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Abstract

Cluttered drawings of graphs cannot effectively con-
vey the information of graphs. Two issues might
cause node overlapping when one draws a picture of a
graph. The first issue occurs when applying a layout
algorithm for an abstract graph to a practical appli-
cation in which nodes are labeled. The second is the
changing of a node’s size in a dynamic drawing sys-
tem. This paper presents two algorithms, DNLS and
ODNLS, for removing the two kinds of overlapping.
The algorithms are based on the well-known spring
embedder model. The outputs of the algorithms
provide the features of spring algorithms. Experi-
ments are carried out to compare DNLS and ODNLS
to the Force Scan(FS) algorithm and its variants.
The results demonstrate the advantages of DNLS and
ODNLS in terms of some aesthetic criteria.

Keywords: graph drawing, node overlapping, spring
algorithm

1 Introduction

Graphs are abstract structures that are used to model
relational information. Good pictures of a graph can
convey the information rapidly and efficiently. Many
successful algorithms have been introduced to au-
tomatically generate the layout of a graph(Battista
et al. 1998). Most graph layout algorithms treat
nodes as points. Such an algorithm is a layout cre-
ation algorithm(Eades et al. 1995). A layout gener-
ated by a layout creation algorithm might have over-
lapping nodes when the layout is applied to practi-
cal applications, in which nodes are labeled and are
drawn as boxes or other symbols. Overlapping might
also occur in a dynamic graph drawing system. When
a user opens some node for more details, the enlarged
node might overlap its neighbour nodes.

Cluttered drawings of graphs cannot effectively
convey the information of the graphs. Eades
et al. first address the issue of removing node
overlapping(Eades et al. 1995). Before giving any
specific algorithm, they introduce an important con-
cept, the mental map. Three mathematical models
are constructed to define the mental map. One of the
models is orthogonal ordering. Orthogonal ordering
models the most basic mental map, which preserves
up, down, left, and right. Suppose a node v∈V has
the positions (x′v,y′v) and (xv,yv) in the drawings of
Γ′ and Γ respectively. Then Γ′ preserves the mental
map of Γ if for ∀u ∈V,
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• x′v < x′u ⇔ xv < xu, and

• y′v < y′u ⇔ yv < yu, and

• x′v = x′u ⇔ xv = xu, and

• y′v = y′u ⇔ yv = yu

They then propose three requirements for a layout
adjustment:

1. The adjusted drawing should be compact.

2. Node images should be disjoint.

3. The mental map should be preserved during in-
teraction.

One simple solution is to uniformly scale all edges.
The overlapping nodes can be disjoint, and the mental
map is preserved. However, the generated layout is
usually not compact.

Eades et al. present the Force Scan(FS) algorithm
for adjusting a cluttered layout (Eades et al. 1995).
The algorithm scans in both horizontal and vertical
direction to find overlapping nodes, and move the
overlapping nodes to new positions. The new posi-
tions of overlapping nodes are determined by the de-
sirable distance. The desirable distance is the shortest
distance to move two overlapping nodes apart along
the line that connect their centers. The algorithm it-
erates the scanning and moving process until there is
no further overlapping. They treat all nodes as rec-
tangle. If the image of a node is not a rectangle, the
bounding box will be considered.

Hayashi et al. prove that it is a NP-hard to
transform a given layout of a graph with overlapping
rectangular nodes into a minimum-area layout with-
out node overlapping which preserves the orthogo-
nal order(Hayashi et al. 1998). They also propose a
heuristic FS′ that is an improvement of FS. Given
a node vi, a set of nodes overlapped {v1, v2, ...,
vn}, and the desirable distances {d1, d2, ..., dn}, FS
moves in one iteration all the overlapping nodes by
the distance max(di), 1 ≤ i ≤n, while FS′ moves
min(di). A mathematical proof demonstrates that
FS′ can generate a smaller area of layout than FS.
Huang and Lai introduces another version of FS, the
Force-Transfer(FT )(Huang, & Lai 2003). Instead of
moving nodes along the line across the centers of two
overlapping nodes, FT moves the overlapped nodes
either horizontally or vertically. Given a pair of over-
lapping nodes, dh is the distance to horizontally move
the nodes to remove the overlapping, and dv is the
distance in the vertical direction. If dv < dh, the
overlapped node is moved vertically, otherwise hori-
zontally. Empirical experiments show that the output
of FT has a smaller area than that of FS. All of FS,
FS′ and FT can preserve the orthogonal order.

