 2Nd+1. The result implies that the size
of the tree is exponential to the number of dimensions
in the data set.

We then consider the general case of µ > 1. The
number of nodes carrying fNfb

increases by some con-
stant factor as the number of possible combinations
with fNfb

increases. The size of the tree increases

and the size complexity becomes O(cNd+1), where c
is some constant. Therefore both the operations that
involve the FP-Tree will also have a computational
complexity O(cNd+1).

The time complexity of the third stage is O(n2
c),

where nc denote the number of clusters discovered.
Nevertheless nc is usually very small compared to the
number of frequent baskets found.

Therefore the worst case complexity of fpMAFIA
is O(N + cNd+1 + n2

c). The complexity suggests that
the algorithm does not scale well with an increase
in dimensions, but our empirical results demonstrate
that the parameter values in practice are quite small,

3The sum of the finite geometric series:
∑

n−1

i=0
ri = rn

−1
r−1



e.g. c = 1.32. The time complexity for both CLIQUE
and pMAFIA are O(Nk′ + ck′

), where k′ denote the
maximum dimensionality of the cluster. Therefore
these algorithms are more susceptible to high dimen-
sional clusters. Not only do they need more passes of
the data, the number of candidate dense units gen-
erated also grows exponentially. Comparatively our
algorithm is able to handle clusters that have high
dimensions more gracefully, i.e., without any extra
passes on the data and no candidate dense units are
generated.

4 Evaluation

4.1 Description of the DARPA Data Set

The data used for testing is the KDD Cup 1999 data
mining competition data set (KDD 1999). It orig-
inated from the 1998 DARPA Intrusion Detection
Evaluation Program managed by MIT Lincoln Labs.
Lincoln Labs simulated a military LAN and peppered
it with multiple attacks over a nine week period. The
training data set consists of the first seven weeks of
traffic with around 4.9 million connections and the
testing data consists of the last two weeks of traf-
fic with around 300,000 connections. It contains new
types of attack that were not present in the training
data.

The entire data set was generated by collecting the
binary TCP dump and converting them to a series of
connection records. Each record consisted of 41 fea-
tures of various types, and a class label that is either
“normal” or one of the attack types. The types of
attack include denial of service, unauthorized access
and probing attacks.

The extracted features included the basic features
of an individual TCP connection, content features
within a connection suggested by domain knowledge,
and traffic features computed using a two-second time
window.

4.2 Experimental Setup

In our experiment, we did not use all the data from
the 1999 KDD Cup data set. Since it was a super-
vised learning competition, the data set contains a
high percentage of attack traffic for training purposes.
We need to filter out most of the attacks however to fit
Assumption 1. When the filtering is done, all 24 types
of attack that are presented in the original training
data set are equally represented (as much as possi-
ble) in the training set we used. It contains around 1
million records.

The testing data set also has a similar problem,
and we perform more filtering. Upon close exam-
ination, two types of DoS attacks constitute just
over 71% of the testing data sets. There are smurf
and neptune attacks that are easily detectable by
other means (Abdelsayed, Glimsholt, Leckie, Ryan
& Shami 2003) since they generate large volumes of
traffic. Removing these attacks from the testing set
prevents the result being heavily biased and enhances
its meaning. As a result, the testing data set only
contains around 80,000 records.

The parameter values used by our algorithm are
shown in Table 2.

After the training phase is completed, we obtain a
set of clusters. Our assumption is that only the points
that fall outside of the boundary of these clusters is
classified as anomalies. Therefore using the same as-
sumption, we labelled the test data in the same man-
ner. If the test data point falls outside of the bound-
ary of any clusters, it is labelled as an anomaly.

Parameter Value
α 1.5
β 20%
ε 10,000
κ 0.5% – 50.0%

Table 2: Various values of parameters in pfMAFIA

4.3 Results

The pruning threshold κ determines the resulting set
of clusters that the algorithm produced. We can eval-
uate the performance by varying the threshold and
obtaining different unique sets of clusters. From these
clusters we obtained the corresponding false positive
rate and detection rate. We use the results gathered
to plot the ROC graph in Figure 11.
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Figure 11: ROC curve of pfMAFIA

For comparison, we obtained a set of similar ROC
graphs from (Eskin et al. 2002) and (Oldmeadow
et al. 2004). The curves were produced using the
same data sets, but with different clustering or out-
lier mining techniques. In (Eskin et al. 2002), Stolfo,
et al. evaluated the k-Nearest Neigbhour outlier min-
ing algorithm (K-NN), fixed-width clustering algo-
rithm (Cluster) and support vector machine (SVM).
In (Oldmeadow et al. 2004), Oldmeadow, et al. evalu-
ated the modified clustering-TV algorithm (Modified
Cluster-TV).
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Figure 12: ROC curves from Stolfo, et al. and Old-
meadow, et al.

Let Area(R) denote the area under the Receiver
Operator Characteristic (ROC) curve R. To more
accurately compare these approaches, we calculated
the performance value using the area under the ROC
curves in Figure 11. We also show the area under the
ROC graphs in Figure 12 and presented both sets of
figures in Table 3. The conditions which the ROC



graphs are produced are slightly different, however
the comparison is still meaningful.

