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Abstract

Today’s dynamic business environment demands from
companies variable and flexible processes. Rather
than imposing a single fixed process, process models
must account for the variability of real-world busi-
ness problems. Many companies are hierarchically
organized with top-down decision making processes.
On the one hand, company policies and legal regu-
lations often require compliance with standard pro-
cess models prescribed by higher-level management.
On the other hand, lower-level employees should be
flexible within the prescribed boundaries. In this pa-
per, we propose a hetero-homogeneous approach to
modeling process variability. We employ the multi-
level business artifact (MBA) in order to represent
within a single object the homogeneous schema of an
abstraction hierarchy of processes. We employ mul-
tilevel concretization for the introduction of hetero-
geneities into sub-hierarchies which comply with the
homogeneous global schema.

Keywords: Business Artifact, Multilevel Modeling,
Process Variability, Process Flexibility

1 Introduction

Business process models should reflect the variabil-
ity of real-world business problems which are rarely
solved by a single fixed process. Rather, different vari-
ations exist for tackling the same problem, depending
on the exact situation. Thus, in order to accurately
represent reality, a process model incorporates several
variants for handling different situations. For exam-
ple, a car rental company handles walk-in rentals dif-
ferently from advance rentals, both being variants of
a car rental.

An artifact-centric process model represents data
along with the business processes that work with
these data (Nigam & Caswell 2003, Kappel & Schrefl
1991). These business processes are represented as
life cycle models of classes of data objects. It is com-
mon to model object life cycles with variants of finite
state machines (Hull 2008). During its life cycle, a
data object assumes several states which are defined
in the life cycle model. Depending on the state, dif-
ferent operations may be performed on a data object.

In artifact-centric process modeling, behavior-
consistent specialization of life cycle models allows
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for the representation of process variability. The spe-
cialization of a life cycle model may be considered a
variant of the more general life cycle model. This vari-
ant must follow specific, well-defined rules in order to
ensure consistency with the more general life cycle
model (Stumptner & Schrefl 2000, Schrefl & Stumpt-
ner 2002, van der Aalst et al. 2002).

Many, if not most, companies are hierarchical or-
ganizations. From higher-level management to lower-
level operatives, the different levels of the organiza-
tion have their own business processes which are in-
terconnected with each other. For example, top man-
agement decides what businesses a company operates
in, area managers are concerned with shaping the
businesses, and low-level operatives handle the spe-
cific business events. Multilevel process models rep-
resent processes at multiple levels of an organization
together with the interactions between the processes
at the different levels.

While higher-level management sets out general
business policies, the exact processes may differ
between the various subparts of the organization.
Lower-level operatives must comply with the general
policies but are flexible in adapting their respective
processes within the limits specified by higher-level
management. For example, the top management of
a car rental company defines general policies for han-
dling car rentals. The area managers for private and
corporate renters may extend and refine these policies
according to the particularities of each segment.

The hetero-homogeneous modeling approach pro-
vides modelers with increased flexibility for the rep-
resentation of variability in multilevel process mod-
els while preserving the advantages of homogeneous
schemas. Previously, the hetero-homogeneous model-
ing approach has been successfully employed in data
warehouse modeling (Neumayr et al. 2010). A hetero-
homogeneous business process model consists of a
generally homogeneous schema but allows for the
introduction of heterogeneities in well-defined sub-
hierarchies. The extended and refined process models
of the sub-hierarchies comply with the more general
models and are themselves the homogeneous schema
of their respective sub-hierarchy. The process mod-
els of sub-hierarchies of sub-hierarchies may again be
extended and refined, and so on.

Figure 1 illustrates the hetero-homogeneous ap-
proach to modeling business process variability. Sev-
eral multilevel artifact-centric process models (Rental,
Private, Corporate, Rental2175) describe data and life
cycle models at various hierarchically-ordered levels
of abstraction (business, renterType, rentalAgreement,
rental). Each process model consists of several boxes
connected by dotted lines. Each box consists of sev-
eral compartments, the top compartment containing,
in angle brackets, the name of the level. The remain-
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The life cycle model of class 'business' contains state 'restructuring' and state 'in
business'.
A renter type may be added to a business only if the active state of the business is
'restructuring'.
The active state of business 'Rental' is 'in business'.

Rental: ‹ business ›

The life cycle model of class 'renter type' contains state 'in development' and state
'on offer'.
A rental may be added to a renter type only if the active state of the renter type is
'on offer' and the active state of the business of the renter type is 'in business'.

renter type has maximum rate.

‹ renterType ›

‹ rental ›

concretization of concretization of

The active state of renter type
'Corporate’ is 'in development'.
A corporate rental must be added to a
rental agreement and the active state of 
the rental agreement must be 'in effect'.

The maximum rate of renter type
'Corporate’ is '1 000'.

Corporate: ‹ renterType ›

The life cycle model of class 'rental
agreement' contains state 'under
negotiation' and state 'in effect'.

rental agreement has negotiated rental 
rates and maximum rental duration.

‹ rentalAgreement ›

‹ rental ›

The active state of renter type 'Private'
is 'on offer'.

The maximum rate of renter type
'Private’ is '200'.

Private: ‹ renterType ›

‹ rental ›

The life cycle model of class 'rental' contains state 'open' and state 'closed'.
The rate of a rental must not exceed the maximum rate of the renter type.

rental has actual pick-up date and rate and rental duration.

The life cycle model of class 'advance rental' contains state 'reserved' and state
'assigned'.

advance rental has scheduled pick-up date.

advance rental specializes rental:

The rate of a corporate rental must
be included in the negotiated rental 
rates of the rental agreement.
The rental duration of a corporate 
rental must not exceed the maximum 
rental duration of the rental 
agreement.

corporate rental specializes rental.
corporate rental has upgrade fee.

The life cycle model of class
'carsharing rental' contains state
'active' and state 'paused'.

carsharing rental has driven distance.

carsharing rental specializes
corporate rental:

The life cycle model of class 'private
rental' contains state 'backed'.

private rental specializes rental.
private rental has credit card number.