Lyons et al. propose different requirements of
adjustment(Lyons et al. 1998). There are three crite-
ria with different priorities. The first is to keep the



adjusted layout in a window with the same size as the
window of the cluttered layout. The second is more
even distribution of nodes. Their approach weak-
ens the restriction of similarity. Instead of preserving
the exact ordering of two layouts, the approach tries
to minimise the difference between them. In other
words, it tries to make the two layouts “not very dif-
ferent”. This is the third criterion, and its priority
is the lowest. They present two algorithms, namely,
VDCB and GeoForce. VDCB is based on Voronoi
diagram, and GeoForce is an application of the force-
directed model. Empirical experiments show that
both the algorithms satisfy the goals of even distri-
bution and similarity in corresponding priorities. It
is not clear how to keep the size of a layout if there is
not enough space for a dense graph or if the labelled
node sizes are too big to fit in the fixed area. Gansner
and North propose an algorithm inspired by VDCB
(Gansner, & North 1998). The algorithm removes the
restriction of the fixed size of the window, which is the
first goal of VDCB. The algorithm first generates the
Voronoi diagram using the node positions in a clut-
tered layout as sites. Then it moves each node to the
centroid of its Voronoi cell. It iterates this process
until there is no longer any overlapping. Experiments
show that the algorithm has positive results in terms
of the area of the drawings.

Marriott et al. view removing overlapping as
a constrained optimisation problem(Marriott et al.
1995). Four algorithms are designed based on
quadratic programming. Experiments show that it
takes the algorithms less time to remove overlapping
than FS needs, but more time to find overlapping
than FS. They state that the layout generated by the
algorithms is better than the output of FS, but no
measurement for evaluation is mentioned. This al-
gorithm does not guarantee to preserve the mental
map.

All mentioned solutions are post-processing ap-
proaches, and are called layout adjustment algo-
rithms. Generally, there are three steps to produce
an uncluttered layout using these approaches. First,
an initial layout is generated by a layout creation al-
gorithm. Second, labels of nodes are added to the
picture. Finally, the adjustment algorithm cleans the
layout if there is overlapping.

Another general approach is to integrate the
layout adjustment process and the layout creation
process. Force-directed model is used in such meth-
ods. Kamps, Kleinz and Read add to the classical
spring embedder model (Eades 1984) a “node-node
repulsion force” that minimises the overlapping area
of two nodes(Kamps, Kleinz & Read 1995). Wang
and Miyamoto increase the repulsive force but can-
cels the attractive force if a pair of nodes are over-
lapping each other(Wang & Miyamoto 1995). (Harel
&Koren 2002) calculates repulsive force using a vari-
ant value lb. lb is the distance between the bound-
aries between a pair of nodes. If a pair of nodes are
overlapped, lb is a small constant vale ε. The out-
put of such algorithms has the advantages of force-
directed graph drawing algorithm, eg. display of sym-
metry and uniform edge length. A common problem
of these algorithms is that they do not guarantee to
completely separate all overlapping nodes. Note that
there is no need to preserve the mental map, because
the process of removing the potential overlapping is
merged into the process of layout creation. In other
words, there is no “initial layout” at all. However,
the lack of a mechanism for preserving the mental
map makes these algorithms unsuitable for dynamic
drawing systems.

In this paper, we present two algorithms for re-
moving overlapping nodes. One is designed for static
drawings of graph; the other is for dynamic draw-

ings of graphs. The two algorithms are based on the
spring embedder model. In the classical spring em-
bedder models, the repulsive and attractive force are
calculated by taking two distances into account. One
is the current distance of two abstract nodes d; the
other is the expected balance distance, natural length
k, between nodes. In such models, k is a constant
value for all nodes. The proposed algorithms calculate
the forces using a dynamic natural length instead of a
fixed natural length. The dynamic natural length k′
takes into account the sizes of nodes. k′ varies and is
dynamically calculated according to the pair of nodes
involved.

