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Abstract

Identification of fish-bearing streams is a key part of many environmental assessments in

Canada in general, and specifically in British Columbia (BC), where fish and fish habitat

are highly valued components of the natural environment. Pre-field identification of

likely fish-bearing and non-fish-bearing streams has the potential to reduce cost and

effort related to field inventories, and to expedite the project design process.

Previous research has considered desktop level hydrologic, geologic and land-use data

from single catchments with good results, but in some cases did not maintain simi-

lar predictive success for distant catchments. This research drew from three distinct

catchments, with the aim of developing a model that will be more generally applicable.

Data on fish presence/absence, watershed area, and mean and maximum monthly flows

was collected from 2055 stream crossing points as part of the environmental assessment

for the Prince Rupert Gas Transmission (PRGT) project. Canadian Digital Elevation

Data was used to identify the elevation and derive the slope for each site. Parameters

derived from this data were assessed using logistic regression to develop a model for

predicting fish-bearing status.

The final model included the following parameters: watershed area, field gradient (as a

proxy for higher-quality desktop slope values), number of months per year with maxi-

mum flow ≥ the 80th percentile of maximum monthly flows, and latitude. The model

achieved good predictive success for non-fish-bearing streams (79% to 91% correctly

identified) but performed less well for fish-bearing streams (65% to 66% correctly iden-

tified). The contrast between levels of predictive success was thought to be strongly

influenced by the quality of the underlying data, where, for regulatory reasons, the

actual status of streams classified as non-fish-bearing was likely far more certain than

the status of streams classified as fish-bearing.
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Chapter 1

Introduction

Identification of fish-bearing streams, and subsequent assessment of stream habitat

characteristics and potential effects on both fish and fish habitat, is a key part of many

environmental assessments in Canada in general, and specifically in British Columbia

(BC), where fish and fish habitat are highly valued components of the natural envi-

ronment. Significant time and money is spent identifying and assessing fish-bearing

streams potentially affected by projects undergoing environmental assessments.

Regulations for classifying streams as fish-bearing or non-fish-bearing are moderately

strict, and require field inventories for confirmation of status. However, pre-field iden-

tification of likely fish-bearing and non-fish-bearing streams has the potential to reduce

cost and effort related to field inventories, and to help expedite and streamline the

project design process.

Desktop hydrologic data (i.e., available without field surveys) is often used in pre-

liminary assessment of streams, and could potentially be used more systematically to

predict for fish presence.

1.1 Research Aim

The primary aim of this research was to create a method for using desktop hydrologic

data collected and analysed during environmental assessments to predict fish presence

in streams in BC, for more efficient allocation of ground-truthing field work by fisheries
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biologists. Key objectives in reaching the aim were:

• Identification of desktop available hydrologic and related data which may correlate

with fish presence

• Analysis of potential correlations to assess which parameters show correlation

that is statistically significant (α < 0.05)

• Development of a modelled parameter set for all data inputs shown to be indi-

vidually significant

• Transformation of the parameter set into a predictive statistical model



Chapter 2

Background

2.1 Regulatory Context

Environmental assessments in BC under the BC Environmental Assessment Act (2002),

and in Canada in general under the Canadian Environmental Assessment Act, 2012

(Government of Canada 2013a), are based around the assessment of effects on valued

components (VCs) (Environmental Assessment Office 2013). This approach is grounded

in the work of Beanlands & Duinker (1983) about approaches to environmental impact

assessments (Environmental Assessment Office 2013). Beanlands & Duinker (1983)

emphasise the need to identify a set of valued ecological components (VECs) at the start

of the environmental assessment process, in order to focus the assessment appropriately.

In BC, VCs are defined as “components of the natural and human environment that

are considered by the proponent, public, Aboriginal groups, scientists and other tech-

nical specialists, and government agencies involved in the assessment process to have

scientific, ecological, economic, social, cultural, archaeological, historical, or other im-

portance” (Environmental Assessment Office 2013). The Canadian Environmental As-

sessment Agency uses Beanlands and Duiker’s VEC terminology, defining VECs as

“[t]he environmental element of an ecosystem that is identified as having scientific, so-

cial, cultural, economic, historical, archaeological or aesthetic importance” (Canadian

Environmental Assessment Agency 2009).

Because of the importance of fish and fisheries to Canada, and particularly BC, from
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commercial, Aboriginal and recreational perspectives, one of the major VCs assessed

in almost all environmental assessments in BC is Fish and Fish Habitat, sometimes

subsumed under a broader VC such as Freshwater Aquatic Resources (Stantec Con-

sulting Ltd. 2014). A key aspect of assessing environmental effects on this VC is a

baseline assessment of the existence and location of fish habitat in streams which may

be affected by a proposed project. The time and financial costs associated with the

field work required to collect this baseline data can be very high; thus, any methods to

make this field work more efficient and cost effective could result in substantial cost and

time savings. This is especially the case for proposed projects with significant linear

features, e.g., mines with road and rail alignments, or pipeline projects. These projects

can have many hundreds of stream crossings, each of which need to be assessed for

potential effects on fish or fish habitat. For example, for the environmental assessment

for the recent Prince Rupert Gas Transmission (PRGT) project, over 800 stream cross-

ings were part of the final pipeline alignment, and over 2000 crossing were assessed for

fish-bearing status (Stantec Consulting Ltd. 2014).

The requirements for these assessments are in part because of section 35.(1) of the

Canadian Fisheries Act (Government of Canada 2013b), which states that “No person

shall carry on any work, undertaking or activity that results in serious harm to fish

that are part of a commercial, recreational or Aboriginal fishery, or to fish that support

such a fishery.” The Fisheries Protection Policy Statement (Fisheries and Oceans

Canada 2013) under the Fisheries Act defines “serious harm to fish” as “death of

fish”, or “permanent alteration” or “destruction of fish habitat”. Thus, to meet the

requirements of these regulations, all streams which may be affected by a project must

be assessed to determine whether fish and fish habitat are present, i.e., whether the

stream is fish-bearing or not.

Other key regulatory drivers for including fish and fish habitat in environmental assess-

ments are the Species at Risk Act (Government of Canada 2013c), which under section

58.(1)(b) provides protection for listed aquatic species, and section 11(a) of the Envi-

ronmental Protection and Management Regulation (2013), under the BC Oil and Gas

Activities Act (Province of British Columbia 2008), which states that stream crossings

for oil and gas activities must be constructed so that they are “unlikely to harm fish

or destroy, damage or harmfully alter fish habitat”.

Established under the BC Oil and Gas Activities Act, the BC Oil and Gas Commission
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provides guidance on classification of streams in their Environmental Protection and

Management Guide (BC Oil and Gas Commission 2013). The guide notes that streams

should be classified as types S1 through to S6, where types S1 to S4 are fish-bearing

streams of varying types and widths, and types S5 to S6 are non-fish-bearing streams

(BC Oil and Gas Commission 2013, Forest Service British Columbia 1998, Province

of British Columbia 2013). One of the first differentiations in stream classification is

determination of whether a stream is a fish stream. A fish stream is defined under the

Environmental Protection and Management Regulation (BC Oil and Gas Commission

2013, Forest Service British Columbia 1998, Province of British Columbia 2013) as

a stream frequented by either anadromous salmonids, rainbow trout, cutthroat trout,

brown trout, bull trout, Dolly Varden char, lake trout, brook trout, kokanee, largemouth

bass, smallmouth bass, mountain whitefish, lake whitefish, arctic grayling, burbot,

white sturgeon, black crappie, yellow perch, walleye or northern pike, or a species

identified as either at risk or regionally important. Streams are also by default classified

as fish streams if they have gradients less than 20%, unless proven otherwise by an

acceptable fish inventory (BC Oil and Gas Commission 2013, Forest Service British

Columbia 1998).

2.2 Current Approaches

Determination of fish presence is made in accordance with methods and standards

provided by the BC Resources Information Standards Committee (RISC) (formerly

the BC Resource Information Committee) (BC Oil and Gas Commission 2013). The

Resources Inventory Committee (RIC) Standard for Reconnaissance (1:20,000) Fish

and Fish Habitat Inventories (BC Fisheries Information Services Branch 2001) sets

the standard for reconnaissance level sample-based surveys covering whole watersheds.

The 1:20000 reconnaissance is the basis for “intensive level inventories” required for

fish stream identification (BC Oil and Gas Commission 2013, p. 1:6). The RISC stan-

dard suggests that fish stream classification (along with other objectives of fish and fish

habitat inventories) begin with identification and classification of streams using maps

and aerial photos. In particular, the standard suggests review of the Fisheries Infor-

mation Summary System (FISS), a BC-wide data set on fish, fishing and fish habitat;

recording of FISS and other desktop data in Field Data Information System (FDIS),

“an MS Access data capture and reporting tool for fish and fish habitat data collected
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to Resource Information Standards Committee (RISC) standards” (BC Ministry of

Environment n.d.); and use of the Fish and Fish Habitat Assessment Tool (FHAT20),

a computer program that uses characteristics from 1:20,000 scale mapping and aerial

photos to predict fish presence, along with other outputs (BC Fisheries Information

Services Branch 2000, BC Fisheries Information Services Branch 2001). While FISS is

commonly used for environmental assessment baseline studies, and databases based on

FDIS are in use, FHAT20 is not commonly used (Parsamanesh 2014a, pers. comm., 2

June 2014).

Predictions of fish presence by FHAT20 seem to be based mostly on fish habitat char-

acteristics and known fish presence in other streams (as recorded in the FDIS used as

input to FHAT20). Thus, FHAT20 may not be a particularly useful tool for predict-

ing fish presence in areas with little previous study. This is often the case for major

environmental assessment projects in BC, which predominantly take place in remote

northern areas of the province. This limitation accounts for the lack of use of FHAT20

within the context of environmental assessments.

FHAT20 uses a range of outputs to predict fish presence. It outputs the probability of

capability for predicting fish presence. That is, it outputs the probability that a stream

reach “has no capability (that the abundance is less than 1 fish in sample site area)”,

as well as the probabilities of low, medium and high capability. It can also provide a

“Most Probable Stream Class”, which would indicate fish presence for classes S1 to S4,

or absence for classes S5 and S6. FHAT20 can also output “FPC Fish Presence” based

on probabilities and user defined probability limits (BC Fisheries Information Services

Branch 2000, pp. 16-17). While these outputs are similar to those targeted by this

project, the input requirements for FHAT20 are much more detailed and site specific

than the inputs used for this analysis, which targets situations where little previous

field study has occurred.

Calculation of probabilities in FHAT20 are based on Gaussian multivariant kernel anal-

ysis with a “Bayesian sampling-importance-resampling algorithm” (BC Fisheries Infor-

mation Services Branch 2000). The Bayesian algorithm likely uses analytical integra-

tion to eliminate “nuisance” parameters (such as the observation error variance and

catchability coefficient) from probability calculations in order to reduce computational

load, but that is beyond the scope of this review (BC Fisheries Information Services

Branch 2000, Walters & Ludwig 1994).
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As well as using FISS data when conducting initial desktop reviews of streams, fish-

eries biologists often work with some desktop-available hydrologic data (usually mean

monthly flows and means of daily maximum flows). Hydrographs of this data are pri-

marily used to identify suitable site visit times and assess changes in flows caused by

projects, but they are also used to make preliminary judgements on productive capacity,

which informs habitat classification and, potentially, fish-bearing status (Parsamanesh

2014b, pers. comm., 3 June 2014). However, use of this hydrologic data is not system-

atic, and relies more on professional experience and judgement than on a consistent,

reproducible approach. While flow data may be the only data that can be derived

from desktop sources for some sites, other useful hydrologic data and related desktop-

available data could potentially be used for many sites.

The more systematic approach that was the aim of this project was to identify which

specific aspects of desktop-available hydrologic—and other related—data provides the

highest probability of correctly identifying a stream as fish-bearing, and to quantify the

relative importance of specific indicators. This more systematic approach could allow

focus of field programs on sites that have higher uncertainty regarding fish-bearing

status. It could also assist in initial project design by early identification and elimination

of routes or design options likely to affect streams with high likelihood of being fish-

bearing. This could also help reduce the scope of field programs by reducing the number

of alternative route or site options that would require assessment.

2.3 Previous Research

Previous research has been done to develop models for predicting fish presence (or

presence-absence). Some modelling has focused on very localised predictive inputs (e.g.,

stream substrate, water depth, water temperature, instream cover, flow velocity) (Joy

& Death 2000, Joy & Death 2002, Mastrorillo, Lek, Dauba & Belaud 1997, Mugodo,

Kennard, Liston, Nichols, Linke, Norris & Lintermans 2006). This approach to mod-

elling is not useful for the aims of this project, as it relies on detailed site-specific data,

which could only be obtained by field studies; the purpose of this project was to rely

on desktop-available data. Other models have considered desktop level hydrologic, ge-

ologic and land-use data from single catchments with good results (70% to over 90%

correct classifications) (Filipe, Cowx & Collares-Pereira 2002, Joy & Death 2004, Porter,
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Rosenfeld & Parkinson 2000). However, in some cases, models did not maintain similar

predictive success for distant catchments (Porter et al. 2000).

Modelling approaches often involved the use of artificial neural networks (ANN) (Joy &

Death 2004, Mastrorillo et al. 1997). Logistic regression, linear discriminant analysis,

classification trees and nearest-neighbour analyses have also been used (Filipe et al.

2002, Mugodo et al. 2006, Olden & Jackson 2002, Porter et al. 2000). ANN and

classification tree based models tend to perform better than traditional methods (Olden

& Jackson 2002).

The success of models using desktop-available data at a watershed level was promising.

However, the usefulness of a modelling tool for long linear projects (such as major

pipelines) that are not moderately consistent between watersheds would be limited.

Also, development of a complex ANN-based model, or models of similar complexity,

was considered beyond the scope of this project. However, identification of modelling

inputs that are most highly influential in predicting fish presence, such as latitude

and total catchment rainfall, as identified by Joy & Death (2004), could be helpful in

identifying key predictive parameters.

2.4 Analysis Approaches

As noted in Section 3.3, a variety of analytic approaches have been used in related

previous research. These include relatively complex models based on ANN and clas-

sification trees, and simpler numerical methods such as logistic regression. Because of

its relative simplicity, and previous experience with other types of regression analysis,

logistic regression analysis was used to check for potential correlations between param-

eters from the available data set and the fish-bearing status of streams in the data

set.

Logistic regression allows regression analysis of categorical data such as the yes/no data

for fish-bearing status (Quinn 2002). In fact, such dichotomous data sets (binary data)

are the simplest case for using logistic regression (Gotelli 2004). Logistic regression

fits an S-shaped (sigmoidal) curve to the data (in this case, fish-bearing = 1 and non-

fish-bearing = 0), using a maximum likelihood (ML) approach, based on the function
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(where π(xi) is the probability of being fish-bearing) (Gotelli 2004, Quinn 2002):

π(xi) =
eβ0+β1x

1 + eβ0+β1x
(2.1)

Fitting uses ML rather than least squares estimation, because binary data types have

error terms with binomial distribution, rather than a normal distribution which is re-

quired for least squares estimation to be appropriate. For non-normal distributions, ML

estimation is generally performed through iterative approaches (Quinn 2002). Mod-

elling by logistic regression is performed by transforming the function into a linear

model by a logit (also known as log-odds) transformation (Quinn 2002, Gotelli 2004,

Dalgaard 2009, Whitlock 2009):

ln

(
π(xi)

1 − π(xi)

)
= β0 + β1xi (2.2)

Identifying ML seeks to maximise the likelihood function L(β), where (Quinn 2002,

Dalgaard 2009):

L =
n∏
i=1

π(xi)
yi [1 − π(xi)]

1−yi (2.3)

For ease of calculation, maximisation of log(L) is usually undertaken, rather than L

(Quinn 2002).

