
Using Extreme Programming in a Capstone Project

Karen Keefe(1), Martin Dick(2)
Department of Computing & Information Technology(1)

Swinburne TAFE
144 High Street Prahran, Victoria 3181, Victoria

School of Computer Science and Software Engineering(2)
Monash University

900 Dandenong Road, Caulfield East 3156, Victoria
KKeefe@groupwise.swin.edu.au(1)

martin.dick@csse.monash.edu.au(2)

Abstract • an incremental approach to planning designed to
develop a high level overview of the system
under development, which can then continuously
evolve;

This paper describes the experience at Swinburne TAFE
of using the Extreme Programming software development
methodology with a final year capstone project. It found
that it was possible to use the methodology successfully
for such a project, but that students need to be actively
coached in the skills necessary to make XP. A positive
result was that less skilled students made more progress
than probably would have been the case using a
traditional methodology.

• an adaptive approach to the way businesses
requirements change and hence an adaptive
approach to the implementation of functionality
required by the software system;

• the emphasis on an automated testing process
that is designed to catch defects injected into the
software earlier; Keywords: Capstone Projects, Extreme Programming,

Software Development Methodologies
• using testing, source code and oral

communication as a means to communicate the
systems structure and purpose as opposed to
system documentation; and

1 Introduction
In recent years, agile software development
methodologies have received a great deal of attention in
the software development world. Extreme Programming
(XP) was one of the original agile software development
methodologies to have emerged during this period. XP is
not only one of the first agile methodologies, but one of
the most widely recognised of this type of methodology
(Juric 2000; Nawrocki et al. 2001; Newkirk 2002).

• a continuous and evolving design process that
lasts as long as the system is in existence

At the heart of XP are the following four values (Beck
2000):

1. Communication: XP aims to keep
communication flowing by employing many
practices that cannot be done without direct
communication. It stresses that most
communication should be direct face-to-face
communication.

The use of XP in industry has been claimed to provide
significant benefits (Beck 1999) and there seems to be
potential in the use of the methodology for student
projects. This paper looks at the experiences of using the
XP methodology in a capstone project at Swinburne
Technical and Further Education (TAFE). 2. Simplicity: XP stresses the importance of

keeping designs simple According to Beck
(2000) for software systems to be considered
simple the following criteria should be met – the
code will run all tests, communicates everything
to the programmers that needs to be revealed,
there is no code duplication and has the least
number of classes and methods required.

2 Overview of Extreme Programming
The differences that distinguish XP from traditional
software development methodologies are the emphasis on
(Beck 2000) :

• continuous concrete feedback from short cycles
of development; 3. Feedback: Developers and clients should

receive feedback on the state of the system as
frequently as possible.

Copyright © 2004, Australian Computer Society, Inc. This
paper appeared at the Sixth Australasian Computing Education
Conference (ACE2000), Dunedin. Conferences in Research
and Practice in Information Technology, Vol. 30. R. Lister and
A. Young, Ed. Reproduction for academic, not-for profit
purposes permitted provided this text is included.

4. Courage: This value is based on the fact that
developers need to be able to see that the
development process has gone in the wrong
direction and that corrections are necessary.
Correcting the problems might entail throwing
away days of work and rewriting the code, even
though the code had previously passed tests.

The values of XP are implemented and enforced by the
use of twelve practices. These practices are core to the
use of XP. They are:

Practice Practice Overview

Planning
Game

Determining scope of project and
releases, by combining the
priorities of the business with the
technical estimates. An ever-
changing plan.

Small Releases

Frequently releasing simple
systems, and releasing a new
version on a very short cycle (1 to 3
weeks).

System
Metaphor

Simple shared story of how the
system works, to give both
developers and clients common
ground.

Simple Design

Keeping the system design as
simple as possible and finding and
removing extra complexity as soon
as possible.

Testing

Continuously writing and running
required tests, each time new code
is written or existing code is
changed including unit and client
written acceptance tests.

Refactoring

Improving design of a project
without changing the functionality
of the existing code. Removing
duplication, improving
communication, simplification and
flexibility.

Pair
Programming

Writing production code with two
developers at one machine.

Collective
ownership

All developers responsible for all
code, therefore being able to make
changes to any piece of code at any
time when necessary.

Continuous
integration

Integrating all changes once
completed versus developing them
in separate branches.

40-hour week

To keep developers interested,
creative and fresh no one should
work more than 40-hours maximum
in one week. And no developer
should do more than a week’s
overtime in a row.

