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Abstract

Social Network Analysis is an approach to analysing
organisations focusing on relationships as the most
important aspect. In this paper we discuss visualisation
techniques for Social Network Analysis, including
spring-embedding and simulated annealing techniques.
We introduce a visualisation technique based on Kohonen
neural networks, and also introduce social flow diagrams
for demonstrating the relationship between two forms of
conceptual distance™
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1  Social Network Analysis: Introduction

Social Network Analysis (Wasserman and Faust 1994) is
an approach to analysing organisations focusing on the
relationships between people and/or groups as the most
important aspect. Going back to the 1950’s and before, it
is characterised by adopting mathematical techniques
especially from graph theory (Gibbons 1985, Krackhardt
1994). It has applications in organisational psychology,
sociology and anthropology.

The first goal of Social Network Analysis is to visualise
communication and other relationships between people
and/or groups by means of diagrams. Visualisation of
Social Networks has a long tradition, and an excellent
historical survey is given in Freeman (2000). The
importance of visualisation in this field lies in the
complexity of organisational structure, and the need for
good visual representations of how an organisation
functions.

The second goal is to study the factors which influence
relationships (for example the age, background, and
training of the people involved) and to study the
correlations between relationships. This can be done
using traditional statistical techniques such as correlation,
analysis of variance, and factor analysis (Cohen et al
1996), but also requires appropriate visualisation
techniques.

The third goal of Social Network Analysis is to draw out
implications of the relational data, including bottlenecks
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where multiple information flows funnel through one
person or section (slowing down work processes) and
situations where information flows does not match formal
group structure.

The fourth and most important goal of Social Network
Analysis is to make recommendations to improve
communication and workflow in an organisation, and (in
military terms) to speed up the observe-orient-decide-act
(OODA) loop or decision cycle (Allard 1996).
Visualisation is critically important in presenting these
recommendations to clients.

In previous work, we have applied Social Network
Analysis to military organisations (Dekker 2000). In this
paper we present a number of visualisation techniques
that we have developed in the course of this work. We
have constructed a Java-based tool suite called
CAVALIER (Communication and Activity
VisuALlsation for the EnteRprise), to carry out Social
Network Analysis, and the visualisation techniques that
we describe are incorporated within that tool.

2 Spring Embedding

One of the most common techniques for visualising
Social Networks is spring-embedding (Freeman 2000). A
spring-embedding layout algorithm assumes that links
between nodes behave physically like springs, with an
ideal spring length (that corresponds to some kind of
conceptual distance between the nodes), and a spring
strength (best results are obtained when this decreases as
the ideal spring length increases). The nodes can be
assigned to points in two-dimensional or three-
dimensional space by moving them in a way which
minimises the total stress in the entire collection of
strings, using straightforward physics.

The major case study we use in this paper (illustrated in
figures 1 to 4) involved a military C3I-related
organisation seeking scientifically based advice to a
reorganisation process. Data was collected during
March/April 2000 using electronic questionnaires which
included questions on communication and areas of staff
interest. We have also conducted similar studies in other
organisations.

Figure 1 visualises communication between people in that
organisation, using spring-embedding. The organisation
consisted of six main sub-units (labelled “A” to “F” in the
figure) as well as a number of special executive and
liaison staff (labelled “G” in the figure). Extensive
communication took place between all groups, but the
strongest communication links were between the three



groups “A,” “E” and “F.” Moderately strong links also
existed between the four groups “C,” “D,” “E” and “F.”
Weaker, but still significant, links were “A-B,” “A-C”
and “A-D.” Communication between people was coded
pseudo-logarithmically as follows:

1.0 = three or more times per day
0.8 = once per day

0.6 = three or more times per week
0.4 = once per week

0.2 = once per fortnight

0.0 = less than once per fortnight

The 180-degree communication correlation (i.e.
correlation between reported communication to and fro)
was r = 0.61 (r* = 0.37), which is typical for surveys of
this kind (since people have different recollections of the
amount of communication between them).

We take the single-link distance between two people to
be the reciprocal of the larger of the two numbers
reporting communication between them (thus ranging
from 1 to infinity). The conceptual distance between two
arbitrary people is then the length of the shortest path
between them (ranging from 1 to 7.25 in this case).

This definition of conceptual distance between people
does not take into account the number of different paths
between people, but it has a number of advantages:

e It can be computed efficiently.

e Distances do not change very much if some people
fail to complete survey forms (a serious problem
when survey participation is voluntary).

e [t correlates extremely well with physical distance in
spring-embedding, and hence is easily visualised.

e In simulation experiments, it correlates well with
information propagation time (typical correlations
are in the range 0.7 to 0.8, with r* in the range 0.5 to
0.7).