The preferred method of fit testing of the sigmoid generated through ML estimation

is using the log-likelihood ratio (sometimes referred to as deviance), −2LL (also G or

G2 when defined without the negative), where (Zar 1996, Quinn 2002, Whitlock 2009,

Field 2012):

−2LL = −2ln

(
L[β0]

L[β0 + β1x1]

)
(2.4)

The log-likelihood ratio compares the log-likelihood of the full model, with the model

case with parameters constrained to match the null hypothesis (H0). Comparing the

value of −2LL with a χ2 value with 1 degree of freedom and significance level (α)

of 0.05 allows determination of whether the null hypothesis can be rejected. Where

−2LL > χ2
1,α=0.05, the null hypothesis can be rejected (Whitlock 2009). Calculations

of fit parameters β0 and β1, and of −2LL and the level of significance associated with

the −2LL value, are generally performed with computer statistical packages (Whitlock

2009, Field 2012).
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Logistic regression and testing with the log-likelihood ratio can also be used to model

the potential correlations between multiple variables (Quinn 2002). The logit transfor-

mation for a multiple logistic regression takes the form (Gotelli 2004, Quinn 2002):

ln

(
π(xi)

1 − π(xi)

)
= β0 + β1xi1 + β2xi2...+ βpxip (2.5)

Testing of the multiple logistic regression is again similar to that for simple logistic

regression. In this case, −2LL for the overall model is calculated by (Quinn 2002, Field

2012):

−2LL = −2ln

(
L[β0]

L[β0 + β1xi1 + β2xi2...+ βpxip]

)
(2.6)

In addition to testing the overall model, it is also possible to test the model against a

series of “reduced” models where only a single parameter (β) is eliminated from the

likelihood ratio, for example, eliminating β1 to check if this predictor makes the model

better (Quinn 2002, Field 2012):

−2LL = −2ln

(
L[β0 + β2xi2...+ βpxip]

L[β0 + β1xi1 + β2xi2...+ βpxip]

)
(2.7)



Chapter 3

Data Collection and

Transformation

The aim of this research was to use data available without conducting field surveys.

Thus, other than fish presence data, obtained through a combination of field and desk-

top methods, most data used in analyses for this research were obtained without field

verification. As discussed below, the single exception to this was the use of local gra-

dient data collected during field surveys.

3.1 Data Sources

Data for this research was obtained from two data sets. Fish presence, watershed areas,

mean monthly flows, maximum monthly flows and gradient data were obtained from the

integrated fisheries information database developed by Stantec for the PRGT project.

After elimination of sites from the database at various stages of quality control checks,

site data was available for 2055 stream-crossing sites across four distinct hydrodynamic

regions.

In addition to these data, 1:50000 digital elevation data (DEM) from Canadian Digital

Elevation Data (CDED) was sourced from GeoBase, an initiative by various Canadian

governments overseen by the Canadian Council on Geomatics.
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3.2 Data Transformation

3.2.1 PRGT Data

While data for 2055 sites was available from the PRGT data set, not all sites had

the same data available. Because of iterations in project design, especially in pipeline

routing, the extent of hydrologic analysis and of field surveys varied greatly. Of the

2055 sites, only 653 sites had data for fish presence, watershed areas, mean monthly

flows, maximum monthly flows and gradient.

However, in order to make the best use of those sites with limited data, site data was

initially separated out into larger sets of all sites with each of watershed areas, mean

monthly flows, maximum monthly flows and gradients. The 653 sites with all data were

randomly split into two sets: one for model development (327 sites) and one for model

testing (326 sites). Data availability for each type is summarised in Table 3.1.

Table 3.1: Summary of available data.

Data Number of Sites

Watershed area 844

Mean monthly flows 246

Maximum monthly flows 414

Gradient 840

Digital elevation (CDED 1:50000) 2055

All data 653

All data (modelling set) 327

All data (testing set) 326

Hydrologic Data

In order to transform the mean and maximum monthly flow data into forms more po-

tentially useful for further analysis, for each site with this data, the following parameters

were calculated for both mean and maximum monthly flows:

• Maximum of monthly flows
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• Minimum of monthly flows

• Average of monthly flows

• 5th percentile of monthly flows

• 10th percentile of monthly flows

• 20th percentile of monthly flows

• 80th percentile of monthly flows

• 90th percentile of monthly flows

• 95th percentile of monthly flows

• Number of months per year with flows ≥ average of monthly flows

• Number of months per year with flows ≤ the 5th percentile of monthly flows

• Number of months per year with flows ≤ the 10th percentile of monthly flows

• Number of months per year with flows ≤ the 20th percentile of monthly flows

• Number of months per year with flows ≥ the 80th percentile of monthly flows

• Number of months per year with flows ≥ the 90th percentile of monthly flows

• Number of months per year with flows ≥ the 95th percentile of monthly flows

Gradient

Gradient data available for some sites generally consisted of one to three field measure-

ments of stream gradient at various points of the stream reach at the potential stream

crossing. While this data is not desktop-available, it was included in analyses to com-

pare with the slope data derived from the 1:50000 DEM data (see Section 3.2.2). The

resolution of this DEM is reasonably coarse, but is the finest that is publicly available.

Higher resolution DEM is often available for purchase (such as 25 m pixel size DEM

derived from 1:20000 BC’s Terrain Resource Information Management (TRIM) data,

available from GeoBC), but was not available for this analysis. Higher resolution DEM

would result in slopes more indicative of local conditions at sites. The gradient data

available from field surveys was averaged (where more than one measurement had been

taken) and was used as a proxy for slopes derived from higher resolution DEM.
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3.2.2 DEM Data

The DEM data sourced from CDED is provided as a series of raster images. Applicable

map tiles with CDED were identified by overlaying the National Topographic System

(NTS) grid tiles with the latitude and longitude of each of the 2055 sites in the PRGT

data set in the Quantum GIS (QGIS) software package. Fifty-five DEM images were

then imported and merged in QGIS.

Elevation data was extracted from the DEM for each site. Slopes at each site were then

also derived from the DEM using the GDAL/DEM Slope function within QGIS. As

most data was within a reasonably narrow latitudinal band (approximately 54.2 ◦N to

56.3 ◦N), z-factor conversions of latitude and longitude were used to produce elevation,

rather than re-projecting the DEM. Based on an approximate latitude of 55.5 ◦N, z-

factor was 8.8984 × 10−6.



Chapter 4

Regression Analysis

As discussed in Section 2.3, a number of modelling approaches have previously been

used to develop models whose purpose is similar to the aim of this project. This research

used logistic regression to identify potential correlations between input variables and

fish presence. Log-likelihood ratios, transformed into various R2 values, were used to

test the fit of models.

Multivariant logistic regression analysis was undertaken using those inputs that yielded

promising correlations when assessed on an individual basis.

Logistic regression and further statistical analysis was undertaken using RStudio and

the underlying R computer statistics package.

4.1 Single Logistic Regressions

To make best use of data from sites without comprehensive data, and to assist in

identifying parameters with reasonable potential for predicting fish presence, individual

data sets for each parameter (as discussed in Section 3.2.1) were used to carry out

binomial logistic regression using the glm command in RStudio. In order to simplify

the process of generating models for all of the individual parameters, and to produce

R-statistics R2
L (Hosmer and Lemeshow), R2

CS (Cox and Snell) and R2
N (Nagelkerke),

the R function in Appendix B.1 was used.
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The results of these models were used to select parameters for further modelling using

multivarient logistic regression. For each parameter, values for deviance (−2LL), the

significance of −2LL, and correlation measures R2
L , R2

CS , R2
N and odds ratio were

inspected. Correlation measures were calculated within the R function in Appendix

B.1, as:

R2
L =

−2LLmodel
−2LLnull

(4.1)

R2
CS = 1 − exp

(
(−2LLmodel) − (−2LLnull)

n

)
(4.2)

R2
N =

R2
CS

1 − exp
(
−2LLnull

n

) (4.3)

Parameters were excluded from further modelling if the significance of χ2 was greater

than 0.1. This excluded the following parameters:

• Number of months per year with flows ≥ average of mean monthly flows

• 10th percentile of mean monthly flows

• 20th percentile of mean monthly flows

• Longitude

• 10th percentile of maximum monthly flows

• 20th percentile of maximum monthly flows

If modelling produced no results for β1 for a given parameter, this parameter was also

excluded from further analysis. This excluded the following parameters:

• Minimum of maximum monthly flows

• 5th percentile of maximum monthly flows

• Number of months per year with flows ≥ the 95th percentile of maximum monthly

flows

• Minimum of mean monthly flows
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• 5th percentile of mean monthly flows

• Number of months per year with flows ≥ the 95th percentile of mean monthly

flows

Results of the analyses from these model runs for parameters that were carried forward

are shown in Table 4.1 (ordered by descending value of R2
N ).

4.2 Multivariant Logistic Regression

In order to avoid potential errors associated with stepwise methods (Field 2012), the

initial multivarient logistic regression was run by forced-entry method (i.e., all param-

eters were included). Results of the forced entry model run are summarised in Table

4.2. Of the 25 parameters included in the initial model, only 8 had significant z-values

(i.e., were considered to contribute significantly to the model):

• Watershed area

• Average of the maximum monthly flows

• 80th percentile of maximum monthly flows

• Months with flows ≤ the 20th percentile of maximum monthly flows

• Average of the mean monthly flows

• Months with flows ≤ the 5th percentile of maximum monthly flows

• Months with flows ≤ the 10th percentile of maximum monthly flows

However, 2 additional parameters were also close to the significance threshold (α =

0.05):

• Gradient

• Latitude

The R function in Appendix B.2 was used to produce key statistics about the model.

In addition to the previously noted correlation measures and odds ratio, this included
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Table 4.2: Results of multivarient logistic regression model 1.

β0 Std. Error z-value Signif.

Intercept 54.8714 27.9673 1.962 0.0498

Input Parameter β1 Std. Error z-value Signif.

Watershed area 0.696 0.2567 2.7115 0.0067

Gradient -0.0425 0.0246 -1.7292 0.0838

Maximum (max. flows) -1156.0209 832.4499 -1.3887 0.1649

95th %ile of (max. flows) 2671.5608 1863.4778 1.4336 0.1517

Average (max. flows) -639.9905 271.0544 -2.3611 0.0182

90th %ile (max. flows) -1664.0722 1120.0362 -1.4857 0.1374

80th %ile (max. flows) 476.1183 216.2012 2.2022 0.0277

95th %ile (mean flows) 4799.5059 6143.6564 0.7812 0.4347

Maximum (mean flows) -2410.2925 2809.7857 -0.8578 0.391

90th %ile (mean flows) -2822.6687 3705.3696 -0.7618 0.4462

Months with flows ≥ 80th %ile (max. flows) -0.0821 0.0985 -0.8339 0.4043

Months with flows ≤ 20th %ile (max. flows) -3.5911 1.434 -2.5043 0.0123

Average (mean flows) 1261.9928 527.7316 2.3914 0.0168

Months with flows ≤ 5th %ile (max. flows) -3.2243 1.2145 -2.6549 0.0079

Months with flows ≤ 10th %ile (max. flows) 6.8749 2.395 2.8705 0.0041

Months with flows ≥ 90th %ile (max. flows) 20.0248 0.0776 0.32 0.749

Months with flows ≥ average (max. flows) -0.0767 0.0539 -1.4228 0.1548

80th %ile (mean flows) -30.0139 482.7067 -0.0622 0.9504

Latitude -0.9986 0.5202 -1.9198 0.0549

Months with flows ≤ 5th %ile (mean flows) -0.1935 0.974 -0.1987 0.8425

Months with flows ≤ 10th %ile (mean flows) 0.1684 1.7952 0.0938 0.9252

Months with flows ≥ 80th %ile (mean flows) 0.0428 0.0993 0.4306 0.6667

Months with flows ≤ 20th %ile (mean flows) -0.5233 1.1496 -0.4552 0.649

Elevation 0.0011 0.0007 1.4928 0.1355

Slope -0.0057 0.0188 -0.3024 0.7623
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the Akaike Information Criterion (AIC) and Bayes Information Criterion (BIC). Key

statistics for this model are summarised in Table 4.3.

Table 4.3: Summary statistics for model 1 (comparison with H0).

Model

no.

−2LL Signif. R2
L R2

CS R2
N AIC BIC Odds

Ratio

1 146.7 0.000 0.3236 0.3615 0.4820 356.6 596.1 2.006

As an initial check of the first model, fitted values from the model were used to predict

fish presence for the both modelling data set, and as a validation check, against the

testing data set. Results of the check are summarized in Table 4.4, where sensitivity

refers to the proportion of true positives (i.e., correctly identified fish-bearing steams),

specificity refers to the proportion of true negatives (i.e., correctly identified non-fish-

bearing streams), PPV (positive prediction value) refers to the proportion of positive

that are true (i.e., proportion of streams correctly identified as fish-bearing out all

all streams identified as fish-bearing), NPV (negative prediction value) refers to the

proportion of negatives that are true (i.e., proportion of streams correctly identified as

non-fish-bearing out of all streams identified as non-fish-bearing), accuracy refers to

the overall proportion of correct predictions (i.e., streams correctly identified as either

fish-bearing or non-fish bearing), and where MCC (Matthews correlation coefficient) is

a generalised measure of predictive success for binary systems.

Table 4.4: Predictive performance of model 1.

Model no. Sensitivity Specificity PPV NPV Accuracy MCC

Modelling data

1 64.81 87.27 83.33 71.64 76.15 0.5351

Testing data

1 58.28 86.50 81.20 67.46 72.39 0.4668
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4.2.1 Parameter Refinement

Checking for Multicollinearity

Although the initial model indicated some potentially useful parameters, there was

a strong suspicion that multicollinearity could be substantially affecting the model.

There should have been a reasonably strong correlation between the gradient and slope

parameters. And, from a hydrologic perspective, there should be some correlation

between watershed area and a number of the parameters related to high flows, such as

many of the parameters derived from maximum monthly flow data.

In order to identify potential correlations between parameters, an analysis of Pearson’s

correlation coefficient (r) was conducted for each pair of parameters in the model.

Results of the analysis are presented in Table 4.5, sorted in order of descending values

of R2
N based on the analysis of the initial model. Working from the top of the table

(highest values of R2
N ), parameters were eliminated from further modelling if they had

r < 0.8 with a parameter higher on the table. This process eliminated 17 parameters.

Additionally, although the slope parameter (derived from the CDED 1:50000 elevation

data) showed only a moderate correlation with the gradient parameter (derived from

field gradient measurements and used as a proxy for slope values from higher resolution

elevation data)(r = 0.575), it was also eliminated from the model on the basis of being

a less accurate and less useful version of the same information.

Field (2012) suggests that this approach of identifying multicollinearity can miss its

more subtle forms, and suggests diagnosis with variance inflation factors (VIF). Initial

inspections of VIFs did indicate concern with a number of parameters (i.e., VIFs well

above 10—suggested as a threshold for concern by Field (2012), citing Myers (1990)).

However, the large number of parameters meant that VIFs were not useful in identifying

which parameters were strongly correlated. To check if any multicollinearity existed

in the remaining parameters used for model 2, VIFs were recalculated. In this case,

the highest VIF was approximately 3—well below the threshold for concern. However,

Field (2012) also references Bowerman & O’Connell (1990) in suggesting that if the

average VIF exceeds 1, the model may be biased by multicollinearity. As the average

VIF was approximately 1.73, this bias may exist.

After elimination of highly correlated parameters, the model was refined based on these
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remaining parameters:

• Watershed area

• Gradient

• Months with flows ≥ the 80th percentile of maximum monthly flows

• Number of months per year with flows ≥ average of maximum monthly flows

• Latitude

• Months with flows ≤ the 5th percentile of mean monthly flows

• Elevation

This second model version had worse fit, according to all R2 values (e.g., R2
N fell from

0.482 to 0.399), but was better by information theoretic (IT) criteria (i.e., both AIC

and BIC fell). Summaries of these criteria are provided in Table 4.7. Results of the

comparison of model 2 with model 1 (see Table 4.8) confirm that the reduction in

goodness in fit is because those parameters eliminated to avoid multicollinearity did

contribute significantly to the model.