On-site
customer

A customer is part of the
development team as a domain
expert to aid the developers in the
production of the system. The
customer is located at the same site
as the development team.

Practice Practice Overview

Coding
Standards

Developers write all code in
accordance with the standards
agreed upon, by the development
team, to ensure that communication
is made through code.

Table 1 Overview to the twelve key practices (Beck
2000)

The twelve practices combine together to form a coherent
whole, where the weakness of one practice is covered by
the strength of another practice. For example, refactoring
to remove complexity can be a very dangerous process,
with the change causing significant problems in other
sections of the code, this is handled by having very high
levels of testing and continuous integration which will
very quickly reveal any problems caused by the
refactoring.

3 Related Work
XP has not been used extensively in educational settings.
Three studies have been identified. The first of these
studies was conducted at the University of Karlsruhe
using graduate students participating in a practical
training course as part of their degree requirement.
(Muller and Tichey 2001)

The second study was held at the University of Calgary
with fourth year students completing a design project
requirement. (Kivi et al. 2000)

The final study was conducted at the North Carolina State
University with 150 seniors completing a software
engineering course. (Shukla and Williams 2002). The
following sections detail the results of each of the studies
in relation to the practices of XP.

3.1 Planning Game and Small Releases
The course at North Carolina State University was held
over a four-week period and they had one release. The
Planning Game was simulated in a classroom
environment with all one hundred and fifty students being
involved. The students were encouraged to break the
release down into smaller iterations, but the customers
did not participate in the iterations. (Shukla and Williams
2002) Student felt the process of the Planning Game,
establishing the user stories was beneficial to their
understanding of the project. The small releases and
iterations helped the students identify where problems
and defects were injected into the code base.

Kivi et al (2000) found that the process of incremental
deliverables and small releases was beneficial to the
team, as the team was able to better focus on the customer
requirements and allowed for a feedback process to be
established. The team from this case study used use cases,
from the Unified Modelling Language (UML), to
establish the client requirements. The team rather than the
client wrote the use cases after establishing the general
requirements for the whole system with the client. (Kivi
et al. 2000) This differs from the XP Planning Game
practice where the customer writes the user stories,

prioritises requirements to be completed in an iteration
and for the overall release.

At the University of Karlsruhe the instructor was the
customer and established the requirements for the
iterations. Students in this study found it difficult to only
plan and develop for the iteration. Students kept planning
for possible extensions to the project that were never
implemented in the end product. (Muller and Tichey
2001)

3.2 System Metaphor
The case study from the North Carolina State University
was the only one to explicitly mention the system
metaphor practice. Some of the students adopted the
metaphor, but the overall findings were that students
either did not try to use a metaphor, or they did not like
using the metaphor. One comment from the students was
that they did not see the point of using a metaphor to
describe the concept of the system. (Shukla and Williams
2002)

3.3 Simple Design
Students from the University of Karlsruhe had problems
with the practice of simple design, instructors involved in
the course believe that this was due to students being
taught throughout most of their course to think about
reuse, extensibility and for future developments. (Muller
and Tichey 2001) Students in this study called the process
“design with blinders”. The findings of this case study
were that it was a difficult practice for the students to
implement.

The students from the University of Calgary had
difficulty with the lack of future planning. During their
second increment they spent much of the time changing
the architecture so that they could implement the
requirements for that increment. (Kivi et al. 2000)

With the third of the case studies, the instructors found
that the students reported success with the
implementation of simple design, because students tended
to do simplest thing possible anyway and not document.
(Shukla and Williams 2002) The authors of this case
study believe that there are problems, from an educational
viewpoint, of the students not completing any
documentation.

3.4 Testing
The students from the University of Calgary used jUnit
for their unit testing. Though they said that they neglected
to write their test cases upfront, they were writing them
afterwards; this was due to the slow progress that was
being made when writing the test cases upfront. (Kivi et
al. 2000) They did recognise that the implementation of
upfront unit testing would have been more beneficial if
implemented from the start of the project.

