Using Software Visualisation
to Enhance Online Component Markets

Stuart Marshall, Robert Biddle & James Noble
{stuart, robert, kjx}@mcs.vuw.ac.nz

School of Mathematical and Computing Sciences
Victoria University of Wellington
New Zealand

Abstract

Online component markets can be costly for con-
sumers to use, in terms of the time and effort spent
understanding the components on offer. This cost of
understanding will deter consumers from reusing the
available components. Software visualisations derived
from the components’ run-time behaviour can lessen
the cost of understanding. We have developed a pro-
totype tool called Spider for providing this function-
ality to producers and consumers. We discuss some
of the issues involved, along with our experiences in
implementing the prototype.

1 Introduction

Online component markets are a mechanism for con-
sumers to reuse existing components rather than de-
veloping functionality from scratch (Ravichandran &
Rothenberger 2003). They also provide a revenue-
stream and incentive for the production of quality
reusable components. For this mechanism to be suc-
cessful, it must be cheaper to reuse components than
it is to replicate them. The cost of reuse for the
consumer involves firstly finding a set of candidate
components; secondly evaluating the candidate com-
ponents; and thirdly plugging the most appropriate
component into its new context. Component mar-
kets attempt to reduce the costs for producers and
consumers, but the approaches used to achieve this
still have some limitations, and the costs can still be
sufficiently high to deter consumers.

1.1 The Component Reuse Industry

There is significant work being conducted into re-
ducing the cost of software development. One ap-
proach is to encourage the reuse of existing artifacts,
such as code components, so as to avoid the cost of
re-designing, re-implementing, and re-testing exist-
ing functionality. To this end, online markets have
been developed that bring together consumers and
producers of reusable components. One example of
such a market is JCorporate(JCorporate 2003). Con-
sumers benefit by having a central repository that
they can refer to when they need to find functionality
to implement a requirement in a new system. Pro-
ducers benefit by having a centralised audience for
their sales pitch, whether the intention is to create
revenue by charging a license fee, or to solely build

Copyright (©2004, Australian Computer Society, Inc. This pa-
per appeared at The Australasian Symposium on Information
Visualisation, Christchurch, 2004. Conferences in Research and
Practice in Information Technology, Vol. 35. Neville Churcher
and Clare Churcher, Eds. Reproduction for academic, not-for
profit purposes permitted provided this text is included.

a user-base. Accessing the market online via a stan-
dard web-browser means that consumers and produc-
ers are not locked out of the industry based on their
individual system configurations.

1.2 Motivation for Reuse

The motivation for the consumer to reuse is that
they can save time, effort and money if the costs
of reuse are less than the costs of replication. For
the consumer, the savings made by reusing rather
than replicating can extend beyond the initial analy-
sis/design/implement & test phases of software devel-
opment, and into the expensive and extensive main-
tenance phases. The motivation for the producer to
create reusable components is that the same compo-
nent can be distributed to a multitude of consumers,
all of whom maybe working in one or more related
problem domains. For both the consumer and the
producer, the ease of reuse for the consumer has a
significant effect on cost, and in turn whether posi-
tive results will be gained.

1.3 Costs of Reuse

The ease of reuse is affected by a number of costs.

Firstly, producers must create reusable compo-
nents. This cost includes analysis and design of prob-
lem domains to extract common functionality, as well
as the points at which this common functionality
should be extendible. This cost then includes im-
plementing and testing the code that performs this
functionality. Finally, this cost also includes adver-
tising the component to a consumer base, through
the creation of material to be used by consumers in
making an adoption decision; as well as also hosting
the component for consumers to find.

Secondly, consumers must search for components
applicable to their situation in a potentially huge
search-space. ComponentSource (ComponentSource
2003) is a popular online component market and has
over 9,000 components to browse through, across a
wide range of problem domains. This can be costly
in time alone, irrespective of whether services to sup-
port this are charged for.

