
Visualisation of the Minority Game using a mod

Stewart G. Heckenberga, Ric D. Herbertb and Richard Webbera

aFaculty of Engineering and Built Environment
bFaculty of Science and Information Technology

The University of Newcastle, Newcastle, NSW 2308, Australia

Abstract

This paper explores visualisation of a simplified model
of a financial market, known as the Minority Game,
using a computer game modification (mod) as a
medium. The purpose of this particular work is to
ascertain whether game engine capabilities have some
benefit to visualisation of financial markets through
investigation of the above application, and to discuss
the possibilities for future research into visualisations
of this kind.

Keywords: Visualisation, Minority Game, Mod.

1 Introduction

Visualisation is as much about user perception as it
is about the fundamentals of charting or graph the-
ory. People have a predisposition for recognising the
basic properties and principles of the physical world,
thus it would seem that representing data via physi-
cal analogies could only make visualisation more in-
tuitive (Shneiderman 2003). Rather than have to ex-
plain that feature X of a visualisation has a certain
meaning and why, the use of colour or size or move-
ment or any other physical attribute can reduce the
perceptual bandwidth for the user of that visualisa-
tion, because the user is dealing with concepts they
already understand. Computer games offer an alter-
native platform for visualisation. The interaction and
graphics capabilities provided by the Unreal Engine
that enable gamers (users of computer games) to im-
merse themselves in a virtual world are the basis for
our visualisation of the Minority Game.

The structure of this paper is as follows. Section 2
will describe what a mod is, and provide some back-
ground as to the application of computer games to
scientific and information visualisation. Section 3 will
explain what the Minority Game is and present some
visualisations of it along with details of how the visu-
alisations present various state information about the
model. Section 4 will discuss the mapping of features
of the Minority Game to the computer game Unreal
Tournament 2003, provide rationale for the utilisa-
tion of a game engine as a visualisation medium, and
detail our current state of development. The final sec-
tion will outline our conclusions from this visualisa-
tion as well as suggest the possible direction of future
research.
Copyright c©2004, Australian Computer Society, Inc. This pa-
per appeared at the Australasian Symposium on Information
Visualisation, Christchurch, 2004. Conferences in Research and
Practice in Information Technology, Vol. 35. Neville Churcher
and Clare Churcher, Eds. Reproduction for academic, not-for
profit purposes permitted provided this text is included.

2 Mods

Mods, or computer game modifications, are well
known in the PC gaming community. The current
proliferation and popularity of mods has come about
due to commercial game developers realising that
game players will hack their favourite games to pro-
vide themselves with better gameplay experiences,
and rather than prosecution, promotion is turning out
to be a better alternative because user-created con-
tent is extending the longevity of many game titles
(Kushner 2003).

This wave of creativity was originally inspired by
titles such as NetHack and Doom (and its prede-
cessor, Castle Wolfenstein, which dates as far back
as 1982 on the Apple II). Doom came on the scene
around the same time as the Internet began its surge
of popularity — “From minor hacking and simple
maps to ‘total conversions’ and even commercial re-
leases, the PC modding scene has grown enormously
since the early ’90s.” (Equip 2003). This widespread
use of the Internet, allowed collaboration of geo-
graphically scattered mod development team mem-
bers. Not only is collaboration via the net a big draw-
card, but mod development “can be faster, more ex-
perimental and more creative than traditional game
development” (Cleveland 2001) due to the fact that
the development is starting at a higher level, utilising
a pre-existing game engine.

Nowadays game engines, such as Epic’s Unreal En-
gine (Epic 2003a, Epic 2003b) are incorporating the
laws of physics and cutting-edge graphics to create
virtual environments, making games that are more
realistic , and which offer richer gameplay experiences
(Hecker 1996). Putting the creative power of develop-
ers in the hands of users allows them to create their
own worlds, and experiment with the fully interac-
tive spatial dynamics provided with by these physics-
based, 3D graphics engines. Besides games, these en-
gines can be utilised as visualisation mediums. “Mods
have graduated from Internet servers to being an in-
tegrated part of publishers’ marketing strategies and
shop shelves worldwide. But where do they go next?”
(Edge 2003). Visualisation, that’s where!