The students from the University of Karlsruhe did, for the
most part, complete upfront testing. The production of
test cases upfront made the student more confident with
their code. (Muller and Tichey 2001) The continuous
running of the tests was also seen as beneficial as due to

the automatic regression testing. One problem that the
students from this case study faced was that those who
were developing the graphical display had no tool for
automated testing. They wrote manual tests and ran those,
but they were still ensuring that the code that they wrote
was tested. (Muller and Tichey 2001)

The third case study had mixed results in encouraging
students to write their test cases upfront. Some students
from this case study wrote their test cases after the
production code was written and only wrote the test cases
to complete the testing requirements of the project.
(Shukla and Williams 2002) Students did report
advantages to upfront testing, for example knowing how
much work was left on a task and not having to rewrite
tests as the test base was already in existence. (Shukla
and Williams 2002)

All three case studies used jUnit as the testing framework
for the test cases. jUnit is a Java testing framework that
was developed by Kent Beck for XP.

Of the three case studies only one, North Carolina State
University, dealt with acceptance testing. The students
had to suggest to the client the test cases that would make
up the acceptance tests. (Shukla and Williams 2002)

3.5 Refactoring
The students at North Carolina University found that
refactoring was a necessary and valuable practice.
(Shukla and Williams 2002) Refactoring improved their
code, making it simple by removing unnecessary
complexity and duplication. They also combined the
practice of testing successfully to ensure that they did not
break their code.

Refactoring was not an issue for the students of the
University of Karlsruhe; they found that their designs
were complete and simple enough without having to
refactoring them. The authors believe that there are two
possible reasons for this; one being the small scale of the
project and the other being the students did a full design,
rather than minimal designs. (Muller and Tichey 2001)

The students from the University of Calgary found that
initially they did not need to refactor their code, there
were few defects and they were producing working
releases quickly. (Kivi et al. 2000) Once more
requirements came into the development team they found
that they spent more time refactoring than implementing
new features. Team members did not see how refactoring
was adding value to the project. The study found that if
more time had been spent in the initial planning stages of
the project, then much of the refactoring might not have
been necessary as there would have been a better
understanding of the system by the developers. (Kivi et
al. 2000)

3.6 Pair Programming
Two of the case studies reported that the students had
positive experiences with pair programming. Students
generally found that pair programming helped them solve
problems and pick up defects quicker. (Shukla and
Williams 2002) Due to the students’ schedules it was not

always possible for them to work together. Students also
agreed that they learnt from the partners when pair
programming. (Muller and Tichey 2001) There was also
the transfer of knowledge between the teams involved
within the project teams, with the pairs sharing their
knowledge of the code base with their team members.
(Kivi et al. 2000)

Students involved in one of the case studies, however,
discontinued the pair programming practice due to
scheduling problems and because they felt that coding
known or accepted code together was wasting time. (Kivi,
et al. 2000) The students from the University of Karlsruhe
felt that pair programming was also wasting time when
developers were coding “get and set methods” that is a
low level of programming. (Muller and Tichey 2001)

3.7 Collective Code Ownership
The North Carolina State University case study was the
only one that specifically mentioned the implementation
of collective code ownership within the project that their
students undertook. The students involved used
Concurrent Versions System (CVS) as their source code
control system. (Shukla and Williams 2002) Students
found the transition to collective code ownership hard
initially but a successful practice by the end of the
project. (Shukla and Williams 2002)

3.8 Continuous Integration
The North Carolina State University case study was the
only study to discuss continuous integration in terms of
the number of builds of the code base per day. Students
developed their coding tasks and integrated it back into
the code base once the task was competed. Students saw
this as a benefit as they could see the project growing and
working as a whole. (Shukla and Williams 2002)

The Muller and Tichey (2001) only mention continuous
integration or configuration management in relation to the
tool CVS that was used to manage the code base. Kivi et
al (2000) discuss the manual version control system that
the students initially used. It was error prone and difficult
to manage. By the end of their project the students were
using Java Concurrent Version System (JCVS) that
enabled the students to be more consistent with the
management of their code base. Neither of these articles
discusses how often students went through the process of
building and integrating the code base once tasks were
completed.

3.9 40 Hour Week
The article by Shukla and Williams (2002) discussed the
forty-hour week practice. This practice was implemented
by basing the ideal programming week on nine hours per
week. They found that when students were pushed into
working overtime their artefacts were of poorer quality.

3.10 On-site Customer
In all three of the case studies teaching staff played the
role of the client. There were limitations to the staff
simulating on-site customers, but tools such as emails and

message boards substituted for the clients being with the
development team at all times. The three case studies do
not discuss the role of the client in more depth.