Thirdly, once consumers have identified a small set
of components worth further study with respect to ap-
plicability, they must evaluate each component. This
evaluation involves gaining a better understanding of
each component’s behaviour, and potential for exten-
sion or modification. This requires time and effort
be spent in program comprehension. There is also a
cost associated with trusting a component, and de-
termining not only whether the candidate component
matches the required functionality, but also whether
it poses a security risk in a trusted environment.

Fourthly, consumers then need to deploy the cho-
sen component in their own environment. This po-
tentially includes paying a license fee for usage rights,
and definitely includes paying a cost in the time and
effort needed to download, install, and configure the
component to fit its new context. It also includes fur-
ther testing to ensure that the component does not
conflict with other parts of the system it is being de-
ployed in.

1.4 Consumer Support

Component markets already attempt to reduce some
of the costs that consumers face.

Markets can categorise components by field, lan-
guage, and function. Markets also provide search en-
gines that allow a consumer to narrow down a set of
candidate components through supplying some gen-
eral keywords. Markets also publish newsletters that
highlight new and popular components as they arrive.

Consumers have access to material that can help
them understand a component’s behaviour. This doc-
umentation can include a producer’s text-based de-
scriptions of form and function, as well as reviews
written by market reviewers, and by fellow consumers
who have previously evaluated or used that compo-
nent. In this respect, the support given to consumers
is similar to that given in other online markets, such
as Amazon’s media publishing market(Amazon 2003).
Another service supplied to consumers by both the
market and the producers is the ability to download
evaluation versions of components, to be tested by
the consumer in their own environment.

Consumers may be given some guarantees by the
market that their selected component has been tested
to ensure that it installs and un-installs correctly.

With respect to producer costs, the cost of adver-
tising to a consumer base is partly alleviated by hav-
ing a central point to which consumers come. As well
as this several markets perform independent testing
of components. This independent testing can further
improve consumer confidence in component quality,
which may in turn improve a producer’s prospects of
a sale. The published newsletters also benefit produc-
ers, especially those with an established reputation for
excellence.

1.5 Limitations of Support

While component markets already help consumers
understand component behaviour, there are limita-
tions in how this support is provided, especially with
regards to consumers understanding components’ be-
haviour. Firstly the associated documentation is
overwhelmingly text-based. Secondly the compo-
nents’ evaluation versions require downloading, in-
stallation, configuration and experimentation on the
consumer’s own system.

Text Documentation It can be an arduous un-
dertaking to comprehend large quantities of text as-
sociated with multiple (similar) components. A com-
ponent’s text documentation may be annotated with
visual depictions of the component’s user interface
should one exist, but there are few (if any) diagrams
describing structure or behaviour.

Client-side Evaluations By requiring that the
consumer evaluate the component on their own sys-
tem, markets require that the consumer expend the
effort to download, install and correctly configure the
component. This is a non-trivial task. The consumer

must trust that the evaluation version will not com-
promise the security of their system. The consumer is
downloading the component to gain an understand-
ing of its use. Therefor the consumer is unlikely to be
in a position prior to installation to be confident that
the component does not pose a security risk.

2 Visualising Reusable Components

Software visualisations can help consumers evaluate a
candidate component by giving them an insight into
the existing behaviour as well as possible means of ex-
tending that behaviour. Software visualisations com-
plement other existing documentation. Visualisations
can summarise a sequence of events that results from
a sequence of actions on the component’s public in-
terface. An action on the component’s public inter-
face can be understood as an invocation of a method,
which will be the standard means of tying a com-
ponent into the rest of the consumer’s new context.
This sequence of events can then help a consumer
understand the result and side-effects of using a com-
ponent in a particular way. This in turn can then be
compared against the required results and acceptable
side-effects of the consumer’s new context.

2.1 Knowing What To Visualise

A key aspect to a successful visualisation is that useful
information is not obscured by unnecessary data. It is
relevant to consider the intended audience for these
visualisations, and what they intend to learn from
viewing them.

