
University of Southern Queensland

FACULTY OF ENGINEERING AND SURVEYING

WIRELESS LAN BASED INFRARED REMOTE
CONTROL

A dissertation submitted by

John Michael Palmer, BTEng

in the fulfilment of the requirements of

Course ENG4111 and ENG4112 Research Project

towards the degree of
Bachelor of Engineering (Electrical & Electronic)

Submitted: October 2012

ii

Abstract

Practically all consumer electronic devices in a household are controlled via Infrared
Remote Controls. A Number of these consumer devices can be controlled using one
Universal Infrared Remote Control.

A Smart Phone or Tablet PC with a Web Browser or an Application can be used to
provide a new control interface to the Universal Infrared Remote Control. This is
accomplished using WLAN communications and a Web Server built into a Universal
Infrared Remote Control.

An Arduino based Prototype has been designed and built that successfully
demonstrates a Wi-Fi enabled Smart Phone controlling consumer home media
appliances. It also has an extra feature that provides automatic volume control.

iii

Disclaimer

University of Southern Queensland

Faculty of Engineering and Surveying

ENG4111 Research Project Part 1 &
ENG4112 Research Project Part 2

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Engineering
and Surveying, and the staff of the University of Southern Queensland, do not accept
any responsibility for the truth, accuracy or completeness of material contained within
or associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the
risk of the Council of the University of Southern Queensland, its Faculty of
Engineering and Surveying or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity
beyond this exercise. The sole purpose of the course pair entitled “Research Project”
is to contribute to the overall education within the student's chosen degree program.
This document, the associated hardware, software, drawings, and other material set
out in the associated appendices should not be used for any other purpose: if they are
so used, it is entirely at the risk of the user.

Professor Frank Bullen
Dean
Faculty of Engineering and Surveying

iv

Certification

I certify that the ideas, design and experimental work, results, analyses and
conclusion set out in this dissertation are entirely my own effort, except where
otherwise indicated and acknowledged.

I further certify that the work is original and has not been previously submitted for
assessment in any other course or institution, except where specifically stated.

John Palmer
Student number: 0018840451

v

Acknowledgments

Thank you to my family, for their continuing support throughout my degree.

I would like to thank my supervisor, Dr Alexander Kist, for his guidance and advice,
in supporting the project.

I am very grateful to the USQ Engineering Team for their support that they have
given and providing an external mode of study.

Thank you to the Arduino microcontroller platform with its widely available parts,
product support and information from the Arduino community.

vi

Table	of	Contents	

Abstract ... ii

Disclaimer .. iii

Certification .. iv

Acknowledgments ... v

List of Figures .. ix

List of Tables .. ix

Abbreviations .. x

Chapter 1- Introduction ... 1

1.1 Background .. 1

1.2 Requirements ... 2

1.3 Objectives .. 2

1.4 Dissertation Outline ... 3

Chapter 2 - Background and Literature Review.. 4

2.1 History of Remote Controls ... 4

2.2 Current Commercial Products ... 4

2.3 User Interface .. 4

2.4 Security .. 7

2.5 Wi-Fi IEEE 802.11 Connectivity .. 8

2.6 Infrared IR Communications and Codes ... 9

2.7 Automatic Volume Control ... 10

2.8 Microcontrollers MCU .. 11

2.9 Integrated Development Environments IDE ... 12

2.10 Availability of System Components .. 12

Chapter 3 - System Design .. 13

3.1 System Overview ... 13

3.2 Microcontroller MCU and IDE ... 14

3.3 User Interface .. 16

3.4 MCU Web Server .. 21

3.5 Wi-Fi Shield .. 23

3.6 Infrared Communications .. 25

3.7 Automatic Volume Control ... 27

3.8 Power System .. 31

3.9 MCU System Pin Assignments ... 32

Chapter 4 - Implementation... 36

4.1 Prototype-1 .. 36

vii

4.2 Prototype-2 .. 37

Chapter 5 - System and Functional Testing .. 39

5.1 User Interface .. 39

5.2 Wi-Fi Connectivity .. 39

5.3 AsyncLabs Web Server ... 40

5.4 IRMimic2 IR Learning and Sending ... 40

5.5 SPL Microphone Hardware ... 41

5.6 Automatic Volume Control Algorithm.. 41

5.7 Power System and Energy Usage .. 41

Chapter 6 - Conclusion and Further Work .. 42

6.1 Conclusion ... 42

6.2 Future Work ... 42

References ... 43

APPENDICES ... 46

APPENDIX A - Specification ... 46

APPENDIX B - Requirements .. 48

B.1) System Block Diagram .. 49

B.2) Main System Requirements ... 50

B.3) System Requirements and Verification Matrix ... 51

APPENDIX C - Safety and Ethics .. 54

C.1) Risk Assessment .. 55

C.2) Assessment of Consequential Effects .. 56

APPENDIX D - Focus Group Research ... 57

D.1) Human Ethics Committee Application.. 58

D.2) Human Ethics Committee Approval ... 70

D.3) Focus Group questions and user testing requirements 71

D.4) Results from Focus Group ... 72

D.5) Progress and Final Report ... 73

APPENDIX E - Project Management Plan PMP .. 75

E.1) PMP Methodology ... 76

E.2) Resource Planning ... 76

E.3) Project Gantt Chart .. 78

E.4) Project Risks .. 79

APPENDIX F - Source Code .. 80

F.1) Code Modification Note... 81

F.2) Main Arduino MCU ... 81

F.2.1) IR Testing .. 81

F.2.2) Main Arduino MCU .. 85

viii

F.3) Apple iPhone/iPad.. 117

F.3.1) Main Storyboard ... 117

F.3.2) AppDelegate.h... 118

F.3.3) AppDelegate.m ... 118

F.3.4) ViewController.h... 120

F.3.5) ViewController.m ... 121

APPENDIX G - Data Sheets ... 126

G.1) IRMimic2 .. 127

G.2 Microphone Sound Input Module ... 135

G.3) Wi-Fi CuHead Shield V2 ... 138

G.4) Arduino compatible Uno - Freetronics Eleven.. 139

G.5) Arduino compatible Uno - Freetronics EtherTen .. 140

G.6) Arduino Uno .. 141

G.7) Arduino MEGA 2560 .. 146

APPENDIX H - Test Results .. 151

H.1) Apple IDE.. 152

H.2) MCU IDE .. 152

H.3) Web Server .. 153

H.4) IR Controlling Devices .. 154

H.5) Wi-Fi Shield .. 155

H.6) Sound Pressure Level SPL Sensor ... 159

H.7) Power Consumption .. 161

APPENDIX I - Design Evaluations .. 162

I.1) Sub System Components and Tools ... 163

I.2) Project Challenges and Delays.. 163

I.3) MCU and IDE Testing .. 163

I.4) IR Communications Testing ... 163

I.5) DFRobot Wi-Fi Shield .. 165

I.6) Web Server software library testing ... 166

I.7) User Interface design and testing .. 166

I.8) Apple Xcode and iPhone Application ... 166

I.9) USB to RS232 Serial communications link .. 166

I.10) Other MCU boards .. 168

I.11) Basic IR hardware setup ... 169

APPENDIX J - Self Reflection ... 173

J.1) Self Reflection .. 174

ix

List of Figures

Figure 1.1 - System Overview... 1
Figure 2.1 - IR Remote Controls ... 5
Figure 2.2 - A Universal Infrared Remote Control (Logitech Harmony 600) 6
Figure 2.3 - Vishay IR Receiver Block Diagram, (Vishay, 2003) 10
Figure 3.1 - System Requirements Block Diagram... 13
Figure 3.2 - Arduino Freetronics Eleven board... 14
Figure 3.3 - Arduino 2560 Mega board .. 15
Figure 3.4 - Web Page Navigation Flowchart ... 17
Figure 3.5 - Main Web Page ... 18
Figure 3.6 - Learn Web Page .. 18
Figure 3.7 - Settings Web Page ... 19
Figure 3.8 - URL decode Error Web Page .. 19
Figure 3.9 - iPhone Application, User Interface ... 20
Figure 3.10 - LinkSprite Copperhead Wi-Fi shield V2 ... 23
Figure 3.11 - iPhone Ad-Hoc connection Settings .. 25
Figure 3.12 - IRMimic2, (Grieb, B 2012). .. 26
Figure 3.13 - Freetronics microphone module with gain feedback resistor 28
Figure 3.14 - DC power low pass filter and changed gain resistor 29
Figure 3.15 - DC power low pass filter ... 29
Figure 3.16 - Software controlled microphone circuit schematic 30
Figure 3.17 - Assembled software controlled microphone ... 31
Figure 3.18 - 4 x 1.2 Volt NiMH, size AA Rechargeable Batteries............................ 32
Figure 3.19 - Prototype-1 pin assignment ... 33
Figure 3.20 - Prototype-2 pin assignment ... 34
Figure 3.21 - Arduino Eleven IR development pin out ... 35
Figure 4.1 - Prototype-1 assembled... 36
Figure 4.2 - Prototype-2 assembled... 38
Figure I.1 - Measured IR wave forms using PC sound card 165
Figure I.2 - DFRobot Arduino WIZnet Wi-Fi Shield (DFRobot) 165
Figure I.3 - Prolific USB to Serial RS232 converter ... 167
Figure I.4 - PCMCIA Express Serial RS232 and Parallel card 167
Figure I.5 - AVR ISP Serial RS232 programmer .. 168
Figure I.6 - Arduino Freetronics EtherTen LAN board with 2 G SD card 169
Figure I.7 - IR circuit design and calculations .. 170
Figure I.8 - IR Tx Rx hardware ... 171
Figure I.9 - Freetronics EtherTen IR Pin assignments .. 171
Figure I.10 - Photodiode Trans-impedance amplifier ... 172

List of Tables

Table B.1 - Major System Requirements with Sub Requirement descriptions 50
Table B.2 - System Requirements and Verification Matrix .. 51
Table C.1 - Hazard, Risk Identification, Evaluation and Risk Controls 55
Table E.1 - Project Gantt Chart ... 78
Table E.2 - Project Risks and Mitigation Actions ... 79

x

Abbreviations

The following abbreviations have been used throughout the text.

AC Alternating Current
AGC Automatic Gain Control
AVR Atmel MCU
CIR Consumer Infrared
DC Direct Current
DVD Digital Video Disk
HTTP Hypertext Transfer Protocol
I2C Inter Integrated Circuit, two wire communication bus
IC Integrated Circuit
IDE Integrated Development Environment
IEEE Institute of Electrical and Electronic Engineers
IR Infrared
IrDA Infrared Data Association
LAN Local Area Network
MCU Microcontroller
NATA National Association of Testing Authorities
NiMH Nickel Metal Hydride, rechargeable battery
PIC Microchip MCU
POE Power over Ethernet
PWM Pulse Width Modulation
RoHS Restriction of Hazardous Substances Directive, European Union
Shield Arduino stackable board
Sketch Arduino code file
SPI Serial Peripheral Interface, programming MCU
SPL Sound Pressure Level
SRVM Requirements and Verification Matrix
TCP/IP Transmission Control Protocol / Internet Protocol
USART Universal Synchronous Asynchronous Receiver Transmitter
USB Universal Serial Bus
WAP Wi-Fi encryption
WEP Wi-Fi encryption
Wi-Fi Wi-Fi a trademark of Wi-Fi Alliance is used to connect to WLAN
WLAN Wireless Local Area Network
ZigBee Wireless communication protocol

1

Chapter 1- Introduction

1.1 Background

Practically all consumer electronic devices in a household are controlled via infrared
remote controls. In particular media entertainment systems have a large number of
functions that are able to be controlled remotely. Consumers may have many devices
and a number of Remote Controls having various functions and layouts.

ThinkFlood the makers of RedEye suggest that ‘deep down, everyone loves
technology - or would, if it wasn’t so darn frustrating sometimes’ and ‘unreliable and
hard to use.’ (ThinkFlood, 2012a) To ease consumer’s frustration and to make
remote controls simpler, consumers are able to use a Universal Infrared Remote
Control that combines a number of remotes into one.

The use of home wireless networks, Smart Phones and Tablets enabled with Wi-Fi
has grown. Wi-Fi communications can provide a control link to a Universal Infrared
Remote Control.

By combining these technologies, a single control interface on an iPhone or iPad then
provides a new control interface to consumer’s home entertainment systems. Or any
other devices that are capable of being Infrared Remote Controlled. See Figure 1.1 -
System Overview.

Figure 1.1 - System Overview

2

1.2 Requirements

The idea is to improve or extend the functionality of a consumer electronic product
called the Universal Infrared Remote Control. It is extended by adding Wi-Fi
connectivity and automatic volume control. The user interface is a Web Page in a
Web Browser or an Application on an iPhone or iPad. User commands are sent via
URL strings using standard TCP/IP HTTP protocols. See Figure 1.1 - System
Overview.

The aim is to design and build a Prototype as proof of concept.

The requirements are,

 Interface
o Design, with user input from research activity
o Web Pages delivered to a Web Browser
o Apple iPhone or iPad Application

 Wi-Fi connectivity
o Adhoc, point to point
o Infrastructure, WLAN Network
o Security modes

 Web Server, on a low power Microcontroller
 Infrared

o Receive
o Store
o Transmit

 Microphone
 Battery power

The objectives have been broken down into major system requirements and sub
system elements to satisfy a solution. These lower sub systems can be evaluated and
alternatives proposed for the overall system design and Prototype.

A detailed System Requirements Block Diagram is presented in Chapter 3 - System
Design. These Requirements are also linked to a System Requirements and
Verification Matrix SRVM for full system testing which is listed in Appendix B -
Requirements.

1.3 Objectives

The main objectives accomplished in this project include,

1. Research Infrared remote control communication, WLAN communication,
protocols and hardware.

2. Evaluate alternatives and propose an overall system design.

3

3. Design a basic Prototype for proof of concept and implement individual
building blocks that include an infrared interface, WLAN hardware, Web
interface and an iPhone or iPad application.

As time permits

4. Investigate Remote Control interfaces and user interaction.
5. Propose a new interface that enhances the user experience.
6. Evaluate the usability of the Prototype device.
7. Design and implement an automatic volume gain control.
8. Optimise hardware power consumption.

Overall a Prototype has been built and demonstrated showing functionality covering
the objectives. A second Prototype is part of further work using a larger MCU to
extend functionality. Security has been researched but not implemented due to time
constraints.

1.4 Dissertation Outline

Chapter 1 - Introduction, to the background of the project, its requirements and
objectives.

Chapter 2 - Background and Literature Review, relates to the information required to
design the subsystems of the Prototype.

Chapter 3 - System Design, describes the subsystem components that need to be
integrated into a functioning Prototype.

Chapter 4 - Implementation, presents the working Prototype and further work on a
second Prototype.

Chapter 5 - System and Functional Testing, discusses testing of the Prototype.

Chapter 6 - Conclusion and Further Work, concludes the dissertation and summarises
the achievements of the project with a discussion on further work required to extend
functionality.

Appendix - provides further information into the overall initial investigations and
evaluations of subsystem components in producing the Prototype not documented in
the body of the Dissertation.

4

Chapter 2 - Background and Literature Review

2.1 History of Remote Controls

Remote control technology has developed over time using mechanical, wired, light,
ultrasonics, wireless and infrared transmissions links (Wang, 2001). Some devices
can also be controlled with the TCP/IP protocol that is used with computer
networking.

Infrared remote controls are cheap and simple. As a result they are a common
component used to control consumer electronic devices.

There are two main types of infrared communication protocols.

 Consumer Infrared CIR for device control. For example remote control of
Televisions, DVD players, Air conditioners and lights.

 Infrared Data IrDA for high speed data transfer. For example pictures and
video transfer between smart phones or digital cameras.

This project is only focusing on using CIR.

2.2 Current Commercial Products

At the start of this project, topic selection, there were no obvious similar
commercially available products on the local market. There were hardware plug-ins
for the iPhone available through online retailers. One plugged into the headphone
port at the top of the iPhone called RedEye (ThinkFlood, 2012b) and others (Breen,
2010) that plug into the large port at the bottom of the iPhone.

At the time of this project appreciation report the RedEye Wi-Fi Infrared Remote
Control (ThinkFlood, 2012b) and the Logitech Harmony Link (Logitech, 2012) have
released a full WLAN Infrared Universal Remote Control with connectivity with
iPhone, iPad and Android devices in the marketplace. The consumer electronics
industry is constantly producing new products.

Although some WLAN IR remote controls are in the market there is room for
improvement. Based on consumer feedback (Logitech, 2012) there is possibility of
adding extra functionality or making useability simpler.

2.3 User Interface

‘It is no use putting a heap of clever features into a device if the user is not
comfortable with it’ (Billingsley, 2006). Interfaces do require a lot of design work
and consumers have grown accustom to the way devices are controlled based on local
standards and previous equipment controls. Ultimately the consumer through their

5

purchasing decision determines part of the user interface design. When consumers
purchase devices they do not usually read the instruction manual before making a
purchase and so the interface needs to be intuitive in order for the user to like and
select the product (Billingsley, 2006).

A User Interface can have many functions. Some Infrared Remote Controls are
simple and others are more complex. Looking over some Infrared Remote Controls
in Figure 2.1 - IR Remote Controls, there are common controls, layouts and themes.