Values for β in model 2 (see Table 4.6) were broadly similar to those in model 1 (see

Table 4.2), indicating fairly stable measures of effect. Significance for most individual

parameters was generally better than in model 1. However, while the Watershed area

parameter was slightly less significant (from 0.0067 to 0.0207), significance for the

already not-significant parameter Months with flows ≥ the average of maximum monthly

flows worsened (0.155 to 0.208), and, similarly, significance of Elevation worsened from

0.135 to 0.232. Significance of the estimated intercept also worsened (0.050 to 0.083).

Predictive performance (see Table 4.9) was mixed in comparison to model 1: overall

accuracy decreased for the modelling data set but increased for the testing data set.

Refinement by Backwards Stepwise Method

While model refinement through stepwise approaches is generally discouraged (Field

2012, Whittingham, Stephens, Bradbury & Freckleton 2006), the highly not-significant

nature of two parameters in model 2 suggested that further model refinement by the
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Table 4.6: Results of multivarient logistic regression model 2.

β0 Std. Error z-value Signif.

Intercept 36.0724 20.7861 1.735 0.0827

Input Parameter β1 Std. Error z-value Signif.

Watershed area 0.1903 0.0823 2.314 0.0207

Gradient -0.0394 0.0188 -2.096 0.0361

Months with flows ≥ 80th %ile (max. flows) -0.0756 0.0424 -1.784 0.0744

Months with flows ≥ average (max. flows) -0.0600 0.0477 -1.259 0.2081

Latitude -0.6405 0.3790 -1.690 0.0910

Months with flows ≤ 5th %ile (mean flows) -0.0925 0.0539 -1.715 0.0863

Elevation 0.0006598 0.0005518 1.196 0.2318

Table 4.7: Summary statistics for model 2 (comparison with H0).

Model
no.

−2LL Signif. R2
L R2

CS R2
N AIC BIC Odds

Ratio

2 116.4 0.000 0.2568 0.2995 0.3994 350.9 417.9 1.210

Table 4.8: Summary statistics for reduced model 2 (comparison with model 1).

Model
no.

−2LL Signif. R2
L R2

CS R2
N AIC BIC Odds

Ratio

2 30.27 0.0349 0.0899 0.0884 0.1375 342.6 515.0 2.0057

Table 4.9: Predictive performance of model 2 compared with model 1.

Model no. Sensitivity Specificity PPV NPV Accuracy MCC

Modelling data

1 64.81 87.27 83.33 71.64 76.15 0.5351

2 70.37 77.58 75.50 72.73 74.01 0.4808

Testing data

1 58.28 86.50 81.20 67.46 72.39 0.4668

2 70.55 87.12 84.56 74.74 78.83 0.5848
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backwards stepwise method was warranted. Field (2012) suggests that the backwards

method is less problematic than the forward method, especially when seeking only to

fit a model, and not establish causality. As this was the case, the backwards stepwise

method was used for further refinement.

Whittingham et al. (2006) indicate that some of the concern with using stepwise meth-

ods is the reliance solely on the significance of predictive parameters. In order to at

least partially address these concerns, the effects of parameter removal from the model

were assessed by examining parameter significance, changes in goodness of fit indica-

tors (R2
L, R2

CS and R2
N ), and changes in IT criteria (AIC and BIC). These indicators

and criteria were examined within the context of model comparison with the H0, and

comparing reduced models with original models.

Third round model refinement: The next step in refining the model was to check

which of Months with flows ≥ the average of maximum monthly flows and Elevation

were best removed from the model. Model 3a was created by removing the least sig-

nificant Elevation parameter. Model 3a resulted in very slight decreases in all three

R2 indicators, but slight increases in both AIC and BIC (see Table 4.12). Changes in

significance for the remaining parameters varied, with some better and others worse

(see Table 4.10).

Table 4.10: Results of multivarient logistic regression model 3a.

β0 Std. Error z-value Signif.

Intercept 28.2702 19.5665 1.445 0.1485

Input Parameter β1 Std. Error z-value Signif.

Watershed area 0.2270 0.0840 2.701 0.0069

Gradient -0.0425 0.0186 -2.287 0.0222

Months with flows ≥ 80th %ile (max. flows) -0.0680 0.0417 -1.632 0.1026

Months with flows ≥ average (max. flows) -0.0640 0.0478 -1.338 0.1810

Latitude -0.4957 0.3561 -1.392 0.1639

Months with flows ≤ 5th %ile (mean flows) -0.0590 0.0466 -1.267 0.2053

Model 3b was created by removing the Months with flows ≥ the average of maximum

monthly flows parameter from model 2. This resulted in very slightly higher decreases

in all three R2 indicators than model 3a, and lower increases in both AIC and BIC

(see Table 4.12). Significance for the remaining parameters was similar or better for
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most parameters (see Table 4.11). Significance was substantially better in model 3b

compared to model 3a for the intercept (0.065 versus 0.149), as well as being better

than in model 2 (0.065 versus 0.083).

Table 4.11: Results of multivarient logistic regression model 3b.

β0 Std. Error z-value Signif.

Intercept 38.1836 20.6840 1.846 0.0649

Input Parameter β1 Std. Error z-value Signif.

Watershed area 0.1935 0.0834 2.321 0.0203

Gradient -0.0382 0.0186 -2.049 0.0404

Months with flows ≥ 80th %ile (max. flows) -0.0924 0.0409 -2.263 0.0237

Latitude -0.6842 0.3768 -1.816 0.0694

Months with flows ≤ 5th %ile (mean flows) -0.0821 0.0534 -1.539 0.1239

Elevation 0.0007064 0.0005498 1.285 0.1988

A summary of statistics from comparing reduced models 3a and 3b with model 2 is

provided in Table 4.13. The lesser significance and higher R2 values for the model 3b

comparisons indicated that the contribution provided by the Months with flows ≥ the

average of maximum monthly flows parameter is marginally more useful in the model

than that of the Elevation parameter.

Table 4.12: Summary statistics for models 3a and 3b (comparison with H0).

Model
no.

−2LL Signif. R2
L R2

CS R2
N AIC BIC Odds

Ratio

3a 115.0 0.000 0.2537 0.2965 0.3953 350.3 407.8 1.255

3b 114.8 0.000 0.2532 0.2960 0.3947 350.5 408.0 1.214

Table 4.13: Summary statistics for reduced models 3a and 3b (comparison with model 2).

Model
no.

−2LL Signif. R2
L R2

CS R2
N AIC BIC Odds

Ratio

3a 1.429 0.2319 0.004224 0.004361 0.006765 338.8 348.5 1.210

3b 1.644 0.1997 0.004858 0.005016 0.007779 338.9 348.5 1.210

As shown in Table 4.14, predictive performance was better than model 2 for non-fish-

bearing streams (specificity) for both model 3a and model 3b. Both models were worse

for fish-bearing streams (sensitivity), and slightly worse overall (accuracy).



4.2 Multivariant Logistic Regression 27

Table 4.14: Predictive performance of round 3 models compared with model 2.

Model no. Sensitivity Specificity PPV NPV Accuracy MCC

Modelling data

2 70.37 77.58 75.50 72.73 74.01 0.4808

3a 67.90 78.18 75.34 71.27 73.09 0.4635

3b 69.75 78.18 75.84 72.47 74.01 0.4812

Testing data

2 70.55 87.12 84.56 74.74 78.83 0.5848

3a 69.33 87.73 84.96 74.09 78.53 0.5805

3b 67.48 87.12 83.97 72.82 77.30 0.5568

Fourth round model refinement: The next round of model refinements considered

the removal of additional parameters from the model. As differences between model

3a and model 3b were marginal at best, both models were carried forward as the basis

of the next set of models. Fourth round models were generated by eliminating, singly,

each of the parameters in models 3a and 3b whose contribution to the models was not

significant (α > 0.05). The models were created as follows:

• Model 4a1: excluding the Elevation and Months with flows ≥ the average of

maximum monthly flows parameters (see Table 4.15).

• Model 4a2: excluding the Elevation and Months with flows ≤ 5th percentile of

mean monthly flows parameters (see Table 4.16).

• Model 4a3: excluding the Elevation and Latitude parameters (see Table 4.17).

• Model 4a4: excluding the Elevation and Months with flows ≥ 80th percentile of

maximum monthly flows parameters (see Table 4.18).

• Model 4b2: excluding the Months with flows ≥ the average of maximum monthly

flows and Months with flows ≤ 5th percentile of mean monthly flows parameters

(see Table 4.19).

• Model 4b3: excluding the Months with flows ≥ the average of maximum monthly

flows and Latitude parameters (see Table 4.20).
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Table 4.15: Results of multivarient logistic regression model 4a1.

β0 Std. Error z-value Signif.

Intercept 29.9496 19.4873 1.537 0.1243

Input Parameter β1 Std. Error z-value Signif.

Watershed area 0.2346 0.0852 2.753 0.0059

Gradient -0.0413 0.0184 -2.242 0.0250

Months with flows ≥ 80th %ile (max. flows) -0.0850 0.0403 -2.110 0.0349

Latitude -0.5319 0.3544 -1.501 0.1334

Months with flows ≤ 5th %ile (mean flows) -0.0452 0.0455 -0.993 0.3208

Table 4.16: Results of multivarient logistic regression model 4a2.

β0 Std. Error z-value Signif.

Intercept 35.7065 18.5434 1.926 0.0542

Input Parameter β1 Std. Error z-value Signif.

Watershed area 0.2853 0.0762 3.745 0.0002

Gradient -0.0413 0.0185 -2.236 0.0253

Months with flows ≥ 80th %ile (max. flows) -0.0935 0.0366 -2.555 0.0106

Months with flows ≥ average (max. flows) -0.0507 0.0460 -1.102 0.2705

Latitude -0.6390 0.3355 -1.905 0.0568

Table 4.17: Results of multivarient logistic regression model 4a3.

β0 Std. Error z-value Signif.

Intercept 1.0499 0.5083 2.066 0.0389

Input Parameter β1 Std. Error z-value Signif.

Watershed area 0.2031 0.0792 2.565 0.0103

Gradient -0.0375 0.0181 -2.070 0.0384

Months with flows ≥ 80th %ile (max. flows) -0.0649 0.0413 -1.571 0.1162

Months with flows ≥ average (max. flows) -0.0691 0.0480 -1.440 0.1499

Months with flows ≤ 5th %ile (mean flows) -0.0800 0.0439 -1.821 0.0686
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Table 4.18: Results of multivarient logistic regression model 4a4.

β0 Std. Error z-value Signif.

Intercept 26.7935 19.5593 1.370 0.1707

Input Parameter β1 Std. Error z-value Signif.

Watershed area 0.2313 0.0867 2.669 0.0076

Gradient -0.0433 0.0185 -2.336 0.0195

Months with flows ≥ average (max. flows) -0.0816 0.0444 -1.839 0.0659

Months with flows ≤ 5th %ile (mean flows) -0.0975 0.0407 -2.395 0.0166

Latitude -0.4689 0.3560 -1.317 0.1878

Table 4.19: Results of multivarient logistic regression model 4b2.

β0 Std. Error z-value Signif.

Intercept 40.2270 20.3945 1.972 0.0486

Input Parameter β1 Std. Error z-value Signif.

Watershed area 0.2773 0.0758 3.656 0.0003

Gradient -0.0393 0.0185 -2.120 0.0340

Months with flows ≥ 80th %ile (max. flows) -0.1113 0.0389 -2.860 0.0042

Latitude -0.7266 0.3712 -1.958 0.0503

Elevation 0.0003 0.0005 0.543 0.5874

Table 4.20: Results of multivarient logistic regression model 4b3.

β0 Std. Error z-value Signif.

Intercept 0.6407 0.4558 1.406 0.1598

Input Parameter β1 Std. Error z-value Signif.

Watershed area 0.1823 0.0827 2.205 0.0274

Gradient -0.0336 0.0182 -1.844 0.0652

Months with flows ≥ 80th %ile (max. flows) -0.0860 0.0404 -2.129 0.0332

Months with flows ≤ 5th %ile (mean flows) -0.0911 0.0532 -1.712 0.0868

Elevation 0.0004 0.0005 0.763 0.4457
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For ease of comparison, significance values for parameters in the fourth round models

are summarised in Table 4.21. Summary statistics for all round four models compared

with the null hypothesis are summarised in Table 4.22. Comparisons between model

3a and the reduced 4a models are provided in Table 4.23. Comparisons between model

3b and the reduced 4b models are provided in Table 4.24.

Table 4.21: Significance for parameters in fourth round models.

4a1 4a2 4a3 4a4 4b2 4b3

Intercept 0.1243 0.0542 0.0389 0.1707 0.0486 0.1598

Input Parameter 4a1 4a2 4a3 4a4 4b2 4b3

Watershed area 0.0059 0.0002 0.0103 0.0076 0.0003 0.0274

Gradient 0.0250 0.0253 0.0384 0.0195 0.0340 0.0652

Months with flows ≥ 80th %ile (max. flows) 0.0349 0.0106 0.1162 - 0.0042 0.0332

Months with flows ≥ average (max. flows) - 0.2705 0.1499 0.0659 - -

Latitude 0.1334 0.0568 - 0.1878 0.0503 -

Months with flows ≤ 5th %ile (mean flows) 0.3208 - 0.0686 0.0166 - 0.0868

Elevation - - - - 0.5874 0.4457

Table 4.22: Summary statistics for fourth round model versions (comparison with H0).

Model

no.

−2LL Signif. R2
L R2

CS R2
N AIC BIC Odds

Ratio

4a1 113.1 0.000 0.2495 0.2924 0.3899 350.2 398.1 1.264

4a2 113.4 0.000 0.2501 0.2930 0.3907 349.9 397.8 1.330

4a3 113.0 0.000 0.2494 0.2923 0.3897 350.2 398.1 1.225

4a4 112.3 0.000 0.2477 0.2906 0.3875 351.0 398.9 1.260

4b2 112.4 0.000 0.2480 0.2909 0.3879 350.9 398.8 1.320

4b3 111.4 0.000 0.2459 0.2888 0.3851 351.8 399.7 1.200

Of the five fourth round models, three seemed to perform better from the perspective

of parameter significance. Models 4a2, 4a4 and 4b2 each had just one parameter well

above significance, with another very close to α ≤ 0.05. Eliminating the least significant

parameter for both 4a2 and 4b2 resulted in the same modelling set. Testing of each

round four model against the null hypothesis yielded very consistent results. Model

4a2 had the highest values for all R2 coefficients, and the lowest AIC and BIC. Of the

other two models with best performing parameter significance, 4b2 was in the middle

of the set, while 4a4 was consistently the second worst. However, differences in the R2

coefficients, AIC and BIC were quite small across all models.
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Table 4.23: Summary statistics for reduced models 4a1 to 4a4 (comparison with model 3a).

Model
no.

2LL Signif. R2
L R2

CS R2
N AIC BIC Odds

Ratio

4a1 1.865 0.1720 0.0055 0.0057 0.0088 340.3 349.9 1.255

4a2 1.604 0.2053 0.0047 0.0049 0.0076 340.3 349.9 1.255

4a3 1.939 0.1638 0.0057 0.0059 0.0091 340.3 349.9 1.255

4a4 2.708 0.0998 0.0079 0.0082 0.0127 340.3 349.9 1.255

Table 4.24: Summary statistics for reduced models 4b2 and 4b3 (comparison with model
3b).

Model
no.

−2LL Signif. R2
L R2

CS R2
N AIC BIC Odds

Ratio

4b2 2.342 0.1259 0.0069 0.0071 0.0110 340.5 350.1 1.214

4b3 3.324 0.0683 0.0097 0.0101 0.0156 340.5 350.1 1.214

Comparison of the reduced models against their predecessors (models 3a and 3b) (see

Tables 4.23 and 4.24) supported the implications of null hypothesis testing. The param-

eter eliminated in model 4a2 showed least significance (0.2053), and lowest R2 values

(e.g., R2
N = 0.0076).