The first algorithm is called Dynamic Natural
Length Spring(DNLS). DNLS is a layout creation al-
gorithm which can generate uncluttered layout. It is
designed for static graph drawing and does not con-
sider preserving mental map. The other algorithm is
based on DNLS but has the ability to preserve the
mental map. We name this algorithm Orthogonal
Dynamic Natural Length Spring(ODNLS). ODNLS is
designed for dynamic graph drawing.

DNLS integrates the layout creation process and
the adjustment process, while ODNLS processes a
layout generated by another spring algorithm. The
uncluttered layout generated by both algorithms has
the features of a spring algorithm: display symmetry
and uniform edge length.

In this paper we consider nodes with rectangular
shape. This is commonly accepted for representation
of labeled graph nodes. Our results are also applica-
ble for non-rectangular node shapes if we consider
the corresponding rectangles that enclose the node
shapes.

Empirical experiments are carried out to compare
DNLS and ODNLS with FS and its variants, FS′ and
FT. The results demonstrate that DNLS/ODNLS im-
proves on the FS and its variants in terms of some
aesthetic criteria. The measurements of evaluation
are such aesthetic criteria as area, L1 metric length,
aspect ratio, and edge length ratio. The effectiveness
of removing overlapping and running time are also
tested.

The rest of the paper is organised as follows. In
section 2, we introduce some preliminaries. In sec-
tion 3, we present our algorithms. In section 4, we
describe our experiments and give an analysis of ex-
periments results. In section 5, we conclude and pose
some future work.

2 Graphs and Drawings of Graph

2.1 Graphs

Suppose that G = (V,E) is a graph. V is a finite set
of nodes, and E is a finite set of edges. Each edge
is a pair of vertices of G. Nodes represent entities,
and edges represent the relationship between entities.
If the pair of nodes of an edge is unordered, G is an
undirected graph, otherwise a directed graph. A node
vi is said to be adjacent to a vertex vi if vivj is an
edge of G. If any two nodes are joined by a path, G
is a connected graph. A tree T is a connected graph
without cycles.

2.2 Drawings of Graphs

A drawing of a graph is a representation of the graph
in the Euclidean space. The drawing of an abstract
graph usually represents a node as a point and an
edge as a curve. Sometimes, interaction with a draw-
ing of a graph is needed for exploring more details or
analyzing the relationships between entities. The vi-
sual elements of the drawing will change in response



to an interaction: some new nodes and edges might
be displayed, some nodes might change their size and
position, and some nodes and edges might disappear.
Such drawings are called dynamic graph drawings.

Some drawings are better than others in conveying
the information of a graph. A drawing is sometimes
measured by how well they meet the aesthetic criteria:

• minimisation of crossings

• minimisation of area

• minimisation of L1 metric length(see below for
details)

• maximisation of symmetry

• minimisation of total edge length, uniform edge
length

• aspect ratio close to specified value

• minimisation of bends

• maximisation of smallest angular resolution

Suppose Γ is a drawing of a graph G in a 2D Euclid-
ean space with height h and width w. L1 metric
length is equal to max(h, w). Aspect ratio is equal
to max(h, w)/min(h, w). Angular resolution applies
to straight line drawings, and it refers to the small-
est angle formed by two edges incident on the same
vertex. Note that a drawing of a graph generally can
not simultaneously optimise all the criteria.

2.3 Spring Algorithms

In the drawing of undirected graphs there is a problem
of “too much freedom”. The spring algorithm(Eades
1984) is a successful layout creation algorithm for
drawing an undirected graph. The basic idea of the
spring algorithm is to treat a graph as a mechanical
system, in which nodes are replaced by steel rings
and edges by springs connected to the rings. All
the springs have the same natural length k, and each
spring has a current length d. Given a pair of rings
connected by a spring, if k>d, then the spring at-
tracts the rings; if k<d, then the spring repulses the
rings; if k=d, then the rings are stable. The spring
forces will attract or repulse the rings until the sys-
tem reaches the minimum energy. This is called the
balanced state.

The strength of the forces is determined by k
and d. Eades calculates the forces using the functions:

fa=C1 ∗ log(k/C2)

fr=C3/sqr(d)

where fa is the attractive force, fr is the repulsive
force, and C1, C2, C3 are coefficients.

There are some variants of the spring algorithm
that adopt different force models. All of these algo-
rithms are broadly called force-directed algorithms in
most literature. Eades and Lin review some of these
algorithms and present a general spring system(Eades
&Lin 1999).