2.1 Visualisation using a Mod

Mods allow a paradigm shift in visualisation away
from the more traditional direct representations of
entities, relationships, and the attributes of each, and
allow for a more artistic and creative visualisation
process. The greatest advantage of leveraging mods
for visualisation is the inherent interactivity of gam-
ing. That being said, games are a medium akin to
film and literature (Hecker 2002), but are only in
the early stage of development as an art. Program-
ming is necessary to know how to design good games
because algorithms, especially problem-solving algo-



rithms, are the key to good games — not the graph-
ics (Hecker 2002). Moreover content is the important
aspect of any good game, and communicating a mes-
sage or set of information to users. The focus should
be on the relaying of information to players to allow
them to work out in-game problems. With mod de-
velopment, graphics and other features have already
been taken care of, and mod developers are free to
concentrate on providing more intuitive user experi-
ences and methods of communicating information to
players (the “visualisation forest” if you will), instead
of being bogged down in technical aspects of game
development (the “trees”).

Game developers are pushing the boundaries of
computer graphics and are now more influential than
the visualisation community with regards to advances
and standards in graphics technology (Rhyne 2000).
Games are already visualisations by virtue of the fact
they are graphical representations of both abstract
and concrete data. They attempt to communicate
their message to users in a quick and concise fashion,
especially because of the need to allow interaction in
a timely manner — usually in real time. Games are
more than just visualisations because the majority of
titles are mass-marketed commercial endeavours and
as such require a number of additional features to go
with their “user-friendly” interfaces, such as sound
and “playability” (interactivity), in order to sell.

Our left brain processes symbolic information and
our right brain processes visual information. The im-
portant thing for any visualisation, including games,
is to make sure the visualisation communicates the
message you want it to (Blinn 1991). A game such as
Unreal Tournament 2003 could be said to affect both
sides of our brain, in that it has a symbolic heads-up
display, and also a visual representation of a virtual
world. This virtual world provides a familiar interface
with which users can interact. The Gestalt principle
of ‘Law of Familiarity’ — “things are more likely to
form groups if the groups appear familiar or mean-
ingful” (Nesbitt & Friedrich 2002) — can be carried
out with an Unreal Tournament 2003 mod by using
avatars to represent agents in a simulation (of the Mi-
nority Game, for example) moving about in a space
resembling buildings and nature — familiar concepts
of the everyday world.

The impetus for implementing a visualisation with
a mod is that it allows exploration of visualisation
as a “conceptual framework...based on human per-
ception”, with particular attention paid to semiotics
(the study of how symbols convey meaning) and J.J.
Gibson’s ‘Affordance Theory’, where action is sug-
gested via direct perception as opposed to learning
of symbolism (Ware 2000). Traditional design-based
visualisations (such as the Spring Graph in section
2.1.1) rely on defining entities, relationships and at-
tributes which are arbitrary symbols (those which re-
quire learning). Besides these, visualisation via a 3D
virtual environment can make use of sensory sym-
bols (those that do not require learning), by pro-
viding an immersive experience that takes advantage
of Affordances, e.g. “perceivable possibilities for ac-
tion”, “physical properties of the environment that
we directly perceive”, and “[perception of] surfaces
for walking, handles for pulling, space for navigat-
ing, tools for manipulating, and so on” (Ware 2000).
Thus a mod can provide a perception-based approach.
Using Unreal Tournament 2003 makes it relatively
simple to create new objects that can interact with
the player and other game objects — an important
feature for any game (Devine 2002), and any visu-
alisation for that matter, and therefore makes this
visualisation easier to implement than starting from
scratch using more primitive (and again, traditional)
graphical components and tools. Interactivity is a

key component of many systems that are subject to
visualisation, with one such type of system being fi-
nancial market simulations. We have chosen to visu-
alise a simple financial market simulation known as
the Minority Game.

3 The Minority Game

The Minority Game (Challet & Zhang 1997, Johnson,
Jarvis, Jonson, Cheung, Kwong & Hui 1998, Manuca,
Li, Riolo & Savit 2000) is a simplified model of the
adaptive inductive-reasoning system in the El Farol
Bar problem (Arthur 1994) that simulates agent be-
haviour in a financial market. It is a game with an
odd number of players consisting of several rounds
where each round players choose one of two possible
options. The two options could be zero or one, A
or B, buy or sell, or any two things indicative of a
competitive situation.