Figure 1. Social Network for a Military Organisation:
Spring-Embedding Layout

In figure 1, spring-embedding is used with ideal spring
lengths equal to the conceptual distance between people.

The resulting correlation between physical distance in the
diagram and conceptual distance is 0.85 (> =0.72).

Figure 2 is the result of spring-embedding in three-
dimensional space. This results in a much more accurate
depiction of conceptual distance. In particular, the
correlation between physical distance in the three-
dimensional diagram and conceptual distance is 0.93 (1* =
0.86). Such a three-dimensional diagram can be difficult
to interpret, however, and many participants in our
studies have reported difficulty in interpreting such
diagrams. The inclusion of links in the diagram provides
a valuable sense of perspective, but also obscures the
nodes in the rear. We have had greater success with
interactive three-dimensional diagrams using VRML
(Virtual Reality Modelling Language) technology. The
ability to manipulate the three-dimensional model
increases understanding of its structure, and VRML is
easily deployed using Web technologies. VRML also
allows easy linking of explanatory text to nodes.
However, VRML is somewhat difficult for first-time
users, and installing VRML browsers is also difficult for
the inexperienced computer user.

Figure 2. Social Network for a Military Organisation:
Three-Dimensional Spring-Embedding Layout

3 Alternative Layout Algorithms

Both two-dimensional and three-dimensional spring-
embedding layouts share some limitations for our
purposes. In particular, they may place nodes too close
together, which creates difficulties when the nodes must
be labelled. Also, by reflecting the conceptual distance
so accurately, they can paradoxically over-emphasise
large conceptual distances. For example, the nodes
labelled “B” at the bottom of figure 1 (also shown at the
top right of figure 2) are separated significantly from the
nodes representing the rest of the organisation, and this
causes an immediate reaction when presented to case
study participants. However, such an immediate reaction
(which may go so far as to result in a restructuring of the
organisation) may be inappropriate, since the large
conceptual distances may reflect limitations in the data,
or some non-obvious phenomenon.



One solution to these problems is to wuse spring-
embedding based on a transformation of conceptual
distance, such as the square root, or to use force-based
layout techniques (Brandes 2001). However, we have
also investigated a number of alternative layout
techniques. In figure 3, staff are placed in a circle with
senior staff central and junior staff towards the outside.
Simulated annealing (Hecht-Nielsen 1990) was used to
find a configuration which placed together staff who
communicated most with each other. This is a proven
technique for solving very difficult optimisation problems
(or at least of finding near-perfect solutions). The origin
of this technique lies in mathematical analysis of metals
which are heated and very slowly cooled, resulting in a
near-perfect crystal structure.  Applications include
modern chip-design software, which uses simulated
annealing to minimise chip area and maximise clock
speed.

Figure 3. Social Network for a Military Organisation:
Circle Layout

The simulated annealing algorithm we use (algorithm 1)
is shown below. In producing figure 3, initial positions
had radii based on seniority (small for senior staff and
large for junior staff) and arbitrary evenly-spaced angles
(with respect to the central point). The energy factor used
in the algorithm can be the inverse of the correlation
between physical and conceptual distance, or some
similar quantity that decreases as quality increases. The
algorithm attempts to minimise this energy by repeated
swapping operations. In the case of figure 3, swapping
means exchanging angles while leaving radii unchanged.
The algorithm is also effective where initial positions are
arranged in a regular grid, in which case swapping is
interpreted literally.

Our version of simulated annealing converges fairly
rapidly, in contrast to simulated annealing based on
random positional changes, which converges much more
slowly. However, our version suffers from the limitation
that the range of possible node positions is limited a
priori to a fairly small set. For the circle layout in figure
3, this is not a severe limitation, but for layouts on a
regular grid the limitation is more serious.

input: set of nodes N of size n with distance function d
output: spatial layout of N
T= Thas
E = energy;
while 7> T,
randomly choose a pair of nodes p and g;
Eoa = E;
swap positions of p and ¢;
E = energy;
if Egq < E then
with probability 1—exp((E,4—FE)/T) undo swap;
decrease T;
end while

Algorithm 1: Algorithm for Simulated Annealing
Graph Layout

In figure 3, the correlation between physical distance in
the diagram and conceptual distance is only 0.36 (r* =
0.13), but the placement of groups (groups “C,” “D,” “E,”
and “F” together, “A” near “E” and “F,” and “B” near
“A”) is similar to figure 1, i.e. topology is preserved even
if exact distances are not. This diagram was found to be
quite helpful in presenting study results to the client.