The input of a spring algorithm is an undirected
graph, and the output of the algorithm is a drawing
of the embedded graph. The running time of a spring
algorithm is O(n2), where n is the number of the
nodes. The layout generated by a spring algorithm
has two features: display of symmetry and uniform
edge length.

A spring system is not guaranteed to generate a
good drawing for all graphs. The forces exerted on
some rings might be too strong or too weak, and

the spring system cannot arrive at the balanced state.
One solution is to adjust the coefficients; another is
to adopt different force models. Some implementa-
tions, however, also set a fixed number of iterations,
in order to end the spring forces in a predictable time.

2.4 Cluttered Layouts and Layout Adjust-
ment Algorithms

An algorithm for drawing abstract graphs is a layout
creation algorithm. In such a drawing, the images of
nodes are concrete points. The output of a layout cre-
ation algorithm might have overlapping nodes when
labels are added. Such overlapping is called static
drawing overlapping in this paper. Another kind of
overlapping is occurred in dynamic drawing systems.
The new nodes or enlarged nodes might overlap their
neighbour nodes. This kind of overlapping is called
dynamic drawing overlapping in this paper.

Cluttered drawings can not convey information ef-
fectively. It is essential for the drawings to remove the
overlapping. An algorithm that removes the overlap-
ping of a layout is a layout adjustment algorithm.

Note that there are two possible kinds of overlap-
ping in a drawing of a graph. One is the image of
a node overlapping the image of another node; an-
other is the drawing of an edge crossing the image of
a node. In this paper, we only study the former case:
overlapping among images of nodes.

2.5 Notations

In this paper, we denote a graph as G, and a drawing
of G as Γ. An edge is referred to as e(v1, v2), where
vi and vj are the two end nodes connected by the
edge. dvi,vj is the distance between the center points
of vi and vj . dx

vi,vj is the distance of projection of the
center points of vi and vj in the x direction, dy

vi,vj in
the y direction. fa is the attractive spring force in a
spring system, and fr the repulsive spring force.

The images of nodes are rectangular shapes, the
sides of which are parallel to the coordinate system
axes. A drawing of a node in Γ is refereed to as
vi(xi, yi, wi, hi), where xi and yi are coordinates of
the node’s center point in the x and y directions, re-
spectively, and wi is the width, and hi the height.

3 Algorithms

Most existing spring algorithms use a fixed natural
length k to calculate the spring forces. The gen-
erated layout is usually a good drawing for an ab-
stract graph. However, there might be overlapping
nodes when labels are added. To fix the overlap-
ping problem, we proposed variants of the spring
embedder model, namely, Dynamic Natural Length
Spring(DNLS) and Orthogonal Dynamic Natural
Length Spring (ODNLS).

3.1 Dynamic Natural Length Spring(DNLS)

DNLS is designed for solving the problem of static
drawing overlapping. DNLS calculates the forces us-
ing a dynamic natural length kd that is determined by
both k and the sizes of nodes.

Suppose the drawings of a pair of nodes v1, v2 are
rectangles. The images of two nodes will not overlap
each other if dv1,v2 > k′,
where

k′=l1/2 + l2/2 + m

l1 is the diagonal of v1
l2 is the diagonal of v2



m is the desired margin between v1 and v2

we call k′ the clean distance. we define the dynamic
natural length kd between the nodes v1 and v2 as

kd=max(k′, k)

When the spring mechanism system calculates the
forces between a pair of nodes, kd is used to deter-
mine the strength of the forces. If there is overlapping
between a pair of nodes, then dv1,v2 < kd. The spring
force will repulse them. If dv1,v2 > kd, the nodes
are not overlapping but the edge connecting them is
longer than necessary. The spring force will attract
the two nodes. The spring system will not arrive at
the balanced state unless there are no overlapping
nodes and the length of every edge is kd.

DNLS is a layout creation algorithm that can
avoid overlapping. The idea of dynamic natural
length can be applied in any force model. In our
implementation, we use the force models below:

fa = d/kd

fr = (kd/d)2

Figure 1 are two sample layouts generated by
DNLS.