Figure 2.1 - IR Remote Controls

Interesting points of interest that can be used in the design are,

 power on/off is at the top, ideally red in colour
 a circular up/down left/right with a centre select button is common
 larger linked button for volume up/down, mute
 larger linked button for channel up/down
 media - play/stop/pause, forward, backwards, record
 a numeric keypad
 four coloured macro function buttons
 the background case colour to button colour or contrast for ease of viewing
 text size, colour and contrast

These common controls are found on Universal Infrared Remote Controls, see Figure
2.2. This controller is mid range, there are more complex touch screen ones and
much simpler ones.

6

Figure 2.2 - A Universal Infrared Remote Control (Logitech Harmony 600)

One major disturbance is to look at and read a button label before an action is
selected. Poor lighting on passive remote interfaces are a problem whereas an iPhone
or iPad is backlit. One problem with touch screen devices is they lack tactile
response (Breen, 2010). The user is unable to feel around the controls while keeping
their eyes on the viewing screen to select an action.

With the popularity of the internet, smart phones and tablets now ingrained into the
lives of many technology conscious consumers, an interface using these devices can
now be an application (Craft & McElveen, 2010) or a Web Page. A Web Page can
use HTML Cascading Style Sheet CSS to format and make the Web Page interface
more appealing (Lemay, 2003). To produce Web Pages the MCU needs to include a
Web Server that can serve HTML using the HTTP protocol.

So why do some controls have different shapes, sizes, surfaces and colours? How
does this affect the user and what do they think about different interfaces? And what
would be the best features to put into an interface? To gain more specific information
about Infrared Remote Controls and how they are used a Focus Group Discussion
Research Activity has been undertaken, see results in the Appendix D.

Key outcomes from the discussion group on interfaces indicated that users,

 like simple interfaces that they can see and read at night in low light levels
 require prompting to navigate more complex navigation
 like all-in-one universal remotes but don’t like programming them

7

 most frequently use the volume and channel changing functions
 don’t like dealing with batteries
 don’t like obstacles blocking the Infrared beam
 have trouble finding their Remotes
 have difficulties with WLAN and computer networking

This project will use an Apple iPhone or iPad as the control interface to the WLAN
Infrared Remote Control and these user interface considerations will enter into the
design.

2.4 Security

Security encompasses the access and the control of the system. It also deals with
protecting the integrity of the system from modifications and counterfeiters. There
are many areas and levels of security technology.

Access to the system can be controlled with user authentication using a login to stop
any unauthorised control of equipment. This could also allow for the use of
ciphertext for network communications (Thomas, T 2004). A simple method of
encryption is to use the logic XOR function with a key to produce ciphertext
(ELE3305, 2009). Higher level software methods use built in mature security
modules like Microsoft DotNet that bind to Event controls (Freeman & Jones, 2003).
These advanced methods are not designed for microcontrollers, however they may
work with the Microsoft embedded Operating System and needs to be researched
further.

Protecting product design, patents and market share is very important (Codan, 2012).
Protecting the code inside the MCU from being copied is of concern. Correct MCU
selection can guard against copy protection attacks and competitors reverse
engineering the design by ripping firmware (Skorobogatov, 2000/2004). MCUs
contain a fuse bit that when burnt out or set prevents the flashed code from being read
out. This can overcome by copiers by dissolving the package and reading the
memory optically direct from the surface of the IC chip. Here the MCU manufacture
Atmel backs up this claim.

‘Robust data security is absolutely essential in today's information-critical business
environments. But standard memories and conventional storage often don't provide
enough protection.’ (Atmel, 2012a).

Atmel MCUs are now available with a metal guard over the memory at the silicon
level to stop memory contents being read optically.

As part of the Deployment of an Apple Application that connects to a remote device,
authentication between the Apple iDevice and the WLAN Infrared Remote Control
hardware is required as a condition to the iDevice Application entering the Apple
store (Apple, 2012a).

8

Atmel offers a hardware chip set for authentication, the AT88SA10HS/102S devices.
The AT88SA102S is designed to be embedded in the product with an embedded
265bit key. It uses SHA-256 and responds with a unique response when sent a
challenge. (Atmel, 2012b)

As encryption and security is a large complex area of knowledge this will be
implemented last if time permits.

2.5 Wi-Fi IEEE 802.11 Connectivity

A Wireless Local Area Network WLAN allows connection and data transfer between
computing devices. The different IEEE 802.11 standards ensure different devices
can connect without problems. This project is concerned only with the 802.11 b/g/n
modes that the iPhone 4 (Apple, 2012b) and iPad 2 (Apple, 2012c) can both support.

The MCU needs to support 802.11 b/g/n connectivity. It is anticipated that only
small amounts of data will need to be sent, so the throughput speed is not critical.
There will need to be a balance of data throughput and power consumption with a
power sleep mode to maximise battery life. There are a number of different
manufactures for Arduino Wi-Fi Shield modules with Wi-Fi connectivity they are,

 DFRobot, 802.11b 11, 5.5, 2, 1 Mbps (DFRobot, 2012)
 CuHead Wi-Fi Shield 802.11b 1, 2Mbit/s (CuteDigi, 2012)

There is a software library (AsyncLabs, 2012a) and examples (AsyncLabs, 2012b).

Connection Mode can be either,

 AdHoc - point to point
 Infrastructure - through a network

Wi-Fi Security modes,

 No security
 WEP, Wired Equivalent Privacy
 WPA, Wi-Fi Protected Access
 WPA2, Wi-Fi Protected Access 2

For simplicity UDP will be controlled via a C Library. Serial RS232 with a port
allocation will not be used. This will allow for the use of the higher level TCP/IP
connection layer. The Wi-Fi MCU connection is different than a standard TCP/IP
connection. Packets are smaller due to the processing capabilities of the MCU. The
code will be in C language and functions depend on the choice of Wi-Fi Shield type.

9

2.6 Infrared IR Communications and Codes

Codes

For the WLAN IR Remote Control to control multiple electronic consumer devices it
needs to use CIR Standards. The big problem is there is no real common standard for
CIR. This is because the CIR control of devices has evolved over time from early
days and it was not until interference between devices became a problem that
something was done. Big name manufactures have implemented their own
Standards. Adding to the complexity, each manufacture has varying code types that
have evolved over time.

There is a large variety of IR modulation signals associated with commands. They
are well documented by Bergmans (2012) and Shirriff (2009). This adds some
decoding and algorithm complexity to the project. Common IR codes include
(Vishay, 2003),

 Phillips RC5, RC6
 NEC
 SONY
 Toshiba Micom Format
 Sharp
 RCMM
 R-2000
 RECS-80

Raw waveform

One way to overcome the decoding of the modulation signals is to store the captured
signal as a raw waveform and then retransmit it when required. One drawback to this
is more memory is needed in the MCU (Shirriff, 2009).

A deicated IC that can store up to 57 IR codes/waveforms and play them back is
IRMimic2 PIC IC by Tauntek (Grieb, B 2012) and identified by AVRFreaks as a
reliable solution (AVRFreaks, 2012).

Carrier Frequency

There are a number of different carrier frequencies in use. If the carrier frequency is
not matched between the transmitter and receiver the link will be degraded or just not
work. Carrier frequencies are mostly set by crystals. Sometimes crystals of the
correct frequency were hard to get and manufactures used what they could get. This
resulted in slightly different carrier frequencies being used. A common carrier
frequency range is about 38 kHz. (Vishay, 2003),

10

Infrared Transmission

An Infrared IR Light Emitting Diode LED look like a common LED but their output
wavelength is invisible to humans. Some have a clear or blue moulded casing with a
lens. The spectral wavelength required is 940 nm known as Far Infrared. IR LEDs
have expected bandwidth of 50 nm and beam angle 30 degrees with power levels of
100mW (Jaycar, 2010), datasheets (Everlight, 2004), (Taitron, 2007). For hardware
testing purposes the IR spectral emission can be seen by a camera (Shirriff, 2009).

Infrared Reception

An Infrared IR Photodiode detects and receives Infrared energy levels. The device
has some capacitance and its output is a current. To overcome this and to look at
faster signals a trans-impedance or current to voltage converter is needed (Neamen,
2007).

Infrared receiving detectors can be interfered with or receive IR energy from other
sources like sun light, fluorescent lamps and heating points. To overcome false
readings of signals the bursts or pulses of IR are modulated by the transmitter. The
modulation carrier frequency is commonly 38 kHz. An Integrated Circuit IC with a
combined converter amplifier, filter and demodulator is available like the Vishay
TSOP41xx, (Vishay, 2003). A block diagram of this IR receiver IC is in Figure 2.3 -
Vishay IR Receiver Block Diagram.

Figure 2.3 - Vishay IR Receiver Block Diagram, (Vishay, 2003)

2.7 Automatic Volume Control

Automatic Gain Control AGC is often implemented in electronics to normalise a
signal level. In radios this may be the volume.

11

By the inclusion of a microphone that can pick up the sound pressure level in the
room the MCU software can then send volume down and up commands based on a
hysteresis type algorithm. It is intended that this optimisation of the algorithm will
require some trial and error testing.

A microphone hardware module by Freetronics is available and could be adapted for
the Prototype (Freetronics, 2012). By using an 8-channel analogue multiplexer /
demultiplexer 4051 IC the gain can be digitally controlled through software (delabs,
2005).

2.8 Microcontrollers MCU

A kit called ‘WIB Web server In a Box’ supplied by Silicon Chip (Grassi 2009). This
kit has been built and tested by the Dissertation Author. It contains a PIC MCU
running a TCP/IP wired LAN interface and Web Server. Performance is not the same
as a PC however it is a low power solution and a proof of concept that a MCU can be
used for this project.

Microcontroller selection will consider a number of important factors,

 Hardware specification
o Number of Inputs/Outputs and type, Analogue, Digital, PWM
o Internal timers
o Register sizes
o UARTs
o Memory size and speed
o Operations optimization
o Availability
o Environmental like vibration and temperature ranges
o Low power requirements, sleep modes

 Cost of both hardware and firmware development
 Reliability, and life span
 Programming IDE and firmware programmer
 Operating system / boot loader
 Security of embedded firmware
 Power requirements
 Environmental
 product support

There is a lot of 8/16/32 bit Microcontroller manufactures. A number of development
boards are available from some of the manufactures along with examples that are
generally optimised for specific applications. The 8 bit MCUs for consideration are
Atmel AVR (Atmel, 2012) and Microchip PIC (Microchip, 2012) based on cost,
availability and the support tools required. Further analysis of other MCU brands and
type has not been performed.

12

2.9 Integrated Development Environments IDE

Both Atmel AVR Studio 5 (Atmel, 2012c) and Microchip MPLAB v8.66 (Microchip,
2012) are professional MCU IDEs which are free to use. Optional optimising C
compilers and programming modules for in-system debugging are available at extra
cost.

The Arduino MCU IDE version 1.0 is more simplified with only the most basic
features suited mainly for hobbyists. It supports the AVR MCU and supports a large
number of plug in modules from many different manufactures using a common
header pin out (Arduino, 2012). There is also an Arduino based board with a PIC
MCU available. Arduino boards mostly contain the AVR MCU and the code can also
be written and compiled using Atmel AVR Studio (EngBlaze, 2012).

The Apple iDevice IDE Xcode can be downloaded and used on an iMac. A
developer fee of $99 per year is required and the developer must be registered.
iDevices are linked to the developers registration and software can only be deployed
to the registered iDevices (Apple, 2012a).

2.10 Availability of System Components

The supply and availability of components required to build a Prototype at low cost
can be restrictive. Integrated Circuit and MCU Chip manufactures take minimum
orders by the 1000’s. The Atmel and Microchip PIC MCU manufactures produce
development kits that support their parts. Other single purchase of components may
be available through retailers at added cost.

Companies and part availability can come and go in months. A large company
‘Microchip was ranked No.4 after Atmel, which climbed to No. 3 from No. 5’ and
Steve Sanghi, Microchip CEO ‘recently bought Roving Networks, a Calif-based
company providing Bluetooth and Wi-Fi modules and solutions’ as of 7th May 2012
(Yoshida J, 1012) This may have affected the supply of some types of Arduino
 Wi-Fi Shields.

Parts also include software systems and libraries. Software changes and updates are
not always backward compatible to previous components. The Arduino and MCU
open source community along with forums is rich with applied knowledge that solves
these problems. (Arduino, 2012) (AVRFreaks, 2012)

This information suggests that parts for system components need to be ordered in
advance with some thought as to their continued availability and delivery times.

13

Chapter 3 - System Design

3.1 System Overview

The design is broken into modules. Modules that pass testing form the Prototype.
The production of an embedded system MCU Design and methodology is discussed
by Leung (2012)

The overall design for the Prototype is best managed by defining each requirement
that is easily referenced. These requirements are modelled into a system block
diagram for a system overview. Each subsection has been designated a requirement
number with sub-requirements. This is mostly fine grained with a lot of detail, see
Figure 3.1- System Requirements Block Diagram. Or for a larger view see Appendix
B. This has been done for full system testing and is tracked using a System
Requirements and Verification Matrix SRVM also listed in Appendix B.

R3-1 WLAN

R6-3
A/C

R6-1
TV

R1 User commands

IR WLAN Remote Control Requirements Block Diagram

R4 Controller

VER 5 - 2012.10.22.11:22

R1-1.1 Select TV
R1-1.2 Select DVD
R1-1.3 Select Air Con
R1-1.4 Select Light
R1-2.1 TV volume up
R1-2.2 TV volume down
R1-2.3 TV volume mute
R1-2.3 TV channel up
R1-2.3 TV channel down
R1-3.1 DVD play
R1-3.2 DVD stop
R1-4.1 A/C on
R1-4.2 A/C off
R1-5.1 Light on
R1-5.2 Light off

R2-3
HTTP

R2-1 Apple App

R2-2.1
Web page

R2-4
Wi-Fi
Rx/Tx

R4-5
IR Rx

R3-1.1A

R
3-

1.
4

R4-6
IR Tx

R6-4
Light

R6-2
DVD

Hardware

Software

KeyR1 Input

R4-1 microprocessor 1R
4-

3
B

at
te

ry

R
4-

2.
3

D
ig

ita
l

O
ut

R4-1.5 Web Server

R4-2 microprocessor 2

R4-1.2 Serial link to WiFi shield

R4-1.3 MCU interface

R
4-

2.
2

D
ig

ita
l

In
Link

R4-2.1 Infrared Transceiver
firmware

Existing System

R3 Network

R6 Controlled
Devices

R4-4.3 WiFi settings

R4-4 Wi-Fi Rx Tx

R4-4.1 Wi-Fi firmware

R4-1.1
USB to
UART

R5-2.2.1
USB

R5-2.2.1.1

R
4-

4
.2

ju
m

pe
r

R5-2.2.2
WiFi

R3-1.3R5 Development
Environment

R4-1.6 IR cmd

R4-1.4 Arduino OS

R2 Interface

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

R2 Apple iPhone / iPad

R2-2 web browser

IRMimic (Microchip PIC)

Arduino (ATMEL AVR)

R2-5 USB

R
5-

2.
1.

1.
1

R5-2.2 MicrosoftR5-2.1 Apple

R5-2.1.3 Xcode

R5-2.2.3 Arduino

R5-2.1.1
USB

R5-2.1.4 iTunes

R5-2.2.4 Terminal

R3-1.2

R5-2.1.2
LAN

R3-2 InternetR3-1.5

R
4-

1.
4

R
A

M

R5-2.2.5 WizNet

R5-1.2 Test
Equipment

R5-1
Hardware
development

R5-2
Software
development

R5-1.1 Tools

R3-1.1B

Microphone
SPL

Figure 3.1 - System Requirements Block Diagram

14

The Prototype hardware design includes, Wi-Fi, Infrared receive store and transmit,
microphone, a control MCU with Web Server, and a battery.

The final stages of the software design includes, IR code learning and sending, Wi-Fi
connected Web Server with HTML Web Pages, an iPhone or iPad Application,
factory software reset, user settings and a software controlled microphone gain. A
discussion group and user testing was performed to provide feedback on the design.
Security needs to be implemented.

Overall this project uses a number of relatively mature technologies that are
integrated into the Prototype solution.

3.2 Microcontroller MCU and IDE

The Microcontroller MCU selected for Prototype-1 is the Arduino Atmel AVR328p.
It is an 8 bit 16 MHz MCU with 2 k SRAM, 32 k Program memory and just enough
I/O to test concept. The Arduino board contains a power regulator and an onboard
USB to serial programmer. The Arduino platform has been designed for rapid
prototyping. Arduino has set a standard for its header pin out which has been used
with pluggable boards called Shields to add functionality to the project. See Figure
3.2 - Arduino Freetronics Eleven board.

Figure 3.2 - Arduino Freetronics Eleven board

15

After initial testing it has been determined that the Web Server needs more SRAM for
its runtime variables. Without making too many changes to the initial design a
second MCU board is still being worked on for Prototype-2 to extend the base
functionality. The Arduino 2560 Mega has 8 k SRAM and a further 256 k Program
memory with more I/O. It is the next higher equipped Arduino development board,
see Figure 3.3 - Arduino 2560 Mega board.

Figure 3.3 - Arduino 2560 Mega board

Both the Arduino hardware MCU boards are supported by the Arduino Integrated
Development Environment IDE for writing of the software code and downloading the
compiled files into the MCU. The code is written in C and uses Arduino variables
and functions. The higher level C programming language is a better choice to code
higher levels of functionality and software complexity for the project.

The Arduino platform supports many hardware shields with corresponding libraries
extending purpose fit functionality. The Arduino IDE works on both the Microsoft
Windows and Apple Operating Systems. The project has used the Microsoft
Windows Arduino IDE version. Migration of MCU code from Arduino IDE to AVR
Studio IDE is possible but has not been done.