4 Layout using Kohonen Neural Networks

Figure 4 is produced using a self-organising (Kohonen)
neural network. Kohonen neural networks (Kohonen
1989, Hecht-Nielsen 1990, Ritter et al 1992) are a form
of self-organizing neural network which produce
topological mappings. They have been applied to areas
such as pattern recognition (Kohonen 1990), the learning
of ballistic movements (Ritter and Schulten 1989),
modelling aerodynamic flow (Hecht-Nielsen 1988), and
image colour quantization (Dekker 1994).
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Figure 4. Social Network for a Military Organisation:
Kohonen Neural Network Layout



We use an adaptation of the basic Kohonen neural
network presented in Dekker (1994). In that work, one-
dimensional networks are used, but the extension to
arbitrary graphs is easy.

The basic algorithm (algorithm 2) is shown below. The
algorithm is controlled by two parameters: a factor « in
the range 0...1, and a radius 7, both of which decrease
with time. We have found that the algorithm works well
if the main loop is repeated 1,000,000 times. The
algorithm begins with each node assigned to a random
position. At each step of the algorithm, we choose a
random point within the region that we want the network
to cover (in the case of figure 4, a rectangle), and find the
closest node (in terms of Euclidean distance) to that
point. We then move that node towards the random point
by the fraction o of the distance. We also move nearby
nodes (those with conceptual distance within the radius r)
by a lesser amount.

input: set of nodes N of size n with distance function d
output: spatial layout of N
r=12;
o=1;
repeat many times
choose random (x,y);
i = index of closest node;
move node i towards (x,y) by o ;
move nodes with d<r towards (x,y) by orx(1—d*/r?);
decrease orand r;
end repeat

Algorithm 2: Basic Algorithm for Kohonen Neural
Network Layout

Figure 5 illustrates this procedure at a point where o =
0.6666 and the radius » = 4. Dark circles show the
network before update, and lighter circles show the
updated network. The random point is shown by a
square. Numbers show conceptual distances between
nodes.

Kohonen (1989) suggests decreasing o and r linearly
over time, but we have found that results are improved
and the required iteration time reduced if both are
decreased exponentially, by multiplying by 0.98 at
regular intervals during the main loop, so that the final
values are = 0.02 and = 1.

The improved algorithm (algorithm 3) incorporates a
modification due to Desieno (Hecht-Nielsen 1990, p 69)
which significantly improves performance. A bias factor
b[j] is subtracted from the distances to the random point
at each step, based on an estimate of the frequency with
which nodes have been moved in the past (f [] in the
algorithm).

A graph layout algorithm similar to our algorithm 2 was
introduced by Meyer (1998). However it is subject to
“clashes” which the Desieno modification helps avoid.
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Figure S. Update Step for Kohonen Neural Network
Layout Algorithm

The final result of the algorithm is a positioning of nodes
which balances the placement of conceptually close
nodes together with an approximately evenly-based
distribution of nodes within the specified region. The
latter property is of benefit when the nodes are labelled
with names of people. It is also possible to conduct the
learning process with random points drawn from an
arbitrary non-rectangular shape, and thus overlay a social
network on e.g. an office building layout.

input: set of nodes N of size n with distance function d
output: spatial layout of N
B =0.001;
¥ =2000;
b[l...n]=0;
fIl...n] = ln;
invariant: forje 1...n, b [j1=y < ((1/n) —f[j])
r=12;
a=1;
repeat many times
choose random (x,y);
i = index of node with minimum of distance — b [i];
forje 1..n,b[j1=0b[]+Bxy xfjl;
forje 1..n, fli1=/11-BX STk
move node i towards (x,y) by o ;
move nodes with d<r towards (x,y) by ax(1-d*1r);
blil=b[i]-Bxy;
ST=7Ti+ B
decrease ¢rand r;
end repeat

Algorithm 3: Improved Algorithm for Kohonen
Neural Network Layout




In figure 4, the correlation between physical distance in
the diagram and conceptual distance is 0.50 (r* = 0.25),
which is better than the circle layout in figure 3. The
placement of groups is similar to figures 1 and 3.
Comparing figures 1 and 4 shows that figure 4 is very
close to a topological (continuous) distortion of figure 1.
This is due to the fact that Kohonen neural networks
create topological mappings.

We have found this kind of diagram extremely useful,
particularly when documenting the results of a Social
Network analysis survey.

The decrease within the algorithm of the radius over time
means that the algorithm effectively moves progressively
smaller “chunks” of the network together, i.e. it is
inherently hierarchical, but without explicitly specifying
clustering as in Brockenauer and Cornelsen (2001). This
makes the algorithm highly effective for visualising tree

structures. ~ Figure 6 shows a tree structure (an
organisational chart) laid out using the Kohonen
algorithm.
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Figure 6. Kohonen Neural Network Layout for a Tree
Structure

5 Conceptual Spaces

The electronic questionnaire in this case study included
information about 15 topics of interest, many of which
were found to be highly correlated with each other.
Factor analysis (principal component analysis) on these
topics found that 4 main factors (principal components)
explained 73 percent of the variation in data about
interests. The first of these factors simply represented
people’s general level of interest in everything. Figure 7
illustrates the other three principal components — people
are located in a three-dimensional conceptual space
according to the numerical values of these three principal
components. In other words, the diagram places people
with similar interest together, and in most cases, these are
people in the same group.