Each round of the game results in a majority
of players choosing one of the two possible options.
Those players who did not choose the option which
the majority of players chose are therefore in the mi-
nority and are deemed the winners of that particular
round. Note there is no minority if all players choose
the same option. Each player has a score, and their
score increases when they win a round by being in the
minority, hence the name the Minority Game.

The number of winning players each round can
range from 0 to (n−1)

2 for a game involving n (where
n is an odd number) players. Each of the players has
the ability to remember which of the two available
options was the winning option (i.e. the option chosen
by the minority of players) for each of the previous
m number of rounds. This m represents the memory
size of each player.

In addition to each player being able to remem-
ber the previous m winning options, they also have a
set of s strategies, each of which determines what op-
tion they should choose for the current round based
on the history of the previous m rounds. Given that
each player must choose from 2 possible options each
round, for the previous m rounds there are thus 2m

possible winning histories, and therefore each strategy
has a size of 2m. For example, given 0 and 1 as the
two possible options a player can choose for any given
turn, and assuming m = 3, there are 8 possible histo-
ries: 000 through 111 in binary notation. The actual
winning history is known as the signal. The length of
the signal can be greater than m, however only the m
previous results are relevant to the players. There is
a variation on the Minority Game where each player
can have a different memory size (Zhang 1998), how-
ever in this paper we shall be concentrating on players
who differ only in their strategies.

Like players, strategies themselves also accumulate
points; if any of a player’s strategies would enable
the player to win the current round, the scores of
these “winning” strategies increase. If one of these
successful strategies is the player’s current strategy —
the current strategy being that with the highest score
among the player’s set of strategies — the score of the
player increases also. Sometimes several strategies
have equal best scores. Ties are broken by randomly
selecting one of these to be the current strategy.

Strategies are central to the behavioural dynamic
exhibited by the Minority Game. The group be-
haviour of the system due to the use of strategies and
the scoring system is of interest to mathematicians,
physicists and psychologists alike, and there have
been several papers (Challet & Zhang 1998, Savit,
Manuca & Riolo 1997) explaining the mathemat-
ical whys and wherefores of the Minority Game.
Topics such as Nash equilibria (Challet, Marsili &



Zecchina 2000), which is beyond the scope of this pa-
per, are also related to the Minority Game in that
available information is minimized by the agents —
they keep their strategies secret and aren’t aware of
what choices other agents are going to make, nor what
individual agents chose in previous rounds, only the
history of what the overall winning choice was.

The Minority Game can be seen to be a fairly sim-
plified version of a financial market. Instead of stock-
brokers or investors we have players and instead of
choosing buy or sell each turn, the players choose 0
or 1, or choose to be on the red team or the blue team.
Being in the minority when buying or selling is a good
thing because the majority of agents involved in the
system are doing the opposite thing, and thus it is
a model of supply and demand, where the minority
wins (this is a grossly simplified model, and we ac-
knowledge that actual financial markets are far more
complex). Visualising this model, and creating “fun”
visualisations by means of providing interactivity, is
what our research is about.

3.1 Visualisations of the Minority Game

Visualisations of the Minority Game in the papers
mentioned in the previous section were various plots
showing which of the two possible options agents
chose over time, detailing fluctuations in minority
population when different values were used for the
memory size and other variables. Here we look at a
Damien Challet’s applet visualisation of the Minor-
ity Game, the online “Interactive Minority Game”,
and our own visualisation that uses a Spring Graph
to represent agent properties and performance.

3.1.1 Challet’s Applet Visualisation

The Minority Game web page (Challet 2003) has two
applets that visualise aspects of the Minority Game.
According to the web page: “[the applets are] aimed
at giving a good perception of what dynamically hap-
pens in [the Minority Game]. Dynamics of macro-
scopic quantities, namely the attendance, the fluctu-
ations and the available information Dynamics of mi-
croscopic quantities, i.e. the dynamical use of strate-
gies [are shown]”.