The Arduino platform advantages include,

 local MCU board, parts and shield availability
 various Wi-Fi modules available
 code examples
 IDE includes USB on board programming
 low cost

16

3.3 User Interface

From the research of common controls and their layout a user interface design can be
created. Feedback from the user discussion group including control usage patterns
suggests a simple design is a good starting point. Based on these considerations a
simple basic test interface to control a portable DVD player will contain,

 volume up
 volume down
 play / stop
 forward
 back
 on/off, red
 other, blue

The Web Page interface will be driven by the MCU Web Server that can post simple
HTML text strings and get HTTP URL requests for commands. Some nicer simple
web page design can be managed by using HTML, CSS and picture icons (Lemay,
2003). A full icon driven interface can be used instead of text with an advantage of
being user language independent.

The structure and navigation of the Web Page interface is in Figure 3.4 Web Page
Navigation Flowchart, flowed by Figures 3.5, 3.6, 3.7 and 3.8 for the Web Pages. To
get the Prototype working correctly the menu navigation had to be scaled down and
the web pages made very simple, see MCU code in Appendix F. It seems the
AVR328p MCU 2 k SRAM struggled to stay stable. Removing debug serial output
prints helped and all string constants for the HTML text were placed into program
memory. The Arduino IDE does not have any memory management or in system
debugging tools. It is only through trial and error that this simple menu of Web Pages
has produced a satisfactory result. Further adjustments to the Web Server may also
help.

17

Figure 3.4 - Web Page Navigation Flowchart

18

Figure 3.5 - Main Web Page

Figure 3.6 - Learn Web Page

19

Figure 3.7 - Settings Web Page

Figure 3.8 - URL decode Error Web Page

20

Applications for the Apple iPhone / iPad are written in Apple Objective C syntax
(DeVoe, 2011) using the Apple Xcode IDE. The setup, development and application
installation process is well described by iPhone Game Development (Craft, &
McElveen, 2010) with further information on the Apple Developer web site. The
registration process requires acceptance of the licence agreement with Apple. To use
the IDE a yearly fee is required and the developed software can only run on apple
devices registered to the developer’s key. The key has to be backed up on a USB
drive. There are different levels of developer contract with Apple based on software
functions and services used. In order to have the application submitted in the Apple
App store the hardware needs to be submitted to Apple and kept by Apple at cost to
the developer. Any change to the hardware or software means the device has to be
resubmitted to Apple.

A simple Application written for the iPhone 4 is in Figure 3.9 - iPhone Application
User Interface.

Figure 3.9 - iPhone Application, User Interface

Further work would include using images to replace the buttons and the use of swipe
controls. Also security by user authentication needs to be implemented and would
form part of the Settings Web Page asking the user for a password to access the
system.

The iPhone code is in the appendix and is basically a drag and drop of buttons on the
form where a URL path has been added to the on-click event of the control buttons
displayed on screen.

21

3.4 MCU Web Server

The Web Server is central to the design as it provides the interface. It is an integrated
component of Wi-Fi hardware. The Wi-Fi AsyncLabs Web Server Library is used. It
has a different Library and has different functionality than the tested Freetronics
EtherTen LAN Web Server.

The Library files are downloaded from GitHub repository. For the WiShield,
AsyncLabs has to abide by the terms in the license for the driver code ‘g2100’ for the
Wi-Fi module, which is provided by ZeroG Wireless Inc.

The files are then installed by performing a copy and paste of the WiShield folder
into the Arduino IDE libraries folder.

The MCU Code for the Web Server calls is examined in the next few blocks of text
with example code fragments.

On start up the Web Server needs to be initialised and told where to find the Web
Page to send to the Web Browser.

void setup()
{
.
.
.
 //--- Enable Serial output and ask WiServer to generate log
 messages (optional)
 WiServer.enableVerboseMode(true);

 //--- Initialize WiServer and have it use the sendMyPage function
 to serve pages
 WiServer.init(sendMyPage);
.
.
.
}

The main MCU code loop has to call the Web Server to keep starting as it will not be
running after it has done its processing. The loop delay also needs to be increased to
cater for more URL decoding, but not too much.

void loop()
{

 WiServer.server_task(); //--- Run WiServer
 .
 .
 .
 delay(100);
}

22

The Web page HTML strings are printed from program memory and processing of
received URL commands after a number of packets has finished being sent. See the
next example code fragment.

boolean sendMyPage(char* URL)
{
.
.
 // check if Web Page has been sent, as it is a number of packets
 if((0==(int)uip_conn->appstate.ackedCount) && (0==(int)uip_conn-
>appstate.sentCount)) // is ready
.
.
.
 //---VOLUME UP command ---
 else if (strcmp(URL, "/S1") == 0) //SEND button 1
 {
 //Serial.println("URL=/S1"); //VOL UP
 IR_CSEL(1); //select memory location number 1
 IR_SEND(); //send IR pulse train
 }
.
.
.
 //finish URL processing calls, now send web pages

 // Home web page
 if (strcmp(URL, "/") == 0) // just IP address of home page
 {
 // write page content from flash memory
 webpHOME();
 WiServer.print_P(flash memory HTML text string);

 return true;
 }
.
.
.
}

The ASYNCLABS apps-conf.h Library needs to be edited to define the variable
APP_WISERVER

.
.
.
// Filename: apps-conf.h
// Description: Web application configuration file
.
.
.
 #define APP_WISERVER
.
.
.

This presents the core of the Web Server design.

23

3.5 Wi-Fi Shield

After initial evaluation testing of the DFRobot Wi-Fi Shield, the Copperhead Version
2 Wi-Fi Shield was selected. See Figure 3.10 - LinkSprite Copperhead Wi-Fi shield
V2.

The Copperhead Version 2 Wi-Fi Shield meets the design requirements of,

 Wi-Fi mode 802.11b 2.4 GHz
 Connectivity modes of Adhoc and Infrastructure
 Security options, none, WEP, WAP, WAP2
 Data communication using the TCP/IP layer
 Software Library

Other specifications include (CuteDigi, 2012),

 rechargeable battery circuit
 16 Mbit serial flash, good for storing Web Pages
 1Mbps and 2Mbps throughput speeds
 Low power usage
 Sleep mode: 250μA, Transmit: 230mA, Receive: 85mA
 Microchip Wi-Fi module

Figure 3.10 - LinkSprite Copperhead Wi-Fi shield V2

MCU code software setup settings that contain IP addresses, connection modes and
security options.

24

.
.
.
#define WIRELESS_MODE_INFRA 1
#define WIRELESS_MODE_ADHOC 2

// Wireless configuration parameters --
unsigned char local_ip[] = {192,168,1,2}; // IP address of WiShield
unsigned char gateway_ip[] = {192,168,1,1}; // router or gateway IP address
unsigned char subnet_mask[] = {255,255,255,0}; // subnet mask for the local network
const prog_char ssid[] PROGMEM = {"IRMCU"}; // max 32 bytes
unsigned char security_type = 0; // 0 - open; 1 - WEP; 2 - WPA; 3 - WPA2

// WPA/WPA2 passphrase
const prog_char security_passphrase[] PROGMEM = {"12345678"}; //max64 characters

// WEP 128-bit keys
// sample HEX keys
prog_uchar wep_keys[] PROGMEM = { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08,
0x09, 0x0a, 0x0b, 0x0c, 0x0d, // Key 0
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, // Key 1
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, // Key 2
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00 // Key 3
 };
// setup the wireless mode
// infrastructure - connect to AP
// adhoc - connect to another Wi-Fi device
unsigned char wireless_mode = 2; //WIRELESS_MODE_ADHOC;

unsigned char ssid_len;
unsigned char security_passphrase_len;
// End of wireless configuration parameters ------------------------
.
.
.

The Settings for the iPhone to make the Ad-Hoc mode connection is given in Figure
3.11 - iPhone Ad-Hoc connection settings.

25

Figure 3.11 - iPhone Ad-Hoc connection Settings

This part of the design provides the Wi-Fi connectivity.

3.6 Infrared Communications

Initial design evaluation testing using an Arduino IR Library, Vishay receiver and an
IR Tx LED was not 100% successful. Two identical back to back IR receive store
transmit systems were setup. It was found that problems were mainly in reliably
decoding and transmitting IR signals. Even though the library displayed consistent
decoding results, the output waveforms varied. The same system that decoded and
transmitted a signal could not then do the same back, see Appendix Test results.
Receiving, storing and transmitting the raw IR signal was successful. The next
design problem was to store even longer IR signals as used with the Microsoft Xbox
360. At this stage in the project time was extended and ran out. This further work
was left to time availability on Prototype-2.

To overcome the time restrictions the use of a single purpose designed MCU was
sought. The IRMimic2 from TaunTek is a pre programmed Microchip PIC MCU
with 57 channels that are trainable (Grieb, B 2012), see Figure 3.12 - IRMimic2. One
big design advantage for the main Prototype-1 MCU was the separation of the IR
functions and the Web Server load, aiding code debugging.

26

Figure 3.12 - IRMimic2, (Grieb, B 2012).

The MCU mode is set by setting pin 23 MDE low with a 470 ohm resistor on power
start up.

The IRMimic2 MCU control lines are,

 CSEL 0-5, 0-56 command memory locations
 LRNRQ, learn request
 LRNERR, learn error
 SNDRQ, send request
 RDY, ready

Data Sheet and circuit diagram is in Appendix G.

Arduino MCU code example for learning an IR signal

.
.
.
// select a channel in IRMimic2 MCU memory

// set channel pins
 if (2==CSELset)
 {
 Serial.println("2==CSELset");
 digitalWrite(pin_IRMimic2_CSEL_0,LOW);
 digitalWrite(pin_IRMimic2_CSEL_1,HIGH);
 digitalWrite(pin_IRMimic2_CSEL_2,LOW);
 }
.

27

.
.

void IR_LEARN()
{
.

// Manage IRMimic2_LearnErrors
.
// make LRNRQ = HIGH (learn)
// then RDY = LOW and IRMimic2 LED will light
 digitalWrite(pin_IRMimic2_LRNRQ, HIGH);

// using Timer 0 //wait for IRMimic to be ready about 2 ms
 delay(3);

// Hold IR remote to Vishay receiver and push button to be learned

// Manage a Timeout

 digitalWrite(pin_IRMimic2_LRNRQ, LOW);
 Serial.println("IR_LEARN finished");
.
.
.
}

Arduino MCU code example for Sending an IR signal is similar.

.
.
.
// select a channel in IRMimic2 MCU memory
.
.
.
 digitalWrite(pin_IRMimic2_SNDRQ, HIGH);

// Manage a Timeout for hardware errors

 digitalWrite(pin_IRMimic2_SNDRQ, LOW);

 Serial.println("IR_SEND finished");

}

This presents the IR design.

3.7 Automatic Volume Control

The user focus group research has indicated that one of the most frequent adjustments
using a remote control is volume.

28

By including into the design a microphone, an average Sound Pressure Level SPL can
be measured and used as part of a feedback loop to control volume. This is like an
Automatic Gain Control AGC system. This automated adjusting of the volume is
planned for use on a separate sound amplifier for a Television media centre. In this
way no animated volume bars are seen on a Television screen. Some Televisions
may be able to turn off the animated on screen volume bars and the Prototype could
directly control the Television volume unit.

The design concept is to only increase the volume up to 3 times and then lower it
down to 3 times while keeping track of the volume position. The sound levels are not
measured in any calibrated way. It is just met to increase and decrease around what
the individual user would consider their personal average volume listening level.

The hardware listens and if the SPL is above a threshold code immediately decreases
the volume one time. The algorithm listens again and reduces the volume one more
time if the measured SPL is above the set threshold. To increase the volume the
system listens and if the room sound level is quieter with the SPL below the threshold
for about six seconds, an IR signal is sent to increase the volume.

The SPL threshold level is set by adjusting the gain on the microphone R4, 1 MΩ.
Initially the gain was set manually by some rough op-amp gain calculations and then
by trial and error. Finally a gain feedback resistor of 220 kΩ proved a good value for
testing and can be seen hand soldered in place of the surface mount resistor in Figure
3.14 - DC power low pass filter and changed gain resistor. See Figure 3.13 -
Freetronics microphone module with gain feedback surface mount resistor. The SPL
output is used and has a small RC time constant, see Freetronics Microphone circuit
schematic in the Appendix G - Data Sheets.

Figure 3.13 - Freetronics microphone module with gain feedback resistor

A large amount of digital noise is present on the DC power rail. This interferes with
the microphones analogue circuit. To overcome this, a low pass filter added. The
largest practical capacitor was used to get the resistance down so that minimal voltage
drop on the positive supply was achieved, because it is important to maintain output
voltage levels for interfacing with the analogue to digital converter on the MCU. See
Figure 3.14 - DC power low pass filter and changed gain resistor. Once the Prototype
is working successfully further work would include reducing the size of the capacitor.

29

Figure 3.14 - DC power low pass filter and changed gain resistor

The filter uses a low Q ferrite bead inductor, 220 ohm resistor, 470 μF, 25 V
capacitor. This produces a measured 0.28 Volt drop on the supply rail for the
Microphone circuit. The RC time constant is 103 ms and the ferrite bead should
reduce high frequency components as it shouldn’t be saturated with current. This
circuit could be refined with further analysis and measurements as future works.
Overall the DC power filter works well, see Figure 3.15 - DC power low pass filter.

Figure 3.15 - DC power low pass filter

30

Due to a longer overall response time taken to process a volume send command. The
command is sent twice in the Arduino MCU code and works well.

There is a need for the user to be able to adjust this gain. This can be done through
the user interface by using software to control the Microphone gain and set a SPL
threshold. The hardware implementation is performed with a 4051 Multiplexer /
Demultiplexer IC being a digitally controlled analogue switch. See Figure 3.16 -
Software controlled microphone circuit schematic.

150 kΩ

47 kΩ

47 kΩ

47 kΩ

47 kΩ

47 kΩ

47 kΩ

47 kΩ

A

B

C

11

10

9

3

Vin

13

14

15

12

1

5

2

4

16

6

7

8

4051

+ 5 Volt

Vout

1 MΩ

feedback

Figure 3.16 - Software controlled microphone circuit schematic

The assembled software controlled microphone is shown in Figure 3.17. It has been
tested and is working correctly ready for inclusion into Prototype-2. With the
inclusion of the 4051 Multiplexer / Demultiplexer IC a larger 2200 μF capacitor is
being trialled in the DC power filter.

31

Figure 3.17 - Assembled software controlled microphone

3.8 Power System

The Arduino standard has a 2.1 mm power socket that accepts a DC input of +7 to
+12 volts which can be powered from a mains AC power plug pack. The board can
also be powered from the USB +5 volt serial cable. USB power is used during
software development.

The inputs are regulated by an onboard power converter supplying the common
power header with,

 +5.0 V, 200 mA
 +3.3 V, 50 mA
 unregulated input voltage

The Atmel AVR 328p MCU output pin rating is 5 V at 40 mA.

Power usage is important. The Arduino main MCU has a low power sleep mode.
Parts of the circuit should be switched off when not in use. The Wi-Fi Shield is power
hungry however it supports a power saving sleep mode. Power saving actions also
includes managing unused pins and circuit functions (STMicroelectronics, 2012).
Power saving features have not been enabled, it is further work for Prototype-2.

32

‘The IR sensor module requires a small amount of operating current whenever it is
powered. For good battery life, it is necessary to power down the IR sensor module
except when learning. The IR Mimic2 chip handles this automatically.’ (Grieb, 2012).
CuHead Wi-Fi shield power consumption specifications

o Sleep mode: 250 μA
o Transmit: 230 mA
o Receive: 85 mA

The systems total average current will be measured in the results section and will give
an indication of battery life.

A 6 volt 4 x 1.5 Volt size AA Alkaline battery connected directly to the 2.1 mm
power socket will under power the MCU. This battery will need to be connected
through a silicon power diode to the +5.0 Volt power header pin.

To keep the voltage down Prototype-1 will use 4 x 1.2 Volt NiMH cells with the total
supplied voltage about 4.8 Volts. This will drop as the battery loses its charge.
Figure 3.18 - 4 x 1.2 Volt NiMH, size AA Rechargeable Batteries

Figure 3.18 - 4 x 1.2 Volt NiMH, size AA Rechargeable Batteries

3.9 MCU System Pin Assignments

A number of sub systems have been combined. A summary of the pin connections on
the Arduino Eleven for Prototype-1 is in Figure 3.19 - Prototype-1 pin assignment.

33

Figure 3.19 - Prototype-1 pin assignment

For Prototype-2 the MCU pin allocations are different, see Data Sheets in Appendix.
Not all pins have been assigned. The Wi-Fi shield is not handling interrupts correctly
and needs further investigation. Until then only the software controlled Microphone
with three pins A, B, and C have been added. See Figure 3.20 - Prototype-2 pin
assignment. The pin out for IRMimic2 connection has not been added as further
work needs to continue on storing the longer IR signals for the Xbox360. This
further work is being done on a separate MCU the Arduino Eleven. The Header pins
have been removed and replaced with stackable header pins so it can then be added to
the top of the PCB stack, see Figure 3.21 - Arduino Eleven IR development pin out.
The pin out is arranged like this so the IR MCU code can also be used with the
Freetronics EtherTen LAN board.