Predictive performance was checked for each model, working in both the modelling

data set, and the testing data set. Results are summarised in Table 4.25. Within the

modelling data set, model 4a1 performed the best, though models 4a2, 4b2 and 4b3

were only slightly worse. Within the testing data set, model 4b2 performed the best,

closely followed by 4a2.

Based on the analysis above, model 4a2 (and 4b2) were carried forward.



4.2 Multivariant Logistic Regression 32

Table 4.25: Predictive performance of fourth round models.

Model no. Sensitivity Specificity PPV NPV Accuracy MCC

Modelling data

4a1 67.28 80.00 76.76 71.35 73.70 0.4770

4a2 66.05 78.18 74.83 70.11 72.17 0.4458

4a3 64.20 76.97 73.24 68.65 70.64 0.4153

4a4 62.35 79.39 74.81 68.23 70.95 0.4239

4b2 65.43 79.39 75.71 70.05 72.48 0.4529

4b3 66.05 78.79 75.35 70.27 72.48 0.4523

Testing data

4a1 66.26 87.12 83.72 72.08 76.69 0.5457

4a2 66.87 92.02 89.34 73.53 79.45 0.6085

4a3 63.80 87.73 83.87 70.79 75.77 0.5308

4a4 64.42 88.34 84.68 71.29 76.38 0.5434

4b2 67.48 92.64 90.16 74.02 80.06 0.6212

4b3 65.03 85.89 82.17 71.07 75.46 0.5207
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Fifth round model refinement: Model 5 was a reduced version of both model 4a2

and model 4b2, including the following parameters:

• Watershed area

• Gradient

• Months with flows ≥ the 80th percentile of maximum monthly flows

• Latitude

The results of model 5 are provided in Table 4.26. Results of the comparison with

the null hypothesis are summarised in Table 4.27, and comparisons with predecessor

models 4a2 and 4b2 are provided in Table 4.28.

Table 4.26: Results of multivarient logistic regression model 5.

β0 Std. Error z-value Signif.

Intercept 35.6438 18.5317 1.923 0.05443

Input Parameter β1 Std. Error z-value Signif.

Watershed area 0.2807 0.0760 3.694 0.0002

Gradient -0.0405 0.0184 -2.208 0.0272

Months with flows ≥ 80th %ile (max. flows) -0.1032 0.0359 -2.875 0.0040

Latitude -0.6410 0.3353 -1.912 0.0559

Table 4.27: Summary statistics for model 5 (comparison with H0).

Model

no.

−2LL Signif. R2
L R2

CS R2
N AIC BIC Odds

Ratio

5 112.1 0.0000 0.2474 0.2903 0.3871 349.2 387.5 1.324

Table 4.28: Summary statistics for reduced model 5 (comparison with models 4a2 and 4b2).

Model

no.

−2LL Signif. R2
L R2

CS R2
N AIC BIC Odds

Ratio

4a2 1.248 0.2640 0.0037 0.0038 0.0059 341.9 351.5 1.330

4b2 0.294 0.5875 0.0009 0.0009 0.0014 342.9 352.4 1.320

Predictive performance for model 5 (see Table 4.29) was worse than either of its pre-

cursor models (4a2 and 4b2).
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Table 4.29: Predictive performance of model 5 compared with precursor models.

Model no. Sensitivity Specificity PPV NPV Accuracy MCC

Modelling data

4a2 66.05 78.18 74.83 70.11 72.17 0.4458

4b2 65.43 79.39 75.71 70.05 72.48 0.4529

5 64.81 79.39 75.54 69.68 72.17 0.4471

Testing data

4a2 66.87 92.02 89.34 73.53 79.45 0.6085

4b2 67.48 92.64 90.16 74.02 80.06 0.6212

5 66.26 90.80 87.80 72.91 78.53 0.5885

All of the parameters remaining in model 5 were either extremely significant (e.g.,

for Watershed area, α = 0.0002), or very close to the significance threshold (e.g.,

for Latitude, α = 0.0559). As such, it was expected that model 5 was a sufficiently

parsimonious model. However, in order to confirm that the remaining non-significant

parameter (Latitude) was useful, a sixth round of model reduction was undertaken.

Sixth round model refinement: Model 6 eliminated the Latitude parameter from

the model, such that the only remaining parameters were:

• Watershed area

• Gradient

• Months with flows ≥ the 80th percentile of maximum monthly flows

Table 4.30: Results of multivarient logistic regression model 6.

β0 Std. Error z-value Signif.

Intercept 0.2246 0.3277 0.685 0.4931

Input Parameter β1 Std. Error z-value Signif.

Watershed area 0.2754 0.0753 3.659 0.0003

Gradient -0.0329 0.0177 -1.860 0.0629

Months with flows ≥ 80th %ile (max. flows) -0.1108 0.0355 -3.125 0.0018



4.2 Multivariant Logistic Regression 35

Table 4.31: Summary statistics for model 6 (comparison with H0).

Model
no.

−2LL Signif. R2
L R2

CS R2
N AIC BIC Odds

Ratio

6 108.4 0.0000 0.2392 0.2822 0.3763 350.8 379.6 1.317

Table 4.32: Summary statistics for reduced model 6 (comparison with model 5).

Model
no.

−2LL Signif. R2
L R2

CS R2
N AIC BIC Odds

Ratio

5 3.687 0.0548 0.0107 0.0112 0.0172 343.2 352.7 1.324

Significance of the parameters under model 6 stayed similar to model 5, though the

values for the Gradient parameter worsened. However, significance associated with the

estimated intercept was worse under model 6, increasing from 0.0544 to 0.4931. R2

coefficients were also worse under model 6, and although there had been consistent de-

creases in these values throughout model parameter eliminations, the drop was greater

than usual for elimination of a single parameter. AIC under model 6 was worse, but

BIC was better. Comparison of the reduced model 6 with model 5 confirmed that the

Gradient parameter did contribute substantially to the model.

Table 4.33: Predictive performance of model 6 compared with model 5.

Model no. Sensitivity Specificity PPV NPV Accuracy MCC

Modelling data

5 64.81 79.39 75.54 69.68 72.17 0.4471

6 65.43 76.97 73.61 69.40 71.25 0.4270

Testing data

5 66.26 90.80 87.80 72.91 78.53 0.5885

6 63.80 87.12 83.20 70.65 75.46 0.5236

While there was a slight increase in predictive success for fish-bearing streams in the

modelling data set, all other measures were worse under model 6, compared with model

5.

Thus, elimination of Gradient from the model was deemed inadvisable, and model 5

considered a reasonably good, parsimonious model.
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Re-checking for Multicollinearity

In Section 4.2.1, model 2 was checked for potential multicollinearity using VIF. While

no specific parameter in model 2 exceeded thresholds of concern for VIF, the average

VIF indicated that bias from multicollinearity might still be affecting the model. In

order to check if the removal of a number of parameters has influenced these results for

model 5, VIF was used to check this model. Once again, no specific parameter in the

model exceeded thresholds of concern. However, although the average VIF had fallen

from 1.73 in model 2 to 1.14 in model 5, this value is still above the threshold of 1,

suggesting potential bias from multicollinearity.

4.2.2 Automated Parameter Refinement

Model refinement was undertaken manually, in order to consider a broad range of

indications of model usefulness and therefore avoid relying on a single indicator to

judge a “best” model—a failing that Whittingham et al. (2006) notes is common in

ecological modelling. However, Burnham & Anderson (2002) suggest that AIC could

defensibly be used as such a single indicator. The step command in R allows automated

refinement of an input model, based in minimisation of AIC. As a check against the

the manual approach undertaken, this method was used to refine model 2—the model

refined by removal of highly correlated parameters in model 1.

Using the step command produced a “best” model with the same parameters as model

5, confirming that the results of manual model refinement were not inconsistent with

refinement by AIC alone.

In addition to selecting parameters based on minimising AIC, step can also base se-

lection on other indicators. For comparison, step was also run using selection based

on minimisation of BIC. Automated refinement of model 2 using this method resulted

in a model (model 7) with just two parameters:

• Watershed area

• Months with flows ≥ the 80th percentile of maximum monthly flows

Model 7 was significantly worse than model 5 on almost all measures other than BIC,
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and was not considered further.

Table 4.34: Results of multivarient logistic regression model 7 - automated selection by

BIC.

β0 Std. Error z-value Signif.

Intercept -0.0937 0.2813 -0.333 0.7390

Input Parameter β1 Std. Error z-value Signif.

Watershed area 0.3028 0.0759 3.990 6.61 × 10−5

Months with flows ≥ 80th %ile (max. flows) -0.1092 0.0353 -3.096 0.0020

Table 4.35: Summary statistics for model 7 - automated selection by BIC (comparison with

H0).

Model

no.

−2LL Signif. R2
L R2

CS R2
N AIC BIC Odds

Ratio

7 104.8 0.0000 0.2311 0.2741 0.3655 352.5 371.7 1.354

Table 4.36: Predictive performance of model 7 (automated selection by BIC) compared
with model 5.

Model no. Sensitivity Specificity PPV NPV Accuracy MCC

Modelling data

5 64.81 79.39 75.54 69.68 72.17 0.4471

7 60.49 82.42 77.17 68.00 71.56 0.4403

Testing data

5 66.26 90.80 87.80 72.91 78.53 0.5885

7 59.51 87.73 82.91 68.42 73.62 0.4924
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4.3 Chapter Summary

Seven rounds of modelling and 13 individual models were tested to identify the most

useful parameters for the model. The final parameter set—identified in model 5—

included:

• Watershed area

• Gradient

• Months with flows ≥ the 80th percentile of maximum monthly flows

• Latitude

Model statistics for each model constructed are summarised in Table 4.37, while the

measures of predictive performance for each model are summarised in Table 4.38.

Table 4.37: Summary statistics for all models (comparison with H0).

Model

no.

−2LL Signif. R2
L R2

CS R2
N AIC BIC Odds

Ratio

1 146.7 0.000 0.3236 0.3615 0.4820 356.6 596.1 2.006

2 116.4 0.000 0.2568 0.2995 0.3994 350.9 417.9 1.210

3a 115.0 0.000 0.2537 0.2965 0.3953 350.3 407.8 1.255

3b 114.8 0.000 0.2532 0.2960 0.3947 350.5 408.0 1.214

4a1 113.1 0.000 0.2495 0.2924 0.3899 350.2 398.1 1.264

4a2 113.4 0.000 0.2501 0.2930 0.3907 349.9 397.8 1.330

4a3 113.0 0.000 0.2494 0.2923 0.3897 350.2 398.1 1.225

4a4 112.3 0.000 0.2477 0.2906 0.3875 351.0 398.9 1.260

4b2 112.4 0.000 0.2480 0.2909 0.3879 350.9 398.8 1.320

4b3 111.4 0.000 0.2459 0.2888 0.3851 351.8 399.7 1.200

5 112.1 0.0000 0.2474 0.2903 0.3871 349.2 387.5 1.324

6 108.4 0.0000 0.2392 0.2822 0.3763 350.8 379.6 1.317

7 104.8 0.0000 0.2311 0.2741 0.3655 352.5 371.7 1.354
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Table 4.38: Predictive performance of all models.

Model no. Sensitivity Specificity PPV NPV Accuracy MCC

Modelling data

1 64.81 87.27 83.33 71.64 76.15 0.5351

2 70.37 77.58 75.50 72.73 74.01 0.4808

3a 67.90 78.18 75.34 71.27 73.09 0.4635

3b 69.75 78.18 75.84 72.47 74.01 0.4812

4a1 67.28 80.00 76.76 71.35 73.70 0.4770

4a2 66.05 78.18 74.83 70.11 72.17 0.4458

4a3 64.20 76.97 73.24 68.65 70.64 0.4153

4a4 62.35 79.39 74.81 68.23 70.95 0.4239

4b2 65.43 79.39 75.71 70.05 72.48 0.4529

4b3 66.05 78.79 75.35 70.27 72.48 0.4523

5 64.81 79.39 75.54 69.68 72.17 0.4471

6 65.43 76.97 73.61 69.40 71.25 0.4270

7 60.49 82.42 77.17 68.00 71.56 0.4403

Testing data

1 58.28 86.50 81.20 67.46 72.39 0.4668

2 70.55 87.12 84.56 74.74 78.83 0.5848

3a 69.33 87.73 84.96 74.09 78.53 0.5805

3b 67.48 87.12 83.97 72.82 77.30 0.5568

4a1 66.26 87.12 83.72 72.08 76.69 0.5457

4a2 66.87 92.02 89.34 73.53 79.45 0.6085

4a3 63.80 87.73 83.87 70.79 75.77 0.5308

4a4 64.42 88.34 84.68 71.29 76.38 0.5434

4b2 67.48 92.64 90.16 74.02 80.06 0.6212

4b3 65.03 85.89 82.17 71.07 75.46 0.5207

5 66.26 90.80 87.80 72.91 78.53 0.5885

6 63.80 87.12 83.20 70.65 75.46 0.5236

7 59.51 87.73 82.91 68.42 73.62 0.4924
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The coefficients calculated for model 5 (see Table 4.26) yield a model of the form:

πfish-bearing =
e35.6438+0.2807A−0.0405G−0.1032F80max−0.6410L

1 + e35.6438+0.2807A−0.0405G−0.1032F80max−0.6410L
(4.4)

where:

πfish-bearing = Probability of being fish-bearing

A = Watershed area

G = Gradient

F80max = Months with flows ≥ the 80th percentile of maximum monthly flows

L = Latitude



Chapter 5

Model Validation

5.1 Validation with the Test Data Set

Simple validation of models was performed throughout the parameter elimination phase

of model refinement. Each time a new model was generated, its predictive performance

was checked on the partitioned testing data set—an approach referred to as the vali-

dation set approach (James, Witten, Hastie & Tibshirani 2013). For most models, this

testing demonstrated some variability in model performance between the modelling

data and the testing data. For model 5, these differences are shown through the con-

fusion matrices for model 5 results when run against the modelling data set (see Table

5.1) and when run against the testing data set (see Table 5.2).

Table 5.1: Confusion matrix for model 5 results run against model data set.

Non-fish-bearing Fish-bearing Total

Predicted non-fish-bearing 131 57 188

Predicted fish-bearing 34 105 139

Total 188 139 327

From the confusion matrices, metrics for predictive performance could be produced.

These were generated for each model throughout model development (see Section 4.3).

Measures of predictive performance for model 5 are reproduced in Table 5.3.

Murphy & Winkler (1987), as cited in Pearce & Ferrier (2000), note that predictive
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Table 5.2: Confusion matrix for model 5 results run against testing data set.

Non-fish-bearing Fish-bearing Total

Predicted non-fish-bearing 148 55 203

Predicted fish-bearing 15 108 123

Total 163 163 326

Table 5.3: Predictive performance of model 5.

Model no. Sensitivity Specificity PPV NPV Accuracy MCC

Modelling data

5 64.81 79.39 75.54 69.68 72.17 0.4471

Testing data

5 66.26 90.80 87.80 72.91 78.53 0.5885

performance can be visualised by inspecting the overlap of distribution of both binary

responses plotted on the same axis, as shown in Figure 5.1. This plot shows four dis-

tribution curves: two for each data set. The two curves on the left-hand side of the

plot relate to those sites within each data set that have been classified as non-fish-

bearing. The curves show the occurrence frequency for the probabilities predicted by

the model. As would be expected, most of the predicted probabilities for the non-

fish-bearing streams are below 0.5—that is, the model predicts that for most of these

streams, there is a less than 50% chance that these streams are fish-bearing. Probabil-

ities peak at around 0.2, with a smaller peak around 0.45. The tail of the curves does

extend above 0.5, which accounts for the 10% to 20% of non-fish-bearing streams not

correctly predicted by the model.