4 Research Background
Capstone projects are incorporated into the final year of
most computing courses at tertiary learning institutions
and aim to bring together the skills that a student has
learnt throughout the duration of the course. (Clear et al.
2001) The common formats of capstone projects are
development projects or research based projects. With
both these styles of the capstone course there are common
elements, a project, a team, a sponsor, an instructor and a
coordinator. (Clear et al. 2001)

Swinburne TAFE is made up of six campuses, Croydon,
Wantirna, Prahran, Hawthorn, Lilydale and Healesville.
The Diploma of Information Technology – Software
Development is conducted at Croydon, Wantirna and
Prahran. Capstone projects have been incorporated into
the final semester of the two-year Diploma of Information
Technology – Software Development since 1997.

The capstone course gives the students a holistic
experience of working on a larger scale project and the
opportunity of putting into perspective the different roles
of software development teams. Students also experience
working with real-world clients, gaining invaluable skills
in dealing with clients, which are not developed in other
parts of the diploma course. Students work within teams
of four to six, experiencing a team dynamic for an
extended period of time. This improves upon their team
skills, skills that are valued by employers.

The capstone course at Swinburne TAFE is product-
oriented. The emphasis is for students to produce robust,
quality software that the clients can continue to use long
after the software delivery. The standard structure for the
capstone project is an incremental object-oriented
lifecycle. The incremental model combines a linear
sequential model with the iterative nature of a prototyping
model. (Pressman 2001) Student projects consist of two
increments, the first increment delivered at the end of the
fourteenth week of the project and the second increment
delivered in week eighteen, which is the final week of the
capstone project.

The time that the students are required to spend in official
classes is 360 hours for the eighteen-week semester.
These 360 hours are divided over four subjects. Part of
the 360 class hours will be spent teaching students
necessary skills to complete their projects, while the
remainder of the hours will be spent working on the
projects. In addition to the 360 hours class time, students
will be expected to work on the projects in their own
time. Each student is expected to spend approximately
one additional hour outside of the classroom for every
hour that is spent in the classroom. This will give the
students a total of 720 hours for the semester or 40 hours
per week, though this time is dependant on the projects
that are undertaken, the skill level and dedication of the
students involved.

4.1 XP and the Capstone Project
The capstone project was structured around a system that
was to be developed to provide a simulation of the
lifecycle of a software development project where the
player takes the role of the project manager and has to
guide their project through to completion (simProject).
The simulation is designed to be used in the Bachelor of
Computing at Monash University to assist in the teaching
of IT project management. The author based at
Swinburne TAFE acted as the XP mentor for the team,
while the author from Monash University acted as the
client for the project.

The project was proposed to the four groups as a possible
project and the use of XP was made explicit in the
proposal along with an explanation of the XP
methodology. One of the teams was quite enthusiastic
about the methodology and volunteered. The team was
then given a one week introduction to the tools used in
the XP process and then commenced the project.

4.2 Research Method
With only one team to work with and the exploratory
nature of the research, it was decided to use an action
research method. Action research encourages researches
to take action and to effect positive change based on
findings, rather than simply report findings. (Mills 2000)
The action researcher has a routine that involves looking,
thinking and acting in a continuous cycle throughout the
duration of the research period. (Stringer 1996). This was
felt to suit the circumstances of the research well.

Data was gathered through interviews, observations self-
reflection on the part of the XP mentor and a post-mortem
report written by each of the students. Interviews were
conducted with the four students in weeks 6, 12 and 18.
The first and second sets of interviews took between
twenty and thirty minutes, with the third set taking
between forty-five and sixty minutes.

The interviews were transcribed and then analysed using
the NVIVO tool (Richards 1999) and the following high-
level categories were used:

• Students – category created to hold all
information contained within a transcript based
on the interviewee.

• Experiences – detailed students’ experiences
with the other students in the XP team.

• Difficulties – detailed difficulties relating to the
project, but not explicitly linked to XP. For
example difficulties relating to estimating or the
technologies that were implemented to enhance
the XP practices.

• Extreme Programming – data explicitly related
to the XP practices and values.

• Future – foreseeable future problems within the
project either directly related to XP or not.

• Project – discussions relating directly to the
project under development, that is simProject.

Ongoing results were fed back into the project to improve
the implementation of the XP practices as the capstone
project progressed.

4.3 Teaching Framework
A teaching framework for the capstone project was
established prior to the students commencing. A detailed
description of the framework can be seen in Appendix 1.

4.4 Ethical Considerations
Given the experimental nature of the application of XP to
a student capstone project at Swinburne, it was decided
that the use of a single team and project using XP would
allow the authors to concentrate their efforts and give the
students in the team the best chance of success. Ethically,
this was an important consideration as we did not want to
disadvantage the team in comparison to the other project
teams in the Diploma.