Audience Intent The visualisation audience are
the consumers. The consumers wish to firstly under-
stand the current behaviour of the component, and
secondly how that behaviour can be (easily) modi-
fied. With respect to the former this could include
resource usage by the component; security permis-
sions requested by the component (such as file or net-
work access); or other libraries used. With respect to
the latter, it may also be relevant to understand what
behaviour is invoked on (or because of) configurable
elements within the component.

Test Driving Our mechanism for identifying use-
ful information is based upon allowing the consumer
or producer to specify which sequence of actions is
visualised. We call this test driving. This means that
there is a high likelihood that the resulting sequence
of events will represent a useful goal achievable with
the component. The producer is in a position to know
which sequence of actions (i.e. calls to public meth-
ods) results in a particular task being performed, and
can tailor the visualisation to show this specific goal
being achieved. Consumers may have an interest in
seeing what task is performed with a given action
sequence, allowing them to explore the potential us-
age of the component. This removes the necessity
to visualise all possible sequences of actions upon a
component’s public interface. With any reasonably
complex public interface, the number of possible se-
quences would be practically infinite, with many se-
quences not representing a meaningful (or achievable)
goal.

3 Spider

This paper introduces Spider, a prototype tool to
provide software visualisations of a component’s be-

Web Server / Ses

| \

sion Manager

Test Driver/— — VM Monitor A
Generator
HTML/CSS
XTE
Generator
XTE Files RCD Files

Figure 1: The Spider architecture works on a client/server model. The architecture on the server-side includes
a test drive environment, a monitor that captures interesting events, and listeners that generate documentation

for use in software visualisations.

| B4 Spider Test Driver Tool - Netscape
Eile Edit Wiew Go Bookmarks Iools Window Help

" GO @Q @ O @ [ntprocainostausn/spideraisplas | [Search | ‘:‘50 1@

DI

. Hy | & Mail 4 Home G2 Radio Netscape C Search (@) Shop | E3Bookmarks S The Mozilla Or,
iﬂ[< Spider Test Driver Tool | =
Spider: Component Test-Driving and
Visualisation Tool
memsagersn e Component GNU Regexp Char Classes A

Vortevtt Coshm gt

+ Package gnu.regexp U
o Charlndexec

2 E
o CharlndezedCharArray
Iy Merwork o CharlndexedInputStream L
%gnn_m o CharlndexedReader
CharIndexedString
¢ t ¢ -
e o CharlndexedString Buffer
GNU Rege o CharlUnit
GHU Rege

CharClesses Clags Charlndexed inherits from java.lang. Ohject

Constructors

Display Add Component
o

Methods
+ charAt(int <unknowm)

+ move(int <unknowns)
« ig¥alid()

Class CharIndexed CharArray inherits from java.lang,. Ohject

[T

Test Driver

Send instructions to the test driver

Insert test drive code here

Ea|

:JIL‘:Q

|5 & A @4 F) [Docunent: Done (10,414 secsy

Figure 2: An early version of the Spider prototype.
Spider uses HTML and CSS to display a component
repository, and to display information relating to spe-
cific components. The left hand column contains a
list of components currently available on the server.
The top right hand side of the page shows the top of
the listing for the GNU Regexp Char Classes com-
ponent. Spider currently uses an HTML form in the
lower half of the browser screen as the input device
for test driver instructions.

haviour. The software visualisations are aimed at il-
lustrating a particular task that the component can
perform, and identifying places where the compo-
nent’s behaviour can be extended. Spider is acces-
sible through a standard web browser. The informa-
tion to be visualised is generated on the server-side,
along with the visualisations themselves. This will
save time and effort that a consumer might otherwise
need to spend installing and configuring custom tools
for this functionality. Spider is oriented towards visu-
alising Java components, and uses debugger and XML
technologies to capture and store interesting events.

3.1 Architecture

Spider follows a client-server model, with the client
and server communicating via the web. On the client-
side, Spider consists of a W3C standards-compliant
web browser. On the server-side, Spider consists of
a web server, a test driver system, an information
extraction system, and a documentation generation
system. The architecture is shown in figure 1.