(a) Drawing of a graph with 9 Nodes

(b) Drawing of a graph with 10 Nodes

Figure 1: Drawings generated by DNLS

3.2 Orthogonal Dynamic Natural Length
Spring(ODNLS)

DNLS is a layout creation algorithm, and does not
consider the mental map. However, it is necessary
to preserve the mental map in dynamic graph draw-
ing systems. ODNLS is a post-processing approach
for solving the problem of dynamic drawing overlap-
ping. It preserves the mental map measured by the

orthogonal ordering model. The input of ODNLS is
a cluttered layout. The output is a clean layout that
has the same orthogonal order as the input layout.

ODNLS uses dynamic natural length kd to calcu-
late the energy of a spring system. An extra force
fe is added to the spring system in order to keep the
orthogonal ordering the same as that of the input lay-
out. fe works as follows.

Suppose v1(x1, y1, w1, y1), v2(x2, y2, w2, h2) are
drawings of a pair of nodes in Γ, x1 < x2, y1 < y2,
kd is the dynamic natural length, and m the desired
margin between the nodes in Γ. Let

p.left=min(x1, x2)

p.right=max(x1, x2)

p.top=min(y1, y2)

p.bottom=max(y1, y2)

If dv1,v2 < kd, fr will repel v1 and v2. Let rx
and ry refer to the repulsive distances in the x and y
directions, respectively. For ∀ v(x, y, w, h) ∈ Γ, fe
sets:

• x := x + rx, if x >= p.right

• x := x− rx, if x <= p.left

• y := y + ry, if y >= p.bottom

• y := y − ry, if y <= p.top

In Figure 2(a), v1 and vs are a pair of overlapping
nodes. When fr repulse them, vleft, vtop, vright, and
vbottom are pushed by fe left, up, right, and down,
respectively. The new drawing is in Figure 2(b).

(a)

(b)

Figure 2: fe repulsive effect

If dv1,v2 > kd, fa will attract v1 and v2. Let ax
and ay refer to the attractive distances in x and y
directions, respectively. Suppose a set of nodes Vk
that are between v1, v2 in x direction, and vleft is the
leftmost node of Vk, and vright the rightmost. Also
suppose a set of nodes Vj that are between v1, v2 in y
direction, and vtop is the uppermost node of Vj , and
vbottom the lowermost. fe will move:

• v1 to where



– dx
v1,vleft=w1/2 + wleft/2 + m, and

– dy
v1,vtop=h1/2 + htop/2 + m

• v2 to where

– dx
v2,vright=w2/2 + wright/2 + m, and

– dy
v2,vbottom=h2/2 + hbottom/2 + m

In Figure 3(a), v1 and v2 are attracted by fa, while
fe will not allow the two nodes moving inside the
dashed rectangle. Note that the margins between the
dashed rectangle and vleft, vtop, vright, and vbottom
are the desired margin between nodes in the drawing.
Figure 3(b) shows the positions of v1 and v2 deter-
mined by fe.

(a)

(b)

Figure 3: fe attractive effect

Now, Let ex1, ey1, ex2 and ey2 refer to the dis-
tance between v1 and v2 covered by fe in the x and
y directions, respectively. Then

• dx1 = min{0, ex1, ax}
• dy1 = min{0, ey1, ay}
• dx2 = min{0, ex2, ax}
• dy2 = min{0, ey2, ay}

For ∀v(x, y, w, h) ∈ Γ, the spring system sets

• x := x + dx1, if x = x1

• x := x− dx2, if x = x2

• y := y + dy1, if y = y1

• y := y − dy2, if y = y2

By adding fe to the spring system, ODNLS can
also preserve the orthogonal order. Since ODNLS is a
variant of spring model as well, the output of ODNLS
has the features of the spring algorithms.

Figure 4 is a sample of ODNLS. Figure 4(a) is
a cluttered drawing of a graph with 10 nodes. Fig-
ure 4(b) is the output of ODNLS.

(a) Cluttered Initial lay-
out(INI)

(b) Output of ODNLS

Figure 4: Sample of ODNLS

4 Experiments

4.1 Overview

DNLS and ODNLS are variants of classical spring
models. FS and its variants, FS′ and FT, are actu-
ally simplified spring models, which have only repul-
sive forces but no attractive forces. Our experiments
evaluate the outputs of the two types of algorithms.