Similarly, the two curves on the right-hand side of the plot relate to those sites within

each data set that have been classified as fish-bearing. These curves show the occurrence

frequency for the probabilities predicted by the model for these fish-bearing sites. For

these curves, most of the probabilities are above 0.5, though less so than for the non-

fish-bearing streams. Peaks occur at around 0.9 and around 0.5. This means that for a

substantial proportion of the fish-bearing sites, the model produces a probability of less

than 0.5 that the streams are fish-bearing—that is, it incorrectly predicts that these

sites are non-fish-bearing streams.
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The peaks in distributions in the predicted probability range of 0.4 to 0.6 indicate that

the model was relatively uncertain for a substantial proportion of the sites. The shape

of distributions for results for both data sets were similar, indicating that each data

set was reasonably representative of the combined data set. This was reinforced by

the similarities in distributions between the data sets for each of the models produced

throughout model development (see Appendix E). For model 5, the probability distri-

butions for fish-bearing sites were very similar. For non-fish-bearing sites, though the

distribution had a similar shape, there was greater variation in the peak height and

spread of the distribution curve. This was consistent with the results for predictive

performance, which showed greater variation for non-fish-bearing streams—specificity

varied from 79.39% to 90.80%—than it did for fish-bearing streams—sensitivity varied

from 64.81% to 66.26%.
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Figure 5.1: Overlapping distributions of probabilities frequencies from model 5 for both

non-fish-bearing and fish-bearing streams (model and testing data sets).
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5.2 Model Cross-Validation

For each of the preliminary models, validation by checking model results against the

testing data set was used purely to assist in parameter selection, so no more exhaustive

efforts at cross-validation were undertaken. However, once the preferred modelling

parameter set was identified (model 5), additional cross-validation of the model was

conducted.

5.2.1 Remodelling for Cross-Validation

To prepare for cross-validation, the partitioned data sets (modelling and testing) were

combined into one data set. A new model, 5c, was generated using those parameters

identified in model 5, but fitted against the combined data set (modelling data set

plus testing data set). Results from model 5c are summarised in Table 5.4. Table 5.5

provides a comparison of the model coefficients for model 5 and model 5c. Comparison

of model 5c with the null hypothesis yielded the statistics summarised in Table 5.6.

Model statistics for the original model 5 are also included in this table for comparison.

Table 5.4: Results of multivarient logistic regression model 5c.

β0 Std. Error z-value Signif.

Intercept 64.2415 13.6934 4.691 2.71 × 10−6

Input Parameter β1 Std. Error z-value Signif.

Watershed area 0.1757 0.0420 4.182 2.89 × 10−5

Gradient -0.0637 0.0129 -4.930 8.24 × 10−7

Months with flows ≥ 80th %ile (max. flows) -0.1255 0.0250 -5.017 5.25 × 10−7

Latitude -1.1491 0.2475 -4.643 3.43 × 10−6

Model 5c was also tested for predictive performance against the combined data set.

However, as this same data set was used to train the model, outcomes may have over-

stated the effectiveness of the model. The confusion matrix in Table 5.7 shows the

outcomes of the model. Table 5.8 summarises predictive success measures. Results

for model 5 are also included for comparison. Matthews correlation coefficient was

not able to be calculated for the model outcomes run against the combined data set.

The probability distribution for model 5c is shown in Figure 5.2. For comparison, the

probability distribution of model 5 against the combined data set is shown in Figure
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5.3.

Table 5.5: Comparison of model coefficients - model 5 and model 5c.

β0(5) β0 (5c)

Intercept 35.6438 64.2415

Input Parameter β1(5) β1(5c)

Watershed area 0.2807 0.1757

Gradient -0.0405 -0.0637

Months with flows ≥ 80th %ile (max. flows) -0.1032 -0.1255

Latitude -0.6410 -1.1491

Table 5.6: Summary statistics for model 5c (comparison with H0).

Model
no.

Likelihood
ratio

Signif. R2
L R2

CS R2
N AIC BIC Odds

Ratio

5 112.1 0.0000 0.2474 0.2903 0.3871 349.2 387.5 1.324

5c 241.8 0.0000 0.2671 0.3095 0.4126 671.4 715.3 1.192
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Table 5.7: Confusion matrix for model 5c results run against the combined data set.

Non-fish-bearing Fish-bearing Total

Predicted non-fish-bearing 260 95 355

Predicted fish-bearing 68 230 298

Total 355 298 653

Table 5.8: Predictive performance of model 5c compared with model 5.

Model
(Data set)

Sensitivity Specificity PPV NPV Accuracy MCC

5c (combined) 70.77 79.27 77.18 73.24 75.04 NA

5 (combined) 65.54 85.06 81.30 71.36 75.34 NA

5 (modelling) 64.81 79.39 75.54 69.68 72.17 0.4471

5 (testing) 66.26 90.80 87.80 72.91 78.53 0.5885
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Figure 5.2: Overlapping distributions of probability frequencies from model 5c (combined

data set).
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Figure 5.3: Overlapping distributions of probability frequencies from model 5 (combined

data set).
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5.2.2 Cross-Validation Methods

As the combined data set was still not overly large (653 sites), leave-one-out cross-

validation (LOOCV) was employed. LOOCV eliminates potential variation from ran-

domness in the selection of the split in sets, and eliminates overestimation of error

rates that can be produced by the validation approach (James et al. 2013). James

et al. (2013) also suggests that k-fold cross-validation with k = 5 and k = 10 can have

more accurate results for test error than LOOCV, so 5-fold and 10-fold cross-validation

was also undertaken for comparison.

Cross-validation was performed using the cv.glm command in R. The cost function

used within cv.glm was taken from Weiss (2009):

cost <- function(r, pi=0) mean(abs(r-pi)>0.5)

The cv.glm command in R produces a delta value and adjusted delta value, where

the delta value is cross-validation misclassification error (Weiss 2009) and the adjusted

delta value modifies the delta value to account for bias produced by using k-fold cross-

validation rather than LOOCV (James et al. 2013, Weiss 2009). Delta values and

adjusted delta values for each approach to cross-validation are compared in Table 5.9.

Table 5.9: Results of cross-validation of model 5c.

LOOCV 5-fold 10-fold

Delta 0.2527 0.2481 0.2588

Adjusted delta 0.2526 0.2444 0.2563

The delta values give a measure of model error. Adjusted delta values from the various

cross-validation methods were all reasonably close, ranging from 0.2444 to 0.2563. This

indicates an error level in the predicted probability outcomes of model 5c of around

25%. This error level is reasonably high, but not unexpected given that the overall

accuracy of model 5c when tested against the combined data set was 75.04%.
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5.3 Comparison of Model 5 and Model 5c

Unlike model 5, model 5c used all available data to refine parameter coefficient values.

It was therefore expected to perform better than model 5 in terms of predictive success.

This was not observed (see Table 5.8). While model 5c had substantially better success

in correctly identifying fish-bearing streams (by around 5%), this was almost exactly

offset by a similar reduction in correctly predicting non-fish-bearing streams. Overall

accuracy of the models was virtually identical.

Given that accurate prediction of non-fish-bearing streams is more useful for field plan-

ning than prediction of fish-bearing streams, model 5 is preferred over model 5c. Accu-

rate identification of non-fish-bearing streams by the model would allow prioritisation

of those streams for field surveys in order to dedicate survey resources to meeting reg-

ulatory requirements for assigning non-fish-bearing status to those streams, and not

“wasting” resources on those streams less likely to be non-fish-bearing.



Chapter 6

Results and Conclusions

6.1 Model Usefulness

Predictive success rates for model 5 were not exceptional, but were sufficiently high

for the model to be a useful tool for field planning. Predictive success rates were

consistently higher for non-fish-bearing streams than for fish-bearing streams, including

in the final model. This difference was likely because of underlying differences in the

quality of the fish-bearing classification data. As noted in Section 2, streams classified

as non-fish-bearing during assessments for environmental assessments must meet very

stringent guidelines.

If the conditions for classification as a non-fish-bearing stream are not met, then classi-

fication of the stream defaults to fish-bearing, irrespective of evidence to the contrary.

Thus, sites classified as non-fish-bearing have far higher certainty in their classification,

and therefore lower error than those sites classified as fish-bearing. That is, very few

sites classified as non-fish-bearing are likely to actually be fish-bearing, but a much

higher proportion of sites classified as fish-bearing may actually be non-fish-bearing.

The effects of this higher degree of error in the sites classified as fish-bearing was

demonstrated by the distribution predicted probabilities for all models (see Appendix

E). For all models generated throughout model development, the distribution of prob-

ability for the fish-bearing sites was flatter and wider than the distributions for the

non-fish-bearing sites.
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Although the lower predictive success of the model for fish-bearing streams reduces

its usefulness, accurate prediction of non-fish-bearing streams is more useful for field

planning than prediction of fish-bearing streams. Given that predictive success for

non-fish-bearing streams would be a priority for field planning, the model outputs

could be further biased to increase predictive success for these sites, while sacrificing

predictive success for fish-bearing sites. This could be simply implemented by shifting

the threshold of prediction higher from the threshold (probability = 0.5) used by default

in the model. Hoever, the disadvantage of shifting the threshold higher would be an

increase in ”false negatives”, that is, fish-bearing streams incorrectly identified as non-

fish-bearing. Given the peak in the fish-bearing probability distribution for model 5

near 0.5 (see Figure 5.3), the value in threshold shifting is questionable.

6.2 Further Work

As noted in Section 3, one of the parameters in the final model (gradient) was not

desktop-available data, but was used as a proxy for desktop data derived slope infor-

mation for higher resolution elevation data not available for this research. In order to

confirm the validity of the model as a purely desktop analysis, the model usefulness

should be confirmed using actual desktop-available slope data.

Additionally, a number of other potential predictive parameters could also be inves-

tigated. The shape of distribution curves for many of the models (see Appendix E)

seemed to indicate that substantial variation is not accounted for by the selected pa-

rameters. Discussions with professional colleagues (Mitchell, S 2014, pers. comm., 5

September) has suggested that longer-term, intermittent, inter-annual hydrologic events

such as recurring droughts or floods may strongly influence fish-bearing status. Data

on these types of events is obscured in the data used for model development to date,

by the averaging used to calculate mean and maximum monthly flows.

Basic climate data such as rainfall, snowfall and temperature may also influence fish-

bearing status and could be included in future analysis.
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6.3 Conclusion

With predictive success rates for non-fish-bearing streams (specificity) in the range of

approximately 80% to 90%, model 5 could be very useful for field planning purposes.

However, before it could be utilised in the manner envisaged at the beginning of this

research—that is, based purely on desktop-available data—model performance needs

to be confirmed using higher-quality slope data, derived from finer-grained elevation

data.

Poorer predictive success rates for fish-bearing streams (sensitivity) limit the model’s

usefulness for other purposes. While this may be addressed by identifying and including

other parameters in the model (see Section 6.2), accuracy is likely unavoidably handi-

capped by biases in data quality caused by the regulatory regime under which stream

classification occurs.

Overall, the model could be a very useful tool but should be further validated and

refined before serious implementation.
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B.1 R Function for single-parameter logistic regression

#Regress analysis set

logreg <- function (dataset, fishcol, datacol) {

setname <- paste(deparse(substitute(dataset)))

colname <- paste(deparse(substitute(datacol)))

dataname <- paste(setname,colname,sep="-")

filename <- paste(setname,"csv",sep=".")

dataset <- read.csv(filename)

attach(dataset)

log_reg <- glm(fishcol ~ datacol,family=binomial,data=dataset)

print(summary(log_reg))

cat("Number of samples =", nrow(dataset),"\n")

dev_base <- log_reg$null.deviance

dev_new <- log_reg$deviance

log_reg_chi <- dev_base - dev_new

cat("Likeihood ratio =", log_reg_chi ,"\n")

log_reg_chif <- log_reg$df.null - log_reg$df.residual

log_reg_p <- 1 - pchisq(log_reg_chi, log_reg_chif)

cat("Significance of LR =", log_reg_p ,"\n")

r2l <- log_reg_chi/dev_base

cat("R2L =", r2l ,"\n")

r2cs <- 1 - exp((dev_new - dev_base)/nrow(dataset))

cat("R2CS =", r2cs ,"\n")

r2n <- r2cs/(1-exp(-(dev_base)/nrow(dataset)))

cat("R2N =", r2n ,"\n")

lr_x <- sort(datacol)

lr_B0 <- coefficients(log_reg)[c(1)]

lr_B1 <- coefficients(log_reg)[c(2)]

odd_rat <- exp(lr_B1)

cat("Odds ratio =", odd_rat,"\n")

lr_pi <- lr_B0 + lr_B1*lr_x

lr_y <- exp(lr_pi)/(1+exp(lr_pi))

plot(fishcol~datacol)

lines(lr_x,lr_y,col="red")

newline <- data.frame(dataname,lr_B0,lr_B1,log_reg_chi,

log_reg_p,r2l,r2cs,r2n,odd_rat)

write.table(newline,file="IndStats.csv",sep=",",

col.names=FALSE,append=TRUE)

detach(dataset)

}
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B.2 R Function for key model statistics (H0)

#Compare logistic regression model against null hypothesis

model_test <- function (model) {

specify_decimal <- function(x, k) format(round(x, k), nsmall=k)

cat("Number of samples =", nobs(model),"\n")

dev_base <- model$null.deviance

dev_new <- model$deviance

model_chi <- dev_base - dev_new

cat("Likeihood ratio =", model_chi ,"\n")

model_chif <- model$df.null - model$df.residual

model_p <- 1 - pchisq(model_chi, model_chif)

cat("Significance of LR =", model_p ,"\n")

r2l <- model_chi/dev_base

cat("R2L =", r2l ,"\n")

r2cs <- 1 - exp((dev_new - dev_base)/nobs(model))

cat("R2CS =", r2cs ,"\n")

r2n <- r2cs/(1-exp(-(dev_base)/nobs(model)))

cat("R2N =", r2n ,"\n")

lr_B0 <- coefficients(model)[c(1)]

lr_B1 <- coefficients(model)[c(2)]

odd_rat <- exp(lr_B1)

cat("Odds ratio =", odd_rat,"\n")

Akaike_IC <- dev_new + 2*model_chif

cat("Akaike information criterion =", Akaike_IC,"\n")

Bayes_IC <- dev_new + 2*model_chif*(log(nobs(model)))

cat("Bayes information criterion =", Bayes_IC,"\n")

cat("LaTEX: &",specify_decimal(model_chi,1) ,"&",

specify_decimal(model_p,4) ,"&", specify_decimal(r2l,4),

"&",specify_decimal(r2cs,4),"&",specify_decimal(r2n,4),

"&",specify_decimal(Akaike_IC,1),"&",

specify_decimal(Bayes_IC,1),"&",

specify_decimal(odd_rat,3),"\n")

}
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B.3 R Function for key model statistics (reduced model)

#Compare logistic regression models; model1 has more variables than model2

model_comp <- function (model1,model2) {

specify_decimal <- function(x, k) format(round(x, k), nsmall=k)

cat("Number of samples =", nobs(model1),"\n")

dev_base <- model2$deviance

dev_new <- model1$deviance

model1_chi <- dev_base - dev_new

cat("Likeihood ratio =", model1_chi ,"\n")

model1_chif <- model2$df.residual - model1$df.residual

model1_p <- 1 - pchisq(model1_chi, model1_chif)

cat("Significance of LR =", model1_p ,"\n")

r2l <- model1_chi/dev_base

cat("R2L =", r2l ,"\n")

r2cs <- 1 - exp((dev_new - dev_base)/nobs(model1))

cat("R2CS =", r2cs ,"\n")

r2n <- r2cs/(1-exp(-(dev_base)/nobs(model1)))

cat("R2N =", r2n ,"\n")

lr_B0 <- coefficients(model1)[c(1)]

lr_B1 <- coefficients(model1)[c(2)]

odd_rat <- exp(lr_B1)

cat("Odds ratio =", odd_rat,"\n")

Akaike_IC <- dev_new + 2*model1_chif

cat("Akaike information criterion =", Akaike_IC,"\n")

Bayes_IC <- dev_new + 2*model1_chif*(log(nobs(model1)))

cat("Bayes information criterion =", Bayes_IC,"\n")

cat("LaTEX: &",specify_decimal(model1_chi,3) ,"&",

specify_decimal(model1_p,4) ,"&",

specify_decimal(r2l,4),"&",specify_decimal(r2cs,4),

"&",specify_decimal(r2n,4),"&", specify_decimal(Akaike_IC,1),

"&",specify_decimal(Bayes_IC,1),

"&",specify_decimal(odd_rat,3),"\n")