Client/Server Web Model Spider’s communica-
tion model is based on a web server capable of han-
dling servlet and JSP extensions. All user requests are
entirely processed on the server-side, with results sent
back to the client as SGML/XML-based documents.
The test driver interface visible at the client is imple-
mented in HTML/CSS. The software visualisations
are initially intended to be in the W3C’s Scalable
Vector Graphics (SVG) format(Consortium 2003). It
is assumed that multiple clients will request services
concurrently. It is also assumed that a request from a
client may build on previous requests from that same
client, and that it is necessary to store state between
these requests. To this end we utilise the session man-
agement capabilities within our web server.

Test Driver An instance of the test driver subsys-
tem contains an executing virtual machine (VM). The
test drives written by the consumer are translated

into method calls on particular objects in that vir-
tual machine, using other existing objects or literal
values as parameters. These method calls are then
invoked on the target object. There is the possibil-
ity for test drives from different consumers to conflict
(such as through non-synchronised operations, static
variables, or loading particular versions of classes).
Therefore there needs to be a single independent test
driver instance per consumer. These instances are
controlled by the session manager. The session man-
ager is responsible for identifying who a particular
test drive request comes from.

VM Monitor Associated with every instance of
the test driver subsystem is an instance of the VM
monitoring subsystem. The VM monitoring subsys-
tem provides the service of detecting and filtering run-
time events. The VM monitor will automatically ig-
nore any execution within the test driver framework
itself, and will focus only on what is being test driven.
The subsystem then forwards on interesting events to
listeners. These listeners are responsible for generat-
ing persistent documentation of these events, that in
turn will be used to generate software visualisations.

Document Generation Reusable Component De-
scription (RCD) documents represent static compo-
nent information, of which there will only be one file
per component. XML Trace Executions (XTE) docu-
ments represent component behaviour, of which there
will be one file per test drive.

RCD Document Generator An RCD document
describes a component’s static structure and API.
RCD documents are generated when a component
is listed with the tool. Generation is performed by

analysing the content of the associated .class and jar
files.

XTE Document Generator An XTE document
describes the dynamic runtime behaviour of a com-
ponent. A single XTE document is created for each
test drive performed by the client. XTE documents
are generated by listeners attached to a VM monitor.
The listeners are responsible for extracting useful in-
formation from the events sent by the VM monitor,
such as the method name that has been invoked, the
object reference of the caller and callee, and the val-
ues and references of the parameters. We now list the
information extracted from different types of events:

e Method Calls: caller reference, callee reference,
type name, method name, parameter names, pa-
rameter types, parameter values, thread refer-
ence.

e Method Returns: caller reference, return value,
type name, method name, parameter names, pa-
rameter types, parameter values, thread refer-
ence.

e Field Accesses: container reference, field name,
value, thread reference.

e Field Modifications: container reference, field
name, old value, new value, thread reference.

e Fxception Throws: location, description, thread
reference.

e Fxception Catches: location, description, thread
reference.

e Object Creation: object reference, type name, pa-
rameter names, parameter types, parameter val-
ues, thread reference.

e Security Permission Request: location, details,
permission.

3.2 Usage

Clients access Spider through a W3C standards-
compliant web browser. The web browser presents
a simple repository view of known components to the
client. The client then submits test drive requests.
Results from the test drives are then transmitted to
the client, in a combination of HTML and software
visualisations. A screenshot of the prototype is shown
in figure 2.

Repository View The repository view acts a sur-
rogate for a full component market. The client needs
to be able to view information about the compo-
nents currently available on the server. The client
may also need to add a new component to the server.
The repository view on the client’s browser initially
lists some meta information for available components,
such as name, producer, version, and date of sub-
mission. When a particular component is selected,
the RCD file for that component is used to create
an HTML/CSS document that describes its methods,
fields, and lists any associate XTE files. The resulting
static documentation is similar to Javadoc documen-
tation. This information can then be used to decide
on the methods and arguments to invoke in a test
drive.