5 Results
The results are presented in terms of the twelve practices
of Extreme Programming and a number of other lessons
that were learned.

5.1 Planning Game and Small Releases
Students found that the Planning Game was mostly a
positive experience. One of the positive aspects was that
the students were able to concentrate on small parts of the
system at a time, which allowed more flexibility in the
requirements gathering process. Students found that this
aspect of the Planning Game was a double-edged sword,
as they did not know the details of all stories that were in
the future. Students at Swinburne TAFE are used to
working to more traditional lifecycles where all the
requirements are gathered during an analysis phase and
they have a whole picture of what is expected in the
development of the project.

“The positives [of the Planning Game] are if you
brainstorm about something you can add it in and you
are not set to a whole document. But in the same way this
is a negative, because you do not know what’s coming
ahead.”

The constant client involvement in the Planning Game
proved to be the most effective way for the team
members to get a full understanding of the requirements
of the project. Students received constant and direct
feedback from the client ensuring that they had a clear
understanding of what they were required to do.

Issues that were raised during the Planning Game were
brought about by the students’ poor estimating skills.
Students involved in simProject were inexperienced with
non-trivial development tasks and the estimation of these
tasks. Initially when estimating tasks at the beginning of
development students were overestimating and tasks were
completed ahead of the estimated schedule. This had a
twofold effect of giving the students the impression that
they were not achieving as much as they should have
been, while having a secondary effect of making the

students complacent with the progress of the project. As
the project progressed to more complex tasks the team
underestimated how long it would take them to complete
their programming tasks. There were two reasons for the
inaccurate estimations; a) the complexities of the task at
hand and b) the lack of experience the students had in
creating estimates for themselves.

Another problem that the students had was the breaking
down of the stories into the task level, stories themselves
were eventually found to be too small and therefore too
hard to be broken down. Or the when broken down they
were so small that they were too dependant on other tasks
for them to be completed as discrete tasks. This may be
linked to the size of student capstone projects. Capstone
projects must be able to be completed within a set time
frame, which may then impact upon the level of
complexity and the size of the project under
consideration.

5.2 System Metaphor
This practice was the least understood and least liked of
the practices. The XP team did work with an external
System Metaphor in the initial stages of the project
development. Game simulators such SimCity and King of
Dragon Pass were used initially to give the students an
understanding of the concept behind simProject, but
within only a few weeks simProject became the metaphor
for itself. The students found that the concept of
simProject was not difficult for them to understand and
therefore there was no need for them or the client to use
an external source for them to get a common language.

5.3 Simple Design
Students initially developed the system essentially so that
it would work, they did not explicitly keep in mind the
need to keep the design as simple as possible. Throughout
the project with refactoring students have been able to
keep the design as simple as they could, but with time
constraints they were not able to refactor the code enough
to simplify the design as much as they could have done.

Students felt that they would have benefited from more
light upfront design, which as well as helping keep their
system design simple, would have assisted them with
their testing and with the continuous integration practice.
At different stages of the project, when tackling complex
tasks, some light upfront design was completed, to the
benefit of the students. This design gave the students a
“roadmap” to the task at hand and an understanding of
how the components of the system fitted together.
Students appreciated the design sessions, but were not
self-disciplined enough to continue the design sessions on
their own. Instead they would simply work together on
the task until they achieved a workable design.
Observations from the researcher indicate that tasks
performed after a design session were completed quicker
and with less associated problems, for example the test
cases were written or updated without problems and
integration of the new code with the existing code base
was completed with less problems.

5.4 Testing
XP uses the testing process to drive the design of the
system at hand, but the students who had little design
experience, whether in a traditional or in the XP manner,
found that writing the test cases this way was
problematic. The main concern for the students was that
they did not know what they were going to test prior to
the code existing. Students wrote test cases once a class
was either partially or completely written. Student C said
of the testing process:

“You don’t know what all the methods are, so it’s hard to
write upfront tests.”

Another issue with the testing process was that the
students had to learn how to use jUnit, and initially,
before jUnit was installed on the development server,
students were writing their own test harnesses to test their
classes.

“We did some testing of the servlet that we created, we
wrote a little test harness for MonkeyReader class, a
straight forward harness, doing it pretty much what jUnit
was doing, but doing it manually, through a standard test
harness.”