The first applet (see Figure 1) shows the dynam-
ics of the macroscopic quantities, such as the atten-
dance; how many agents choose each of the two pos-
sible options at a given time, the fluctuation of this
attendance, and a measure of the available informa-
tion. The information is displayed via three plots,
one for each quantity over time (the horizontal axis).
The first is a plot of A(t), “the difference between
the number of people taking one action and those
choosing the other one”. The next plot is of H/N ,
“the available information, and is minimized by the
agents...When 2M/N < 0.3374... and S=2, you will
see that H=0”. The third plot is σ2/N , where σ2

measures the fluctuations of [A(t)] and also represents
how well the agents behave. If every agent behaves
randomly, σ2/N = 1, thus whenever σ2/N < 1, the
agents are reputed to cooperate. As it appears, the
agents do not minimize this quantity”. There are
drop-down boxes for uses to choose N (number of
agents), M (agent memory size) and S (number of
agent strategies), and a slider to control the Speed
(time taken for each round or step) of the simulation.
There is also a Pause and a Reset button.

The second applet (see Figure 2) shows the dy-
namics of the microscopic quantities, namely what
players chose which of the two possible choices (A or
B) at any given moment along with the total for each
choice. The information is displayed via a grid where

Figure 1: Macroscopic quantities of the Minority
Game (Challet 2003)

each square represents one of the N = l ∗ l agents.
“Each agent has two strategies, one black and one
white. During the game you can observe which strat-
egy everyone is using. If the color of one agent turns
into red, she is frozen, i.e. she uses only one of her
strategies”. There is a sliding bar representing the
ratio of each of the two possible choices; “the num-
ber of agents who choose A (blue) versus the number
of agents who choose B (yellow)”. There is a box
for users to enter l, the square-root of the number
of agents (i.e. entering 11 creates an 11 by 11 square
grid for 121 players). There is a drop-down box where
users can choose M (agent memory size), and a box
where users may enter the number of steps (or rounds)
over which the simulation should run. There is also
a Play/Break button to Start/Pause the simulation
and a Rewind button to reset the simulation when
new values are chosen for the variables.

Figure 2: Microscopic quantities of the Minority
Game (Challet 2003)

Both the applets above use traditional visualisa-
tion tools, namely time-based plots, grids and bars,
and this is generally how much of the information to
do with simulations of adaptive inductive-reasoning
systems, such as financial markets, is displayed in the
media and visualisation software.

In this visualisation, information about the Mi-
nority Game is displayed concisely, and there are no
extraneous ambient visual artifacts. There is also lim-
ited interactivity between the Minority Game agents
and the user — the user controls simulation variables,
but is separate from the simulation underlying the vi-
sualisation, and does not participate in the Minority
Game.



3.1.2 Our Spring Graph Visualisation

A graph can be used to represent players or agents in
the Minority Game and their relationships to one an-
other. A spring graph involves laying out a graph us-
ing springs, whereby pairs of adjacent vertices (those
connected by an edge) attract each other while pairs
of non-adjacent vertices (those not connected by an
edge) repel each other (Eades 1984). Here is a point-
form summary of the features of, and rules govern-
ing, our implementation of the Spring Graph layout
to model the Minority Game:

• each vertex in the graph represents a player

• player vertices with the highest score are
coloured green

• player vertices with the lowest score are coloured
red

• player vertices with neither the highest nor low-
est score are coloured blue

• edges between player vertices represent the rela-
tionship between player scores

• the existence of an edge uv means player v has a
greater score than player u

• edges exist between all players except between
players with equal scores

• each end of an edge is coloured the same as the
player at that end of the edge

• players u and v attract one another with force
inversely proportional to their score difference

• players with equal score repel one another with
a finite constant force

• forces acting on any particular player vertex are
cumulative

• edge length, player position, and the forces acting
on players are co-dependent

• each player vertex is placed randomly prior to
the beginning of the game

• player movement is determined by their initial
position and game performance

Along with the spring graph, information about
the number of players who chose which option, along
with the score of each player, is shown via bars and/or
worms. The number of rounds played so far is also
shown. The screenshot (see Figure 3) is of a sample
run of the Minority Game with 9 agents, each with 5
memory bits and 5 strategies, over 100 rounds. The
GUI shows the quantities for each of these variable.

This visualisation uses concepts of the physical
world, such as springs, to represent data, however,
like Challet’s applets, user interaction with the simu-
lation agents is limited.