The client may also wish to register a new com-
ponent with the server. This is done by entering the
component’s meta information into an HTML form,
along with URLs pointing to the component’s .class
or jar files. The form is then submitted, triggering
the analysis of the content specified by the URLs, the
creation of a RCD file, and the updating of the repos-
itory view to display this new entry.

Test Driving Test driving is performed through
an HTML form. The client enters the sequence of
actions with the same syntax as normal Java code.
The test drive is specified as a sequence of construc-
tor or method invocations on the component that is
currently being investigated in the repository view.
Objects created at one stage in the test drive can be
associated with variable names, and reused in later
stages of the test drive. Objects may also be car-
ried across to future test drives, and are displayed by
name on the browser interface for the duration of the
session.

Test Drive Comprehension Once the form is
submitted, the server will pass the request on to the
test driver associated with this session. The test
driver will perform the test drive, and produce an
HTML document that describes the result of each
action in the sequence. This action result is the re-
turn value of the method, or empty if the method
has a void return value. The HTML document will
also describe whether there were any syntactical er-
rors in the sequence, and whether any exceptions were
thrown during execution of the test drive.

Once a test drive is complete, an XTE file docu-
menting runtime behaviour will be created and asso-
ciated with the component. A reference to this docu-
ment will be included in an updated repository view
for that component.

When a reference to an XTE document is selected
in the repository view, the list of available (previ-
ously registered) visualisation types will be presented.
When a visualisation type is selected, the server will
use a previously created transformation to convert the
XTE file to a visualisation format. A specific transfor-
mation will convert a trace into a specific type of visu-
alisation, such as sequence diagram, class diagram or
data structure diagram. This visualisation will then
be viewable through the browser.

3.3 Technologies

Spider uses a range of Java and W3C technologies.
We now discuss the technologies used for handling
requests, executing components, capturing informa-
tion, and storing traces.

Web Server Spider uses Jakarta Tomcat to handle
servlets and JSP pages. The current implementation
uses JSP tag libraries to handle much of the user in-
terface generation. These tag libraries are associated
with HTML files stored in Spider’s Tomcat applica-
tion directory.

When test drives are submitted from the client-
side, the test driver is notified. The test driver is
a servlet, that then uses custom libraries portable
across all Java environments.

Reflection Spider uses the Java Reflection API to
handle dynamic execution of methods in a Java com-
ponent’s interface. The Reflection API is available in
the standard development kit, and supports handling
constructors and methods as objects. Test drives are
effectively mapped to a sequence of operations on
these constructor and method objects, such as instan-
tiation or invocation calls. The necessary parameter
information is retrieved from a data store that is kept
during a session of test driving. This helps to avoid
the need for inserting wrapper code into a test drive
so as to make it a stand-alone application capable of
independent execution.

JDI Spider uses the Java Debugger Interface (JDI)
(Sun Microsystems 2003). The JDI supports moni-
toring a target VM from a separate monitoring VM.
Code executing on the monitoring VM registers its in-
terest in a range of events that may occur on the tar-
get VM, identified by event type or on a class/location
basis. The monitoring VM is then alerted whenever
a registered event occurs, temporarily suspending ex-
ecution on the target VM. Code on the monitoring
VM can then use methods and objects in the JDI
to extract runtime information regarding call stacks,
threads, mirrored values and object references, and
environment state from the target VM.

The JDI is implemented in Java, as compared to
earlier versions which relied on native code such as
C/C++(Marshall, Biddle & Tempero 1999). This
helps make Spider more portable to other servers run-
ning other architectures.

XML Spider writes component descriptions and ex-
ecution traces in XML formats. By storing the infor-
mation in XML formats, the execution traces are ap-
plication independent, and can also be converted into
a range of other formats using such technologies as
XML Style Language Transformations (XSLT). The
initial intention of Spider is that the visualisations
will be created in the SVG format. These files could
then be transmitted to the clients, for display in SVG
browser plug-ins.

Component documentation is split into RCD and
XTE files to avoid redundancy. As behaviour infor-
mation may refer to static component information,
that duplicated static information is factored out of
the multiple XTE files that refer to the same compo-
nent.