In the experiment, we first generate a layout for a
data set by a spring algorithm. The layout becomes
cluttered after labels are added. We call the cluttered
layout the initial layout(INI). We also generate a lay-
out using DNLS. All of the other algorithms, ODNLS,
FS, FS′ and FT, are adjustment algorithms, and each
of them produces a clean layout for INI. The experi-
ments will evaluate these layouts.

The measurements for evaluation are area, L1 met-
ric length, aspect ratio, edge ratio, orthogonal order-
ing, running time, and effectiveness of removing over-
lapping. Edge ratio refers to the ratio of the longest
and the shortest edge length, which is used here to
evaluate how even the edges are. We also test the
symmetry presented in the layouts by visual observa-
tion. Note that the edge crossing is not considered in
the experiments. The reasons are: 1. the spring algo-
rithms have no mechanism to reduce the edge cross-
ing, 2. we only study the node overlapping and do
not take into account the edges.

All nodes are assigned the same size. There are
two reasons for this. First, uniform node size is ad-
equate for most practice applications. A simple way
of keeping nodes the same size is to adjust font size
of the labels. Another common way is to compress
or truncate long labels. The second reason and more
important reason is that if nodes of different sizes are
used for experiments, for example, and the sizes are
randomly generated, it might be difficult to analyze
of the results. For example, it is hard to determine
whether the difference of area of different drawings
is caused by the layout algorithms or by the size of
nodes. Therefore, we simplify the experiment by the
assumption that all nodes have the same size. In ad-



dition, nodes are drawn as rectangles, and they have
a larger width than height. This is the common shape
in most practical applications.

Six sets of data are tested in our experiment. Ta-
ble 1 gives a description of the data sets. The first
column of the table is the ID of the data set. The sec-
ond column is the number of nodes of the data set.
The third is the number of overlapping nodes in the
initial layout. The last column is the drawing pattern
presented in the initial layout.

Data Nodes Overlapping Pattern
No.1 7 16 closed star
No.2 9 12 tree
No.3 15 20 triangle
No.4 21 35 opened star
No.5 25 37 grid
No.6 44 79 tree

Table 1: Experiment data set

4.2 Analysis

Figure 5(a) - 5(e) show the experimental results for
area, L1 metric length, aspect ratio, edge ratio, and
running time, respectively. In each figure, there are 6
histogram sets representing the results of the 6 data
sets described in Table 1. The results for area and L1
metric length are normalised.

4.2.1 FS and its variants

FS′ and FT are the variants of FS. They can be seen
as one algorithm family. FS′ improves the results of
area and L1 metric length of FS in all cases. It has
similar results for aspect ratio and edge ratio to FS in
most cases. FS′ moves the nodes in the same direction
as FS does, but more efficiently in the cases where
overlapping occurs between more than two nodes. So
it can improve the area and L1 Metric length of FS
but keep the the aspect ratio and edge ratio.

Results show that FT has the best area in this al-
gorithm family. It also has a better L1 metric length
than that of FS. However, the aspect ratio of FT is
worse than those of FS and FT′ in all cases. The
output of FT tends to increase more in the vertical
direction than in the horizontal direction. The rea-
son is that FT moves nodes in the direction of which
desirable distance is smaller. Because all the nodes
have the same size and the height of a node is smaller
than the width, there is more possibility of moving
in the vertical direction than in horizontal direction.
The same reason also causes the large edge ratio in
some cases.

The drawings of all the FS family have large edge
ratio, that is, the edge length are not uniform. It in-
dicates that the advantages of the INI, symmetry and
uniform edge length, are destroyed after overlapping
removed.

It takes almost the same time to run the three
algorithms in all cases.

4.2.2 DNLS

DNLS has the smallest area of data sets 4 and 6. In
the other data sets, DNLS has similar area results to
FT, which generates the smallest area drawing in the
FS family. DNLS removes overlapping by both push-
ing and pulling the overlapped nodes. It also has the
ability to evenly distribute the nodes. On the other
side, the FS family has the ability to enlarge the draw-
ing, but no ability to compress it. When they move
the overlapping nodes, the FS family have to push

(a) Normalized Area

(b) Normalized L1 Metrics Length

(c) Aspect Ratio

(d) Edge Ratio

(e) Running Time

Figure 5: Experiment Results



away some uncluttered nodes in order to preserve the
orthogonal ordering. Those uncluttered nodes will
not be pulled closer to the overlapping nodes. So the
output of DNLS is usually smaller than those of FS
family.