3.1.3 The Interactive Minority Game

The Minority Game web page has a link to an exter-
nal site where you can “Play against inductive agents
in the Interactive Minority Game”, however at the
time of writing, this site was unavailable. The au-
thors of the Interactive Minority Game were kind
enough to direct us to a draft of their upcoming paper
(Laureti, Ruch, Wakeling & Zhang 2004) which sheds
some light on the visualisation methods involved. The
user is given the choice of viewing the history via ei-
ther a “price-chart viewpoint”, which is a time-based

Figure 3: Visualisation of the Minority Game using a
Spring Graph

plot of the market “price”, or a “binary viewpoint”,
which is simply a binary string showing whether the
minority of agents bought or sold. The user must
then choose whether to buy or sell during the next
turn, and is an agent of the game themselves. This
is somewhat how our follow-up visualisation to the
Spring Graph works, however instead of a web-based
interface, we’ve chosen to use a mod of the computer
game Unreal Tournament 2003.

As alluded to in the Introduction, we want to com-
bine both physical analogies and interaction to create
visualisations, and this can be done using mods as an
alternative visualisation medium.

4 Visualisation with Unreal Tournament
2003

Unreal Tournament 2003 is a popular computer game
by Epic (Epic 2003b). The game’s genre is First Per-
son Shooter, as the basic object of the game is to
shoot things (usually humanoids) while viewing the
world from a first-person perspective, as seen through
the eyes of your chosen avatar. Like the “Interactive
Minority Game” mentioned above, Unreal Tourna-
ment 2003 allows human players to compete against
computer AI. Also, there is the ability to play versus
other human players via the Internet by connecting
to servers running the game. These servers can run
without human players being connected, and as such
are populated with computer AI players, or ”bots”.
This ability for the game to go on as different players
connect and disconnect suits a simulation of a finan-
cial market in which companies and investors come
and go over time — one of the reasons that inspired
us to implement a visualisation on this alternative
platform.

Unreal Tournament 2003 is very mod-friendly.
Epic provide the source for the game, written in Un-
realScript, which is much like Java and C++, and
this in turn runs on the underlying engine or virtual
machine (written in C/C++) (Epic 2003a). The lan-
guage is very well suited to programming game logic;
“State machines...are particularly important in game
programming” (Hecker & Simpson 2002). “Before
UnrealScript, states have not been supported at the
language level, requiring developers to create C/C++
“switch” statements based on the object’s state. Such
code was difficult to write and update. UnrealScript



supports states at the language level.” (Epic 2003c).
This, and the fact that mod development is com-
pletely object-oriented with Unreal Tournament 2003
meant that porting the original Minority Game imple-
mentation (see our Spring Graph visualisation above)
from C++ to UnrealScript was straightforward.

Figure 4: Minority Game mod screenshot showing the
standard Unreal Tournament 2003 team scoreboard
GUI overlay. Teams start with an equal number of
players as the scoreboard indicates, and neither team
is the minority.

Below is a point-form outline of how the Minor-
ity Game translates into an Unreal Tournament 2003
mod at the time of writing:

• Unreal Tournament 2003 is a First Person
Shooter (FPS) and thus agents are modelled as
gun-toting avatars. This aspect has nothing to
do with the Minority Game itself as such, but
it provides an interactive means of agent inter-
action that’s familiar to anyone who plays com-
puter games, and has room for ideas, such as
players shooting coins, etc., as well as attracting
users to participate in a financial market sim-
ulation unknowingly — they just think they’re
having fun playing a game!

• Instead of agents choosing 0 or 1, they choose
red or blue, as there are two teams, red and blue.
Computer controlled agents (known in game par-
lance as Bots) make their choice according to the
original rules of the Minority Game and their
strategies (as outlined in section 3). Human
controlled agents (simply known as Players) are
shown a GUI with two buttons labelled Red and
Blue and can choose their team, thus defining
their own strategy — a new addition to our Mi-
nority Game due to the interactive nature of the
mod.

• The two teams start the game with an even
number of agents (see Figure 4), and as soon
as the teams become unbalanced (due to agents
choosing a team, see Figure 6) the ‘fun’ begins.
Those agents on the smaller team (the minority)
are given some advantage over the other team.
For example, they may be given a powerup of
some kind such as increased firepower or more
health/shields.