34

AREF

GND

LED 13

12

PWM 11

PWM 10

PWM 9

8

7

PWM 6

PWM 5

4

PWM 3

2

TX 0 1

RX 0 0

0

1

2

3

4

5

RESET

3V3

5V

GND

GND

VIN

A
N

A
L

O
G

U
E

P
O

W
E

R D
IG

IT
A

L

Arduino MEGA 2560
Pin Out

Reset Settings

WiFi INT 0

WiFi Status LED

W
iF

i S
C

K

Battery
+
-

Reset MCU

8

9

10

11

12

13

A
N

A
L

O
G

U
E

6

7

14

15

TX 3 14

RX 3 15

TX 2 16

RX 2 17

TX 1 18

RX 1 19

SDA 20

SDA 21

W
iF

i S
S

W
iF

i M
IS

O
W

iF
i M

O
S

I

DIGITAL

C
O

M
M

U
N

IC
A

T
IO

N

22242628303234363840424446485052G
N

D

23252729313335373941434547495153

G
N

D

S
P

L A

S
P

L B

S
P

L C

Figure 3.20 - Prototype-2 pin assignment

35

Figure 3.21 - Arduino Eleven IR development pin out

36

Chapter 4 - Implementation

4.1 Prototype-1

The sub system elements of the design are implemented in the first functional
Prototype-1. The Hardware and Software components are listed below.

Hardware boards and Shields have been stacked together and consist of,

 Infrared IRmimic2 MCU with Learn / Store / Send
 Factory Settings Reset Button
 Wi-Fi connectivity, CuHead WiShield V2
 Main MCU with Web Server
 Fixed gain Microphone with DC power filter
 Battery Pack

See Figure 4.1 - Prototype-1 assembled

Figure 4.1 - Prototype-1 assembled

37

MCU Software components consist of,

 AsyncLabs Web Server
 simple Web Pages
 Factory Wi-Fi configuration settings
 simple Factory Reset of IP address only
 simple display of Settings
 limit of seven IR channels stored and learnt, max is 57
 all seven IR channels can be Sent
 Automatic volume enabled
 serial print out for debugging and program status

Note: Software features are limited but functional due to the 2k SRAM limit of the
AVR328p MCU affecting the Web Server performance. Further design work has
continued on the Arduino Mega2560 MCU board that has increased resources.

User interface is functional with both the Web Browser WebPages and the iPhone
Application. From user input in the Focus Group discussion research a simple
interface was delivered to enhance the user experience.

Web Pages are simple and there layout is exactly as described in Chapter 3 System
Design

 Send
 Learn
 Settings
 Error

iPhone Application is also displayed in Chapter 3 System Design

 one page simple buttons
 one button to open Web Browser for command Learning and Settings

4.2 Prototype-2

Further work continues on with Prototype-2, it is not fully operational. It uses the
Arduino Mega 2560 with 8k SRAM and more digital I/O. This allows for extending
the functionality of the user interface and software controlled features

Hardware boards and Shields stack consist of,

 Infrared Transmit, Receive, status LED, command button
 Arduino AVR MCU Infrared with Learn / Store / Send
 Factory Settings Reset Button

38

 Wi-Fi connectivity, CuHead WiShield V2
 Arduino MEGA 2560 with Web Server
 Fixed gain Microphone with DC power filter
 Battery Pack to be added, may use battery circuit on CuHead WiShield V2

See Figure 4.2 - Prototype-2 assembled

Figure 4.2 - Prototype-2 assembled

The MCU Software is the same as Prototype-1 except for pin out changes to allow for
the different MCU connections.

The Web Server is not fully operational and that is the final state of the project.

39

Chapter 5 - System and Functional Testing

This section gives details of the testing and evaluation of system components and
functions of Prototype-1. Further test and evaluation results are in the Appendix.

Testing of the full system has been marked on the SRVM in Appendix B -
Requirements. Appendix H - Test Results, includes pre-testing and evaluation testing
leading to Prototype-1 Testing.

A Serial Terminal program was also used to check and validate correct MCU
program execution.

Prorotype-1 was demonstrated during the Focus Group discussion research activity
and to the project Supervisor successfully.

5.1 User Interface

Web Browser and Web Pages - The designed Web Pages all worked and were able
to be viewed on a networked computer, iPad and iPhone through a Web Browser. By
keeping the design to only send simple HTML text strings there were no problems in
rendering the Web Pages and performance was good both through Adhoc and
Infrastructure Wi-Fi connection modes. The Web Page reads the screen resolution
and correctly sets the pixel width of iPhone so the Web Page text is large enough to
read on large and small screens. Each button was pressed and worked. Entering
other URL commands that were not in the URL decode code produced the URL Error
Web Page as expected and allowed the user to navigate back to the Send Home page.
Sometimes the Web Server was a little delayed in processing URL commands, but
once a command was processed the following commands were quick.

iPhone Application - Touching the Application Icon successfully launched the
program. Each button on the simple interface was tapped and worked. To access the
other areas of the system a button in the lower left corner opened the Web Browser
and allowed the system to be programmed through the Web Pages. The Application
gave a more seamless integration look and feel to the system as with the Web
Browser the user could see the processing activity.

5.2 Wi-Fi Connectivity

The CuHead WiShield V2 was successful and maintained a reliable TCP/IP Wi-Fi
connection. The Security modes tested were None and WAP2. The connection was
nearly instant using no security, however it took about 30 seconds to establish a
connection using WAP2. Both Adhoc and Infrastructure connection modes both
work ok as the IP addressing and settings could all be changed. The module did not
get hot. The red on board LED correctly indicated when it was working.

40

5.3 AsyncLabs Web Server

Keeping the Web Pages and Menu simple as well as limiting the amount of URL
string decoding kept the Web Server stable. After setting up the AsyncLabs Library
and using the Arduino IDE 0023 the Web Server was successfully implemented. If
any more system variables were used the Web Server was unstable. Even though the
MCU code compiled and downloaded correctly, no warnings were given. Much
functionality was rolled back to make the Web Server stable.

To process URL commands the code needed to test when the server response had
finished. Supporting documentation indicating how to do this did not work and when
the Library was opened the code had a comment noting that it was unfinished and not
coded. This may have been a regression bug in the Library as other online sources
indicated that it does work. The Library was the only version available on GitHub.
This needs further investigation.

It is critical that the Web Server be sorted out for further functionality to be extended
as the whole system relies on it.

5.4 IRMimic2 IR Learning and Sending

Testing of the IRMimic2 chip was successful on all the home media devices and air
conditioner except for the XBox360. This Xbox360 results is supported by Shirriff
(2009). The length of IR codes for an Xbox360 is longer than the codes for the tested
Sony Amplifier and TV. The IRMimic2 chip cannot store the longer Xbox360 IR
codes and this part of the project will need further work.

The IRMimic2 chip easily learnt IR signals. The LED indicator helped the user know
when the IR code had been learnt. There were a few minor attempts to improve the
learning of the volume commands as they were repeat codes. The user had to press
the sending volume code quickly and not hold the button down, that’s all. This
learning setup information would have to be added to the user manual. Overall the
IRMimic2 chip worked very well.

On power up some times the IRMimic2 chip would start up in learning mode and
overwrite a memory location. The possible cause is the SRAM limit on the Arduino,
because when functionality was reduced by reducing program variables the problem
seemed to disappear. Further investigation of the start up states of the Arduino pins is
required along with using some professional MCU IDE tools.

During testing the IR beam from the LED was not able to be viewed by the camera in
the iPhone. After some more research a different camera was used and the Tx LED
was viewed as working by an electronic digital SONY camera.

41

5.5 SPL Microphone Hardware

The added DC low pass filter stops the digital noise and the analogue circuit works
well. Tapping the microphone lit the green LED indicating the SPL threshold was
being reached. A louder volume of sound was adjusted coming from a Television
and then a music player. The SPL threshold was triggered and gain was about right.

5.6 Automatic Volume Control Algorithm

Prototype-1 was left running for about two hours listening to room SPL from
commercial Television showing advertising and also movie content. The volume up
command was sent allowing the volume to increase to the SPL threshold. Then the
volume down command was sent for sound levels above the SPL threshold. When
people entered the room to make conversation the volume automatically lowered as
people tried to talk above the sound of the Television. The volume lowered
automatically and conversations were at a more pleasant volume. Once the person
left the room the volume had to be manually increased. Overall the algorithm works
well.

5.7 Power System and Energy Usage

Power saving measures have not been implemented. The IRMimic2 has a built in
power saving mode enabled. Measured current was about 135 mA on average with
currents exceeding 160 mA when the Wi-Fi was communicating.

The Battery voltage is different based on cell chemistry either Alkaline 6 Volts or
NiMHi 5 Volts. Voltage to the positive power rail was slightly increased above 5
Volts but the positive supply rail did not increase. This may be due to the regulator
having some Zenner type protection also the 3.3 Volt rail was ok.

With the voltage and current measurements rough battery life calculations of
2450 mAh / 135 mA = about 18 hours. With the inclusion of sleep modes for both
the MCU and the Wi-Fi Shield this time could be greatly extended.

42

Chapter 6 - Conclusion and Further Work

6.1 Conclusion

Prototype-1 achieves the objectives with limited functionality in each area due to
Web Sever processing times and MCU 2K SRAM limit.

Achievement of Objectives,

 User interface both Web browser and iPhone Application
 User research undertaken
 Wi-Fi connectivity, connection modes, security modes
 Web Server
 IR code learning and sending
 Automatic volume control
 Battery powered
 Successful Testing demonstration

The outcomes of the objectives for the project have successfully proved concept and
further works continue to extend functionality.

User testing and demonstration of Prototype-1 has showed that consumer IR
electronic devices can be controlled by a web page or an application running on an
iPhone or iPad.

6.2 Future Work

It is critical that the Web Server be sorted out for further functionality to be extended
as the whole system relies on it.

To extend functionality the Arduino Mega 2560 is being used. It has 8kSRAM and
more digital I/O. This MCU upgrade should be enough to extend all functionality.

Development of the MCU software using the Arduino IDE version 023/1.1 is
increasingly difficult for this large project. Further MCU software development
needs to be in the more professional IDE, AVR Studio 6. Where memory usage can
be tracked and debugging features can be utilised with the use of an Atmel hardware
programmer and debugger.

Once the hardware functionality is acceptable, the Apple application can also be
enhanced to include icons and swipe controls with more advanced menus.

43

References

Apple, 2012a, Developer, Apple, Cupertino, viewed 21st May 2012,
<https://developer.apple.com/>

Apple, 2012b, iPhone 4 Tech Specs, Apple, Cupertino, viewed 14th Oct 2012,
< http://www.apple.com/iphone/iphone-4/specs.html/>

Apple, 2012c, iPad 2 Technical Specifications, Apple, Cupertino, viewed 14th Oct
2012, < http://www.apple.com/ipad/ipad-2/specs.html/>

Arduino, 2012, Arduino home web site, Arduino, Cocos (Keeling) Islands, viewed 19
May 2012, < http://www.arduino.cc/>

AsyncLabs, 2012a, AsyncLabs WiShield Library, AsyncLabs, viewed 2nd May 2012,
<http://asynclabs.com/wiki/index.php?title=WiShield_library>

AsyncLabs, 2012, AsyncLabs Wiki, AsyncLabs, viewed 14nd Oct 2012,
<http://asynclabs.com/wiki/index.php?title=AsyncLabsWiki>

Atmel, 2012a, Home > Products > More Products - Hardware Security Solutions -
Safeguarding Secrets at the Silicon Level, Atmel, San Jose, viewed 4th Sep 2012,
<http://www.atmel.com/products/other/default.aspx >

Atmel, 2012b, Home > CryptoAuthentication™ Product Uses, Atmel, San Jose,
viewed 4th Sep 2012, <http://www.atmel.com/Images/doc8663.pdf>

Atmel, 2012c, Home Page, Atmel, San Jose, viewed 21st May 2012,
<http://www.atmel.com/>

AVRFreaks, 2012, Home Page, viewed 21st May 2012, <http://www.avrfreaks.net/>

Bergmans, S 2012, SB-Projects: IR Control , Oisterwijk, Netherlands, updated 22
May 2011, viewed 10th May 2012,
<http://www.sbprojects.com/projects/ircontrol/index.php>

Billingsley, J 2006, Essentials of Mechatronics, Ch 14 The Human element, Wiley,
USA

Breen, C 2010, ‘iPhone IR remotes compared: Five remotes compared’, MacWorld,
Jul, 2010, viewed 22nd May 2012,
 <http://www.macworld.com/article/1151573/iphone_ir_remotes.html>

Codan, 2012, ‘Codan fights Chinese counterfeits’, Electronics News, Apr., p 6.

Craft, C & McElveen, J 2010, iPhone Game Development, Wiley, Indianapolis

CuteDigi, 2012, LinkSprite Cuhead Wi-Fi Shield V2.0 for Arduino, cutedigi,
Lognmont, viewed 4th May 2012,
 <http://www.cutedigi.com/wireless/Wi-Fi/linksprite-cuhead-Wi-Fi-shield-v2-0-for-
arduino.html>

44

Delabs, 2005, Schematics of delabs: Digital gain control of Opamp, viewed 5th Jul
2012, <http://schematics.dapj.com/2005/01/digital-gain-control-of-opamp.html>

DFRobot, 2012, Wi-Fi Shield V2.1 For Arduino (802.11 b/g/n), Pudong, China,
viewed 19 May 2012,
 <http://www.dfrobot.com/index.php?route=product/product&product_id=548>

ELE3305 Computer systems and communications protocols, Faculty of Engineering
and Surveying, 2009, University of Southern Queensland

EngBlaze, 2012, Tutorial: Using AVR Studio 5 with Arduino projects, EngBlaze,
viewed 09th May 2012, <http://www.engblaze.com/tutorial-using-avr-studio-5-with-
arduino-projects/>

Engineers Australia, 2012, Code of Ethics, Engineers Australia, viewed 18th May
2012, <http://www.engineersaustralia.org.au/sites/default/files/shado/About
Us/Overview/Governance/CodeOfEthics2000.pdf>

Everlight, 2004, Technical Data Sheet 5 mm Infrared LED, Everlight Electronics,
<www.everlight.com>

Freeman, A & Jones, A 2003, Programming .NET Security, O’Reilly, Sebastopol

Freetronics, 2012, Home Page, Freetronics, Croydon Hills, viewed 21st May 2012,
<http://www.freetronics.com/>

Grassi, M 2009a, ‘WIB Web server In a Box: part 1’, Silicon Chip, Nov., pp. 24-36.

Grassi, M 2009b, ‘WIB Web server In a Box: part 2’, Silicon Chip, Dec., pp. 82-95.

Grassi, M 2010a, ‘WIB Web server In a Box: part 3’, Silicon Chip, Jan., pp. 85-87.

Grassi, M 2010b, ‘WIB Web server In a Box: part 4’, Silicon Chip, Apr., pp. 20-25.

Grieb, B 2012, IRMimic2 Trainable IR Remote Control Transmitter with Macros,
Tauntek, San Diego, viewed 21st May 2012
<http://www.tauntek.com/irmimic2-learning-ir-remote-control-transmitter.htm>

Jaycar, 2010, Jaycar Electronics Catalogue 2010, p 73, Rydalmere

Lemay, L 2003, Sams Teach Yourself Web Publishing with HTML and XHTML in 21
Days, 4th edn Sams, Indianapolis

Leung, L 2012, ‘Crossing the development chasm’, Electronics News, Apr., pp 14-17.

Logitech, 2012, Logitech Harmony Link, Logitech Newark USA, viewed 13 May
2012, <http://www.logitech.com/en-us/1225/8439>

Microchip, 2012, Home Page, Chandler, Arizona, viewed 21st May 2012,
<http://www.microchip.com/>

45

Neamen, D 2007, Microelectronics Circuit Analysis and Design, 3rd edn, Mc Graw
Hill, New York

Shirriff, K 2009, Ken Shirriff's blog, viewed 18 March 2012,
<http://www.arcfn.com/search?q=IR>

Skorobogatov, S 2000, Copy Protection in Modern Microcontrollers, University of
Cambridge: Computer Laboratory, viewed 11 May 2012,
<http://www.cl.cam.ac.uk/~sps32/mcu_lock.html>

Skorobogatov, S 2004, Semi-invasive attacks .A new approach to hardware security
analysis, University of Cambridge: Computer Laboratory, viewed 11 May 2012,
<http://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-630.pdf>

STMicroelectronics, 2012, ‘Limiting MCU power consumption’, Electronics News,
Apr., pp 20-21.