The life cycle model of class 'private
advance rental' contains state
'deposited'.

private advance rental specializes
advance rental
private advance rental has deposit.

private advance rental specializes
private rental:

The active state of private advance 
rental 'Rental2175' is 'deposited'.

The rental 'Rental2175’ is instance of
class 'private advance rental'.
The rate of rental 'Rental2175’ is '€ 80'.
The rental duration of rental
'Rental2175’ is '10 days'.
The credit card number of private rental
'Rental2175’ is '1234567890'.
The scheduled pick-up date of advance 
rental 'Rental2175’ is '12/08/2013'.
The deposit of private advance rental
'Rental2175’ is '€ 120'.

Rental2175: ‹ rental ›

concretization of

Figure 1: Modeling variability in business processes
using the hetero-homogeneous approach

ing two compartments specify the data and life cycle
model, respectively, at the particular level. The top
compartment of the top box of each process model
contains, underlined, the name of the process model
together with the name of the top level, separated
by colon. The name of a process model should be
read in conjunction with the top level. For illustra-
tion purposes only, the data and life cycle models are
represented in the style of the Semantics of Business
Vocabulary and Rules (SBVR) standard; the exam-
ple scenario is based on the EU-rent use case from the
SBVR standard (OMG 2008, p. 267 et seq.).

Multilevel artifact-centric process models are hi-
erarchically ordered through concretization relation-

ships which allow for the introduction of variability
in well-defined partitions of the hierarchical model.
Each of the multilevel process models in Figure 1 is
the homogeneous schema of an entire (sub-)hierarchy.
For example, Rental represents the company’s rental
business itself, defining the homogeneous schema of
the entire hierarchy, describing the data and life cycle
models of the rental business as a whole, the different
renter types, and the individual rentals. The multi-
level process models Private and Corporate, both rep-
resenting renter types, define a homogeneous schema
of their respective sub-hierarchies while introducing
heterogeneities with respect to Rental. The renter
type Private has credit card information attached to
the rental level and introduces the possibility of ad-
vance rentals. An individual private rental must be
backed by a credit card; a private advance rental re-
quires a deposit. The renter type Corporate has an
additional level, rentalAgreement, which is only appli-
cable to corporate renters. An individual corporate
rental for the employee of a company is opened un-
der the company’s corporate rental agreement which
governs the maximum rental duration and defines a
set of pre-negotiated rental rates. At the rental level,
Corporate introduces an upgrade fee and the possi-
bility of carsharing rentals. The introduction of het-
erogeneities in the Corporate sub-hierarchy does not
affect the schema of the Private sub-hierarchy, and
vice versa.

Besides having variants of entire process hier-
archies through concretization of multilevel process
models, a single multilevel process model may de-
fine different process variants within an abstraction
level. For example, in Figure 1, the Rental multilevel
process model defines advance rentals as a variant of
rentals. Different sub-hierarchies may specialize these
variants or introduce additional variants. For exam-
ple, the Private multilevel process model specializes
the schema of rentals and advance rentals. The Cor-
poratemultilevel process model specializes the schema
of rentals and introduces carsharing rentals as a vari-
ant of corporate rentals.

In this paper, we adopt and extend the multi-
level business artifact (Schütz et al. 2013) for the
hetero-homogeneous modeling of artifact-centric pro-
cess models. The encapsulation of information about
an entire hierarchy of artifact-centric process models
within a single object together with a concretization
mechanism allows for a flexible introduction of het-
erogeneities while preserving the advantages of ho-
mogeneous process models.

The remainder of this paper is organized as fol-
lows. In Section 2, we present the modeling and incre-
mental evolution of hierarchies of multilevel process
models. In Section 3, we present the modeling and
incremental evolution of hierarchies of process mod-
els within the individual levels of a multilevel process
model. In Section 4, we review related work. We
conclude with a summary and an outlook on future
work.

2 Variability in the Large: Hierarchies of
Multilevel Process Models

A multilevel process model represents a hierarchy of
business processes at different levels of abstraction.
These business processes are interdependent and in-
teract with each other. The encapsulation of multi-
ple processes at different levels of abstraction within
a single model allows for a definition of variants of
entire process hierarchies.
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+ descendants(level : Level) : MBA [*]
+ ancestor(level : Level) : MBA [0..1]
+ concretize() : MBA
+ setClassifier(classifier : Class)

MBA

Level
1..**

MBAtoLevel

+ parentLevel 0..1

*

+ level

ClassInstance

1
+ /topLevel*

Class
+ classDef
1..*

1

StateMachine
+ context

1 1

+ instance

+ classifer

0..1

1

+ abstraction

+ concretization

* 0..1

Figure 2: The MBA metamodel in UML

2.1 Modeling

A business artifact (Nigam & Caswell 2003) encap-
sulates, within a single object, a data model as well
as the corresponding life cycle model. Artifact-centric
(or data-centric) process models focus on data and the
operations that manipulate the data as well as their
execution order. Many artifact-centric approaches to
process modeling, for example, object/behavior dia-
grams (Kappel & Schrefl 1991), rely on variants of
finite state machines for the representation of life cy-
cle models, defining a set of states which an artifact
runs through as the data change.

A multilevel object (m-object) encapsulates,
within a single object, data models at various levels
of abstraction (Neumayr et al. 2009). The abstrac-
tion levels are arranged in a hierarchy from most ab-
stract to most concrete with a single top level which
is the most abstract. To each abstraction level, an
m-object links a class. The classes are related by ag-
gregation relationships according to the level hierar-
chy. Modelers are free to choose the exact semantics
of the aggregation relationships between the classes,
the possibilities ranging from part-of relationships to
aggregation with a materialization flavor (Dahchour
et al. 2002). Besides defining classes at various lev-
els of abstraction, an m-object instantiates its single
top-level class, yielding a certain “class/object dual-
ity” (Atkinson & Kühne 2001) similar to clabjects.

The multilevel business artifact (MBA) is an ex-
tension of the m-object for artifact-centric process
modeling (Schütz et al. 2013). An MBA encapsu-
lates, within a single object, data and life cycle models
at various levels of abstraction. To each abstraction
level, an MBA links a class as well as the correspond-
ing life cycle model. This life cycle model defines the
legal execution order of the methods of the respective
class. Being an instance of its top-level class, an MBA
also has an active state (or several) from the top-level
life cycle model.