• Analogies are drawn from financial markets could
be that the concept of frag count (how many kills

Figure 5: Minority Game mod screenshot showing
our custom “Choose a team” GUI overlay that allows
human players to change their team once their avatar
has been killed.

an agent has) is a measure of ‘market share’,
the type of powerup the minority team receive
is their ‘market leverage’, and so on.

Figure 6: Minority Game mod screenshot again
showing the standard Unreal Tournament 2003 team
scoreboard GUI overlay. Note that the computer-
controlled player “Stargazer” has swapped teams,
thus making their original team the minority.

At this stage, the actual Minority Game logic
is only one part of the mod implementation —
determining which of the two teams an agent is
on. The extension of this into real-time advan-
tages/disadvantages in a 3D environment is, the cur-
rent motivation, and offers the opportunity to inves-
tigate the usefulness of the mod as a tool to educate
users about stock market behaviour.

This is where development is up to at the time of
writing. The initial hurdle of understanding how to
create mods for Unreal Tournament 2003 has been
passed, and what now remains is to improve map-
ping of the features of the Minority Game model to



the mod. This could involve things such as new tex-
tures, player models, and maps. Perhaps some aug-
mentation of the AI could be involved, to make agents
swarm or cluster together (using Unreal Tournament
2003 Squads, for example) to represent agents who
work together to gain advantage in a market.

Currently, the only feature directly applied to the
mod from the Minority Game model is the ability for
agents to choose teams based on their private set of
strategies. We have also enabled human interaction
by providing a custom “Choose a team” GUI overlay
(see Figure 5) which appears when human-controlled
characters are killed. In addition to the points above,
possibilities for the mod include:

• instead of players shooting guns, players could
throw stocks or money at one another, so instead
of killing your trading with or investing in other
agents/companies.

• instead of players having an inventory of
weapons, they have a stock portfolio

• the multi-player/network aspect of the game al-
lows for distribution of the mod over the Internet
and use by geographically separate users

• the fact that the mod can run continuously on a
server with or without human interaction means
that the ongoing behaviour of the simulation can
be studied

• Minority Games within Minority Games could
be implemented, resembling local markets that
work within a global market

• player skins — instead of looking like sci-fi char-
acters, perhaps players could look more business-
like, with bowler hats and pinstripe suits.

• new maps/levels/arenas — perhaps recreating an
office building or even a stock market floor as the
playing environment.

These are a few of the ideas we’ve come up with
in our discussions. The point to any of the above
features, or others, being implemented is to try and
make the visualisation fun to play and immerse play-
ers in the Minority Game. We can’t say whether our
visualisation is “better” or “worse” than others — our
research is more about introducing the use of mods
as an alternative visualisation platform, and explor-
ing their effectiveness.

5 Conclusions and Future Work

Initially our research was focussed on traditional
means of visualisation, augmented with things like
springs, however our focus changed to the use of al-
ternative platforms, such as game engines, in the hope
that they will help provide more intuitive and famil-
iar interfaces, and also be more technically superior
with regards to graphics, physics, sound, and so on.
Harnessing these game engine capabilities will allow
us to focus on content that makes the concepts of
the Minority Game, and financial markets in general,
intuitive and more easily perceived (directly, as op-
posed to needing an explanation) by users through
interactivity.

Our future research will concentrate on computer
game modification to visualise financial market data.
We hope to augment our mod visualisation using bet-
ter physical analogies (such as coins instead of bullets,
for example) that are more familiar and pertinent to
the financial market modelled by the Minority Game,
and that are more expressive than simple lines and
dots. We believe the field of computer gaming has a

lot to offer with regards to visualisation methods of
this kind — we have shown that using a computer
game engine as a medium for visualisations is pos-
sible, however it raises the question: How can the
capabilities of computer game engines be used to ad-
vantage and what gains may be achieved for visuali-
sation? This is an open question we intend to address
in future research.

References

Arthur, W. B. (1994), ‘Inductive Reasoning and
Bounded Rationality (The El Farol Problem)’,
American Economic Review (Papers and Pro-
ceedings) 84, 406–411.

Blinn, J. F. (1991), ‘Visualization’. Re-
trieved November 28, 2003, from
http://www.research.microsoft.com/–
˜blinn/VISUAL.HTM.

Challet, D. (2003), ‘The Minority Game’s Web
Page’. Retrieved November 28, 2003, from
http://www.unifr.ch/econophysics/minority/.