Once jUnit was installed and running correctly the
students then had the prospect of learning the new tool,
and trying to assess how jUnit would work. Initially
students were not comfortable using the jUnit framework.
Student B said of the jUnit framework and why they
persisted with manual testing:

“I had a play with jUnit, because I wasn’t sure about all
of the commands that were available, I wasn’t quite
comfortable within jUnit so that’s why I stuck to the
manual testing.”

The attitude to jUnit changed as the project progressed
and the students became more comfortable with the tool,
and they used it more frequently this attitude changed.
Student C said:

“jUnit was one of the new technologies that I actually
picked up quite well, and I am happy to learn something
new. It helped me a little bit with my logic and
understanding of methods in the actual Java classes.”

5.5 Refactoring
Of all the XP practices, refactoring was one of the most
successful. Students found that refactoring was a natural
process and implemented it throughout the project. The
design of the system was greatly simplified by careful
refactoring at the commencement of each new task, or
during tasks. The students understanding of the code
improved as they refactored the code, and their coding
abilities improved as they found better ways to write
pieces of the system whilst refactoring. Student B said:

“Refactoring helps make the code work better and it
helps you understand the code better; expand your
horizons of the code. There are lots of different methods
for doing one particular feature, different ways of doing
it.”

5.6 Pair Programming
When the students implemented pair programming it was
a successful practice. Over the last month of the project,
due to external forces, where one student was not able to
work within the tertiary learning institution for much of
the time, pair programming was essentially abandoned.
The researcher observed that the pair programming
experience of the XP students is consistent with that of
students in other studies: improved quality in the code,
more efficient coding, communication between students
in the group improved, better problem solving and a more
enjoyable experience for the students pairing. When not
pair programming the converse was true. Within a tertiary
learning environment students are not always able to pair
program, due to scheduling conflicts of students,
available resources, that is computer availability, and
influences external to the control of the tertiary learning
institute. The students were more likely to pair with
students of similar capabilities and enthusiasm. Another
benefit of pair programming was that the technically
weaker students were more confident in coding with a
partner, especially if their partner was of similar abilities,
and they also believed that they coded more within the
XP team than they would have in a non-XP team.

5.7 Collective Code Ownership
Students were slow to adapt the practice of collective
code ownership because there is an emphasis on
producing your own work and not sharing work with
classmates. The capstone project had an individual coding
portfolio component, which had an initial negative impact
on sharing code throughout the team. Once students were
assured that this individual component would not cause a
reduction in their overall results, collective code
ownership was embraced and students were actively
sharing code between the team members. The technically
stronger students were initially reluctant for the weaker
students to make changes to their code. This attitude
gradually changed throughout the project, especially
when pairing with the weaker students, though the
stronger students did tend to pair with each other. The
technically weaker students were not concerned with who
changed or improved their code.

5.8 Continuous Integration
This practice was one of the least successful implemented
by the students. There were several reasons for the lack of
success with continuous integration: a) Ant, the
integration tool that was being used for the project, was
not running correctly for the first half of the project; b)
students did not fully understand how to use CVS, when
and what code to check into CVS; and c) lack of co-
ordination between the development pairs.

5.9 40-Hour Week
The technically weaker students found that initially they
were struggling to complete a full forty hours of work per
week. In other capstone groups, of current and past years,
students who were not technically strong spent much of
their hours creating or working on the various pieces of

documentation that is required to be completed. Within
the XP group, because of the reduction in
documentation, the technically less capable students,
whose coding tasks were not as intensive, averaged
thirty-five hours per week

The benefit of this practice was that the XP team worked
a consistent number of hours over the eighteen weeks of
the project, rather than leave the bulk of the work to the
final few weeks in the project, a practice that happens
with many groups at Swinburne TAFE undertaking
capstone projects.

5.10 On-site Client
Having a client on-site available to students is impractical
within the Swinburne TAFE environment. The client
involved with the project was external to the tertiary
learning institution and as such the client was not
available to be located on-site. Students made frequent
use of emails to contact the client when he was on-site.
The development team and the client met on a weekly
basis to discuss the project progress, issues that may have
arisen with the requirements and to continue the Planning
Game.

Though the project didn’t implement an on-site client, the
constant contact and communication with the client
proved to be a very successful practice. The weekly
meetings were most useful, regardless of whether the
students felt that they required the meetings or not. The
students were able to clarify issues that were raised
quickly and were always able to inform the client of the
progress of the project. Students were more honest in
their dealings with the client because of the relationship
that was formed during the project, and there was no
hesitation when having to tell the client when the project
was slipping behind schedule.