Taitron, 2007, Taitron Components, 5 mm Infrared LED, Taitron, Valencia
 <http://taitroncomponents.com>

ThinkFlood, 2012a, About ThinkFlood, ThinkFlood Needham USA, viewed 19 May
2012, <http://thinkflood.com/company/about/>

ThinkFlood, 2012b, RedEye Products, ThinkFlood Needham USA, viewed 19 May
2012, <http://thinkflood.com/products/>

Thomas, T 2004, Network Security first-step, Cisco, Indianapolis

USQ, 2012, Human ethics clearance, University of Southern Queensland, viewed
18th May 2012, <http://www.usq.edu.au/research/ethics/human/clearance>

Vishay, 2003, IR Receiver Module for Remote Control Systems, viewed 24 Mar 2012,
<http://www.vishay.com/ir-receiver-modules/list/product-82135/>

Wang C, 2001, Infrared Remote Room Light Switch, Ch 2.1, University of
Queensland, Brisbane, viewed 14 Oct 2012,
<http://innovexpo.itee.uq.edu.au/2001/projects/s369729/thesis.pdf>

WHO, 2012, Media centre, Electromagnetic fields and public health, viewed 19th Oct
2012, <http://www.who.int/mediacentre/factsheets/fs304/en/index.html>

WIZnet, 2012, Home Page, Korea, viewed 6th March 2012,
<http://www.wiznet.co.kr/>

Yoshida J, 1012, Talk from the hip at Microchip, EETimes News & Analysis, viewed
13 May 2012, <http://www.eetimes.com/electronics-news/4372400/Talk-from-the-
hip-at-Microchip?cid=NL_EETimesDaily>

Zeldovich, K 2012, Zelscope Oscilloscope and spectrum analyser, viewed 21st May
2012, <http://www.zelscope.com/>

46

APPENDICES

APPENDIX A - Specification

47

University of Southern Queensland

FACULTY OF ENGINEERING AND SURVEYING

ENG4111/ENG4112 Research Project

PROJECT SPECIFICATION

FOR: John Palmer

TOPIC: WIRELESS LAN BASED INFRARED REMOTE CONTROL

SUPERVISOR: Dr. Alexander A. Kist

ENROLMENT: ENG4111 – S1, EXT, 2012

ENG4112 – S2, EXT, 2012

PROJECT AIM: Practically all consumer electronic devices in a household are

controlled via infrared remote controls. The aim of this project is
to design and build a device with which can act as a stationary
remote control. The device itself is controlled via a Web interface
or iPad/iPhone application.

PROGRAMME: Issue C, 4th April 2012

9. Research Infrared remote control communication, WLAN communication,
protocols and hardware.

10. Evaluate alternatives and propose an overall system design.
11. Design a basic prototype (proof of concept) and implement individual

building blocks (infrared interface, WLAN hardware, Web interface and an
iPad/iPhone application).

As time permits

12. Investigate remote control interfaces and user interaction.
13. Propose a new interface that enhances the user experience.
14. Evaluate the usability of the prototype device.
15. Design and implement an automatic volume gain control.
16. Optimise hardware power consumption.

AGREED: ______________________ ______________________

Date:

 / / 2012

 / / 2012

 John Palmer (student) Dr. Alexander A. Kist (supervisor)

48

APPENDIX B - Requirements

49

B.1) System Block Diagram

50

B.2) Main System Requirements

Table B.1 - Major System Requirements with Sub Requirement descriptions

Requirement
Number

Requirement Description and activities

1 Input A set action required by the user.
Investigate remote control user interaction.

2 Interface Investigate remote control interfaces.
Design an interface for the user to input a command to the
controller.
Propose a new interface that enhances the user experience.

3 WLAN
Network

Investigate WLAN protocols and hardware.

4 Controller The embedded hardware and software system design includes,
1. Main MCU
2. IR communications
3. Power system
4. WiFi hardware
5. Volume automatic control.

5 Development
Environment

All the tools required to build the system prototype.
1. Hardware
2. Apple platform
3. Microsoft platform

6 Controlled
Device

Any Infrared Remote Controllable components of the consumers
home media system or other device.

51

B.3) System Requirements and Verification Matrix

Table B.2 - System Requirements and Verification Matrix

R
eq

u
ir

em
en

t

D
es

cr
ip

ti
on

D
er

iv
ed

 R

eq
u

ir
em

en
t

D
es

cr
ip

ti
on

V
er

if
ic

at
io

n

 M
et

ho
d

C
om

p
lia

n
ce

R1 User commands

 R1-1.1 Select TV Inspection N/A

 R1-1.2 Select DVD Inspection N/A

 R1-1.3 Select Air Con Inspection N/A

 R1-1.4 Select Light Inspection N/A

 R1-2.1 TV volume up Inspection Pass

 R1-2.2 TV volume down Inspection Pass

 R1-2.3 TV volume mute Inspection Tested ok

 R1-2.3 TV channel up Inspection Pass

 R1-2.3 TV channel down Inspection Pass

 R1-3.1 DVD play Inspection Pass

 R1-3.2 DVD stop Inspection Pass

 R1-4.1 A/C on Inspection Tested ok

 R1-4.2 A/C off Inspection Tested ok

 R1-5.1 Light on Inspection N/A

 R1-5.2 Light off Inspection N/A

R2 Apple
iPhone / iPad

 R2-1 Apple App Testing Pass

 R2-2 Web browser Inspection Pass

 R2-2.1 Web page Testing Pass

 R2-3 HTTP Testing Pass

 R2-4 WiFi Rx / Tx Inspection -
connectivity

Pass

 R2-5 USB Inspection -
connectivity

Pass

R3 Network

 R3-1 WLAN Inspection Pass

 R3-1.1 Apple iPhone / iPad Inspection iPhone
Pass

 R3-1.2 Apple iMac Inspection Pass

 R3-1.3 Microsoft W7 PC Inspection Pass

 R3-1.4 Arduino Inspection Pass

 R3-1.5 Internet Inspection Pass

 R3-2 Internet Inspection Pass

R4 Controller testing -
percussion,
temperature,

52

light, EMI

 R4-1 microprocessor 1
Arduino (ATMEL AVR)

Inspection Pass

 R4-1.1 USB to UART Testing -
connectivity

Pass

 R4-1.2 Serial link to WiFi shield Testing -
connectivity

Pass

 R4-1.3 MCU interface Testing -
connectivity

Pass

 R4-1.4 Memory Tested Pass

 R4-1.4 Arduino OS Tested Pass

 R4-1.5 Web Server Tested Pass

 R4-2 microprocessor 2

IRMimic (Microchip
PIC)

 Tested Pass

 R4-2.1 R4-2.1 Infrared
Transceiver firmware

 Tested Pass

 R4-2.2 Digital In Tested Pass

 R4-2.3 Digital Out Tested Pass

 R4-3 Battery Testing Pass

 R4-4 WiFi Rx Tx Testing, self

check
Pass

 R4-4.1 WiFi firmware Inspection,
Check firmware
version

Pass

 R4-4.2 jumper Inspection Pass

 R4-4.3 WiFi settings Inspection,
Check all
parameters are
saved

Pass

 R4-5 IR Rx Testing, check bit

stream
Pass

 R4-6 IR Tx Testing, by video

camera
Pass

R5 Development
 Environment

 R5-1 Hardware development Tested Pass

 R5-1.1 Tools Tested Pass

 R5-1.2 Test Equipment Tested Pass

 R5-2 Software development Tested Pass

 R5-2.1 Apple Tested Pass

 R5-2.1.1 USB Tested Pass

 R5-
2.1.1.1

USB cable Tested Pass

 R5-2.1.2 LAN Tested Pass

 R5-2.1.3 Xcode Tested Pass

53

 R5-2.1.4 iTunes Tested Pass

 R5-2.2 Microsoft Tested Pass

 R5-2.2.1 USB Tested Pass

 R5-
2.2.1.1 USB cable

 Tested Pass

 R5-2.2.2 WiFi Tested Pass

 R5-2.2.3 Arduino Tested Pass

 R5-2.2.4 Terminal Tested Pass

 R5-2.2.5 WizNet Tested Pass

R6 Controlled
Devices

 R6-1 TV Testing - user
command
response

Pass

 R6-2 DVD Testing - user
command
response

Pass on
DVD
played

Failed on
Xbox 360

DVD
player

 R6-3 A/C Testing - user

command
response

Pass

 R6-4 Light Testing - user
command
response

N/A

54

APPENDIX C - Safety and Ethics

55

C.1) Risk Assessment

There are a number of Hazards identified with the construction of this project.

 Electrical Power Mains via DC adaptor and batteries and their charging.
 Battery explosion / fire.
 Heat, Soldering.
 RF energy from the WiFi Module.
 Electrostatic discharge.
 Chemical, solder fumes, paint, plastics.
 Eating or chocking of packaging materials and small parts by children.
 Asphyxiation so plastic packaging bags needs holes.
 Soft tissue damage from cutting and drilling.
 Repetitive strain from typing and using hand tools.

These have been evaluated with controls in the table below.

Table C.1 - Hazard, Risk Identification, Evaluation and Risk Controls

Hazard Risk

likelihood
Risk
Exposure

Risk
Consequence

Risk
Control

Electrical Very rarely Very slight Possible death Isolation
Gloves

Heat Frequently Slight Skin and eye
injury

Isolation
Gloves
Protective eyewear

RF energy Frequently Low Skin cell damage Isolation
Gloves

Electrostatic
discharge

Significant Occasionally Shock and
Component
damage

Anti-static mat
& wrist strap

Chemical
Solder and
cleaners

Slight Occasionally Skin and eye
injury

Good ventilation
Gloves
Protective eyewear

Drill Slight Occasionally Skin and eye
injury

Isolation,
use guards
Gloves
Protective eyewear

Cutting wire Significant Regularly Skin and eye
injury

Gloves
Protective eyewear

Chocking Very slight Very rarely Possible death or
brain damage

Reduce and
eliminate small
parts, bags.
Give Warnings

Asphyxiation Very slight Very rarely Possible death or
brain damage

All bags need
holes and Warning
labels

56

C.2) Assessment of Consequential Effects

Consequential effects

Some possible effects could be,

 Lowering level of physical exercise increasing the risk of weight gain and
associated health problems.

 Repetitive muscular strain from overuse.
 The changing of TV viewing content and volume by station owners.
 Security issues of unauthorised access to control equipment.

WLAN RF exposure limits

‘Considering the very low exposure levels and research results collected to date,
there is no convincing scientific evidence that the weak RF signals from base
stations and wireless networks cause adverse health effects’ (WHO, 2012).

Ethical responsibility

To perform any user surveys or observations requires approval from the USQ Ethics
Committee (USQ, 2012). This ensures approval by participates, their safety and a
level of separation such that no links to any persons involved in users surveys can be
made.

Using Engineers Australia code of ethics (Engineers Australia, 2012) and being
responsible and of benefit to the community and produce a safe design, which leads
to considerations for this project like,

 Make people’s lives and the environment safe.
 Assist people with mobility problems.
 Consider safety issues like, Risk of fire from battery recharging.
 Eliminate Chemical exposure, plastics, Lead free, and look for RoHS

compliance.
 Take care in the final product shape. Remove sharp edges or any figure

jamming resulting in soft tissue damage
 Manage small part safety s like case screws and batteries
 Reduce any eye strain when viewing the controls.
 Manage end of life disposal of electronics on the environment, so choose

recyclable components.

57

APPENDIX D - Focus Group Research

58

D.1) Human Ethics Committee Application

59

60

61

62

63

64

65

66

67

68

69

70

D.2) Human Ethics Committee Approval

71

D.3) Focus Group questions and user testing requirements

University of Southern Queensland
Faculty of Engineering and Surveying

Wireless LAN Based Infrared Remote Control

Ethics Approval No: H12REA143

Researcher: John M Palmer
Date : 29 / 08 / 2012

1) Discussion group

 General discussion of the topics,

 The number of remote controls users have and what devices they control.
 The use of all-in-one remotes, their setting up and purchase costs.
 Any problems or frustration in using remote controls.
 The commands buttons or actions that are used the most.
 Any experience in the use of Wireless LAN or computer networking.
 Questions / other points of interest

2) User testing

User testing of the device design by end users. This is to include the use of an iPhone
and an iPad with the following activities,

 Un-boxing of device.
 Setup of the device connectivity.
 Teaching the device to learn commands.
 General use of the programmed device and user experience.
 Questions and feedback

OUTCOME

Action points to refine and improve the designs user interface and functionality.

72

D.4) Results from Focus Group

Wireless LAN based Infrared remote Control

Ethics Approval No: H12REA143

Date: 29-08-2012

Response to Questions

 Users generally have a few Remote Controls and are usually controlling a TV,
amplifier and content.

 Most users have heard of all-in-one universal remote controls. Some liked
them others hated them and gave them away. The problem was that they were
too hard to program and have too many buttons or functions.

 Users expect the cost of Remote Controls to be less than $100 to $40 AUS
based on features.

 Users find media Infrared Remote Controls have too many buttons, generally
causing confusion when trying to quickly find a function like ‘Stop’. Users
however still want to access all the features of their consumer devices.

 Some buttons cannot be seen at night or are hard to read especially in low
light.

 The most frequently used commands are volume and channel functions with
generally 2-3 other special functions.

 Users don’t like dealing with batteries.
 Users don’t like things getting in the way blocking the IR beam for example,

people and cabinet glass doors
 Users have trouble finding their remote controls.
 Users have a mixed experience in WLAN computer networking. They have

common connection problems like the connection is saying it is connected but
the connection is not working. They want a single button fix and a
connected/not connected indicator.

User testing results

 Users said the Prototype was a bit big and users requested a smaller size. It
was explained that a final version would be a similar size to current Remote
Controls and they were happy with that.

 The setup and connection through the iPhone was demonstrated and users
were happy with the simple WLAN connection.

 Users liked the simple and easy Infrared code learning function for single
commands.

 Users liked the simple iPhone interface and found the web page text a bit
small. It was explained to the users that the web page should be like the
iPhone app but is a limitation of the Microcontroller MCU and would be
enhanced in a final design.

73

D.5) Progress and Final Report

74

75

APPENDIX E - Project Management Plan PMP

76

E.1) PMP Methodology

Project planning assists in the full completion of the project by managing time,
resources, and activities.

Early Resource planning helps manage time and mitigate risks. Parts have been
ordered early as availability and delivery times are a risk.

 Hardware is to be validated and ordered 30 days in advance.
 Software testing and licensing is to be paid and activated early.

Timeline management is planned via a project Gantt chart indicating approximately
when and how much time is required for Tasks. Time for testing, fault analysis,
fixing hardware and MCU code, and documenting could take up a large amount of
the timeline.

Project risks are identified and risk mitigation and actions are noted.

E.2) Resource Planning

 (R5-1) Hardware

 CRO/DSO or PC audio scope, Zelscope on Microsoft Windows XP
 multimeter
 soldering iron
 hand tools
 Arduino prototyping boards and Shields
 components
 4 x AA battery holder and batteries
 solder exhaust extraction
 lamp
 magnifying glass

 (R5-2) Apple iMac platform

iDevice user interface,

 Objective C syntax text
 iPhone game development text
 Apple iMac with Xcode IDE and certificate keys
 iPhone, iPad
 USB software transfer cable

77

 (R5-3) Microsoft Windows XP/W7 Platform

Arduino MCU board,

 MS Windows PC XP, W7
 AVR studio 5, 5.1, 6 needs Microsoft Windows and Microsoft Visual Studio
 Arduino Microsoft Windows IDE 1.0
 Serial terminal, Putty
 USB to mini USB software transfer cable

Arduino WiFi Shield - setup and Serial programming link requires,

 Arduino board running sample code file Blink containing serial UART code.
 USB to mini USB cable
 Serial link header pins 0 RX and 1 TX availability
 jumper pins on WiFi Shield
 WiFi Shield configuration program running on Microsoft Windows and

manual

78

E.3) Project Gantt Chart

Table E.1 - Project Gantt Chart

79

E.4) Project Risks

Project risks in not completing or delaying project.

Table E.2 - Project Risks and Mitigation Actions

Id Risk
Description

Impact Likelihood
(Low
/Medium
/High)

Mitigation Actions

Action

1 Personal Lost
Time, illness

Delay Low Schedule slack

Contact examiner if
bad

2 Failure of
Hardware
Software

Delay Medium Backup data
Have hardware spare

Reassess alternatives

3 Skills shortfall Delay Medium Research well.
Seek help from
supervisor.

Seek help from
supervisor.

4 Parts
availability
problems

Delay High Order early. Schedule
hardware design early.

Reassess alternatives

5 Spend more
time on task
than allocated.

Delay,
Reduced time
budget

Medium Reassess Task and
look for possible
alternatives.

Adjust other task
times.

80

APPENDIX F - Source Code

81

F.1) Code Modification Note

Code has been updated with the Authors initials //JMP, such that existing example
code is used that comes with the IDE’s or Libraries and its content is property of the
original author or IDE.

To assist in debugging in the Arduino MCU code, later changes for each line of code
has been marked with a Version number to help locate bugs.

In the Apple code listing some changes have been highlighted.

F.2) Main Arduino MCU

F.2.1) IR Testing

/*
 * IRrecord: record and play back IR signals as a minimal
 * An IR detector/demodulator must be connected to the input
RECV_PIN.
 * An IR LED must be connected to the output PWM pin 3.
 * A button must be connected to the input BUTTON_PIN; this is the
 * send button.
 * A visible LED can be connected to STATUS_PIN to provide status.
 *
 * The logic is:
 * If the button is pressed, send the IR code.
 * If an IR code is received, record it.
 *
 * Version 0.11 September, 2009
 * Copyright 2009 Ken Shirriff
 * http://arcfn.com
 */

// Code modified by john.palmer.eng@gmail.com with date time stamp
and comments.
//
// I Have had to use IDE023 to get libraries to work and code to
compile.
// 2012.04.15.16:25.SU -- testing Rx and Tx for W7HP media player
remote.
// The system is not working and displaye RC6: 800F046E for 'play
button'
// I also tested a SONY amplifier, SONY TV, Xbox360 but did not
work.
//
// can see IR LED Tx in video camera ok.
// check circuit details, IR LED current about 94mA (5V_vcc-
1.2V_IRled-0.7V_TRvce)/33ohm
//
// Using a photodiode and transimpedance op-amp with 1 V p-p output
// and Zelscope on MS XP this code is not decoding the Rx stream
corectly into HEX.