Figure 2 defines the MBA metamodel using UML.
Note, however, that MBAs are outside of traditional
object-oriented thinking even though UML serves as
the language for the definition of the MBA meta-
model. The definition of the MBA metamodel in
UML allows for the use of OCL constraints for the
synchronization of life cycle models on different ab-
straction levels. Other modeling languages, for exam-
ple, O-Telos (Jeusfeld et al. 2009), are equally well-
suited for defining the MBA metamodel.

Class MBA is the metaclass of all MBAs. An MBA
references several abstraction levels (Level) which are
hierarchically ordered; an MBA has a single top level.
For each level, an MBA defines a single class or a class
hierarchy (see Section 3). Each class is only linked
to a single MBA and level. Each class has a state
machine which defines the life cycle model of the class.
An MBA is also an instance of a class (ClassInstance),

+ rentalId : String
+ actualPickUp : Date
+ rentalDuration : Number
+ rate : Number
+ assignedCar : String

‹ rental ›

+ description = 'The rental business of the EU-rent company.'

Rental: ‹ business ›

+ maximumRate : Number

‹ renterType ›

openRental(id)
concretize {new.rentalId = id}

Restructuring launch In Business

On Offer

Closed

endIn Development launch

concretize {new.name = name}

Opening

Discontinued

Phase Out

developRenterType(name)

discontinue

restructure

setMaximumRate

pickUp

setDuration [ancestorAtLevelSatisfies(<renterType>, maximumRate, self.rate, >)]
setRate(rate)

assignCar
Open return

Figure 3: MBA Rental for the management of car
rental data

the classifier being a class that is linked to the MBA’s
top level. In order to ensure that each instance of an
MBA’s class is again an MBA, each of these classes
is a specialization of the MBA metaclass. Each class
has at most one direct instance, but may have several
indirect instances via sub-classes which are defined by
concretizations.

An MBA may be the concretization or, conversely,
the abstraction of another MBA (see Section 2.2). An
MBA inherits a set of levels from its abstraction. The
concretization must maintain the relative order of in-
herited levels but may introduce additional levels be-
tween inherited levels. For simplicity of presentation,
an MBA explicitly references the newly introduced
as well as the inherited levels. The hierarchical order
of levels is then defined locally for each MBA using
an association class (MBAtoLevel). Each link between
an MBA and a level references the parent level in the
context of the MBA. In a similar way, class definitions
are attached to these links.

The MBA metaclass defines methods for the nav-
igation along the concretization hierarchy. Method
descendants takes a level as parameter and returns
the set of the MBA’s (transitive) concretizations with
the argument top level. Similarly, method ancestor
takes a level as parameter and returns the MBA’s
(transitive) abstraction with the argument top level.
Method concretization creates a new concretization
underneath the MBA. The schema of the new con-
cretization may then be specialized using reflective
methods which are not shown in the metamodel.
Method setClassifier allows for a change of the MBA’s
classifier during run time (see Section 3). We refer
to previous work (Schütz et al. 2013, Neumayr et al.
2009) for a more formal definition of the integrity con-
straints in the MBA metamodel.

In the graphical representation (Figure 3), each
level of an MBA is a box with several compartments
in analogy to class diagrams in UML. The top com-
partment of each box contains the name of the respec-
tive level in angle brackets. The other compartments
contain definitions of attributes, methods, and the
life cycle model. The boxes of an MBA are arranged
according to their hierarchical order and linked by
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dotted lines. The top compartment of the top level’s
box contains the name of the MBA in addition to the
level name, underlined and separated by a colon, re-
flecting the instantiation of the top-level class by the
MBA. Furthermore, attributes of the top level’s box
have values assigned.

Figure 3 illustrates an MBA model for the man-
agement of car rental data with MBAs Rental and
Corporate; the example is based on the EU-rent use
case (OMG 2008, p. 267 et seq.). MBA Rental has
levels business, renterType, and rental. The business
level represents the company’s rental business, con-
sisting of several renter types (renterType), each hav-
ing several individual rentals (rental) associated. The
rental business has a description. A renter type has a
maximum rate (maximumRate). A rental has an iden-
tifier (rentalId), an actual pickup date (actualPickUp),
a rental duration (rentalDuration), a rental rate which
determines the total rental fee, and an assigned
car (assignedCar). MBA Corporate is a concretization
of Rental (see Section 2.2).

We use UML (protocol) state machines (OMG
2011, p. 535 et seq.) for the representation of life
cycle models. We stress, though, that the employed
process modeling language is substitutable. We use
the UML state machine formalism since it is an in-
dustry standard. A state machine is defined in the
context of a class and consists of states and transi-
tions between theses states. A transition has a source
state and a target state and is linked to a call event
for a method of the context class. A method may
be called for a particular object if in the object’s life
cycle model there exists a transition that is linked to
the called method and originates in an active state of
the object. Furthermore, possibly specified pre- and
post-conditions must be satisfied. A valid method call
triggers the transition of the object from source state
to target state. Methods that are not linked to any
transition may be called in any state. A state may
have several sub-states which are also linked by tran-
sitions. Forks and parallel regions allow for an object
to be in multiple states simultaneously.

In the graphical representation of UML state ma-
chines, a rounded box with a caption inside represents
a state, a filled black circle represents the initial state,
and an arrow with a method name represents a tran-
sition. Pre-conditions and post-conditions of transi-
tions are placed in square brackets before the method
name and after the method name, respectively. The
name of an object’s active state is underlined (non-
standard notation).

For example, each level of MBA Rental (Figure 3)
has a state machine as life cycle model. A business is
either Restructuring or In Business and moves between
these states. A renterType moves from In Development
to On Offer, Phase Out, and Discontinued. A rental
moves from Opening to Open and Closed. Since Rental
is also an instance of its top-level class it has an active
state, In Business, from the top-level (business) life
cycle model.