4 Discussion

The Spider prototype demonstrates how test driven
software visualisations might be incorporated in an
online component market. We now discuss some im-
plementation issues that surfaced during our proto-
typing, and the means by which Spider helps con-
sumers and producers of reusable components.

4.1 Technology Issues

There are a number of issues that arose during the
implementation of this design that affect the func-
tionality and success of such a tool. These issues
include: invoking methods; capturing runtime infor-
mation; the availability of information; the security
of the test drive environment; the handling of com-
ponent versions; the handling of component graphical
user interfaces; and the handling of components using
the event-listener model.

Information Selection A component’s runtime
behaviour may consist of a massive number of events.
While all of these events may have some bearing on
the suitability of a component for a particular con-
text, not all events have an equal bearing. If every
event is stored in the visualisation, then the resources
required to store, process, view, and comprehend the
visualisation would be prohibitive. These costs would
be paid by both the market and the consumer. It is
therefore necessary to filter out certain data, and fo-
cus on the important information that will assist a
consumer to determine if a component is suitable. It
is important to note that the consumers are viewing
the visualisations to understand how the component
works, and are not in an informed position to signifi-
cantly help with filtering out unnecessary data.

Component Boundary Following on from the
above discussion, we can then also draw a distinction
between knowing the events that occur because of a
component, as compared to knowing the events that
occur within a component. We define the boundary of
the component as the method calls exiting the compo-
nent, as well as the collection of system and network
resources that are used by the component. Part of the
audience intent discussed earlier is to understand how
the component may interact with other components
when placed into the consumer’s environment.

It is not particularly useful to capture all events
that occur within another component (such as a stan-
dard library) even though it is due to the candidate
component’s behaviour. It would be sufficient to iden-
tify that the other component has been invoked, along
with the details of the service requested. One means
of reducing the amount of data captured, and there-
for simplifying the visualisations, is to only capture
events within and on the boundary of the candidate
component.

Security If markets are to host the capability to
test drive components, the test driver should attempt
to avoid compromising the security of the market’s
servers. Security compromises could involve using

the network, file systems, or other server resources
to break either the server itself, or to attack other
servers on the network. One solution to this challenge
is to make full use of the Java Security Manager. In
the Java environment, it is possible to register a cus-
tomised security manager with the virtual machine,
so as to permit certain tasks, and block potentially
dangerous tasks. Calls to the methods on the security
manager can also be captured, and used to document
permission requests.

Version Control An issue arises with the effect
that the choice of virtual machine used by the test
driver has on the test driven components. As both
the test driver implementation and the test driven
components are likely to reference the same classes in
the standard development kit, then if they both need
different versions of these classes, it becomes problem-
atic to manage it. The main reason for this problem is
in the fact that the classloader that loads classes into
the virtual machine cannot handle managing classes
with duplicate names.

The conflict will arise in the use of the standard
development libraries, as the test driver implementa-
tion only uses these libraries, along with custom built
components unlikely to make it to the market. One
solution is to have different implementations of the
test drivers that work with different versions of the
standard development libraries. When test driving a
component, the server could note the version of Java
the component was implemented for, and ensure that
the appropriate matching test driver is used.

Graphical User Interfaces Another issue arises
in the handling of a component’s GUI. Up to this
point, we have assumed that components will be con-
trolled through the programmer interface specified
in the class description. This is true for business
logic components. However, user interface compo-
nents may also be exchanged in markets. These user
interface components require a different means of con-
trol to the components we have assumed. User inter-
face components require that the GUI, executing on
the server, be accessible on the client’s web browser.
No current means of doing this in HMTL/CSS cur-
rently exists, which means that a work-around needs
to be created to handle this case.

One possible workaround is to use Virtual Network
Computing (VNC)(VNC 2003). VNC supports view-
ing a display on a separate machine to that which
the display is executing on. There are currently VNC
viewer applets available. These viewer applets could
be built into web pages returned when a test drive
form is submitted. The viewer applet would connect
to a VNC server started in conjunction with the test
driver. The test driver would create the GUI as any
normal executing Java application would, and this
GUI would be transmitted by the server to the client,
allowing complete interaction. A consequence of this
approach is that a VNC server would be necessary per
test driver. It would not be possible to share displays
due to the problem of accidentally showing someone
somebody else’s test drive. This represents a probable
resource drain on the Spider server.