}
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B.4 R Function for predictive performance analysis

#Check precentage true/false fish presence correctly predicted by model

pred_check2 <- function (model,data) {

specify_decimal <- function(x, k) format(round(x, k), nsmall=k)

fit_vals <- predict(model,newdata=data,type=’response’)

real_vals <- data$fish + 0

pred_vals <- round(fit_vals)

cor_vals <- pred_vals + real_vals

real_0 <- table(real_vals)[["0"]]

real_1 <- table(real_vals)[["1"]]

pred_0 <- table(pred_vals)[["0"]]

pred_1 <- table(pred_vals)[["1"]]

cor_0 <- table(cor_vals)[["0"]]

cor_1 <- table(cor_vals)[["2"]]

incor_0 <- real_0 - cor_0

incor_1 <- real_1 - cor_1

val_comp <- cbind(real_vals,fit_vals, deparse.level = 1)

comp_0 <- subset(val_comp, real_vals == 0)

comp_1 <- subset(val_comp, real_vals == 1)

sens <- cor_1/real_1*100

spec <- cor_0/real_0*100

corAll <- (cor_1+cor_0)/(real_0+real_1)*100

ppv <- cor_1/pred_1*100

npv <- cor_0/pred_0*100

mcc <- ((cor_1 * cor_0) - (incor_1 * incor_0)) /

sqrt((cor_1 + incor_1)*(cor_1 + incor_0)*

(cor_0 + incor_1)*(cor_0 + incor_0))

cat("Sensitivity (Percentage fish-bearing correctly predicted)

=", sens ,"\n")

cat("Specificity (Percentage non-fish-bearing correctly predicted)

=", spec ,"\n")

cat("PPV (Percentage fish-bearing predictions correct)

=", ppv ,"\n")

cat("NPV (Percentage non-fish-bearing predictions correct)

=", npv ,"\n")

cat("Overall percentage correctly predicted =", corAll ,"\n")

cat("Mathews correlation coefficient =", mcc ,"\n")

cat("LaTEX: &",specify_decimal(sens,2) ,"&",

specify_decimal(spec,2), "&", specify_decimal(ppv,2) ,

"&", specify_decimal(npv,2) ,"&", specify_decimal(corAll,2),

"&", specify_decimal(mcc,4),"\\\\","\n")

comp0frame <- as.data.frame(comp_0)

comp1frame <- as.data.frame(comp_1)

val_frame <- merge(comp0frame,comp1frame,all=TRUE)

val_text <- data.table(val_frame,key="real_vals")

val_text[.(0),text_val := "Non-fish-bearing"]

val_text[.(1), text_val := "Fish-bearing"]

dist_plot <- ggplot(val_text, aes(x=fit_vals,fill=text_val))

dist_plot <- dist_plot + geom_density(alpha=.6)

dist_plot <- dist_plot + labs(title="Predicted Probability
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Distributions for \nFish-Bearing and Non-Fish-Bearing Streams",

x="Predicted Probability",y="Frequency",fill="Fish Presence")

dist_plot <- dist_plot + theme(plot.title=element_text

(family="cmr10",face="bold"))

dist_plot <- dist_plot + theme(axis.text=element_text(family="cmr10"),

axis.title=element_text(family="cmr10"))

dist_plot <- dist_plot + theme(legend.position=c(.8,.8),

legend.title=element_text(family="cmr10"),

legend.text=element_text(family="cmr10"))

print(dist_plot)

}
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C.1 Data set used for model development

Site ID Fish Bearing Watershed Gradient Max. flow ≥ 80th Latitude

10073 FALSE 0.231205518 4 12 55.01019298

10078 TRUE 0.088758273 1.666666667 12 55.03067071

10003 FALSE 0.039614992 6.666666667 12 55.17605

10016 FALSE 0.118240139 1 12 54.93201942

10017 FALSE 0.254497054 1.666666667 12 54.93103992

10027 FALSE 0.047441588 1 12 54.89540743

10029 FALSE 0.056281151 2.333333333 12 54.89390163

10049 FALSE 0.14431757 6.5 12 54.89005

10051 FALSE 0.62162624 1.75 12 54.86448566

10059 FALSE 0.102198474 7 12 54.81599685

10082 FALSE 0.441873504 2.2 12 55.16872522

10096.5 TRUE 0.02220776 7.666666667 12 55.33149478

10099 TRUE 0.176457627 6.333333333 12 55.33886267

10106 FALSE 0.924469615 1.5 3 55.31804498

10107 FALSE 0.223751354 4.2 12 55.31713754

10108 TRUE 0.103391377 9.666666667 12 55.32713634

11001 FALSE 0.486589417 2 12 55.35835449

11003 FALSE 0.833375887 12 3 55.35705364

11013 FALSE 1.946940466 0.036666667 3 55.50761738

11084 TRUE 0.027558932 9.25 3 54.19752934

1113 TRUE 0.884506367 1 3 55.05153149

1116 TRUE 20.29179772 2.166666667 3 55.04245343

1121 TRUE 1.710595198 5.9 3 55.03509757

12016 FALSE 0.996018294 0.416 3 55.61141432

12027 TRUE 1883.131427 0.021666667 3 55.51605914

12050 FALSE 0.335650244 2.4 3 55.90831995

12063 TRUE 4.959495319 2.166666667 3 55.36058685

12065 FALSE 1.770192095 12.66666667 3 55.33777904

12096 TRUE 5.719715615 5.833333333 3 55.93743507

12105 FALSE 0.04374398 8 12 55.5729685

12111 FALSE 0.025343094 8.833333333 12 55.63123524

12112 FALSE 0.170902846 6.5 12 55.63024628

12123 FALSE 0.289838632 14 3 55.50034926

12160 FALSE 0.064842562 12 12 55.20065

12161 TRUE 0.325961107 11.75 12 55.20026

12166 FALSE 0.643672745 2 3 55.2106

13010 TRUE 6.600715039 2.75 3 55.27741

13011 FALSE 0.262738858 8.5 12 55.27847

13012 FALSE 0.086737683 0.5 12 55.27001
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Site ID Fish Bearing Watershed Gradient Max. flow ≥ 80th Latitude

13028 TRUE 6.532549019 1.333333333 3 55.04748361

13037 FALSE 1.653146734 1 3 55.00866357

13042 TRUE 3.323883862 1.066666667 3 55.13876799

13043 TRUE 262.1316658 1.833333333 3 55.29795282

13046 TRUE 17.73858212 7 3 55.3887145

13051 TRUE 0.760923867 1.75 3 55.41757145

13055 FALSE 4.595003331 25.83333333 3 55.45051244

13069 FALSE 0.060863898 1.6 3 55.56218465

13078 TRUE 1.719239977 10.5 3 55.5922695

13086 TRUE 37.19228144 5 3 55.2744304

13091 TRUE 0.224619928 8.833333333 3 55.21417005

13093 TRUE 570.6359972 9.166666667 3 55.210488

13102 TRUE 1.692494382 9.5 3 55.59693982

13104 FALSE 0.092007548 25 12 55.55718201

13110 FALSE 0.05934385 26 12 55.48852647

13121 TRUE 39.816289 2.833333333 3 55.6392056

13142 FALSE 1.269900081 2.666666667 3 54.89768675

13149 FALSE 0.105110563 1 12 54.89989133

13155 FALSE 1.169616427 3 3 54.83076646

1383 TRUE 0.108006683 12.6 3 54.25649

1384 FALSE 0.185570163 22 3 54.25388132

1385 FALSE 0.02630257 38.33333333 3 54.25210684

1386 FALSE 0.035380791 32.5 3 54.25140276

1388 TRUE 0.307363102 32.66666667 3 54.24950042

1399 TRUE 0.099212147 10 3 54.24149466

14003 FALSE 0.09179554 11.66666667 3 54.26227523

14005 TRUE 2.442045216 8.666666667 3 54.26551094

14007 TRUE 0.201342295 9.5 3 54.26840672

14032 TRUE 1.815287379 6.333333333 3 54.88863664

14036 FALSE 0.100002563 18 3 54.88845

14039 FALSE 0.197060376 40 3 54.884

1404 TRUE 0.015899757 20 12 54.23976

14043 FALSE 0.201238755 30 3 54.87447

14047 FALSE 0.471232171 4.333333333 3 54.86843648

14057 FALSE 0.167811712 12 3 54.876

14068 FALSE 0.471810559 20.75 3 54.8841

1411 FALSE 0.02153135 21.25 3 54.23576

1412 FALSE 0.026700021 25.6 3 54.23492

15005 TRUE 5.583185998 2 3 54.98062913

15007 TRUE 1.855202195 8 3 54.29202927

15008 TRUE 0.362197255 6 3 54.29178699
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Site ID Fish Bearing Watershed Gradient Max. flow ≥ 80th Latitude

15009 TRUE 2.061588776 15 3 54.2898663

15015 TRUE 0.173589673 20.5 3 54.28347171

15017 TRUE 0.037928833 17 3 54.27123

15018 FALSE 0.041995759 19.33333333 3 54.26159913

15023 TRUE 1.018114351 3.6 3 54.82209095

15025 TRUE 2.193666051 12.5 3 55.34109182

164.5 FALSE 0.006692367 7.166666667 12 55.56229497

165 FALSE 0.090649912 11.5 12 55.5628852

17 TRUE 1.724072272 23 3 55.9653392

17002 TRUE 10.32169173 7 3 55.63964321

17010 FALSE 0.378454702 0.042 3 55.67175577

17016 FALSE 0.393553715 0.06 3 55.6635504

17021 TRUE 7.693789956 0.89 3 55.63620858

17040 FALSE 1.539833938 0.19 3 55.61926844

17042 FALSE 3.505426907 1.381666667 3 55.59529158

17043 FALSE 0.463822006 0.064 3 55.60160276

17052 FALSE 1.576100857 0.125 3 55.56441083

17053 FALSE 2.033703659 0.03 3 55.55186981

17057 TRUE 0.117879823 0.02 3 55.50018446

17059 FALSE 0.255660049 0.055 3 55.48237318

17064 FALSE 1.793185908 14.4 3 55.04949

17066 TRUE 231.1685278 4.333333333 3 55.05804613

17069 TRUE 8.082517343 3 3 54.88763496

17073 FALSE 2.485606569 2 3 54.88735043

17079 FALSE 0.051742275 11 12 55.6968394

17081 FALSE 0.348086044 1 3 55.69516721

17096 FALSE 0.182653753 0.02 3 55.5064168

173 FALSE 0.176080186 12 12 55.57933732

174 FALSE 0.368249296 36 3 55.57509492

174.5 FALSE 0.058212189 19 12 55.57175941

176 FALSE 5.888426634 18.75 3 55.56674089

18 TRUE 3.305480988 4 3 55.96182108

181 TRUE 0.340182484 11 3 55.551728

185 FALSE 0.169779915 3.083333333 12 55.54586906

186 TRUE 2.094998415 3.083333333 3 55.54518443

189 FALSE 0.064920771 3.833333333 12 55.5439519

19004 FALSE 0.123615808 7 12 54.858565

19005 TRUE 0.429013147 3.833333333 12 54.84511872

19020 TRUE 0.819885642 4 3 55.33928513

19021 TRUE 0.203733383 4 12 55.33888407

19022 FALSE 0.779140792 2.25 3 55.23495
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Site ID Fish Bearing Watershed Gradient Max. flow ≥ 80th Latitude

19023 FALSE 0.023684611 1.6 12 54.93193

19024 TRUE 1.600171542 1.5 3 55.34345595

19026 TRUE 0.230711501 3.5 12 55.33424413

193 FALSE 0.046458169 4.666666667 12 55.54310273

194 FALSE 0.094230055 5.333333333 12 55.54071894

196 FALSE 4.621013044 3.666666667 3 55.52819847

197 FALSE 0.21283923 3.666666667 12 55.52654855

199 FALSE 0.205448827 6.666666667 12 55.52453427

21001 FALSE 0.261539756 12.33333333 3 54.94896846

213 FALSE 0.655601985 11.33333333 3 55.48977321

215 FALSE 0.633346558 9 3 55.48346059

216 TRUE 0.629759837 2 3 55.47927933

222 TRUE 22.35447466 7 3 55.47416617

223 FALSE 0.265190252 10 3 55.47099799

224 FALSE 0.028357934 31 12 55.47006971

226 TRUE 0.368456951 15.16666667 3 55.46637492

229 FALSE 0.200990378 29.66666667 12 55.46330605

237 TRUE 3.356318681 10.16666667 3 55.43551744

239 TRUE 0.511513737 7.833333333 3 55.42961631

24 TRUE 2.207823696 3.75 3 55.92335599

254 FALSE 0.276176645 4 12 55.36169438

279.5 FALSE 0.065668171 14.33333333 12 55.36231579

285 FALSE 0.481370046 13.16666667 12 55.36374273

3 TRUE 45.44769693 1 3 56.15795082

3010 FALSE 0.873602433 4 3 55.32381224

3011 TRUE 7.289838488 3.833333333 3 55.3158405

3030 FALSE 0.066262089 6.8 12 55.22093

3039 TRUE 4.50067262 2.083333333 3 55.20404

3041 TRUE 5.422905477 4.5 3 55.18263

3044 TRUE 46.7431515 1 3 55.17551

3046 TRUE 0.923876343 3.5 3 55.14222216

3050 TRUE 85.99803936 0.833333333 3 55.12048396

3070 TRUE 0.77894088 2.2 3 54.99184364

3073 FALSE 3.240621822 1.666666667 3 54.98238599

3076 TRUE 5.766108154 1.333333333 3 54.95774418

3077 TRUE 31.67389708 1 3 54.95706497

3078 TRUE 54.81084924 1.2 3 54.952424

3080 TRUE 1.232057742 1.2 3 54.9496921

3081 FALSE 0.819423052 1 3 54.9469265

3089 FALSE 0.1551122 3.666666667 12 54.9230478

3112 TRUE 1.565972942 4.666666667 3 54.89662694
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Site ID Fish Bearing Watershed Gradient Max. flow ≥ 80th Latitude

3115 FALSE 0.206357088 10 12 54.89126608

3117 FALSE 3.23200935 2.5 3 54.89600013

3123 TRUE 1.339069466 3.833333333 3 54.89847156

3124 TRUE 0.376163072 7.75 12 54.89845575

3151 TRUE 14.22625408 2.833333333 3 54.88794601

3170 TRUE 8.341749966 4.333333333 3 54.88462

3171 TRUE 8.195290051 3.333333333 3 54.88544

3172 TRUE 1.65204921 3 3 54.88569

3175 TRUE 6.494999428 2.5 3 54.88705

3176 FALSE 1.403399679 12.2 3 54.89090536

3179 FALSE 0.062306512 25 12 54.87827615

3180 FALSE 0.401552633 21.66666667 12 54.87557849

3181 TRUE 2.119171367 3.25 3 54.87264251

3192 FALSE 4.562558935 4 3 54.84299779

3196 TRUE 29.84193082 2.833333333 3 54.82878817

3198 TRUE 5.591327031 3.666666667 3 54.82323

3199 TRUE 5.599494949 2.666666667 3 54.82206

3203 FALSE 2.728745009 5 3 54.81961482

3205 TRUE 4.868032303 3 3 54.82273073

3206 FALSE 1.793651713 3.5 3 54.82451166

3211 TRUE 8.782020961 6.166666667 3 54.83084929

3213 TRUE 123.2370388 2.5 3 54.84591898

3217 TRUE 98.76892774 2.666666667 3 54.86730081

3226 FALSE 1.116370986 15.16666667 3 54.88971281

3229 TRUE 1.949264999 3 3 54.90827485

3231 TRUE 2.324703921 10 3 54.92510027

3235 FALSE 1.180705946 9 3 54.96225509

3237 TRUE 22.34637477 2 3 54.97293157

3238 FALSE 1.7687554 2.6 3 54.98234946

3239 FALSE 0.195202467 4.5 12 54.99175248

3240 TRUE 362.357308 1.333333333 3 55.02750448

3241 TRUE 9.493147191 1.8 3 55.03204023

3246 FALSE 1.744651823 2 3 55.07189

3248 TRUE 8.187585228 1 3 55.08450422

3264 TRUE 0.449994286 2.5 12 55.1524967

3267 TRUE 4.950499457 3.833333333 3 55.17235937

3269 TRUE 4.505121074 3 3 55.197177

3271 TRUE 4.408240615 2.833333333 3 55.22251157

3275 FALSE 2.906410703 3 3 55.23527304

3276 TRUE 0.877194674 11.66666667 3 55.24004748

3281 TRUE 2.19667065 5.75 3 55.2537892
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Site ID Fish Bearing Watershed Gradient Max. flow ≥ 80th Latitude