The life cycle models at the various abstraction
levels of an MBA constitute the model of a multilevel
business process. The different life cycle models of
a multilevel business process are interdependent; the
MBAs that instantiate the corresponding classes in-
teract with each other. For example, a new renter
type may only be added to a business while it is Re-
structuring. When a business moves from In Business
to Restructuring all associated renter types move to
the Phase Out state. Similarly, a new individual rental
may only be added to a renter type while it is On
Offer and the business is In Business. A renter type
may only be discontinued if all associated individual

self.descendants(level)->exists( o | o.oclIsNew() )

self.ancestor(level).oclInState(state)

self.descendants(level)->forAll( o | o.oclInState(state) )
allDescendantsAtLevelInState(level, state)

ancestorAtLevelInState(level, state)

newDescendantAtLevel(level)

self.descendants(level)->exists( o | o.oclIsNew() 
and o.attrName � value )

newDescendantAtLevelSatisfies(level, attrName, value, �)

self.ancestor(level).attrName � value
ancestorAtLevelSatisfies(level, attrName, value, �)

self.descendants(level)->forAll( o | o.attrName � value )
allDescendantsAtLevelSatisfy(level, attrName, value, �)

self.descendants(level)->exists( o | o.attrName � value )
someDescendantAtLevelSatisfies(level, attrName, value, �)

self.descendants(level)->exists( o | o.oclInState(state) )
someDescendantAtLevelInState(level, state)

self.descendants(level)->exists( o | o.oclIsNew() 
and obj.descendants(level)->includes(o) )

newDescendantAtLevelUnder(level, obj)

self.descendants(level)->exists( o | o.oclIsNew() and
obj.descendants(level)->includes(o) and o.attrName � value )

newDescendantAtLevelUnderSatisfies
(level, obj, attrName, value, �)

self.descendants(level)->includes(obj)
isDescendantAtLevel(obj, level)

self.descendants(level)->includes(obj) and 
obj.oclInState(state)

isDescendantAtLevelInState(obj, level, state)

self.descendants(level)->includes(obj) and
obj.attrName � value

isDescendantAtLevelSatisfies(obj, level, attrName, value, �)

Attribute synchronization

State synchronization

Concretization

Auxiliary

Figure 4: Multilevel predicates for the definition of
synchronization dependencies as macros for OCL

rentals are closed. A rental’s rate must not exceed
the maximum rental rate defined by the renter type.
The life cycle models of an MBA are thus connected
by synchronization dependencies which are pre- and
post-conditions, expressed in OCL, for the transitions
between states.

We define a set of frequently used patterns of syn-
chronization dependencies between abstraction levels,
called multilevel predicates, as syntax macros (Leav-
enworth 1966) for OCL (Figure 4). Multilevel pred-
icates are classified into attribute synchronization,
state synchronization, and concretization predicates.
Attribute synchronization refers to pre- and post-
conditions demanding that the value of a given at-
tribute of descendants or an ancestor satisfies some
condition. State synchronization refers to pre- and
post-conditions demanding that descendants are or
an ancestor is in a particular state. Concretization
predicates trigger the creation of new MBAs and can
be used only in post-conditions. Multilevel predicates
are translated into standard OCL constraints which
use the methods descendants and ancestor of the MBA
metaclass for navigation along the level hierarchy.

The multilevel predicates allDescendantsAtLevel-
Satisfy, someDescendantAtLevelSatisfies, isDescendant-
AtLevelSatisfies, and ancestorAtLevelSatisfies handle
attribute synchronization. Predicate allDescen-
dantsAtLevelSatisfy demands that all descendants at
a given level satisfy some condition over an at-
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‹ l2 ›

‹ l1 ›
m

s

(a) pre:allDescendants
AtLevelInState(l2,s)

‹ l2 ›

‹ l1 ›
m

s

(b) post:allDescendants
AtLevelInState(l2,s)

‹ l1 ›

s

‹ l2 ›
m

(c) pre:ancestor
AtLevelInState(l1,s)

‹ l1 ›

s

‹ l2 ›
m

(d) post:ancestor
AtLevelInState(l1,s)

‹ l2 ›

‹ l1 ›
m

concretize

(e) newDescendantAtLevel(l2)

+ a1

‹ l2 ›

‹ l1 ›
m

concretize
{new.a1=val}

(f) newDescendantAtLevel
Satisfies(l2,a1,val,=)

‹ l3 ›

‹ l1 ›
m

‹ l2 › concretize under o

(g) newDescendantAtLevel
Under(l3,o)

+ a1

‹ l3 ›

‹ l1 ›
m

‹ l2 › concretize under o
{new.a1=val}

(h) newDescendantAtLevel
UnderSatisfies(l3,o,a1,val,=)

Figure 5: Graphical notations for some of the state synchronization and concretization predicates in Figure 4,
the someDescendantAtLevelInState and isDescendantAtLevelInState predicates are not shown

tribute. Predicate someDescendantAtLevelSatisfies de-
mands that at least one descendant at a given level
satisfies some condition over an attribute. Predicate
isDescendantAtLevelSatisfies checks whether a given
object is a descendant at a given level and satis-
fies some condition over an attribute. Predicate an-
cestorAtLevelSatisfies demands that the ancestor at a
given level satisfies some condition over an attribute.

The multilevel predicates allDescendantsAtLevelIn-
State, someDescendantAtLevelInState, isDescendan-
tAtLevelInState, and ancestorAtLevelInState han-
dle state synchronization. Predicate allDescen-
dantsAtLevelInState demands that all descendants at
a given level are in a particular state. Predicate
someDescendantAtLevelInState demands that at least
one descendant at a given level is in a particular
state. Predicate isDescendantAtLevelInState demands
that a given MBA is a descendant at a given level
and the MBA is in a particular state. Predicate an-
cestorAtLevelInState demands that the ancestor at a
given level is in a particular state.