Event-Listener Model The last issue we address
is that of dealing with components that use an event-
listener model. The challenge here is that these com-
ponents need special configuration before they can
be test driven. Specifically they require that a lis-
tener be registered with the component, which is then

contacted when something happens in the compo-
nent. Typically the component will use an interface as
the type of the listener parameter in the registration
method. This then allows component users to write
customised classes that implement the interface, and
that can easily be linked with the component. How-
ever, for a test drive of such a component to be pos-
sible, a dummy implementation of the listener must
be created by the test driver.

4.2 Relevance to Consumers and Producers

We have created a prototype of a tool for creating
software visualisations from test drives. The software
visualisations (and the process by which they are cre-
ated) can help consumers evaluate components, and
help producers advertise components.

Helping Consumers We hope consumers can use
software visualisations to comprehend more informa-
tion than they would normally be able to do in a
strictly textual format. The visualisations are cre-
ated from a sequence of user requested actions. The
software visualisation is focused on the goal repre-
sented by the sequence of actions. This can help to
remove extraneous information about the component
that is not relevant to that goal. The test drive is
either performed by the producer (who knows what
goals can be achieved, and how), or by the consumer
(who is exploring the component to see what goals
can be achieved). In the former case, the software
visualisation will guide the consumer as to how to
achieve particular goals. In the latter case, the soft-
ware visualisation will inform the consumer as to the
success of their exploration. Both results are useful
feedback when exploring the capabilities and usage of
a component.

As well as this, the test drive execution is being
done on the server-side. This means that consumers
are not required to download, install and trust compo-
nents prior to evaluation. This may also save time and
effort ordinarily spent in the evaluation phase, and re-
ducing the cost of component reuse. After a positive
evaluation, there may be a few scenarios where the
component will not perfectly fit into the new context,
as the server environment may subtly differ from the
consumer’s environment. It is unavoidable that the
consumer will need to test the final selected compo-
nent in their own environment, however the consumer
will no longer need to do this for all the potential com-
ponents.

Helping Producers Producers can create test-
driven software visualisations to advertise the features
of their components. These software visualisations
would then complement other text-based documenta-
tion currently supplied.

As well as this, by reducing the consumer’s cost
of understanding, test-driven software visualisations
may further encourage consumers to try reuse, ex-
panding the audience for a producer’s component.

5 Related Work

There has already been significant research per-
formed into visualising software applications. There
is also significant literature focused on the creation
of reusable components. As well as this, there has
been some notable work on accessing certain types
of applications through web interfaces, and this pa-
per’s contribution is to attempt to draw these three
avenues of research together.

There are a variety of purposes for which soft-
ware visualisation techniques have been developed
(Ellershaw & Oudshoorn 1994). These purposes in-
clude use as pedagogical tools to teach Computer
Science students how algorithms work ((Byrne, R &
Stasko 1999) as one example), use in visual debug-
gers to help correct bugs in software ((Mukherjea &
Stako 1994) as one example), through to profiling
large suites of applications to determine efficiency,
correctness and help during maintenance.

Research into software visualisations for under-
standing program traces does exist (Renieris & Reiss
1999) (Jerding & Stasko 1994) (Moe & Carr 2001),
but much of this is not focused specifically on reuse
and the information required in that process, and
rather mentions maintenance as the driving factor.

Component-based development is developing into
a vibrant activity within the field of software engi-
neering (Ravichandran & Rothenberger 2003). The
practice aims to deliver the benefits that reuse has
promised (and delivered in some areas with quali-
fied success) for decades. Research in the field of
component reuse has been conducted for decades
(Mclllroy 1968), and ranges from examining how to
reuse code, to what makes code reusable (Mili, Mili &
Mili 1995), through to metrics to measure code reuse
(Frakes & Terry 1996) (Ferri 1997).