82

//
// TRY, look at A/D sampling time in
<IRRemote.h>,<IRRemoteInt.h>,<IRRemote.cpp>
// TRY, changing pulse length and tolerance constants.
// TRY, adjusting the Tx IR LED carrier frequency.
//
// JMP 2012.04.15.19:45.SUN, force raw "Tx codeType = -1;" works,
good result
// JMP 2012.04.15.20:04.SUN, when set to 36 kHz, pulses later in the
train fail.
// JMP 2012.04.15.20:04.SUN, worked at 40 kHz, exact match to
waveform
// JMP 2012.04.15.20:24.SUN, sucessful start / stop MS Win7 media
player
// JMP 2012.04.16.07:33.MON, migrate code from IDE023 to IDE1.0
// move IDE1.0 folders to root path to shorted length of compile
error messages.
// change #include <WProgram.h> to #include <Arduino.h> in
IRRemoteInt.h,
// now compiles OK in IDE1.0

#include <IRremote.h>

int RECV_PIN = 5; //JMP 2012.04.15.16:33.SUN , updated
int BUTTON_PIN = 6; //JMP 2012.04.15.16:33.SUN , updated
int STATUS_PIN = 7; //JMP 2012.04.15.16:34.SUN , updated

IRrecv irrecv(RECV_PIN);
IRsend irsend;

decode_results results;

void setup()
{
 Serial.begin(9600);
 Serial.println("Started IRmod");//JMP 2012.04.15.16:25.SUN ,added
 irrecv.enableIRIn(); // Start the receiver
 pinMode(BUTTON_PIN, INPUT);
 pinMode(STATUS_PIN, OUTPUT);
}

// Storage for the recorded code
int codeType = -1; // The type of code
unsigned long codeValue; // The code value if not raw
unsigned int rawCodes[RAWBUF]; // The durations if raw
int codeLen; // The length of the code
int toggle = 0; // The RC5/6 toggle state

// Stores the code for later playback
// Most of this code is just logging
void storeCode(decode_results *results) {
 codeType = results->decode_type;

//**
*
 codeType = -1; //JMP 2012.04.15.19:45.SUN ,added debug FORCE RAW
MODE

//**
*
 int count = results->rawlen;
 if (codeType == UNKNOWN) {

83

 //Serial.println("Received unknown code, saving as raw");
 Serial.println("JMP saving as raw"); //JMP 2012.04.15.18:39.SUN
,added
 codeLen = results->rawlen - 1;
 // To store raw codes:
 // Drop first value (gap)
 // Convert from ticks to microseconds
 // Tweak marks shorter, and spaces longer to cancel out IR
receiver distortion
 for (int i = 1; i <= codeLen; i++) {
 if (i % 2) {
 // Mark
 rawCodes[i - 1] = results->rawbuf[i]*USECPERTICK -
MARK_EXCESS;
 Serial.print(" m");
 }
 else {
 // Space
 rawCodes[i - 1] = results->rawbuf[i]*USECPERTICK +
MARK_EXCESS;
 Serial.print(" s");
 }
 Serial.print(rawCodes[i - 1], DEC);
 }
 Serial.println("");
 }
 else {
 if (codeType == NEC) {
 Serial.print("Received NEC: ");
 if (results->value == REPEAT) {
 // Don't record a NEC repeat value as that's useless.
 Serial.println("repeat; ignoring.");
 return;
 }
 }
 else if (codeType == SONY) {
 Serial.print("Received SONY: ");
 }
 else if (codeType == RC5) {
 Serial.print("Received RC5: ");
 }
 else if (codeType == RC6) {
 Serial.print("Received RC6: ");
 }
 else {
 Serial.print("Unexpected codeType ");
 Serial.print(codeType, DEC);
 Serial.println("");
 }
 Serial.println(results->value, HEX);
 codeValue = results->value;
 codeLen = results->bits;
 }
}

void sendCode(int repeat) {
 if (codeType == NEC) {
 if (repeat) {
 irsend.sendNEC(REPEAT, codeLen);
 Serial.println("Sent NEC repeat");
 }
 else {
 irsend.sendNEC(codeValue, codeLen);

84

 Serial.print("Sent NEC ");
 Serial.println(codeValue, HEX);
 }
 }
 else if (codeType == SONY) {
 irsend.sendSony(codeValue, codeLen);
 Serial.print("Sent Sony ");
 Serial.println(codeValue, HEX);
 }
 else if (codeType == RC5 || codeType == RC6) {
 if (!repeat) {
 // Flip the toggle bit for a new button press
 toggle = 1 - toggle;
 }
 // Put the toggle bit into the code to send
 codeValue = codeValue & ~(1 << (codeLen - 1));
 codeValue = codeValue | (toggle << (codeLen - 1));
 if (codeType == RC5) {
 Serial.print("Sent RC5 ");
 Serial.println(codeValue, HEX);
 irsend.sendRC5(codeValue, codeLen);
 }
 else {
 irsend.sendRC6(codeValue, codeLen);
 Serial.print("Sent RC6 ");
 Serial.println(codeValue, HEX);
 }
 }
 else if (codeType == UNKNOWN /* i.e. raw */) {
 // Assume 38 KHz
 //irsend.sendRaw(rawCodes, codeLen, 38);
 irsend.sendRaw(rawCodes, codeLen, 40); //JMP
2012.04.15.20:04.SUN, modify
 // JMP 2012.04.15.20:04.SUN, when set to 36 kHz, pulses later in
the train fail.
 // JMP 2012.04.15.20:04.SUN, worked at 40 kHz, exact match to
waveform
 // JMP 2012.04.15.20:24.SUN, sucessful start / stop Win media
player
 Serial.println("Sent raw");
 }

}

int lastButtonState;

void loop() {
 // If button pressed, send the code.
 int buttonState = digitalRead(BUTTON_PIN);
 if (lastButtonState == HIGH && buttonState == LOW) {
 Serial.println("Released");
 Serial.println("..."); //JMP 2012.04.15.16:40.SUN , added
 irrecv.enableIRIn(); // Re-enable receiver
 }

 if (buttonState) {
 Serial.println("Pressed, sending");
 digitalWrite(STATUS_PIN, HIGH);
 sendCode(lastButtonState == buttonState);
 digitalWrite(STATUS_PIN, LOW);
 delay(50); // Wait a bit between retransmissions
 }
 else if (irrecv.decode(&results)) {

85

 digitalWrite(STATUS_PIN, HIGH);
 storeCode(&results);
 irrecv.resume(); // resume receiver
 digitalWrite(STATUS_PIN, LOW);
 }
 lastButtonState = buttonState;
}

F.2.2) Main Arduino MCU
Note: the font has been changed to fit more code per line

// File: pde_SServer_v[ersion number]
// IDE: Arduino 0023 (needs this for the CuHead WiFi Shield, NOTE: unsuccessful
testing in IDE 1.0)
// MCU: Arduino Uno (AVR328p 16MHz)
// Shield 1: CuHead version 2, WiFi
// Shield 2: IRMimic2, IR Learning remote control IC 57 channel
// Project Name: Wireless LAN Infrared Remote Control
// Author: John Palmer (john.palmer.eng@gmail.com)
// Date: 2012
//--
/*
 * This software controls the Wireless LAN Universal Infrared Remote Control
 * The webserver uses the ASYNCLABS WiServer.h Library
 *
 * Program overview is,
 *
 * Hardware I/O setup
 * settings read from EEPROM / Factory settings (ad hoc mode)
 * server started
 * web page served
 * URL decoded
 * - IR actions performed
 * - edit settings
 * - return URL error
 * MIC auto volume levels adjusted
 *
 */
//--
// VER 0 - Initial web server work done on EtherTen LAN Arduino board
// for learning and basic URL string decoding done.
// Look at different example included with WiFi module.
// Determine which exapmle is best to work design from,
// need server and client capability, not all examples indicate this
// all examples tested and include file modified to sute
// VER 1 - investivagte / design web site structure
// VER 2 - investivagte / extend web site structure
// VER 3 - investigate number of packets sent to serve a web page
// VER 4 - explore PWM sound, blink LED from function IRcmd()

86

// VER 5 - trial web page submit design
// VER 6 - infrastructure mode, try HTTP submitt POST and FORM, bugs
// VER 7 - reset back to a simple HTML web page
// fit web pages to native iPhone resolution
// VER 8 - background colours, test HTML buttons and WiServer variables
// VER 9 - digitalWrite(LED, HIGH) testing, SEND & LEARN web page
// VER 10 - test SEND & LEARN on test visiable LEDS
// VER 11 - expand URL decode functionality
// add URL decode ERROR web page
// VER 12 - test return types on sendMyPage()
// VER 13 - troubble with adding more URL links, system unstable
// VER 14 - testing URL buttons
// VER 15 - move HTML to PROGMEM , stability restored!
// VER 16 - try global gURL, and string usage
// fix bug doubble blink, which is multiple page sends
// http://asynclabs.com/forums/viewtopic.php?f=19&t=263&start=10
// if((0==(int)uip_conn->appstate.ackedCount) && (0==(int)uip_conn-
>appstate.sentCount))
// test WiServer.isActive/sendInProgress etc
// VER 17 - Need to improve performace, try gULR decode outside sendMyPage() in
loop()
// VER 18 - add Serial.println("send webpage pkt ..."); helps debug alot
// VER 19 - add hardware
// add beep()
// add IRMImic2 select code IR_CSEL(), IR_LEARN(), IR_SEND(), setup()
// VER 20 - remove sendMyPage() URL decode calls and put them in function call
from loop()
// VER 21 - move hardware pin 2 CSEL to pin 8, as cuHead INT0 uses pin 2
// server connection now closes correctly.
// VER 22 - remove gURLdecode call from loop() use URL decode in sendMyPage()
// makes no difference, cannot SCEL IRMimic2 location
// VER 23 - fix SCEL if() syntax, !!!!! IT NOW WORKS !!!! save THIS file !!!!
// VER 24 - extend more functionality, 3 button
// VER 25 - add capacity for 7 buttons, to test extra MCU load, MCU load OK
// tested and works on portable DVD player, SONY TV, SONY AMP, PVR
// not working with XBOX 360 or HP-W7 notebook, this might be IR data not
CIR standards
// VER 26 - EXTRA BACKUP
// VER 27 - URL POST, NG
// VER 28 - add SETTINGS page, not finished
// add delay and second function call to VOLUME IR_SEND()
// VER 29 - Add EEPROM reset to factory settings, limited functionality
// iPhone cannot see wifi?, must be a data type bug.
// VER 30 - integrate basic MIC code
// VER 31 - extend global ip address into HTML code
// VER 32 - extend global ip address into HTML code for SEND page
// VER 33 - FAILS, web server crashes
// VER 32T - REGRESSION - back from ver 33 seems global ip for LERN has
consumed
// too much SRAM. comment out global ip HTML from LEARN
// - adding timeout code for LEARN, tested OK

87

// VER 33T - add timeout code for SEND, tested OK
// VER 34 - FULL SYSTEM TESTING, WEB and iPhone app, PASS OK
// VER 35 - automatic volume down, tested OK
// VER 36 - automatic volume down and up, hysteresis loop testing OK
// VER 37 - try delay on volume up
// VER 37M - BRANCH CODE TO RUN ON MEGA2560
// VER 38M - uncomment soft IP for setting menu, test on 8k SRAM MEGA2560
//--
// known bugs
//
// IRMimic2 starts up in learn mode sometimes
// have reset lines in home web page call but this is not a real fix
// need to determine startup states
//
// web server sometimes does not perform, recompile and upload
// need to migrate code to AVR studio 6 and check SRAM usage
//--
// TODO
// finish factory settings
// writeSettings()
// remove unused variables
//--
#include <WiServer.h>
#include <EEPROM.h> //JMP- used to store settings

#define WIRELESS_MODE_INFRA 1 //JMP
#define WIRELESS_MODE_ADHOC 2 //JMP

// Wireless configuration parameters --
unsigned char local_ip[] = {192,168,1,2}; // IP address of WiShield
unsigned char gateway_ip[] = {192,168,1,1}; // router or gateway IP address
unsigned char subnet_mask[] = {255,255,255,0}; // subnet mask for the local
network
const prog_char ssid[] PROGMEM = {"IRMCU"}; // max 32 bytes
//const prog_char ssid[] PROGMEM = {"ASYNCLABS"}; // max 32
bytes
unsigned char security_type = 0; // 0 - open; 1 - WEP; 2 - WPA; 3 - WPA2

//--- added by JOHN PALMER --------------------------------------
//---adhoc settings on iphone, used to access settings web page---
// ip address = static
// ip address = 192.168.1.3
// sun net mask = 255.255.255.0
// router =
// DNS =
// Search Domains =
// HTTP Proxy = Off
//--

88

// WPA/WPA2 passphrase
const prog_char security_passphrase[] PROGMEM = {"12345678"}; // max 64
characters

// WEP 128-bit keys
// sample HEX keys
prog_uchar wep_keys[] PROGMEM = { 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, // Key 0
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, // Key 1
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, // Key 2
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00 // Key 3
 };

// setup the wireless mode
// infrastructure - connect to AP
// adhoc - connect to another WiFi device
//unsigned char wireless_mode = WIRELESS_MODE_INFRA;
//unsigned char wireless_mode = WIRELESS_MODE_ADHOC;
//unsigned char wireless_mode = 1; //WIRELESS_MODE_INFRA; //JMP
unsigned char wireless_mode = 2; //WIRELESS_MODE_ADHOC; //JMP

unsigned char ssid_len;
unsigned char security_passphrase_len;
// End of wireless configuration parameters ------------------------
//##
//##

//EEPROM locations that have not been written have a value of 255.
//EEPROM size for Uno ATmega328p is 1K
//EEPROM size for Mega526 is 4K

//---reset to factory default on startup
int pin_button1 = 14; //JMP//
int button1 = 0; //JMP// button = 0 , not pressed

//---used for HTML webpage links
String local_ip_str = "192.168.001.002";
//char itoa_buf[12];//size 12 = 32bit(-2147483648\0), int to ascii, standard Arduino
function
 //itoa(number_to_convert,buffer,base10);//usage
//---timeout SEND n LEARN
int IR_timeout = 40; // = 40*100 = 4000 mS try about 4 Seconds
int IR_timeout_c = 0; // counter
//boolean IR_timeout_r = 0;// is running

//---automatic volume

89

int IR_SEND_called = 0;
int vol_max = 3;//--- this is the number of automatic voumle downs and ups alouded
int vol_position = vol_max;//volume position set to, try 3
int vol_timeout = 60;//wait time before adjusting the volume
int vol_timeout_c = 0;//counter

//---test variables-----
//---char datatype it encodes numbers from -128 to 127
//---unsigned char datatype encodes numbers from 0 to 255
//---byte stores an 8-bit unsigned number, from 0 to 255
//---int stores a 2 byte value -32768 to 32767

//int LEDpin = 9; //JMP//
//int Gpin = 5; //JMP//
//int Rpin = 7; //JMP//

//char buffer[30] = "GET /cmd/par1/par2/ HTTP/1.1"; //JMP//
//char gURL[] = {"123456789"}; //JMP// globalURL
//int sendMyPage_START = 0; //JMP//
//int sendMyPage_END = 0; //JMP//
//int jmp_WPS = 1; //JMP// jmp_WPS = 1; //no URL decoding
//int jmp_WPS_S = 0; //JMP//start
//int jmp_WPS_E = 0; //JMP//end
//int lastTYP = 0; //JMP//
//int lastSEL = 0; //JMP//
//-----------------------

//---IRMimic2---

#define IRMimic2_LRNRQ LOW
#define IRMimic2_SNDRQ LOW

#define pin_LED_PIEZO 9
//#define pin_TEMP_HUMIDITY 14 // now use for reset factory default
#define pin_MIC_SPL 15

#define pin_IRMimic2_LRNERR 16 //INPUT, High level = an error while learning
#define pin_IRMimic2_RDY 17 //INPUT, Hign level = chip is finished previous
operation
#define pin_IRMimic2_SNDRQ 18 //OUTPUT,
#define pin_IRMimic2_LRNRQ 19 //OUTPUT, check if LRNERR is HIGH, if it is
.....
 // make LRNRQ = HIGH (learn), then RDY = LOW, LED
will light

#define pin_IRMimic2_CSEL_0 8 //2 //LSB, least significant bit
#define pin_IRMimic2_CSEL_1 3 //3
#define pin_IRMimic2_CSEL_2 4 //4
#define pin_IRMimic2_CSEL_3 5 //5
#define pin_IRMimic2_CSEL_4 6 //6

90

#define pin_IRMimic2_CSEL_5 7 //7 //MSB, most siginificent bit

int CSEL = 0; // memory 0-56
char cmd = 'S'; // S=send (default), L=learn

//--- HTML web page code
//--- web page constants in AVR flash memory
const prog_char web_START[] PROGMEM = {"<!DOCTYPE html><html>"};
const prog_char web_blue[] PROGMEM = {"<body bgcolor=""#00FFFF"">"};
//blue
const prog_char web_orange[] PROGMEM = {"<body bgcolor=""#FF9900"">"};
//orange
const prog_char web_green[] PROGMEM = {"<body bgcolor=""#00FF00"">"};
//green
const prog_char web_Awidth[] PROGMEM = {"<meta name=""viewport""
content=""width=device-width"" />"};