5.11 Coding Standards
The XP team chose the Java Coding Conventions,
defined by the Sun Microsystems, for the teams coding
standards. The standards that the team used in practise
were a combination of Java Coding Conventions and
those taught during the programming subjects of the
previous two semesters. Though students did not adhere
strictly to the Java coding conventions, they did adhere to
their own set of standards. The adoption of standardised
coding conventions was a gradual process, and once
completed communication was made through the code,
but it would only be clear to other members of the team.
Adopting coding standards such as the Java Coding
Conventions would have been preferable as the
development of simProject is to be continued by another
group of students.

5.12 Development Environment Issues
A variety of problems occurred with establishing the
development environment for the project, partly due to
the remote location of the server that the team used and
partly due to teething problems with the environment.
The environment used was:

• the jUnit Testing framework;
• Ant continuous integration tool;
• Tomcat web application server; and
• CVS concurrent version system.

The lessons learned from this exercise:

1. the development server should be located where the
XP team, mentors and associated staff are located
and they should have control over the administration
of the server; and

2. the development environment needs to be set up
well in advance of the tools being required and it
needs to be fully tested.

Students also were required to learn the development
tools during the course of the project, which caused some
problems. Ideally, the students should have been
introduced to the tools prior to the commencement of the
project.

5.13 Process Coaching
One issue that became apparent during the course of the
capstone project was that when students were faced with
difficult situations, the students quickly reverted back to
non-XP practices. Pair programming, continuous
integration and upfront testing were the practices that
students generally abandoned when time was running
short or there were other pressures. This was true later in
the project after students had experienced the benefits of
pair programming on their programming. Acknowledging
that they worked more efficiently and improved the
quality of their code whilst pair programming, students
still reverted back to programming as individuals in an
attempt to complete more tasks. With continued
coaching, students went back to implementing the XP
practices.

When the use of process coaching was at its greatest
students were implementing the practices continuously
and not reverting back to their own habits. It was the
researchers decision to gradually reduce the amount of
coaching in the final four weeks of the project after the
students had been implementing the practices for fourteen
weeks. At this point in the project there were external
influences on the project and the students participating
that were beyond the control of the researcher and
affected the way in which students were able to work.
One student was unable to travel to Swinburne TAFE to
work, but was still able to work from home. The students
reverted back to their old habits of developing software,
and many of the XP practices were discontinued.

5.14 Student Learning
It was observed throughout the XP project that the
weaker team members improved their coding skills. In
many software development capstone projects that
involve group work, team members may be pigeonholed
into positions within the team. Team members whose
technical skills are not as strong as their colleagues are
put into a position where creating and maintaining
documentation is their primary task. Within the XP team,
where there was not an emphasis on documentation, the

technically weaker students were required to be more
involved in the coding aspects of the project and there
was an improvement in their technical skills.

6 Conclusions
This research found that is feasible to implement the
Extreme Programming software development
methodology for a capstone project within a tertiary
learning environment. The students gained many useful
skills throughout the course of the capstone project, not
only in XP but also in software development and they
successfully completed a system that met the client’s
requirements gathered throughout the Planning Game
process.

It has highlighted several important points that need to be
kept in mind when implementing XP in capstone projects.
These important points are:

• the need for XP coaching;
• scheduling for pair programming;
• set up and testing of the development

environment;
• early introduction to XP tools; and
• encouragement of light upfront design sessions.

We are currently rerunning the simProject development
with a second team using the XP methodology and appear
to have overcome some of the problems that were faced
with the first team. In addition, we feel that several XP
practices (pair programming; automated testing;
continuous integration; coding standards; and refactoring)
can be of value in non-XP projects and we are currently
working on integrating these into the Diploma of
Information Technology.

While the initial use of XP has had positive results, the
small scale of the research and the results indicate that we
have only just begun the process of integrating XP into
the capstone project curriculum and more research is
needed to determine the benefits and disadvantages of
using XP and also the best methods of introducing XP to
students.