Research is being conducted into providing ac-
cess to web-based simulation tools for a distributed
environment. One notable tool is PUNCH, a re-
search project and tool being undertaken by Purdue
University (Kapadia, Fortes & Lundstrom 2000).

6 Conclusion

The cost of obtaining a component suitable for a par-
ticular reuse context can be prohibitive, negating the
savings made by not implementing the functionality
from scratch. This cost can be reduced by using soft-
ware visualisations derived from component usage to
reduce a sub-cost: that of understanding what a can-
didate component does. We have implemented a pro-
totype tool that supports the extraction of software
visualisation information from a component’s runtime
behaviour, where that behaviour is driven by an in-
terested consumer, or an advertising producer.

References

Amazon (2003), ‘Amazon’, http://www.amazon. com.
A leading print and multimedia market.

Byrne, M., R, C. & Stasko, J. (1999), ‘Evaluat-
ing animations as student aids in learning com-
puter algorithms’, http://citeseet.nj.nec.
com/byrne99evaluating.html.

ComponentSource (2003), ‘ComponentSource web-
site’, http://www.componentsource.com. The
leading web-based component market.

Consortium, W. W. W. (2003), ‘W3C SVG website’,
http://www.w3.org/Graphics/SVG/.

Ellershaw, S. & Oudshoorn, M. (1994), Program vi-
sualisation — the state of the art., Technical re-
port, Department of Computer Science, Univer-
sity of Adelaide.

Ferri, R. (1997), ‘Software reuse metrics for an indus-
trial project’, http://citeseer.nj.nec.com/
frakes96software.html.

Frakes, W. & Terry, C. (1996), ‘Software reuse:
metrics and models’, ACM Computing Surveys
28(2), 415-435.

JCorporate (2003), ‘JCorporate website’, http://
www.jcorporate.com. component/application
market based around open standards/source.

Jerding, D. & Stasko, J. (1994), Using visualization
to foster object-oriented program understandin
g, Technical Report GIT-GVU-94-33, Graphics,
Visualization and Usability Center, College of
Computing , Georgia Institute of Technology.

Kapadia, N. H., Fortes, J. A. B. & Lundstrom,
M. S. (2000), ‘The Purdue University network-
computing hubs: running unmodified simula-
tion tools via the WWW’, ACM Transactions on
Modeling and Computer Simulation (TOMACS)
10(1), 39-57.

Marshall, S., Biddle, R. & Tempero, E. (1999), Dyno:
A tool for dynamic interactive documentation.,
in ‘First Symposium on Constructing Software
Engineering Tools (CoSET’ 99)’.

Meclllroy, M. (1968), Mass produced software compo-
nents, in P. Naur & B. Randell, eds, ‘Report on
a conference of the NATO Science Committee’,
pp. 138-150.

Mili, H., Mili, F. & Mili, A. (1995), ‘Reusing software:
Issues and research directions’, IEEE Transac-
tions on Software Engineering 21(6).

Moe, J. & Carr, D. (2001), Understanding distributed
systems via execution trace data, in ‘Proceedings
of the ninth international workshop on program
comprehension’.

Mukherjea, S. & Stako, J. (1994), ‘Towards vi-
sual debugging: intergrating algorithm anima-
tion capabilities within a source level debugger’,
ACM transactions on Computer-Human Inter-
action 3(1), 215-244.

Ravichandran, T. & Rothenberger, M. A. (2003),
‘Software reuse strategies and component mar-
kets’, Communications of the ACM 46(8), 109—
114.

Renieris, M. & Reiss, S. (1999), ‘ALMOST: explor-
ing program traces’, http://citeseer.nj.nec.
com/renieris99almost.html.

Sun Microsystems (2003), ‘Java Platform Debug-
ger Architecture’, http://java.sun.com/j2se/
1.4.1/docs/guide/jpda/.

VNC (2003), ‘RealVNC organisation website’, http:

//www.realvnc.org.