The multilevel predicates newDescendantAtLevel,
newDescendantAtLevelSatisfies, newDescendantAt-
LevelUnder, and newDescendantAtLevelUnderSa-
tisfies are concretization predicates. Predicate
newDescendantAtLevel demands that a new descen-
dant at a given level exists after the execution of the
method. Predicate newDescendantAtLevelSatisfies
demands that a new descendant at a given level
exists after the execution of the method and that
this new descendant satisfies some condition over
an attribute. Predicate newDescendantAtLevelUnder
demands that a new descendant at a given level exists
after the execution of the method and that this new
descendant is also the descendant of a given other
MBA. Predicate newDescendantAtLevelUnderSatisfies
combines predicates newDescendantAtLevelSatisfies
and newDescendantAtLevelUnder.

We provide graphical notations for state synchro-
nization and concretization predicates (Figure 5).
These kinds of synchronization are visualized by
dashed arrows between states and transitions of
different levels. Depending on the direction of
the arrow, the synchronization dependency is ei-
ther a pre-condition (Figures 5a and 5c) or a post-
condition (Figures 5b, 5d, and 5e-5h) for a method
call. The annotation of a dashed arrow with the
symbol for existential quantification (∃, not shown)

denotes the someDescendantAtLevelInState predicate.
The isDescendantAtLevelInState state synchronization
predicate does not have a graphical notation.

For example, in Figure 3, synchronization depen-
dencies between levels are defined using the graphi-
cal notations for multilevel predicates. At the busi-
ness level of MBA Renter, method restructure has as
post-condition an allDescendantsAtLevelInState predi-
cate with the Phase Out state of the renterType level
as argument. Method developRenterType has as post-
condition a newDescendantAtLevelSatisfies predicate
with the renterType level as argument and a condi-
tion over the name attribute which every MBA has
implicitly defined. At the renterType level, method
openRental has as pre-condition an ancestorAtLevelIn-
State predicate with the In Business state of the busi-
ness level as argument. Method openRental has as
post-condition a newDescendantAtLevelSatisfies pred-
icate with the rental level as argument and a condi-
tion over the rentalId attribute. Method discontinue
has as pre-condition an allDescendantsAtLevelInState
predicate with the Closed state of the rental level as
argument. At the rental level, method setRate has
as pre-condition an ancestorAtLevelSatisfies predicate
defining that the rate that is to be set must not ex-
ceed the value of the maximumRate attribute of the
ancestor at the renterType level. The ancestorAtLevel-
Satisfies predicate has no special graphical notation.

2.2 Incremental Evolution

An MBA defines a multilevel process model and
multilevel concretization allows for the definition of
abstraction hierarchies of multilevel process mod-
els. Each MBA represents an entire multilevel ab-
straction hierarchy of artifact-centric process models.
For this hierarchy, an MBA defines a homogeneous
schema. Through multilevel concretization, modelers
may extend and refine the homogeneous schema for
a particular sub-hierarchy. The extended and refined
schema becomes the homogeneous schema of the sub-
hierarchy. For a sub-hierarchy of this sub-hierarchy,
in an incremental, iterative manner, modelers may
again extend and refine the homogeneous schema.

Multilevel concretization is a relationship between
a concretizing MBA, referred to as the concretiza-
tion, and a concretized MBA, referred to as the ab-
straction. Multilevel concretization combines charac-
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concretization of
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Figure 6: A concretization of MBA Rental in Figure 3

teristics of instantiation, aggregation, and specializa-
tion (Neumayr et al. 2009). This does not mean, how-
ever, that a concretization is instance of, part of, and
specialization of the abstraction at the same time. In-
stantiation, aggregation, and specialization manifest
in different aspects of concretization. Two MBAs that
are in a concretization relationship are at different
levels of abstraction. The concretization’s top level is
a second level of the abstraction. The concretization
instantiates a class (and life cycle model) of the ab-
straction’s top level. This instantiation relationship
determines the concretization’s membership in the ag-
gregate represented by the abstraction. From the ab-
straction, the concretization inherits all levels from
the concretization’s top level downwards and includ-
ing. The concretization preserves the relative order of
the inherited levels. The concretization’s classes and
life cycle models that are linked to the inherited levels
are specializations of the abstraction’s classes and life
cycle models at the respective levels. We refer to pre-
vious work (Schütz et al. 2013, Neumayr et al. 2009)
for a more formal definition of concretization.

For example, in Figure 6, MBA Corporate at level
renterType is a concretization of Rental. Renter type
Corporate is part of the Rental business. MBA Cor-
porate has top level renterType, the second level of
Rental. MBA Corporate inherits from Rental all lev-
els from renterType downwards and including, that
is, levels renterType and rental. MBA Corporate spe-
cializes the class that is linked to the rental level of
MBA Rental. A corporate rental has an upgrade
fee (upgradeFee) which allows employees to upgrade
the assigned car for a privately paid fee. The inherited
attributes are not shown in the graphical representa-
tion. MBA Corporate is an instance of the class at
the renterType level of MBA Rental, assigning a value

of 1000 to attribute maximumRate. The active state
of MBA Corporate is In Development. MBA Corporate
also specializes the life cycle models of levels renter-
Type and rental.

The concretization’s life cycle models that are
linked to inherited levels are observation-consistent
specializations of the abstraction’s life cycle models.
Intuitively, observation consistency guarantees that if
states and transitions added by the specialized life
cycle model are ignored and refined states are con-
sidered unrefined, any processing of a data object ac-
cording to the specialized life cycle model can be ob-
served as correct processing from the point of view of
the more general life cycle model (Schrefl & Stumpt-
ner 2002). An observation-consistent specialization
of a life cycle model may extend the more general life
cycle model with additional, parallel paths and re-
fine inherited states with sub-states. Pre- and post-
conditions in the specialized life cycle model must be
at least as strong as in the more general model. The
rules for observation-consistent specialization heavily
depend on the employed modeling formalism. We re-
fer to other work (Stumptner & Schrefl 2000, Schrefl
& Stumptner 2002, van der Aalst et al. 2002) for a
formal specification of these rules.

For example, MBA Corporate (Figure 6) extends
and refines the inherited life cycle models of Rental.
In the graphical representation, the inherited states
and transitions are depicted in gray. At the renter-
Type level, MBA Corporate extends the inherited life
cycle model with a parallel region after the In Devel-
opment state. Besides being On Offer, the Corporate
renter type is, at the same time, also either in the Ex-
panding or the Consolidating state. At the rental level,
MBA Corporate extends and refines the inherited life
cycle model. A corporate rental has an upgrade fee
which may only be set when the corporate rental is
in the Opening state. The Closed state is refined by
sub-states Returned and Archived.