//const prog_char web_SEND[] PROGMEM = {"- WiFi IR MCU - SEND -
<input type=""button"" value=""LEARN""
onclick=""location.href='http://192.168.1.2/L'""><input type=""button""
value=""SET"" onclick=""location.href='http://192.168.1.2/ST'"">"};
const prog_char web_SEND1[] PROGMEM = {"- WiFi IR MCU - SEND -
<input type=""button"" value=""LEARN"" onclick=""location.href='http://"};
const prog_char web_SEND2[] PROGMEM = {"/L'"">"};
const prog_char web_SEND3[] PROGMEM = {"<input type=""button""
value=""SET"" onclick=""location.href='http://"};
const prog_char web_SEND4[] PROGMEM = {"/ST'"">"}; //CANNOT USE 'SET'
as this is a web browser variable

//const prog_char web_LEARN[] PROGMEM = {"- WiFi IR MCU - LEARN -
<input type=""button"" value=""EXIT""
onclick=""location.href='http://192.168.1.2/'"">"};
const prog_char web_LEARN1[] PROGMEM = {"- WiFi IR MCU - LEARN -
<input type=""button"" value=""EXIT"" onclick=""location.href='http://"};
const prog_char web_LEARN2[] PROGMEM = {"/'"">"};

//const prog_char web_MODE[] PROGMEM = {"- WiFi IR MCU - MODE -
<input type=""button"" value=""SETTINGS""
onclick=""location.href='http://192.168.1.2/ST'"">"};

//const prog_char web_SETTINGS[] PROGMEM = {"- WiFi IR MCU -
SETTINGS - <input type=""button"" value=""EXIT""
onclick=""location.href='http://192.168.1.2/'"">"};
const prog_char web_SETTINGS1[] PROGMEM = {"- WiFi IR MCU -
SETTINGS - <input type=""button"" value=""EXIT""
onclick=""location.href='http://"};
const prog_char web_SETTINGS2[] PROGMEM = {"/'"">"};

const prog_char web_IPV[] PROGMEM = {"<p>- IPV4 / IPV6 </p>"};

91

const prog_char web_IP1[] PROGMEM = {"<p> old IP = "}; //
WiServer.print(local_ip_str); //VER 32//
const prog_char web_IP2[] PROGMEM = {"</p>"};
const prog_char web_box0[] PROGMEM = {"<p> new IP = "};
const prog_char web_box1[] PROGMEM = {"xxx."};
const prog_char web_box2[] PROGMEM = {"xxx."};
const prog_char web_box3[] PROGMEM = {"xxx."};
const prog_char web_box4[] PROGMEM = {"xxx</p>"};
const prog_char web_WLANmode[] PROGMEM = {"<p>- AD HOC /
INFRASTRUCTURE </p>"};
const prog_char web_SECURITY[] PROGMEM = {"<p>- SECURITY
0/1/2/3 </p>"};
const prog_char web_KEY[] PROGMEM = {"<p>- KEY = 123456 </p>"};

//const prog_char webBTN_EXIT[] PROGMEM = {"<input type=""button""
value=""EXIT"" onclick=""location.href='http://192.168.1.2/'"">"};
const prog_char webBTN_EXIT1[] PROGMEM = {"<input type=""button""
value=""EXIT"" onclick=""location.href='http://"};
const prog_char webBTN_EXIT2[] PROGMEM = {"/'"">"};

//const prog_char webBTN_S1[] PROGMEM = {"<p><input type=""button""
value=""S1-VOL-UP"" onclick=""location.href='http://192.168.1.2/S1'""></p>"};
//const prog_char webBTN_S2[] PROGMEM = {"<p><input type=""button""
value=""S2-VOL-DOWN""
onclick=""location.href='http://192.168.1.2/S2'""></p>"};
//const prog_char webBTN_S3[] PROGMEM = {"<p><input type=""button""
value=""S3-PLAY-STOP""
onclick=""location.href='http://192.168.1.2/S3'""></p>"};
//const prog_char webBTN_S4[] PROGMEM = {"<p><input type=""button""
value=""S4-FORWARD"" onclick=""location.href='http://192.168.1.2/S4'""></p>"};
//const prog_char webBTN_S5[] PROGMEM = {"<p><input type=""button""
value=""S5-BACK"" onclick=""location.href='http://192.168.1.2/S5'""></p>"};
//const prog_char webBTN_S6[] PROGMEM = {"<p><input type=""button""
value=""S6-RED"" onclick=""location.href='http://192.168.1.2/S6'""></p>"};
//const prog_char webBTN_S7[] PROGMEM = {"<p><input type=""button""
value=""S7-BLUE"" onclick=""location.href='http://192.168.1.2/S7'""></p>"};

//---const prog_char webBTN_S1[] PROGMEM = {"<p><input type=""button""
value=""S1-VOL-UP"" onclick=""location.href='http://192.168.1.2/S1'""></p>"};
const prog_char webBTN_S1a[] PROGMEM = {"<p><input type=""button""
value=""S1-VOL-UP"" onclick=""location.href='http://"};
const prog_char webBTN_S1b[] PROGMEM = {"/S1'""></p>"};
//---const prog_char webBTN_S2[] PROGMEM = {"<p><input type=""button""
value=""S2-VOL-DOWN""
onclick=""location.href='http://192.168.1.2/S2'""></p>"};
const prog_char webBTN_S2a[] PROGMEM = {"<p><input type=""button""
value=""S2-VOL-DOWN"" onclick=""location.href='http://"};
const prog_char webBTN_S2b[] PROGMEM = {"/S2'""></p>"};
//---const prog_char webBTN_S3[] PROGMEM = {"<p><input type=""button""
value=""S3-PLAY-STOP""
onclick=""location.href='http://192.168.1.2/S3'""></p>"};

92

const prog_char webBTN_S3a[] PROGMEM = {"<p><input type=""button""
value=""S3-PLAY-STOP"" onclick=""location.href='http://"};
const prog_char webBTN_S3b[] PROGMEM = {"/S3'""></p>"};
//---const prog_char webBTN_S4[] PROGMEM = {"<p><input type=""button""
value=""S4-FORWARD"" onclick=""location.href='http://192.168.1.2/S4'""></p>"};
const prog_char webBTN_S4a[] PROGMEM = {"<p><input type=""button""
value=""S4-FORWARD"" onclick=""location.href='http://"};
const prog_char webBTN_S4b[] PROGMEM = {"/S4'""></p>"};
//---const prog_char webBTN_S5[] PROGMEM = {"<p><input type=""button""
value=""S5-BACK"" onclick=""location.href='http://192.168.1.2/S5'""></p>"};
const prog_char webBTN_S5a[] PROGMEM = {"<p><input type=""button""
value=""S5-BACK"" onclick=""location.href='http://"};
const prog_char webBTN_S5b[] PROGMEM = {"/S5'""></p>"};
//---const prog_char webBTN_S6[] PROGMEM = {"<p><input type=""button""
value=""S6-RED"" onclick=""location.href='http://192.168.1.2/S6'""></p>"};
const prog_char webBTN_S6a[] PROGMEM = {"<p><input type=""button""
value=""S6-RED"" onclick=""location.href='http://"};
const prog_char webBTN_S6b[] PROGMEM = {"/S6'""></p>"};
//---const prog_char webBTN_S7[] PROGMEM = {"<p><input type=""button""
value=""S7-BLUE"" onclick=""location.href='http://192.168.1.2/S7'""></p>"};
const prog_char webBTN_S7a[] PROGMEM = {"<p><input type=""button""
value=""S7-BLUE"" onclick=""location.href='http://"};
const prog_char webBTN_S7b[] PROGMEM = {"/S7'""></p>"};

//const prog_char webBTN_L1[] PROGMEM = {"<p><input type=""button""
value=""L1-VOL-UP"" onclick=""location.href='http://192.168.1.2/L1'""></p>"};
//const prog_char webBTN_L2[] PROGMEM = {"<p><input type=""button""
value=""L2-VOL-DOWN""
onclick=""location.href='http://192.168.1.2/L2'""></p>"};
//const prog_char webBTN_L3[] PROGMEM = {"<p><input type=""button""
value=""L3-PLAY-STOP""
onclick=""location.href='http://192.168.1.2/L3'""></p>"};
//const prog_char webBTN_L4[] PROGMEM = {"<p><input type=""button""
value=""L4-FORWARD"" onclick=""location.href='http://192.168.1.2/L4'""></p>"};
//const prog_char webBTN_L5[] PROGMEM = {"<p><input type=""button""
value=""L5-BACK"" onclick=""location.href='http://192.168.1.2/L5'""></p>"};
//const prog_char webBTN_L6[] PROGMEM = {"<p><input type=""button""
value=""L6-RED"" onclick=""location.href='http://192.168.1.2/L6'""></p>"};
//const prog_char webBTN_L7[] PROGMEM = {"<p><input type=""button""
value=""L7-BLUE"" onclick=""location.href='http://192.168.1.2/L7'""></p>"};

//---const prog_char webBTN_L1[] PROGMEM = {"<p><input type=""button""
value=""L1-VOL-UP"" onclick=""location.href='http://192.168.1.2/L1'""></p>"};
const prog_char webBTN_L1a[] PROGMEM = {"<p><input type=""button""
value=""L1-VOL-UP"" onclick=""location.href='http://"};
const prog_char webBTN_L1b[] PROGMEM = {"/L1'""></p>"};
//---const prog_char webBTN_L2[] PROGMEM = {"<p><input type=""button""
value=""L2-VOL-DOWN""
onclick=""location.href='http://192.168.1.2/L2'""></p>"};

93

const prog_char webBTN_L2a[] PROGMEM = {"<p><input type=""button""
value=""L2-VOL-DOWN"" onclick=""location.href='http://"};
const prog_char webBTN_L2b[] PROGMEM = {"/L2'""></p>"};
//---const prog_char webBTN_L3[] PROGMEM = {"<p><input type=""button""
value=""L3-PLAY-STOP""
onclick=""location.href='http://192.168.1.2/L3'""></p>"};
const prog_char webBTN_L3a[] PROGMEM = {"<p><input type=""button""
value=""L3-PLAY-STOP"" onclick=""location.href='http://"};
const prog_char webBTN_L3b[] PROGMEM = {"/L3'""></p>"};
//---const prog_char webBTN_L4[] PROGMEM = {"<p><input type=""button""
value=""L4-FORWARD"" onclick=""location.href='http://192.168.1.2/L4'""></p>"};
const prog_char webBTN_L4a[] PROGMEM = {"<p><input type=""button""
value=""L4-FORWARD"" onclick=""location.href='http://"};
const prog_char webBTN_L4b[] PROGMEM = {"/L4'""></p>"};
//---const prog_char webBTN_L5[] PROGMEM = {"<p><input type=""button""
value=""L5-BACK"" onclick=""location.href='http://192.168.1.2/L5'""></p>"};
const prog_char webBTN_L5a[] PROGMEM = {"<p><input type=""button""
value=""L5-BACK"" onclick=""location.href='http://"};
const prog_char webBTN_L5b[] PROGMEM = {"/L5'""></p>"};
//---const prog_char webBTN_L6[] PROGMEM = {"<p><input type=""button""
value=""L6-RED"" onclick=""location.href='http://192.168.1.2/L6'""></p>"};
const prog_char webBTN_L6a[] PROGMEM = {"<p><input type=""button""
value=""L6-RED"" onclick=""location.href='http://"};
const prog_char webBTN_L6b[] PROGMEM = {"/L6'""></p>"};
//---const prog_char webBTN_L7[] PROGMEM = {"<p><input type=""button""
value=""L7-BLUE"" onclick=""location.href='http://192.168.1.2/L7'""></p>"};
const prog_char webBTN_L7a[] PROGMEM = {"<p><input type=""button""
value=""L7-BLUE"" onclick=""location.href='http://"};
const prog_char webBTN_L7b[] PROGMEM = {"/L7'""></p>"};

const prog_char web_Learn1[] PROGMEM = {"- LEARN 1 - "};
const prog_char web_Learn2[] PROGMEM = {"- LEARN 2 - "};
const prog_char web_Learn3[] PROGMEM = {"- LEARN 3 - "};
const prog_char web_Learn4[] PROGMEM = {"- LEARN 4 - "};
const prog_char web_Learn5[] PROGMEM = {"- LEARN 5 - "};
const prog_char web_Learn6[] PROGMEM = {"- LEARN 6 - "};
const prog_char web_Learn7[] PROGMEM = {"- LEARN 7 - "};

//const prog_char webBTN_HELP[] PROGMEM = {"<p>HELP</p>"};
const prog_char webBTN_HELPa[] PROGMEM = {"<p><a href=""http://"};
const prog_char webBTN_HELPb[] PROGMEM = {"/HELP"">HELP</p>"};

//const prog_char webBTN_DEFAULT[] PROGMEM = {"<p><input
type=""button"" value=""RESET TO DEFAULT VALUES""
onclick=""location.href='http://192.168.1.2/DEF'""></p>"};
const prog_char webBTN_DEFAULTa[] PROGMEM = {"<p><input
type=""button"" value=""RESET TO DEFAULT VALUES""
onclick=""location.href='http://"};

94

const prog_char webBTN_DEFAULTb[] PROGMEM = {"/DEF'""></p>"};

const prog_char webBTN_SAVE[] PROGMEM = {"<p><INPUT type=""submit""
name=""SAVE SETTINGS"" value=""SAVE""></p>"};

//const prog_char web_ERROR[] PROGMEM = {"- URL ERROR - <input
type=""button"" name=""cmd"" value=""EXIT""
onclick=""location.href='http://192.168.1.2/'"">"};
const prog_char web_ERRORa[] PROGMEM = {"- URL ERROR - <input
type=""button"" name=""cmd"" value=""EXIT"" onclick=""location.href='http://"};
const prog_char web_ERRORb[] PROGMEM = {"/'"">"};

//const prog_char webBTN_M1[] PROGMEM = {"<p><input type=""button""
value=""M1-TV"" onclick=""location.href='http://192.168.1.2/M1'""></p>"};
//const prog_char webBTN_M2[] PROGMEM = {"<p><input type=""button""
value=""M2-DVD"" onclick=""location.href='http://192.168.1.2/M2'""></p>"};
//const prog_char webBTN_M3[] PROGMEM = {"<p><input type=""button""
value=""M3-PVR"" onclick=""location.href='http://192.168.1.2/M3'""></p>"};
//const prog_char webBTN_M4[] PROGMEM = {"<p><input type=""button""
value=""M4-AMP"" onclick=""location.href='http://192.168.1.2/M4'""></p>"};
//const prog_char webBTN_M5[] PROGMEM = {"<p><input type=""button""
value=""M5-LIGHT"" onclick=""location.href='http://192.168.1.2/M5'""></p>"};
//const prog_char webBTN_M6[] PROGMEM = {"<p><input type=""button""
value=""M6-A/CON"" onclick=""location.href='http://192.168.1.2/M6'""></p>"};
//const prog_char webBTN_M7[] PROGMEM = {"<p><input type=""button""
value=""M7-WII"" onclick=""location.href='http://192.168.1.2/M7'""></p>"};

//const prog_char web_FORM_action[] PROGMEM = {" <FORM
action=""http://192.168.1.2/"" method=""post"">"};
//const prog_char web_FORM_end[] PROGMEM = {"</form>"};
const prog_char web_END[] PROGMEM = {"</body></html>"};

void webpSET()
{
 WiServer.print_P(web_START);
 WiServer.print_P(web_green);
 WiServer.print_P(web_Awidth);

 //WiServer.print_P(web_SETTINGS);
 WiServer.print_P(web_SETTINGS1); //VER 30//
 WiServer.print(local_ip_str); //VER 30//
 WiServer.print_P(web_SETTINGS2); //VER 30//

 WiServer.print_P(web_IPV);

 WiServer.print_P(web_IP1);
 WiServer.print(local_ip_str); //VER 32//
 WiServer.print_P(web_IP2);

 WiServer.print_P(web_box0); //VER 32//

95

 WiServer.print_P(web_box1);
 WiServer.print_P(web_box2);
 WiServer.print_P(web_box3);
 WiServer.print_P(web_box4);

 WiServer.print_P(web_WLANmode);
 WiServer.print_P(web_SECURITY);
 WiServer.print_P(web_KEY);

 WiServer.print_P(webBTN_HELPa);
 WiServer.print(local_ip_str); //VER 38M//
 WiServer.print_P(webBTN_HELPb);

 WiServer.print_P(webBTN_DEFAULTa);
 WiServer.print(local_ip_str); //VER 38M//
 WiServer.print_P(webBTN_DEFAULTb);

 WiServer.print_P(webBTN_SAVE);
 WiServer.print_P(web_END);
}

void webpHOME()
{
 WiServer.print_P(web_START);
 WiServer.print_P(web_blue);
 WiServer.print_P(web_Awidth);

 //WiServer.print_P(web_SEND);
 WiServer.print_P(web_SEND1);
 WiServer.print(local_ip_str); //VER 31//
 WiServer.print_P(web_SEND2);
 WiServer.print_P(web_SEND3);
 WiServer.print(local_ip_str); //VER 31//
 WiServer.print_P(web_SEND4);

 WiServer.print_P(webBTN_S1a);//VER 38M// ###
 WiServer.print(local_ip_str);//VER 38M//
 WiServer.print_P(webBTN_S1b);//VER 38M//

 WiServer.print_P(webBTN_S2a);//VER 38M//
 WiServer.print(local_ip_str);//VER 38M//
 WiServer.print_P(webBTN_S2b);//VER 38M//

 WiServer.print_P(webBTN_S3a);//VER 38M//
 WiServer.print(local_ip_str);//VER 38M//
 WiServer.print_P(webBTN_S3b);//VER 38M//