7 Appendix 1 – Teaching Framework

Week
No

Teaching
Hours Planned Activities

1 6 Introduction to XP
Teaching: XP practices,
philosophies.
Practices Taught: Planning
Game and Planning Game
exercises; Coding Standards;
On-site client; Small Releases;
40-hour week

2 6 Commencement of Release 1,
Iteration 1.
Introduction to the client. First
round of the Planning Game.
Teaching: Pair programming;
Planning Game, breaking down
stories into tasks, signing up for
tasks; introduction to CVS, Ant;
System Metaphor; Simple
Design; Collective Ownership.
Practices Taught: Pair
programming; Planning Game;
System Metaphor; Simple
Design; Collective Code
Ownership
Implementation: Planning
Game, Pair Programming,
Collective Code Ownership,
Coding Standards, Simple
Design, On-site client, System
Metaphor

3 4 Continuation of Release 1,
Iteration 1
Teaching: upfront testing, jUnit,
Ant
Practices Taught: Testing;
Continuous Integration
Implementation: Continuous
Testing, Continuous integration

4 2 Completion of Release 1,
Iteration 1
Teaching: refactoring
Practices Taught: Refactoring
Implementation: Refactoring
Interviews: first set of research
interviews

5 Release 1 Iteration 2

6 Release 1 Iteration 2

7 Release 1 Iteration 3

8 Client acceptance testing,
release, rollout of production
code

 Release 2, Iteration 1

10 Release 2, Iteration 1

Mid-semester break

Week
No

Teaching
Hours Planned Activities

 Interviews: second set of
research interviews held during
mid-semester break.

11 Release 2, Iteration 2

12 Release 2, Iteration 2

13 Release 2, Iteration 3

14 Release 2, Iteration 3
Deliverables due for Project
Programming, System Testing
and Project Management 2
Training and installation
manuals
Individual coding portfolios
Individual testing portfolios

15 Release 3, Iteration 1

16 Release 3, Iteration 1

17 Release 3, Iteration 2

18 Release 3, Iteration 2
Final delivery and rollout of
system.
Project Programming, Project
Management 2 and System
Design 2 deliverables due:
Individual Lessons learned
reports
User documentation
System documentation
Source code
Version control logs
Project Management Report and
Budgets
Interviews: third set of research
interviews.

Table 2 Teaching Plan for Extreme Programming
Software Development Methodology

8 References
Beck, K. (1999). "Embracing Change with Extreme
Programming." IEEE.

Beck, K. (2000). Extreme Programming Explained:
Embrace Change. Upper Saddle River, NJ, Addison-
Wesley Longman, Inc.

Clear, T., F. H. Young, et al. (2001). Resources for
Instructors of Capstone Courses in Computing. 6th
Annual SIGCSE/SIGCUE ITiCSE Conference,
Canterbury, UK.

Juric, R. (2000). Extreme Programming and its
Development Practices. 22nd International Conference
Information Technology Interfaces ITI 2000, Croatia.

Kivi, J., D. Haydon, et al. (2000). "Extreme
Programming: A University Team Design Experience."
IEEE.

Mills, G. E. (2000). Action Research: A Guide For the
Teacher Researcher. New Jersey, Prentice-Hall, Inc.

Muller, M. M. and W. F. Tichey (2001). Case Study:
Extreme Programming in a University Environment. 23rd
International Conference on Software Engineering,
Toronto, Canada, IEEE Computer Society.

Newkirk, J. (2002). Introduction to agile processes and
Extreme Programming. International Conference on
Software Engineering.

Nawrocki, J., B. Walter, et al. (2001). Toward a maturity
model for Extreme Programming. 27th Euromicro
Conference, Warsaw, Poland.

Pressman, R. S. (2001). Software Engineering - A
Practitioner's Approach. New York, NY, McGraw-Hill.

Richards, L. (1999). Using NVivo in Qualitative
Research. Melbourne, Qualitative Solutions and
Research.

Shukla, A. and L. D. Williams (2002). Adapting Extreme
Programming For A Core Software Engineering Course.
Conference on Software Engineering and Training (CSEE
2002), Covington KY USA.

Stringer, E. T. (1996). Action Research: A Handbook for
Practitioners. Thousand Oaks, California, SAGE
Publications, Inc.

	Introduction
	Overview of Extreme Programming
	Related Work
	Planning Game and Small Releases
	System Metaphor
	Simple Design
	Testing
	Refactoring
	Pair Programming
	Collective Code Ownership
	Continuous Integration
	40 Hour Week
	On-site Customer

	Research Background
	XP and the Capstone Project
	Research Method
	Teaching Framework
	Ethical Considerations

	Results
	Planning Game and Small Releases
	System Metaphor
	Simple Design
	Testing
	Refactoring
	Pair Programming
	Collective Code Ownership
	Continuous Integration
	40-Hour Week
	On-site Client
	Coding Standards
	Development Environment Issues
	Process Coaching
	Student Learning

	Conclusions
	Appendix 1 – Teaching Framework
	References