We permit the introduction of new transitions be-
tween inherited states in observation-consistent spe-
cializations. For example, at the rental level, MBA
Corporate introduces a transition that is linked to
the setUpgradeFee method, with the inherited Open-
ing state as source and target. Depending on the
modeling formalism, the introduction of transitions
where either source or target state is inherited vio-
lates observation consistency (Schrefl & Stumptner
2002). For modeling formalisms that take into ac-
count the run time of methods, transitions may only
be introduced between newly introduced states. Due
to the run-to-completion assumption (OMG 2011, p.
574 et seq.) in UML, however, the introduction of
transitions between inherited states may be consid-
ered observation-consistent. We stress, though, that
the employed modeling formalism is not an important
aspect of multilevel process models.

A concretization may also introduce additional
levels with respect to the abstraction. A newly in-
troduced level must be underneath the top level; the
relative order of the inherited levels must be pre-
served. For example, MBA Corporate (Figure 6) in-
troduces rentalAgreement between levels renterType
and rental. A rental agreement is a contract which
defines general conditions for individual rentals of a
corporate client, specifying a maximum rental du-
ration (maximumRentalDuration) and a set of rental
rates (negotiatedRentalRates). While Under Negotia-
tion, the maximum rental duration is determined and
a set of rental rates is negotiated.

The observation-consistent specialization of syn-
chronization dependencies is a particular case of spe-
cialization of pre- and post-conditions by strengthen-
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Figure 7: A class hierarchy within a single level of an MBA

ing. The inherited state synchronization must still be
satisfied; the specialization may provide additional se-
mantics. In particular, the concretization may refine
a state synchronization by replacing the original state
with a sub-state. In this case, however, the modeler
must ensure that no deadlocks may occur due to this
specialization. For example, at the renterType level,
MBA Rental (Figure 3) defines a pre-condition for the
discontinue method in the transition between Phase
Out and Discontinued; a renter type may only be dis-
continued if all associated rentals are closed. This pre-
condition is inherited by MBA Corporate which adds a
transitive synchronization dependency to a sub-state
of Closed at the rental level. In order to avoid possible
deadlocks, the archive method has as pre-condition a
state synchronization with the ancestor at the rental-
Agreement level.

When introducing additional levels, modelers must
specialize the concretization predicates. For exam-
ple, at the renterType level of MBA Rental (Figure 3),
the openRental method has a concretization predi-
cate as post-condition, emphasizing the creation of a
new concretization at the rental level by this method.
MBA Corporate introduces an additional level and
specializes this post-condition. A descendant of this
renter type at the rental level must be added as a
concretization underneath a rental agreement. The
agreement must be a descendant of the renter type,
which is emphasized by the additional pre-condition
of the openRental method. As a modeler-defined con-
straint, the agreement must be In Effect.

3 Variability in the Small: Hierarchies of
Process Models within Levels

For an abstraction level, a multilevel process model
may define several variants. The selection of a variant
for the process execution is deferred to a later point in
time, thereby increasing the flexibility of employees.

3.1 Modeling

A multilevel business artifact (MBA) may link an en-
tire specialization hierarchy of classes to an abstrac-
tion level, which allows for the definition of process
variants within a single level. In this case, instead of
a single class, an MBA defines a set of classes for the
abstraction level. A single most general class serves
as the superclass for an arbitrary number of special-
izations. The life cycle models of these classes follow
the rules for behavior-consistent specialization. Thus,
each class in such a specialization hierarchy together
with the life cycle model is a variant of an artifact-
centric process model.

For example, in Figure 7, MBA Corporate links
an entire class hierarchy to the rental level. In
this hierarchy, CorporateRental is the most general
class, with CorporateAdvanceRental and Corporate-
CarsharingRental being specializations. The life cy-
cle model of class CorporateAdvanceRental refines the
Opening state. An advance rental has a sched-
uled pick-up date (scheduledPickUp) and separates
the recording of basic rental information (done in
the Booking state) from the assignment of an actual
car which is carried out when the rental is already
Booked. The life cycle model of class CorporateCar-
sharingRental refines the Open state. A carsharing
rental is billed by driven distance (drivenDistance) and
may involve changes of the assigned car. The renter
may pause an Active rental and choose another car
from a car pool before resuming the rental.

After creation, an MBA is, by default, an instance
of the single most general class that is linked to the
top level. An MBA may then change its classifier
during the life cycle. The setClassifier method of the
MBA metaclass allows for the explicit consideration
of classifier change in the life cycle model. This pos-
sibility of incremental classification defers a final in-
stantiation decision, increasing the flexibility of em-
ployees.
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Incremental classification allows for the dynamic
specialization and generalization of an MBA’s clas-
sifier. Instance specialization refers to a change of
an MBA’s classifier from more general to specialized.
Instance generalization, in turn, refers to a change of
an MBA’s classifier from specialized to more general.
Both types of incremental classification can be com-
bined for instance migration which allows for a change
of an MBA’s classifier to another classifier that is a
sub-class of a common super-class.

In order for instance specialization to be valid, cer-
tain conditions must be met by the MBA. A change of
an MBA’s classifier from more general to specialized
is valid if the previous processing steps of the MBA
in the more general life cycle model also represent a
valid execution of the specialized life cycle model. In
this case, the MBA can resume execution in the spe-
cialized life cycle model. For example, consider an
MBA that is an instance of CorporateRental in the
Opening state. A change of this MBA’s classifier to
CorporateAdvanceRental is possible and puts the MBA
in the Booking state afterwards, a sub-state of Open-
ing. Consider now an MBA that is an instance of Cor-
porateRental and in the Open state. A change of this
MBA’s classifier to CorporateAdvanceRental is not al-
lowed. The change of classifier would put the MBA in
the Open state. As an instance of CorporateAdvance-
Rental the MBA would have had to run through the
refined Opening state in order to present a valid life
cycle. A change of classifier to CorporateCarsharing-
Rental, however, is possible and puts the MBA in
state Active, a sub-state of Open.