3284 TRUE 1.029584496 6.2 3 55.26130612

3294 TRUE 4.983433893 1.333333333 3 55.28800225

3299 TRUE 27.43887993 2.833333333 3 55.30277546

3302 TRUE 4.875088329 3.8 3 55.31343303

3304 TRUE 0.733688191 3.75 3 55.3193055

3323 TRUE 0.193812502 6.166666667 12 55.33415456

3325 TRUE 0.651207961 15 3 55.33422001

3328 FALSE 0.972023782 4 3 55.33144661

3331 TRUE 6.111125105 8 3 55.33077871

3335 TRUE 0.115828857 14.5 12 55.33588482

3336 TRUE 0.619213044 8.333333333 12 55.33670756

3337 TRUE 0.27218175 5.833333333 12 55.33902862

3338 TRUE 0.680937419 11 3 55.34227029

3339 TRUE 15.89453116 8.166666667 3 55.34456871

3340 TRUE 1.357414147 14.33333333 3 55.3455255

3341 TRUE 0.499429305 15.83333333 12 55.34529686

3342 TRUE 1.30734534 6.833333333 3 55.34289626

3344 TRUE 12.94567658 8.5 3 55.34086125

3346 FALSE 7.952374671 11.33333333 3 55.33776923

3347 FALSE 0.333717528 5.166666667 12 55.33165244

3348 FALSE 2.449664548 10.16666667 3 55.33089227

3350 FALSE 0.964615766 9 3 55.32899839

3352 FALSE 1.943195088 10.6 3 55.32621518

3354 FALSE 0.432027115 15 12 55.32092422

3355 FALSE 2.528580691 1.833333333 3 55.31766081

3357 FALSE 0.469748891 1 12 55.32505331

3358 FALSE 0.94949245 13.83333333 3 55.32723395

3362 FALSE 1.183601163 36.4 3 55.32678805

3369 FALSE 0.315743771 25 12 55.32597

3370 FALSE 0.156904765 10 12 55.32687

3372 FALSE 0.100157316 21.66666667 12 55.32993

3373 TRUE 2.59377475 15.6 3 55.33295

3374 FALSE 2.017339217 11.66666667 3 55.33551

3376 FALSE 0.450726797 11.5 12 55.34372

3379 FALSE 0.920838401 6.5 3 55.34966

3379.4 FALSE 0.479193028 7 12 55.3517

3380 TRUE 4.042073137 9 3 55.35389

3381 TRUE 1.100520165 9.2 3 55.35677

3383 FALSE 0.500055267 15.5 3 55.3663

3384 FALSE 0.320796265 15.33333333 3 55.37077

3385 TRUE 0.444030829 6.333333333 3 55.3742
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Site ID Fish Bearing Watershed Gradient Max. flow ≥ 80th Latitude

3388 TRUE 197.6923856 3 3 55.38032

4 TRUE 1.152020366 1 3 56.15649758

5 TRUE 0.530909391 2 3 56.15047226

5016 TRUE 1.218017769 14.16666667 3 54.9712088

5017 TRUE 0.563834032 2.5 3 54.97278049

5018 TRUE 0.667722319 11.25 3 54.97006028

5019 TRUE 5.29866377 4.166666667 3 54.968332

5020 TRUE 4.437519438 6.5 3 54.96774301

5031 TRUE 2.524934697 19 3 54.9490931

7010 TRUE 6.929367779 2.2 3 55.87700648

7019 TRUE 2.794211509 3 3 55.81511129

7021 TRUE 3.08672999 3 3 55.79403684

7023 FALSE 0.538832035 4 3 55.79254885

7024 FALSE 0.081986191 7 12 55.79217537

7027 FALSE 0.534579159 5 3 55.78838949

7029 FALSE 0.42020534 5 3 55.77882

7030 TRUE 11.96857983 4.166666667 3 55.77900414

7037 TRUE 27.93942871 1.833333333 3 55.7657504

7040 TRUE 3.250724617 3.333333333 3 55.76678834

7041 TRUE 0.804990678 1 3 55.76637872

7062 FALSE 0.156862627 15 12 55.73659657

7067 FALSE 0.446042413 8.666666667 3 55.72706489

7081 TRUE 227.2901423 1.916666667 3 55.70629627

7089 TRUE 0.830353297 12 3 55.69338385

7090 FALSE 0.370486758 15 3 55.69346862

7093 TRUE 47.88686368 3.333333333 3 55.69075335

7095 FALSE 0.12290382 10 12 55.68967234

7098 FALSE 1.056398101 12 3 55.68966114

7099 TRUE 124.0066896 2.25 3 55.69161505

7116 TRUE 21.13604623 7.166666667 3 55.70077879

7118 TRUE 45.26061262 1.833333333 3 55.69661727

7122 FALSE 0.242728487 11.5 12 55.68971447

7125 FALSE 1.260071976 8.166666667 3 55.68754794

7127 FALSE 1.52960854 9 3 55.68703846

7128 FALSE 0.58482688 11.83333333 3 55.68630792

7129 FALSE 0.157465299 13 12 55.68487601

7130 FALSE 0.168619309 31 12 55.68135358

7132 TRUE 0.172107224 2 12 55.67655931

7135 FALSE 0.13315371 25.33333333 12 55.6674319

7137 TRUE 0.022534045 16.8 12 55.66628563

7138 FALSE 0.027473598 38 12 55.66533789
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Site ID Fish Bearing Watershed Gradient Max. flow ≥ 80th Latitude

7139 FALSE 0.120720017 15 12 55.66068134

7158 FALSE 0.12353361 9.4 12 55.62472367

7159 FALSE 0.054337608 9 12 55.62261068

7162 FALSE 0.030945316 28.33333333 12 55.61882698

7163 TRUE 0.928097598 12.6 3 55.61517462

7163.5 FALSE 0.047666967 10 12 55.61440581

7164 TRUE 0.163631779 14.83333333 12 55.612427

7165 FALSE 0.030603698 4.666666667 12 55.61091421

7166 FALSE 0.09698288 6.166666667 12 55.60964724

7182 FALSE 0.662918209 7.25 3 55.54346663

7182.5 TRUE 0.194757557 4.75 12 55.5461751

7183 TRUE 0.60076778 5.833333333 3 55.54861289

7187 TRUE 1.929363443 5.083333333 3 55.55671118

7191 FALSE 0.218457269 8.25 12 55.55799048

7201 FALSE 0.10969662 2 12 55.36394083

7202 FALSE 0.134198167 2 12 55.36460545

7203 TRUE 5.026663982 1 3 55.36658198

7204 FALSE 0.096958905 3.166666667 12 55.36773671

7206 FALSE 0.055603699 1 12 55.36644865

7213 FALSE 0.058986555 8 12 55.35380848

7219 FALSE 0.025587648 2.333333333 12 55.2646

7228 TRUE 35.41847202 4.5 3 56.11953

7242 FALSE 0.738452301 7.833333333 3 55.21715

7243 FALSE 0.634442924 5.833333333 12 55.21368

7343 TRUE 7.343960693 8.333333333 3 55.63715379

7347 TRUE 0.296370979 1 3 55.63424842

7360 FALSE 16.83741498 0.095 3 55.65178871

7451 FALSE 0.162027741 4.333333333 3 55.41575402

7453 FALSE 0.507789147 4.666666667 3 55.40460414

7486 TRUE 26.7137007 2.833333333 3 55.13387953

7525 FALSE 0.864551197 2.2 3 54.88821

7528 TRUE 0.804466293 2.5 3 54.8896

7549 FALSE 0.417576925 3.333333333 12 55.3748677

7550 TRUE 6494.575239 0.5 3 55.3731065

7553 TRUE 4.302076404 3.333333333 3 55.34871

7559 TRUE 0.592304346 11 3 55.38559

7560 TRUE 0.430737487 11 3 55.38559

7864 FALSE 4.298918525 31 3 54.9675965

8 TRUE 43.21123165 1.916666667 3 56.10882874

929 TRUE 1.459638438 1.666666667 3 55.63897678

930 FALSE 0.796506792 1 3 55.63879394
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Site ID Fish Bearing Watershed Gradient Max. flow ≥ 80th Latitude

971 TRUE 32.0179543 7.5 3 55.6353187
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C.2 Data set used for model testing

Site ID Fish Bearing Watershed Gradient Max. flow ≥ 80th Latitude

10 TRUE 30.35720065 1.333333333 3 56.05583929

10031 FALSE 0.446759056 1.666666667 12 54.89636828

10033 FALSE 0.031702743 4 12 54.89838479

10056 TRUE 1.711839354 2.5 3 54.83778849

10058 TRUE 0.119214749 2.2 12 54.82871197

10070 FALSE 0.239829391 10 12 55.00256231

10072 FALSE 0.089115065 3.5 12 55.00853778

10080 FALSE 0.205112328 1.5 12 55.16195461

10098 TRUE 0.365509296 2.2 12 55.33095814

10103 TRUE 0.261191013 5.333333333 12 55.34091333

10104 FALSE 0.060613905 5.75 12 55.3299439

11002 FALSE 0.097564625 14.375 12 55.35879752

11005 TRUE 0.188525387 6.333333333 12 55.35829999

11007 TRUE 1199.613873 2 3 55.62534808

1102 FALSE 0.284265268 6 3 55.12232743

11083 FALSE 0.00498539 15.5 12 54.19886048

1114 TRUE 9.640001497 1.333333333 3 55.04480604

1115 TRUE 1.001378347 10 3 55.04312503

1117 TRUE 1.03139976 17.5 3 55.04093232

1118 FALSE 0.643896826 27.5 3 55.04036605

1119 TRUE 1.334428429 10.5 3 55.03915833

1120 FALSE 4.679001716 60 3 55.03706721

12 TRUE 66.08692535 1.166666667 3 56.02716536

12003 TRUE 38.51437421 0.03 3 55.616573

12013 FALSE 1.136418339 0.0725 3 55.61063773

12049 FALSE 2.409833322 1.166666667 3 55.9096499

12052 FALSE 0.671310349 3 3 55.90350943

12053 FALSE 1.699721623 2.5 3 55.90082973

12062 TRUE 10.28224424 3.333333333 3 55.35454386

12097 FALSE 0.251524406 20 12 55.76626868

12098 FALSE 0.737550171 11 3 55.76466137

12100 FALSE 0.149381457 40 12 55.76277477

12101 FALSE 0.404847509 11 3 55.76361831

12102 FALSE 0.242100572 10 12 55.57685995

12103 FALSE 0.061962506 15 12 55.57667663

12104 FALSE 0.128056937 4 12 55.57330323

12106 FALSE 0.108063393 10 12 55.57028387

12108 FALSE 0.242244197 14.8 12 55.59278673

12109 FALSE 0.106568794 11.66666667 12 55.63465253
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Site ID Fish Bearing Watershed Gradient Max. flow ≥ 80th Latitude

12110 TRUE 0.53060797 14.8 3 55.63235873

12113 TRUE 0.184008497 4.333333333 12 55.62914429

12114 TRUE 93.1443085 1 3 55.57852429

12115 TRUE 93.1443085 2.166666667 3 55.57853739

12119 TRUE 42.57358572 2.75 3 55.50693639

12120 FALSE 0.055764415 13.5 12 55.50585633

12121 TRUE 1.686179423 9.4 3 55.50404901

12124 TRUE 1.214354112 9.375 3 55.49682116

12157 FALSE 0.028384824 3 12 55.1999

12158 TRUE 1.998924679 6.583333333 3 55.19992

12159 FALSE 0.397065006 4.25 12 55.20057

12173 TRUE 0.36920942 1 12 54.89907

12174 TRUE 0.36999646 1.5 12 54.89901

12175 TRUE 28.58857015 1 3 54.89901

13 FALSE 0.356221255 4.6 3 55.99387

13039 TRUE 5.731502863 2 3 55.12443982

13040 TRUE 0.860762885 4.333333333 3 55.13157

13041 TRUE 18.20401173 2.166666667 3 55.13641911

13052 FALSE 1.40632108 11.33333333 3 55.42555936

13053 TRUE 3.550964394 7.166666667 3 55.42714734

13054 TRUE 6.695140887 18.66666667 3 55.43709461

13056 TRUE 38.90150315 10.5 3 55.45661656

13057 TRUE 23405.15066 1.25 3 55.46428108

13068 TRUE 1.773839088 1.666666667 3 55.55713139

13081 FALSE 0.812994169 2.25 3 55.62646325

13090 TRUE 0.326257839 4.166666667 3 55.21582562

13098 FALSE 0.084514652 20 12 55.77125683

13099 TRUE 0.239316811 7.25 12 55.64731213

13101 FALSE 0.11207399 32.66666667 12 55.60200816

13103 TRUE 1.409266021 6.2 3 55.59005375

13106 FALSE 0.537715388 13.66666667 3 55.557

13107 FALSE 0.061555395 15.08333333 12 55.51012288

13108 FALSE 0.080105469 26.5 12 55.50943282

13109 TRUE 78.17818381 2 3 55.49035868

13111 FALSE 0.024634005 20.4 12 55.47659849

13122 FALSE 0.069256472 5 3 55.62412244

13123 FALSE 0.706441399 70 3 55.03698149

13139 FALSE 1.219925986 5 3 54.89901289

13156 FALSE 0.050216301 0.5 12 55.21289067

13178 FALSE 0.119565083 9 12 55.36161033

1382 FALSE 0.243855991 15.66666667 3 54.25803
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Site ID Fish Bearing Watershed Gradient Max. flow ≥ 80th Latitude

1396 TRUE 113.5880961 3.5 3 54.24817

1397 TRUE 0.042189474 7 3 54.24425

1398 TRUE 0.060994391 7.5 3 54.24203784

14 TRUE 72856.58032 1.5 3 55.98799871

14001 TRUE 4.301178595 6.8 3 54.26242528

14002 FALSE 0.072301655 11.8 3 54.26211705

14004 TRUE 1.779658305 2 3 54.26266757

14006 TRUE 0.056131051 7 3 54.26698768

14008 FALSE 0.128237882 17.4 3 54.268432

14011 TRUE 0.218087289 12.75 3 54.271289

14012 TRUE 0.044229624 30 3 54.27221

1403 TRUE 0.062006853 31.2 3 54.239862

14031 TRUE 4.992448182 2.75 3 54.88530317

14034 TRUE 70.65429071 2 3 54.89235723

14035 TRUE 0.048022252 11.5 3 54.8936

14038 FALSE 0.749084105 35 3 54.886

14040 FALSE 0.231482268 40 3 54.882

14041 FALSE 1.476807475 28.33333333 3 54.878

14044 FALSE 0.197424762 13.25 3 54.87373

14045 FALSE 0.132116404 34.5 3 54.54296

14046 FALSE 0.542636762 19.16666667 3 54.86698412

1405 TRUE 0.016268135 24.16666667 12 54.23794

14077 FALSE 0.841203551 4 3 55.38345495

15011 FALSE 0.693851383 17 3 55.70200775

16 FALSE 1.266554614 27.33333333 3 55.9689318

166 TRUE 127.0536284 1.833333333 3 55.56748422

168 FALSE 0.512139675 21.16666667 3 55.57187078

169 FALSE 2.670550716 13 3 55.57559337

17005 TRUE 5.930403504 6.333333333 3 55.64870217

17011 FALSE 0.258741266 0.03 3 55.67115661

17012 FALSE 4.18594137 0.048333333 3 55.67101966

17017 TRUE 14.38410183 0.035 3 55.65851433

17018 FALSE 0.504040143 0.041666667 3 55.65510667

17037 FALSE 0.322492053 0.02 3 55.62663398

17044 FALSE 1.419429552 0.1175 3 55.60233907

17049 FALSE 0.273213311 0.063333333 3 55.58307002

17050 FALSE 0.964088737 0.03 3 55.57837395

17061 TRUE 0.932901105 3.416666667 3 55.07475439

17062 TRUE 0.240498012 5.25 3 55.07995187

17063 TRUE 6.533886315 2.4 3 55.07924619

17068 FALSE 0.647451005 14.25 3 55.05737
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Site ID Fish Bearing Watershed Gradient Max. flow ≥ 80th Latitude