Algorithm Area Under ROC
fpMAFIA 0.867
K-NN 0.895
Fixed-width Clustering 0.940
SVM 0.949
Modified Clustering-TV 0.973

Table 3: Comparison of Performance

It is worth mentioning the experimental setup of
which the results are obtained in the studies by Stolfo,
et al. (Eskin et al. 2002) and Oldmeadow, et al.
(Oldmeadow et al. 2004), such that the comparisons
between results from Table 3 are more meaningful.
Although Stolfo, et al. did filter most of the attack
from the training set to fit Assumption 1, they failed
to describe how the filtering was done. Moreover,
they used primarily the training data for both testing
and training of the algorithm. As mentioned in Sec-
tion 4.1, the testing data contains new type of attacks
that are not presented in the training data. There-
fore their algorithms would have “seen” all the attacks
during the testing phase whereas our algorithm would
have not “seen” such attacks. The testing codition
of the experiments by Oldmeadow, et al. is roughly
the same as ours. Nevertheless their algorithm has
the added advantage that it used hand-crafted fea-
ture weighting to improve its detection rates in some
DoS attacks.

5 Discussion

Our results indicate that while fpMAFIA was able
to achieve a high detection rate, it suffered from a
high false positive rate compared to the other meth-
ods. Table 3 showed that the performance value of
fpMAFIA is 0.867. It is approximately 3% – 12%
worse off than the other algorithms.

Further analysis reveals that pfMAFIA reports
only one cluster under various values of κ. The nature
of the cluster remains the same, with the number of
dimensions in the cluster varying with different values
of κ. Nevertheless there is no correlation between the
two values.

Interpreting the cluster in human readable form
reveals that the majority of the connections share
exactly the same values in a set of features. Thise
set includes a large number of content features (e.g.,
number of “su root” commands attempted, number of
failed logins, number root shells obtained, etc.), a few
basic features (number of wrong fragments, number
of urgent packets, and number of connections from/to
the same host/port) and a moderate number of de-
rived features (percentage of connections that have
“SYN” errors, percentage of connections that have
same or different service, etc.). Therefore the result
suggests that this set of features is important in classi-
fying the nature of the TCP connections. As shown in
Figure 11, the connection is more likely to be normal
if it meets all the conditions described by the cluster.
Providing the data set is an accurate representative
of the real world, a more simple and effective intru-
sion detection scheme can be designed with particular
focus on these features.

Nevertheless the lack of multiple clusters is one of
the possible reasons for the inaccuracy of fpMAFIA in
comparison to algorithms tested in (Eskin et al. 2002)
and (Oldmeadow et al. 2004). Both studies used
the fixed width clustering algorithm described in Sec-
tion 2.2.1 as their unsupervised anomaly detection

algorithm. Compare to our density and grid-based
clustering algorithm, the fixed width clustering algo-
rithm has the added advantage that it can cluster ev-
ery point in the data set. Therefore the anomalies are
clustered into a set of small clusters and their identifi-
cation are more straightforward. On the other hand,
the density-based clustering algorithm has the inher-
ent inability to cluster points that lay in sparse region
of the data space. Since the anomalies only make
up a small percentage of the data set, which are the
most likely occupants of the sparse regions according
to Assumption 2, most are ignored. The results sug-
gested that the identification of the precise nature of
anomalies is an important factor on the performance
of unsupervised anomaly detection algorithm in net-
work intrusion detection.

Although we obtained the ROC graphs under dif-
ferent conditions compared to the experiments set
up in (Eskin et al. 2002) and (Oldmeadow et al.
2004), our results compare only slightly unfavourably
against them. Given the empirical run time statis-
tics of pfMAFIA, we consider the algorithm has been
reasonably sucessful, and is a promising subject of
further research for high dimensional datasets.

6 Further Work

There are a few areas of the project that we suggest
as topics for further work:

• We acquired the values of the parameters α and
β from the adaptive grid algorithm in pMAFIA.
The choice of these parameters, however, may
affect the accuracy of the final results. We would
like to investigate the possible effects in changing
the values of α and β independently in detail.

• We argue that the pruning threshold κ deter-
mines the number of points that the resulting
set of clusters will cover. Nonetheless it does not
appear to be the case with this data set. There is
correlation between the two values but no obvi-
ous proportionality relationship. We would like
to further examine the exact effects of varying κ
and the number of points that the clusters cover.

• We would also like to improve upon the current
pfMAFIA in several directions. One possible
direction is substituting the mining of frequent
itemsets with the mining of maximally frequent
itemsets. Thus, the clusters will always have the
highest dimensions possible. This may contra-
dict our aim of maximum coverage but we may
be able to make some modifications of the algo-
rithm to achieve both aims.

7 Conclusion

We have evaluated a new approach in unsupervised
anomaly detection in the application of network in-
trusion detection. The new approach, fpMAFIA, is a
density-based and grid-based high dimensional clus-
tering algorithm for large data sets. It has the ad-
vantage that it can produce clusters of any arbitrary
shapes and cover over 95% of the data set with ap-
propriate values of parameters. We provided a de-
tailed complexity analysis and showed that it scales
linearly with the number of records in the data set.
We have evaluated the accuracy of the new approach
and showed that it achieves a reasonable detection
rate while maintaining a low positive rate. Using
the results, we provided some insights to the likely
requirements of a good unsupervised anomaly detec-
tion scheme in the application of network intrusion
detection systems.
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