Challet, D., Marsili, M. & Zecchina, R. (2000), ‘Sta-
tistical Mechanics of Systems with Heteroge-
neous Agents: Minority Games’, Physical Review
Letters 84, 1824–1827.

Challet, D. & Zhang, Y.-C. (1997), Physica A: Statis-
tical and Theoretical Physics 246(3-4), 407–418.

Challet, D. & Zhang, Y.-C. (1998), Physica A: Statis-
tical and Theoretical Physics 256(3-4), 514–532.

Cleveland, C. (2001), ‘The Past, Present, and Fu-
ture of PC Mod Development’, Game Developer
8(2), 46.

Devine, G. J. (2002), ‘Game Design Lessons from Real
Life: Game Object Interactions’, Game Devel-
oper 9(9), 36–40.

Eades, P. (1984), ‘A Heuristic for Graph Drawing’,
Congressus Numerantium 42, 149–160.

Edge (2003), ‘The Modern Age’, Edge 126(The Mod
Scene: What Happens When Gamers Build
Games?), 58–67.

Epic (2003a), ‘Unreal Developer Network Web-
site’. Retrieved November 28, 2003, from
http://udn.epicgames.com/.

Epic (2003b), ‘Unreal Tournament 2003 Web-
site’. Retrieved November 28, 2003, from
http://www.unrealtournament2003.com/.

Epic (2003c), ‘UnrealScript Language Ref-
erence’. Retrieved November 28,
2003, from http://udn.epicgames.com/–
pub/Technical/UnrealScriptReference/.

Equip (2003), ‘Building Blocks’, Edge presents Equip
8(The Insider’s Guide to the Future of PC), 64–
75.

Hecker, C. (1996), ‘Behind the Screen: Physics, The
Next Frontier’, Game Developer .

Hecker, C. (2002), ‘Art, Game Design, Programming,
and Technology’, Game Developer 9(5), 56–55.

Hecker, C. & Simpson, Z. B. (2002), ‘State Ma-
chine A.K.A. (Non) Deterministic Finite State
Machine, Finite State Automata, Flow Chart’,
Game Developer 8(1), 8.



Johnson, N., Jarvis, S., Jonson, R., Cheung, P.,
Kwong, Y. & Hui, P. (1998), Physica A: Sta-
tistical Mechanics and its Applications 258(1-
2), 230–236.

Kushner, D. (2003), ‘It’s a Mod, Mod World’, IEEE
Spectrum 40(2), 56–57.

Laureti, P., Ruch, P., Wakeling, J. & Zhang, Y.-C.
(2004), Physica A: Statistical Mechanics and its
Applications 331(3-4), 651–659.

Manuca, R., Li, Y., Riolo, R. & Savit, R. (2000),
Physica A: Statistical Mechanics and its Appli-
cations 282(3-4), 559–608.

Nesbitt, K. V. & Friedrich, C. (2002), ‘Applying
Gestalt Principles to Animated Visualizations of
Network Data’, p. 737.

Rhyne, T.-M. (2000), ‘Entertainment Computing:
Computer Games’ Influence on Scientific and In-
formation Visualization’, Computer 33(12), 154–
156.

Savit, R., Manuca, R. & Riolo, R. (1997), ‘Adaptive
Competition, Market Efficiency, Phase Tran-
sitions and Spin-Glasses’. Retrieved Novem-
ber 28, 2003, from http://arxiv.org/abs/adap-
org/9712006.

Shneiderman, B. (2003), ‘Why Not Make Inter-
faces Better than 3D Reality?’, IEEE Computer
Graphics and Applications 23(6), 12–15.

Ware, C. (2000), Foundation for a Science of Data
Visualization, in D. D. Cerra, ed., ‘Information
Visualization : Perception for Design’, Morgan
Kaufmann Publishers, San Francisco, chapter 1,
pp. 1–33.

Zhang, Y.-C. (1998), ‘Modeling Market Mechanism
with Evolutionary Games’, Europhysics News .


	Introduction
	Mods
	Visualisation using a Mod

	The Minority Game
	Visualisations of the Minority Game
	Challet's Applet Visualisation
	Our Spring Graph Visualisation
	The Interactive Minority Game


	Visualisation with Unreal Tournament 2003
	Conclusions and Future Work