17074 TRUE 4.481789175 2 3 54.88735361

17076 TRUE 9.677780091 3.5 3 55.57483895

17078 FALSE 0.053744904 2 12 55.69675599

17080 FALSE 0.046503579 3 12 55.69626331

17082 TRUE 0.041020893 10 12 55.35734564

17086 TRUE 5.908477738 1 3 55.10235111

17097 TRUE 0.873912601 1.5 3 55.05167055

174.4 FALSE 0.270282216 28.33333333 3 55.57214551

175 FALSE 0.815689447 28.5 3 55.57081383

180 FALSE 0.286916369 15.66666667 3 55.55786095

18013 TRUE 0.140325696 1 12 55.13204

183 FALSE 0.042728445 41 12 55.54733991

184 FALSE 0.391676071 2.875 3 55.54649276

187 TRUE 4.161995527 2 3 55.5440585

188 TRUE 0.125098717 4.5 12 55.54398192

19007 TRUE 0.660760488 6.5 3 54.85324416

19010 TRUE 2.85756787 2.25 3 54.85097434

19011 TRUE 27.28450652 3.166666667 3 54.84362218

19012 TRUE 760.8721744 2.166666667 3 55.30193743

19013 TRUE 760.8721744 2 3 55.3031365

19016 FALSE 0.138023575 15.6 12 55.63250494

195 FALSE 0.027242114 3.4 12 55.54027867

198 FALSE 0.647958753 6 3 55.52583619

200 FALSE 0.133441067 80 12 55.51659864

20003 TRUE 4.145659812 1.666666667 3 55.63797233

20005 TRUE 1.376739104 1 3 55.03308264

21002 FALSE 3.078454754 24.83333333 3 54.942063

227 FALSE 0.127542109 29.33333333 12 55.46540337

23 FALSE 1.138595432 3.833333333 3 55.9246248

230 FALSE 0.284473188 11.33333333 3 55.4616697

231 TRUE 0.163317079 28.66666667 12 55.46104276

232 FALSE 0.472405969 28 3 55.45728738

233 FALSE 0.231098966 36.4 12 55.45714492

235 TRUE 2.66269888 14.6 3 55.44754005

235.5 TRUE 0.298795594 18.5 3 55.44246411

236 TRUE 0.457176432 5.25 3 55.43633558

256 FALSE 0.102502302 3.666666667 12 55.35909704

272 FALSE 0.077334309 2.75 12 55.35654128

277 FALSE 0.174867531 6 12 55.3608989

280 FALSE 0.081052822 17.5 12 55.36242716

281 FALSE 0.050037862 17.5 12 55.362729
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Site ID Fish Bearing Watershed Gradient Max. flow ≥ 80th Latitude

282 FALSE 0.111836797 15.83333333 12 55.36325653

284 FALSE 0.066185356 8.2 12 55.36433909

3043 TRUE 0.292298043 5 12 55.17751

3047 TRUE 0.689945289 5 3 55.13805199

3048 TRUE 0.407804021 4.666666667 12 55.13244337

3049 TRUE 96.97132034 1 3 55.13231078

3066 FALSE 0.042584872 0.585 12 55.00234514

3071 FALSE 0.423554255 2.333333333 12 54.98982965

3072 FALSE 0.153370955 3.333333333 12 54.98742436

3082 TRUE 1.293276282 2.833333333 3 54.93682312

3083 TRUE 2.468802647 3.5 3 54.93432088

3091 TRUE 4.863791088 1 3 54.90478248

3095 TRUE 6.750409119 1 3 54.8951965

3099 FALSE 0.634072534 10 12 54.8943

3100 TRUE 5.545299092 3 3 54.89843

3116 FALSE 0.3225745 2 12 54.89162209

3121 FALSE 0.121646402 8.4 12 54.89412123

3125 TRUE 0.63126637 5.25 12 54.89870856

3127 FALSE 0.080171943 1 12 54.89975329

3130 TRUE 59.89446315 1 3 54.89755101

3158 TRUE 1.676026296 2.5 3 54.88898332

3163 TRUE 7095.912599 1 3 54.88298

3167 TRUE 9.891339818 5 3 54.88156

3168 TRUE 0.31659456 1.666666667 12 54.8828

3169 TRUE 0.789390849 6.833333333 3 54.88409

3173 TRUE 6.53831488 3 3 54.8858

3174 TRUE 6.521671066 3 3 54.88648

3178 FALSE 1.633441213 10.2 3 54.88019242

3193 TRUE 4.425382085 3.25 3 54.8416445

3197 TRUE 5.20228108 3.666666667 3 54.82634657

3201 FALSE 0.134751996 3 12 54.81573723

3207 TRUE 0.67533362 5.333333333 3 54.82725002

3209 TRUE 0.789023663 5.5 3 54.8294007

3214 FALSE 0.21870429 9 12 54.8477151

3220 TRUE 1.472198323 3 3 54.87573433

3223 TRUE 7.405647345 3 3 54.88165117

3227 TRUE 6.435058167 2 3 54.89462013

3232 TRUE 0.997695708 1 3 54.93618021

3233 TRUE 10.89200034 4 3 54.94114473

3234 FALSE 0.286209762 1 12 54.94551114

3244 TRUE 47.39526706 25.75 3 55.0652134
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Site ID Fish Bearing Watershed Gradient Max. flow ≥ 80th Latitude

3245 TRUE 47.39526706 1 3 55.0655738

3268 FALSE 0.105022378 7.5 12 55.18705503

3273 TRUE 0.86178188 3.333333333 3 55.22320265

3282 FALSE 0.723310936 6 3 55.25480316

3283 TRUE 1.030763254 6.8 3 55.25924913

3285 FALSE 0.41007205 3 12 55.26575095

3293 TRUE 1.946537479 3 3 55.28466188

3295 TRUE 7.555194549 3.4 3 55.28871537

3322 FALSE 0.180292271 9.666666667 12 55.3353835

3326 TRUE 5.240393527 6.333333333 3 55.33251979

3326.5 TRUE 0.015632689 4.333333333 12 55.33166549

3327 TRUE 0.789888415 4.4 3 55.33155735

3327.5 TRUE 0.00343601 4 12 55.33153504

3329 TRUE 1.850832914 7.5 3 55.3313391

3330.5 TRUE 0.027752198 5.75 12 55.3310645

3332 FALSE 0.225199082 16 12 55.33305944

3333 FALSE 0.059138215 10 12 55.33337767

3334 TRUE 1.796804501 10.66666667 3 55.33408039

3338.5 TRUE 0.023843181 10.6 12 55.34355857

3343 FALSE 0.316539618 12.16666667 12 55.34287789

3345 TRUE 2.514283797 11.66666667 3 55.34088475

3351 FALSE 0.50772298 1 12 55.32803102

3353 FALSE 2.821486799 15.33333333 3 55.32435341

3356 FALSE 0.586460702 3.8 12 55.31701107

3360 FALSE 1.947967017 17.75 3 55.32858086

3361 FALSE 0.69063888 17.83333333 3 55.32992628

3368 FALSE 0.315743771 70 12 55.32494

3371 FALSE 0.399826583 40 12 55.3279

3376.5 FALSE 0.080787153 7 12 55.34388

3377 FALSE 1.694086554 11 3 55.34519

3378 FALSE 0.360452472 9.5 12 55.34706

3382 FALSE 0.099248766 12.5 3 55.36368

3390 FALSE 0.339495937 21 3 55.38562

3392 FALSE 0.672753653 16.33333333 3 55.38511774

3553.5 FALSE 0.065069502 8.333333333 12 55.32378599

5015 FALSE 0.326669752 1.5 3 54.97145848

5016.25 FALSE 0.051189875 12 3 54.97129586

5021 TRUE 0.220358436 6 3 54.94952

5022 TRUE 0.222299443 6 3 54.94952

5023 FALSE 0.339383947 23 3 54.94925794

5024 FALSE 0.199925552 31 3 54.94767668
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Site ID Fish Bearing Watershed Gradient Max. flow ≥ 80th Latitude

5025 FALSE 0.138801819 39 3 54.94511043

5026 TRUE 77.82694161 3 3 54.94130796

5027 TRUE 0.194234993 7.166666667 3 54.94250936

5028 TRUE 0.706908957 8.4 3 54.94334299

5030 TRUE 0.464032903 26.5 3 54.94966934

7006 TRUE 0.558701895 10.66666667 3 55.88351396

7006.5 TRUE 0.015684915 9.5 12 55.88320234

7011 TRUE 0.637193811 3.666666667 3 55.87574125

7011.5 FALSE 0.217857483 9 12 55.87464811

7022 FALSE 0.538832035 2 3 55.79332916

7025 FALSE 0.124069608 4 12 55.7903558

7028 TRUE 3.030616198 5.166666667 3 55.78108648

7039 TRUE 0.932294402 2.166666667 3 55.76683316

7042 TRUE 41.18519791 2.166666667 3 55.76453194

7056 FALSE 0.733408929 13.66666667 3 55.74195248

7087 FALSE 2.620722745 13.4 3 55.69751357

7091 FALSE 1.521839837 6 3 55.69297597

7092 FALSE 0.199878257 4 12 55.69173659

7096 FALSE 0.431704834 3 3 55.68975475

7097 FALSE 0.032424134 24 12 55.68975105

7101 FALSE 1.074343242 2 3 55.69583622

7102 TRUE 15.4428087 5 3 55.69602282

7107 FALSE 0.088666428 2.8 12 55.69393155

7108 FALSE 3.718512854 3.5 3 55.69354934

7117 TRUE 1.710279597 9 3 55.6978339

7119 FALSE 0.052529274 15 12 55.69379676

7120 FALSE 0.341229056 9 3 55.69339969

7121 FALSE 0.900986117 21.66666667 3 55.69187942

7123 FALSE 0.126901956 20 12 55.68807347

7124 FALSE 0.208106668 17 12 55.68790181

7126 FALSE 0.146970068 8.25 12 55.68716949

7133 TRUE 7.931380269 6.6 3 55.67398156

7143 TRUE 9.008307212 3.833333333 3 55.64626636

7161 FALSE 0.488155521 13.66666667 3 55.61988772

7167 FALSE 0.921101693 7.8 3 55.60680072

7177 TRUE 3.613749068 11 3 55.56142055

7178 TRUE 0.156227116 9.7 12 55.55969684

7179 TRUE 0.320171581 7.333333333 3 55.54344348

7186 TRUE 0.707672717 6.2 3 55.5516129

7188 FALSE 6.91217982 11 3 55.5620088

7189 FALSE 0.819266545 18.66666667 3 55.56165612
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Site ID Fish Bearing Watershed Gradient Max. flow ≥ 80th Latitude

7190 FALSE 0.106472895 11.6 12 55.55913989

7192 FALSE 0.368655428 10.66666667 3 55.55731226

7194 TRUE 82.07213164 2 3 55.39331

7195 FALSE 0.257553128 1 12 55.36662

7195.5 FALSE 0.026780347 1 12 55.38728

7204.5 FALSE 0.028125429 3 12 55.36600662

7207 FALSE 0.422147358 5.333333333 12 55.36699393

7208 TRUE 2.599072769 5.833333333 3 55.36296027

7211 FALSE 0.079223852 5 12 55.35746857

7212 TRUE 1.061092202 9.833333333 3 55.35446613

7217 TRUE 7.2911842 3.166666667 3 55.33926597

7218 FALSE 0.334534921 18 12 55.33649062

7226 TRUE 59.21724844 2.833333333 3 55.20044

7229 FALSE 1.628382399 11 3 55.12101

7331 TRUE 6.594801245 0.666666667 3 55.63705522

7332 FALSE 0.036449575 0.5 12 55.63709652

7335 TRUE 39.78524297 1.5 3 55.63175461

7366 FALSE 0.077453406 0.15 3 55.64794503

7452 FALSE 0.193896397 3.8 3 55.41294132

7455 TRUE 16.18259063 4.666666667 3 55.34675513

7456 TRUE 117.511165 3.333333333 3 55.34163044

7471 TRUE 19264.37587 2.833333333 3 55.16724851

7479 TRUE 19305.63496 2 3 55.16295018

7480 FALSE 2.284605772 0.5 3 55.15230309

7482 TRUE 12.46758036 1.25 3 55.14932338

7488 TRUE 62.66195744 3.833333333 3 55.09297454

7526 FALSE 0.896883999 2.333333333 3 54.88698

7546 TRUE 16.01991361 3.333333333 3 55.36530288

7548 FALSE 0.325604998 3.333333333 12 55.37369148

7556 TRUE 222.1437047 3.833333333 3 55.31443

7561 TRUE 0.387857174 11 3 55.38622864

7866 TRUE 4.04538659 25 3 54.9661538

7867 TRUE 1.839023099 7 3 54.96630399

7868 TRUE 0.630696644 9.5 3 54.96543644

7869 TRUE 36.04617057 7 3 54.96759649

9 TRUE 30.35720065 1.583333333 3 56.06266306

9016 TRUE 2.602809701 1 3 55.84278539

9017 TRUE 5.134000098 2.5 3 55.83750677

945 FALSE 66.44174413 0.5 3 55.6342519

959 TRUE 7.248440113 1 3 55.6218945

968 TRUE 4.938526421 1.166666667 3 55.63441282
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Map of Data Sets
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Appendix E

Predicted Probability Frequency

Distributions
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Figure E.1: Overlapping distributions of probability frequencies from model 1 (modelling

and testing data sets).
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Figure E.2: Overlapping distributions of probability frequencies from model 2 (modelling

and testing data sets).
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Figure E.3: Overlapping distributions of probability frequencies from model 3a (modelling

and testing data sets).
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Figure E.4: Overlapping distributions of probability frequencies from model 3b (modelling

and testing data sets).
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Figure E.5: Overlapping distributions of probability frequencies from model 4a1 (modelling

and testing data sets).
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Figure E.6: Overlapping distributions of probability frequencies from model 4a2 (modelling

and testing data sets).
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Figure E.7: Overlapping distributions of probability frequencies from model 4a3 (modelling

and testing data sets).
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Figure E.8: Overlapping distributions of probability frequencies from model 4a4 (modelling

and testing data sets).
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Figure E.9: Overlapping distributions of probability frequencies from model 4b2 (modelling

and testing data sets).
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Figure E.10: Overlapping distributions of probability frequencies from model 4b3 (mod-

elling and testing data sets).
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Figure E.11: Overlapping distributions of probability frequencies from model 5 (modelling

and testing data sets).
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Figure E.12: Overlapping distributions of probability frequencies from model 5 (combined

data set).
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Figure E.13: Overlapping distributions of probability frequencies from model 6 (modelling

and testing data sets).
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Figure E.14: Overlapping distributions of probability frequencies from model 7 (modelling

and testing data sets).
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Figure E.15: Overlapping distributions of probability frequencies from model 5c (combined

data set).
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Figure E.16: Overlapping distributions of probability frequencies from model 5c (modelling

and testing data sets).