Figure 7. Social Network for a Military Organisation:
Three-Dimensional Factor Layout

This kind of diagram was found to be quite deceptive if
only two factors were presented (in a two-dimensional
diagram), since that could place people with quite
different interests together. Two-dimensional diagrams
of this kind were frequently misunderstood by clients.
Three-dimensional diagrams like figure 7 were more
successful (provided that there were only three major
factors), but suffered from the same problems noted for
figure 2 above.

6  Social Flow Diagrams

Figure 8 shows an example social network diagram
produced by the CAVALIER tool, based on the ground
force structure during the Gulf War (Clancy and Franks
1999, Khaled and Seale 1995). Boxes represent division-
level units from participating countries (in the case of
Saudi, Kuwaiti, and Gulf state units, these are notional),
while circles represent commanders. Units on the right
were under the control of American General Norman
Schwarzkopf, while those on the left were under the
control of Saudi Prince Khaled bin Sultan.

Figure 8. Social Network for Gulf War Ground
Forces: Spring-Embedding Layout



Figure 8 is produced by a spring-embedding layout
algorithm which attempts to balance two forms of
distance: cultural distance and command distance.
Cultural distances range from '/g for units from the same
country and service to 6 for the less than friendly
relationship between the US and Syria.  Cultural
differences between the US Army and Marines are
reflected by a distance of '/,. Dark grey lines in the
figure show formal command relationships, and
command distance is measured by counting the minimum
number of these links. The light grey line between the
US VII Corps commander and the Egyptian Corps
commander represents an informal working relationship,
which we represent using a command distance of 2.

We are particularly interested in comparisons between
two or more distance relationships, such as occur in this
example. When all pairs of division-level units in figure
8 are considered, there is a statistical correlation of 0.58
(r* = 0.33) between the cultural distance and command
distance. This indicates that the organisational structure
negotiated between the US and Saudi Arabia was fairly
successful in separating culturally different units.

Figure 9. Social Flow Diagram for Gulf War Ground
Forces

The relationship between these two distance concepts is
visualised in figure 9, which we call a social flow
diagram. In this figure, each division-level unit is
represented by a pair of boxes (one white, one coloured)
linked by an arrow. As a result of the spring-embedding
layout algorithm, the physical distance between white
boxes closely indicates cultural distance (physical
distance has a 0.97 correlation with cultural distance),
while the physical distance between coloured boxes
indicates command distance (somewhat less closely, with
a correlation of 0.86). The arrows indicate how culturally
similar units have been separated in some cases, and
culturally dissimilar units have been combined in others.
For example, in the lower left of the figure, the French
division, which was initially strongly opposed to being
under US control, has in fact been placed within the US
command structure. In the upper left, the US Marines
have separated themselves from their Army colleagues.
On the other hand, in spite of a somewhat deceptive long

arrow in the diagram, figure 9 shows that the UK forces
remained closely tied to the US Army.

Figure 10 uses spring-embedding to visualise a slightly
different definition of cultural distance between selected
countries. The definition of cultural distance used here
combines differences in religion, language, economics,
and military alliances such as NATO (the correlation with
physical distance is 0.85).
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Figure 10. Cultural Distances for Selected Countries

Figure 11 is a social flow diagram which visualises the
change in this definition of cultural distance after the end
of the Cold War. White boxes represent the situation
during the Cold War, while coloured circles represent the
present situation (also shown in figure 10).  The
correlation with physical distance is 0.85 for the Cold
War situation, and 0.81 for the present. The top left of
the diagram shows how some former Communist
countries have moved closer to Western Europe, while
others have not.
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Figure 11. Social Flow Diagram for End of Cold War



We produce social flow diagrams using spring-
embedding, giving the introduced arrows a very short
desired length, but a very low strength, so that a wide
variation in arrow lengths is tolerated by the spring-
embedding algorithm.

We have found social flow diagrams to be very effective
in visualising how conceptual distance is affected by
factors such as similarity of tasking, both in relationships
between groups (as in figures 9 and 11) and in
relationships between individual people.

7  Conclusion

We have discussed the use of visualisation for Social
Network Analysis within the CAVALIER
(Communication and Activity VisuALIsation for the
EnteRprise) tool suite, including spring-embedding and
simulated annealing techniques. We have introduced a
visualisation technique based on Kohonen neural
networks, and we have also introduced social flow
diagrams for demonstrating the relationship between two
forms of conceptual distance.
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