In all the cases, DNLS has a better L1 metric
length than any member of the FS family. This means
that the values of width and height of the layouts gen-
erated by DNLS are closer than those of the FS family,
that is, the aspect ratio should be closer to 1. The
results of aspect ratio support this conclusion.

Basically, DNLS is a spring algorithm. So it should
have the advantages of the spring algorithms: display
of symmetry and uniform edge length. Uniform edge
length is proved by our results for aspect ratio and
edge ratio. Figure 5(c) and 5(d) show that DNLS
has very similar results to INI, which is generated by
a spring algorithm, in terms of aspect ratio and edge
ratio in all cases. Visual observation confirms the
display of symmetry.

The experimental results show that DNLS has bet-
ter performance than the FS family in terms of the
tested aesthetic criteria.

The results also indicate an interesting feature of
DNLS. Because node size is constant in the experi-
ments, the dynamic natural length k′ of all pairs of
nodes of DNLS is the same. In such cases, DNLS
is actually a classical spring algorithm whose natural
length k can prevent nodes overlapping. Thus, we
can say that, in a static graph drawing system that
employees a classical spring algorithm, it is a better
solution to produce an uncluttered layout by increas-
ing the natural length of the spring system than by
adopting the FS family as a post-processing adjust-
ment.

It takes DNLS less time to draw a graph in data
sets 1 and 2 than the FS family. However, the re-
sults also show that DNLS is slightly slower in data
sets 4, 5, 6. Note that the running time is the sum
of the time of creation and the time of adjustment,
if a post-processing adjustment is applied. It seems
strange that DNLS is slower than the FS family, be-
cause DNLS is basically a layout creation spring al-
gorithm, while the FS family is a post-processing of
another layout creation spring algorithm. We believe
this is the trade-off of computing the dynamic natural
length k′. DNLS find the spring forces, both attrac-
tive and repulsive, by computing k′ for each pair of
nodes in every iteration. Note that the running time
of the spring algorithm is O(n2). When the number
of nodes is small, the computing trade-off is trivial.
However, the trade-off will become obvious when the
number of nodes increases.

4.2.3 ODNLS

ODNLS has similar results for aspect ratio and edge
ratio to INI. This means that ODNLS has some fea-
tures of a spring algorithm.

ODNLS sometimes costs more space to draw
graphs than DNLS. The results for area and L1 met-
ric length are larger in data sets 2, 5, and 6 than that
of DNLS, and similar to DNLS in data sets 1, 3, and
4. Compared to the FS family, ODNLS’s performance
of area in its good cases is similar to FT, but never
worse than FS in any case.

Experiments of preserving orthogonal ordering are
carried on for ODNLS and FS family. The results
show that they all preserve orthogonal ordering. Both
ODNLS and the FS family increase the area of the
drawings, but the FS family destroy the aesthetic
beauty.

ODNLS is a post-processing adjustment algo-
rithm. It is slower than any algorithm tested in the

experiments. The running time of both the FS family
and ODNLS is O(n2). However, in the best case, the
FS family runs in time O(n), while ODNLS in time
O(i*(m + O(n2)), where i is the number of iterations,
and m is the number of edges. One way to improve
the practical running time of ODNLS is to decrease k.
But it might be unsatisfying from the aesthetic point
of view if k is too small. In our implementation, k=20.

4.2.4 Effectiveness of Removing Overlapping

Table 2 shows the result of removing overlapping by
these algorithms. The column 2 to 7 are the results
of the algorithms when applied to data sets 1 to 6.

Algorithm No1 No2 No3 No4 No5 No6
FS 0 0 0 0 0 0
FS’ 0 0 0 0 0 0
FT 0 0 0 0 0 0

DNLS 0 0 0 5 6 13
ODNLS 0 0 0 0 0 0

Table 2: The Results for Removing Overlapping

We can see from Table 2 that all the algorithms of
the FS family can remove the overlapping completely.