Instance generalization is always possible unless
explicitly prohibited by the life cycle model. Values
of attributes that are introduced by the specialized
class are dropped. If in a refined state at first, after
the change of classifier, the MBA is in the unrefined
state of the general life cycle model. For example,
consider an MBA that is an instance of Corporate-
AdvanceRental in the Assigned state. A change of this
MBA’s classifier to CorporateRental puts the MBA in
the Opening state, the unrefined super-state of As-
signed. The value of scheduledPickUp is dropped.

Instance migration refers to a change of an MBA’s
classifier to another sub-class of the MBA’s current
classifier’s super-class; instance migration is realized
as a sequence of instance generalization and spe-
cialization. For example, consider an MBA that is
an instance of CorporateAdvanceRental. A change
of this MBA’s classifier from CorporateAdvanceRental
to CorporateCarsharingRental is a two-step proce-
dure. First, the classifier changes from Corporate-
AdvanceRental to the more general CorporateRental,
the common superclass of CorporateAdvanceRental
and CorporateCarsharingRental. Second, the classifier
changes from CorporateRental to CorporateCarsharing-
Rental.

3.2 Incremental Evolution

For each inherited level, a concretization inherits all of
the linked classes and life cycle models. If an inherited
level is linked to a class hierarchy, the concretization
inherits the entire class hierarchy. This inherited class
hierarchy may be specialized. On the one hand, the
concretization may introduce additional sub-classes.
On the other hand, the concretization may specialize
only individual classes of the inherited class hierarchy.

With class hierarchies involved, multilevel con-
cretization may lead to double specialization of classes
and life cycle models. Each class of a concretization’s
inherited class hierarchy is a specialization of the ab-
straction’s corresponding class. When the concretiza-
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Figure 8: Specialization of an abstraction level’s class
hierarchy

tion adds additional features to one of the sub-classes
of the inherited class hierarchy, this sub-class as well
as its life cycle model must be consistent with both
the abstraction’s corresponding class and the super-
class within the inherited class hierarchy. This super-
class may also have additional features with respect
to the abstraction’s corresponding class. In this case,
for the specialized sub-class in the concretization’s in-
herited class hierarchy, double specialization occurs.

For example, in Figure 8, MBA Private is a con-
cretization of MBA Rental which links a class hierar-
chy to the rental level. At the rental level, MBA Rental
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defines classes Rental and AdvanceRental which are in
a specialization/generalization relationship with each
other. MBA Private, at the rental level, defines classes
PrivateRental and PrivateAdvanceRental. Class Pri-
vateRental is a specialization of class Rental which
is defined by MBA Rental. A private rental must
have credit card information and is either Unbacked
or Backed, depending on the availability of credit
card information. Class PrivateAdvanceRental is a
specialization of class PrivateRental as well as class
AdvanceRental which is defined by MBA Rental. A
private advance rental requires the customer to de-
posit an amount of money in order to guarantee the
reservation. Once deposited, a private advance rental
turns from Authorized into Guaranteed, thereby refin-
ing the Backed state.

In this paper, we do not focus on the details of be-
havior consistency under double specialization. We
provide, however, two modeling guidelines for the re-
alization of observation-consistent double specializa-
tion. These guidelines simplify consistency checking
under double specialization but restrict the freedom
of the modeler. General consistency checking under
double specialization is an open issue for future work.
The issue of double specialization in process model-
ing is not the main issue in the hetero-homogeneous
approach.

In order to avoid double specialization, a modeler
may choose to specialize only the leaf nodes of a class
hierarchy. In this case, behavior consistency must
only be checked against the life cycle model of the
super-class in the inherited class hierarchy. This sim-
plification, however, limits the freedom of the modeler
and reduces flexibility. Thus, it is desirable to allow
double specialization of life cycle models.

Double specialization of life cycle models bears no
conflict if the specializations occur in parallel regions
or independent states of the life cycle model. For ex-
ample, the specialization of the Rental class’s life cycle
model by the AdvanceRental class (Figure 8) is a re-
finement of the Opening state. The specialization of
the Rental class’s life cycle model by the PrivateRental
class is an extension with a region that is parallel to
the Opening state. These specializations are indepen-
dent from each other. A combination of the two life
cycle models in the PrivateAdvanceRental class’s life
cycle model is without problems.

4 Related Work

Just like a multilevel object (m-object), a multilevel
business artifact (MBA) is very similar to a pow-
ertype. Powertypes present metamodeling capabili-
ties (Odell 1998, p.28). The instances of a powertype
are subtypes of another object type (Gonzalez-Perez
& Henderson-Sellers 2006). Using the notion of “clab-
ject”, the instances of a powertype are class and ob-
ject at the same time. Relating the MBA approach to
powertype-based approaches (Eriksson et al. 2013), a
level of an MBA may act both as partitioned type
and powertype; in an MBA’s level hierarchy, a parent
level is the powertype of the child level.

MBAs (and m-objects) also present characteris-
tics of deep instantiation and materialization. Deep
instantiation (Atkinson & Kühne 2001) facilitates the
modeling of arbitrary-depth instantiation hierarchies
where data objects can instantiate (certain aspects
of) other data objects which instantiate other data
objects, and so on. Materialization (Dahchour et al.
2002), on the other hand, blurs the boundaries be-
tween aggregation and instantiation. In this respect,
multilevel concretization is similar to materialization.

Neumayr et al. (2011) provide a comprehensive com-
parison between m-objects and other multilevel mod-
eling techniques.

In the context of business processes, model ab-
straction commonly refers to the hiding of unneces-
sary details from the user (Smirnov et al. 2012). The
guard-stage-milestone (Hull et al. 2010) approach, for
example, introduces this kind of abstraction for busi-
ness artifacts. The issue of process model abstrac-
tion in the traditional sense is orthogonal to multilevel
process modeling with MBAs. The MBA represents
interdependent processes of objects at various levels
of abstraction which are in some sort of aggregation
relationship. A process space (Motahari-Nezhad et al.
2011), on the other hand, provides several views on
the same business process, each view with the empha-
sis on a different aspect of the process. For example,
the CEO of a company has a more high-level view on
the sales process than the sales manager.

Many business process modeling approaches ac-
count for the variability of real-world processes. Con-
figurable business process models (La Rosa et al.
2011, La Rosa 2009) incorporate several variants of a
process which provide the process owners with differ-
ent options. Business process families (Gröner et al.
2013) introduce the well-known principle of software
product lines to business process modeling. A busi-
ness process family comprises a reference model and a
set of features which adhere to the core intended be-
havior specified by the reference model. Process own-
ers may customize the business process by using dif-
ferent selections of features. Case handling (van der
Aalst et al. 2005) provides the process owners with a
choice of options, offering a great deal of flexibility.

The MBA approach employs behavior-consistent
specialization of life cycle models for the representa-
tion of variability. A behavior-consistent specializa-
tion may be regarded as a variant of the more gen-
eral life cycle model. Many frameworks for behavior-
consistent specialization exist using various model-
ing languages, for example, Petri nets (van der Aalst
et al. 2002), UML state machines (Stumptner &
Schrefl 2000), or object/behavior diagrams (Schrefl &
Stumptner 2002). In recent work, Yongchareon et al.
(2012) investigate the observation-consistent special-
ization of synchronization dependencies.

Related to the issue of variability are the notions
of flexibility and agility in business process modeling.
Reichert & Weber (2012) provide a comprehensive
treatment of flexibility in business process modeling.
Milanovic et al. (2011) identify a set of rule patterns
which can be used for the modeling of agile business
processes. Liu et al. (2012) propose an integration of
reflective operations into the process model in order
to explicitly account for the manipulation of a busi-
ness artifact’s schema. The MBA approach provides
flexibility through incremental classification. MBAs
could also incorporate reflective operations for schema
manipulation. Rules for behavior-consistent special-
ization constrain the possibilities of on-the-fly schema
manipulation.

5 Summary and Future Work

The hierarchical organization is arguably the predom-
inant organizational structure among large compa-
nies. A hierarchical organization often has rigid top-
down decision-making processes. Today’s dynamic
business environment, however, demands increased
flexibility from companies. The hetero-homogeneous
modeling approach overcomes the dichotomy between
the rigidity imposed by a hierarchical organization
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and the flexibility that is required in a dynamic busi-
ness environment. Future work will integrate the
hetero-homogeneous approach into existing model-
ing languages and tools, for example, BPMN or the
guard-stage-milestone model for business artifacts.
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R. (2010), Introducing the guard-stage-milestone
approach for specifying business entity lifecycles,
in M. Bravetti & T. Bultan, eds, ‘WS-FM 2010’,
Vol. 6551 of LNCS, Springer, Heidelberg, pp. 1–24.

Jeusfeld, M., Jarke, M. & Mylopoulos, J. (2009),
Metamodeling for method engineering, MIT Press.

Kappel, G. & Schrefl, M. (1991), Object/behavior di-
agrams, in ‘7th International Conference on Data
Engineering’, pp. 530–539.

La Rosa, M. (2009), Managing variability in process-
aware information systems, PhD thesis, Queens-
land University of Technology, Brisbane, Australia.

La Rosa, M., Dumas, M., ter Hofstede, A. H.
& Mendling, J. (2011), ‘Configurable multi-
perspective business process models’, Information
Systems 36(2), 313–340.

Leavenworth, B. M. (1966), ‘Syntax macros and ex-
tended translation’, Communications of the ACM
9(11), 790–793.

Liu, E., Wu, F. Y., Pinel, F. & Shan, Z. (2012), A
two-tier data-centric framework for flexible busi-
ness process management, in ‘18th Americas Con-
ference on Information Systems’, Association for
Information Systems.

Milanovic, M., Gasevic, D. & Rocha, L. (2011), Mod-
eling flexible business processes with business rule
patterns, IEEE Computer Society, pp. 65–74.

Motahari-Nezhad, H. R., Benatallah, B., Casati,
F. & Saint-Paul, R. (2011), ‘From business pro-
cesses to process spaces’, IEEE Internet Computing
15(1), 22–30.

Neumayr, B., Grün, K. & Schrefl, M. (2009), Multi-
level domain modeling with m-objects and m-
relationships, in ‘6th Asia-Pacific Conference on
Conceptual Modelling’, Australian Computer So-
ciety, Darlinghurst, pp. 107–116.

Neumayr, B., Schrefl, M. & Thalheim, B. (2010),
Hetero-homogeneous hierarchies in data ware-
houses, in ‘7th Asia-Pacific Conference on Concep-
tual Modelling’, Australian Computer Society, Dar-
linghurst, pp. 61–70.

Neumayr, B., Schrefl, M. & Thalheim, B. (2011),
Modeling techniques for multi-level abstraction, in
R. Kaschek & L. M. L. Delcambre, eds, ‘The Evolu-
tion of Conceptual Modeling’, Vol. 6520 of LNCS,
Springer, Heidelberg, pp. 68–92.

Nigam, A. & Caswell, N. S. (2003), ‘Business arti-
facts: An approach to operational specification’,
IBM Systems Journal 42(3), 428–445.

Odell, J. (1998), Advanced object-oriented analy-
sis and design using UML, Cambridge University
Press, chapter Power types, pp. 23–32.

OMG (2008), Semantics of Business Vocabu-
lary and Business Rules (SBVR), Version 1.0.
http://www.omg.org/spec/SBVR/1.0/.

OMG (2011), OMG Unified Modeling Language
(OMG UML), Superstructure, Version 2.4.1.
http://www.omg.org/spec/UML/2.4.1/.

Reichert, M. & Weber, B. (2012), Enabling Flexibil-
ity in Process-Aware Information Systems – Chal-
lenges, Methods, Technologies, Springer, Heidel-
berg.

Schrefl, M. & Stumptner, M. (2002), ‘Behavior-
consistent specialization of object life cycles’, ACM
Transactions on Software Engineering and Method-
ology 11(1), 92–148.
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