DNLS does not guarantee to remove overlapping.
Just as a classical spring algorithm can not find a
good drawing for all graphs, DNLS can not remove all
overlapping in drawings of all graphs. The most com-
mon solution is to adjust the coefficients, to increase
iteration time, or to change the force model. But
this would still not guarantee to completely remove
overlapping. An effective method is to use a FS al-
gorithm as an additional step after DNLS. The extra
post-processing adjustment will not much change the
aesthetic properties. Comparing to Table ??, we can
see that DNLS has significantly reduced the number
of overlapping nodes. Visual observation also shows
the overlapping area of DNLS is much smaller than
those of FS family. So the number of nodes to be
moved and the distance of the motion are relatively
small when an algorithm of the FS family cleans the
output of DNLS. The appendix contains snapshots of
layouts generated for data sets 3 and 4 by all the al-
gorithms tested. The output of DNLS of dataset 4
is processed by FS′. The drawing still presents more
uniform edges and displays more symmetry than the
FS family do.

ODNLS can remove all the overlapping nodes. We
believe that this is the effect of the extra force fe, al-
though no mathematical proof has been given. In
a ODNLS system, when fr repels the overlapping
nodes, and fe prevents the repulsed nodes from cre-
ating new overlapping. When fa attracts the nodes
connected by an edge, fe will not allow the attracted
nodes overlapping any nodes in between them. So fe
preserves the orthogonal ordering, as well as prevent-
ing overlapping.

4.3 Summary of the Experiment

The experiments show that the FS family is guaran-
teed to remove overlapping, but they usually destroy
the aesthetic beauty of the initial layout. Although
the running times of DNLS and ODNLS is a little
longer than those of the FS family in some cases,
the results show that both DNLS and ODNLS have
the one of the features of spring algorithms: uniform
edge length. We do not do a quantitative analysis of
symmetry, but the visual observation confirms that
in most cases DNLS and ODNLS present symmetry.

There is an interesting fact about the static draw-
ing overlapping. It is better to adjust the natural



length of a classical spring algorithm to avoid over-
lapping nodes than to clean the generated layout by
the algorithms of the FS family.

DNLS is a layout creation algorithm, and does
not consider the issue of preserving the mental map.
ODNLS and the FS family are post-processing adjust-
ment algorithms, and they can all preserve the mental
map according to the orthogonal ordering model.

5 Conclusion and Future Work

5.1 Conclusion

This paper addresses the issue of removing overlap-
ping of drawings of graphs. We present two algo-
rithms, namely, DNLS and ODNLS. Both algorithms
are based on the spring embedder model. Instead of a
fixed value of the natural length in the spring system,
DNLS and ODNLS use the dynamic natural length k
to compute the attractive forces and repulsive forces
exerting on the nodes.

DNLS is designed for static drawing overlapping,
and it does not consider the mental map. ODNLS is
an algorithm for dynamic drawing overlapping. It
adds an extra force fe to the spring embedder of
DNLS in order to preserve the mental map. When
a pair of nodes are attracted, fe will prevent the pair
from overlapping the nodes in between them. When
a pair of nodes are repulsed, fe will push in the cor-
responding direction all the nodes that are not in
between the pair. The produced uncluttered layout
keeps the same orthogonal ordering as the initial lay-
out. fe also helps to complete remove overlapping.

Experiments are carried out to compare the out-
puts of DNLS and ODNLS to those of the FS family.
Six sets of data are tested in the experiments. Re-
sults show that the FS family guarantee to remove
overlapping, but they usually destroy the aesthetic
beauty of the initial layout. Both DNLS and ODNLS
have a better performance than FS family in terms
of aesthetic criteria. They have the features of spring
algorithms: display symmetry and uniform edge. The
results of uniform edge are quantitative, while the dis-
play of symmetry is visually observed. DNLS does not
guarantee to remove all overlapping. But a FS fam-
ily algorithm can be employed as a post-processing
of DNLS. The output of the pipeline usually still has
the features spring algorithms.

We also found an interesting fact about removing
static drawing overlapping. It is better to increase
the natural length of a classical spring algorithm to
avoid overlapping nodes than to clean the generated
layout by the algorithms of the FS family.

5.2 Future works

ODNLS and the FS family can be used in dynamic
graph drawing systems. In this paper, we only eval-
uate these algorithms in a static environment. One
future work is to evaluate them in a dynamic drawing
system.
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