 WiServer.print_P(webBTN_S4a);//VER 38M//
 WiServer.print(local_ip_str);//VER 38M//

96

 WiServer.print_P(webBTN_S4b);//VER 38M//

 WiServer.print_P(webBTN_S5a);//VER 38M//
 WiServer.print(local_ip_str);//VER 38M//
 WiServer.print_P(webBTN_S5b);//VER 38M//

 WiServer.print_P(webBTN_S6a);//VER 38M//
 WiServer.print(local_ip_str);//VER 38M//
 WiServer.print_P(webBTN_S6b);//VER 38M//

 WiServer.print_P(webBTN_S7a);//VER 38M//
 WiServer.print(local_ip_str);//VER 38M//
 WiServer.print_P(webBTN_S7b);//VER 38M//

 WiServer.print_P(web_END);
}

void webpLEARN()
{
 WiServer.print_P(web_START);
 WiServer.print_P(web_orange);
 WiServer.print_P(web_Awidth);

 //WiServer.print_P(web_LEARN);
 WiServer.print_P(web_LEARN1);
 WiServer.print(local_ip_str); //VER 31//
 WiServer.print_P(web_LEARN2);

 WiServer.print_P(webBTN_L1a);
 WiServer.print(local_ip_str);//VER 38M//
 WiServer.print_P(webBTN_L1b);

 WiServer.print_P(webBTN_L2a);
 WiServer.print(local_ip_str);//VER 38M//
 WiServer.print_P(webBTN_L2b);

 WiServer.print_P(webBTN_L3a);
 WiServer.print(local_ip_str);//VER 38M//
 WiServer.print_P(webBTN_L3b);

 WiServer.print_P(webBTN_L4a);
 WiServer.print(local_ip_str);//VER 38M//
 WiServer.print_P(webBTN_L4b);

 WiServer.print_P(webBTN_L5a);
 WiServer.print(local_ip_str);//VER 38M//
 WiServer.print_P(webBTN_L5b);

 WiServer.print_P(webBTN_L6a);
 WiServer.print(local_ip_str);//VER 38M//
 WiServer.print_P(webBTN_L6b);

97

 WiServer.print_P(webBTN_L7a);
 WiServer.print(local_ip_str);//VER 38M//
 WiServer.print_P(webBTN_L7b);

 WiServer.print_P(web_END);
}

// **
// **
// **
// **
// --- IRMimic2 ---
void IR_CSEL(int CSELset)
// --- IRMimic2 select command location
{
 //delay(5); //used for pre learn request, NG

 Serial.print("---IR_CSEL-->");
 Serial.println(CSELset);
 //--- RESET , CSELset = 0
 //digitalWrite(pin_IRMimic2_CSEL_0,LOW);
 //digitalWrite(pin_IRMimic2_CSEL_1,LOW);
 //digitalWrite(pin_IRMimic2_CSEL_2,LOW);
 digitalWrite(pin_IRMimic2_CSEL_3,LOW);
 digitalWrite(pin_IRMimic2_CSEL_4,LOW);
 digitalWrite(pin_IRMimic2_CSEL_5,LOW);
 delay(5);
 //---select range CSELset 0-56
 //---convert DEC>BIN
 //if (CSELset = 1)//...error. THIS IS THE WRONG SYNTAX
 if (0==CSELset)
 {
 Serial.println("0==CSELset");
 digitalWrite(pin_IRMimic2_CSEL_0,LOW);
 digitalWrite(pin_IRMimic2_CSEL_1,LOW);
 digitalWrite(pin_IRMimic2_CSEL_2,LOW);
 }
 //if (CSELset = 1)
 if (1==CSELset)
 {
 Serial.println("1==CSELset");
 digitalWrite(pin_IRMimic2_CSEL_0,HIGH);
 digitalWrite(pin_IRMimic2_CSEL_1,LOW);
 digitalWrite(pin_IRMimic2_CSEL_2,LOW);
 }
 if (2==CSELset)
 {
 Serial.println("2==CSELset");
 digitalWrite(pin_IRMimic2_CSEL_0,LOW);
 digitalWrite(pin_IRMimic2_CSEL_1,HIGH);

98

 digitalWrite(pin_IRMimic2_CSEL_2,LOW);
 }
 if (3==CSELset)
 {
 Serial.println("3==CSELset");
 digitalWrite(pin_IRMimic2_CSEL_0,HIGH);
 digitalWrite(pin_IRMimic2_CSEL_1,HIGH);
 digitalWrite(pin_IRMimic2_CSEL_2,LOW);
 }
 if (4==CSELset)
 {
 Serial.println("3==CSELset");
 digitalWrite(pin_IRMimic2_CSEL_0,LOW);
 digitalWrite(pin_IRMimic2_CSEL_1,LOW);
 digitalWrite(pin_IRMimic2_CSEL_2,HIGH);
 }
 if (5==CSELset)
 {
 Serial.println("3==CSELset");
 digitalWrite(pin_IRMimic2_CSEL_0,HIGH);
 digitalWrite(pin_IRMimic2_CSEL_1,LOW);
 digitalWrite(pin_IRMimic2_CSEL_2,HIGH);
 }
 if (6==CSELset)
 {
 Serial.println("3==CSELset");
 digitalWrite(pin_IRMimic2_CSEL_0,LOW);
 digitalWrite(pin_IRMimic2_CSEL_1,HIGH);
 digitalWrite(pin_IRMimic2_CSEL_2,HIGH);
 }
 if (7==CSELset)
 {
 Serial.println("3==CSELset");
 digitalWrite(pin_IRMimic2_CSEL_0,HIGH);
 digitalWrite(pin_IRMimic2_CSEL_1,HIGH);
 digitalWrite(pin_IRMimic2_CSEL_2,HIGH);
 }

 delay(5); // Stablise data lines
}

void IR_LEARN()
{
 Serial.println("---IR_LEARN---");
 //IR_timeout_r = 1; //enable timeout//VER33T comment out
 digitalWrite(pin_IRMimic2_SNDRQ, LOW); //just to make sure
 // check if LRNERR is HIGH, if it is reset learning mode
 if (HIGH == digitalRead(pin_IRMimic2_LRNERR))
 {

99

 Serial.println("LRNERR.1");
 digitalWrite(pin_IRMimic2_LRNRQ, LOW);
 delay(60);//documented 60 ms requirement,
 // learning is now reset
 }
 // make LRNRQ = HIGH (learn), then RDY = LOW and IRMimic2 LED will light
 digitalWrite(pin_IRMimic2_LRNRQ, HIGH);
 delay(3);//using Timer 0 //wait for IRMimic to be ready about 2 ms
 //---RDY will go LOW
 //---ready to learn
 //---apply IR signal
 Serial.println("IR_LEARN apply IR signal");
 //---wait for RDY to go HIGH, finished
 while (LOW == digitalRead(pin_IRMimic2_RDY))
 {
 IR_timeout_c = IR_timeout_c + 1;//VER32T//--- increment timout counter
 if (IR_timeout_c >= IR_timeout)//VER32T//
 {
 Serial.println("IR_LEARN timeOut > 4 seconds");//VER32T//
 //TODO//send error as a web page
 IR_timeout_c = 0; //VER32T//
 break;//while //VER32T//
 //---or make pin_IRMimic2_RDY = HIGH; //VER32T//
 }

 Serial.println("learning...");
 if (HIGH == digitalRead(pin_IRMimic2_LRNERR))
 {
 Serial.println("LRNERR.2");
 //---reset learning mode
 digitalWrite(pin_IRMimic2_LRNRQ, LOW);
 delay(60);//documented 60 ms requirement,
 break;//while //VER34// fix logic bug
 }
 delay(100);
 }
 //finished
 IR_timeout_c = 0; //VER34//incase exit while from pin_IRMimic2_RDY is LOW
 digitalWrite(pin_IRMimic2_LRNRQ, LOW);
 Serial.println("IR_LEARN finished");
 //IR_timeout_r = 0; //disable timeout//VER33T comment out
}

//void IR_SEND()
boolean IR_SEND()
{
 Serial.println("---IR_SEND---");
 //IR_SEND_called = 1; //VER35// removed
 digitalWrite(pin_IRMimic2_LRNRQ, LOW);//just to make sure, not needed
 digitalWrite(pin_IRMimic2_SNDRQ, HIGH);

100

 delay(3);//wait for IRMimic2 to be ready, about 2 ms
 //---RDY will go LOW
 //---command is being transmitted
 Serial.println("IR_SEND TX...");
 //---wait for RDY to go HIGH, finished
 while (LOW == digitalRead(pin_IRMimic2_RDY))
 {
 //IR_timeout handles no IRMimic circuit connected OR fault
 IR_timeout_c = IR_timeout_c + 1;//VER33T//--- increment timout counter
 if (IR_timeout_c >= IR_timeout)//VER33T//
 {
 Serial.println("IR_SEND timeOut > 4 seconds");//VER33T//
 //TODO// send error as web page
 IR_timeout_c = 0; //VER33T//
 break;//while //VER33T//
 //---or make pin_IRMimic2_RDY = HIGH; //VER33T//
 }

 Serial.println("IR_SEND not finished");
 //delay(50);
 delay(100);//VER33T//
 }
 //---finished
 IR_timeout_c = 0; //VER34//incase exit while from pin_IRMimic2_RDY is LOW
 digitalWrite(pin_IRMimic2_SNDRQ, LOW);
 Serial.println("IR_SEND finished");
 //IR_SEND_called = 0;//VER35//removed
 return true;
}
// **
// **
// **
// **
/*void gURLdecode()//--- leave just in case need to do performance testing again,
comment out to save memory
{
 jmp_WPS_E = 0;// so do not call again and again from main loop()
 // will reset to 0 in sendMyPage()
 Serial.println("gURLdecode:");
 if (strcmp(gURL, "/") == 0) //home page
 {
 Serial.println("gURL=/");
 //---digitalWrite(LEDpin, HIGH);
 //digitalWrite(pin_IRMimic2_LRNRQ, LOW); //reset any lockups, should not
need
 //digitalWrite(pin_IRMimic2_SNDRQ, LOW); //reset any lockups, should not
need
 }

 else if (strcmp(gURL, "/L") == 0) //LEARN home page
 {

101

 Serial.println("gURL=/L");
 //beep(50); // PROMPT select button to learn
 }

 //---SEND BUTTONS---

 else if (strcmp(gURL, "/S1") == 0) //SEND button 1
 {
 Serial.println("gURL=/S1");
 //WiServer.server_task();
 IR_CSEL(1);
 //WiServer.server_task();
 IR_SEND();
 //WiServer.server_task();
 //IR_CSEL(0);
 }

 //---LEARN BUTTONS---

 else if (strcmp(gURL, "/L1") == 0) //LEARN button 1
 {
 Serial.println("gURL=/L1");
 //WiServer.server_task();
 IR_CSEL(1);
 //WiServer.server_task();
 IR_LEARN();
 //WiServer.server_task();
 //IR_CSEL(0);
 }

 jmp_WPS_S = 0;//dont need TODO
 //Serial.println("gURLdecode WPS_S=0");
}
*/

// **
// **
// **
// **
// This is our page serving function that generates web pages
boolean sendMyPage(char* URL)
{
 //strcpy(gURL,URL); //JMP works OK as a global variable
 Serial.println("sendMyPage:");
 //jmp_WPS_S = 1; //no URL decoding
 // ----
 //JMP// can have problems if web page is sent over multiple packets
 //JMP// if MCU is processing too much and large delay, commands cannot be
processed
 // if(WiServer.sendInProgress())

102

 //{
 // Serial.println("Send in progress");
 //}
 // else
 //REF// http://asynclabs.com/forums/viewtopic.php?f=19&t=263&start=10
 // if((0==(int)uip_conn->appstate.ackedCount) && (0==(int)uip_conn-
>appstate.sentCount))
 if((0==(int)uip_conn->appstate.ackedCount) && (0==(int)uip_conn-
>appstate.sentCount))
 {
 //need to do this to break out of the Object Timmeing Lifespan
 //because if done here large delays cause unpredictable results
 //Serial.println("sendMyPage WPS_E=1");
 //jmp_WPS_E = 1; //yes decode gURL now from main loop()

 if (strcmp(URL, "/") == 0) //home page
 {
 //Serial.println("URL=/");
 //---digitalWrite(LEDpin, HIGH);
 digitalWrite(pin_IRMimic2_LRNRQ, LOW); //reset any lockups
 digitalWrite(pin_IRMimic2_SNDRQ, LOW); //reset any lockups
 }

 else if (strcmp(URL, "/L") == 0) //LEARN home page
 {
 //Serial.println("URL=/L");
 //beep(50); // PROMPT select button to learn
 }

 //---SEND BUTTONS---

 //---VOLUME UP---
 else if (strcmp(URL, "/S1") == 0) //SEND button 1
 {
 //Serial.println("URL=/S1"); //VOL UP
 IR_CSEL(1);
 IR_SEND();
 delay(20); //trial
 IR_SEND(); //SEND VOULME UP AGAIN
 //IR_SEND();
 }
 //---VOLUME DOWN---
 else if (strcmp(URL, "/S2") == 0) //SEND button 2
 {
 //Serial.println("URL=/S2"); //VOL DOWN
 IR_CSEL(2);
 IR_SEND();
 delay(20); // trial
 IR_SEND(); //SEND VOLUME DOWN AGAIN
 //IR_SEND();

103

 }
 else if (strcmp(URL, "/S3") == 0) //SEND button 3
 {
 //Serial.println("URL=/S3");
 IR_CSEL(3);
 IR_SEND();
 }

 else if (strcmp(URL, "/S4") == 0) //SEND button 3
 {
 //Serial.println("URL=/S4");
 IR_CSEL(4);
 IR_SEND();
 }
 else if (strcmp(URL, "/S5") == 0) //SEND button 3
 {
 //Serial.println("URL=/S5");
 IR_CSEL(5);
 IR_SEND();
 }
 else if (strcmp(URL, "/S6") == 0) //SEND button 3
 {
 //Serial.println("URL=/S6");
 IR_CSEL(6);
 IR_SEND();
 }
 else if (strcmp(URL, "/S7") == 0) //SEND button 3
 {
 //Serial.println("URL=/S7");
 IR_CSEL(7);
 IR_SEND();
 }

 //---LEARN BUTTONS---

 else if (strcmp(URL, "/L1") == 0) //LEARN button 1
 {
 //Serial.println("URL=/L1");
 //digitalWrite(pin_IRMimic2_LRNRQ, HIGH);
 IR_CSEL(1);
 IR_LEARN();
 }
 else if (strcmp(URL, "/L2") == 0) //LEARN button 2
 {
 //Serial.println("URL=/L2");
 //digitalWrite(pin_IRMimic2_LRNRQ, HIGH);
 IR_CSEL(2);
 IR_LEARN();
 }
 else if (strcmp(URL, "/L3") == 0) //LEARN button 3

104

 {
 //Serial.println("URL=/L3");
 //digitalWrite(pin_IRMimic2_LRNRQ, HIGH);
 IR_CSEL(3);
 IR_LEARN();
 }
 else if (strcmp(URL, "/L4") == 0) //LEARN button 3
 {
 //Serial.println("URL=/L4");
 //digitalWrite(pin_IRMimic2_LRNRQ, HIGH);
 IR_CSEL(4);
 IR_LEARN();
 }
 else if (strcmp(URL, "/L5") == 0) //LEARN button 3
 {
 //Serial.println("URL=/L5");
 //digitalWrite(pin_IRMimic2_LRNRQ, HIGH);
 IR_CSEL(5);
 IR_LEARN();
 }
 else if (strcmp(URL, "/L6") == 0) //LEARN button 3
 {
 //Serial.println("URL=/L6");
 //digitalWrite(pin_IRMimic2_LRNRQ, HIGH);
 IR_CSEL(6);
 IR_LEARN();
 }
 else if (strcmp(URL, "/L7") == 0) //LEARN button 3
 {
 //Serial.println("URL=/L7");
 //digitalWrite(pin_IRMimic2_LRNRQ, HIGH);
 IR_CSEL(7);
 IR_LEARN();
 }

 }//finish URL calls

 //---
 //---
 Serial.println("send web page pkt ..."); //JMP

 // Home web page
 if (strcmp(URL, "/") == 0)
 {
 // write page content from flash memory
 webpHOME();

 return true;
 }
 // SETTINGS

105

 if (strcmp(URL, "/ST") == 0)
 {
 webpSET();
 return true;
 }

 // LEARN home page
 if (strcmp(URL, "/L") == 0)
 {
 webpLEARN();
 return true;
 }
 // SEND button 1
 if (strcmp(URL, "/S1") == 0)
 {
 webpHOME();
 return true;
 }
 // SEND button 2
 if (strcmp(URL, "/S2") == 0)
 {
 webpHOME();
 return true;
 }
 // SEND button 3
 if (strcmp(URL, "/S3") == 0)
 {
 webpHOME();
 return true;
 }
 // SEND button 4
 if (strcmp(URL, "/S4") == 0)
 {
 webpHOME();
 return true;
 }
 // SEND button 5
 if (strcmp(URL, "/S5") == 0)
 {
 webpHOME();
 return true;
 }
 // SEND button 6
 if (strcmp(URL, "/S6") == 0)
 {
 webpHOME();
 return true;
 }
 // SEND button 7
 if (strcmp(URL, "/S7") == 0)

106

 {
 webpHOME();
 return true;
 }

 // LEARN button 1
 if (strcmp(URL, "/L1") == 0)
 {
 WiServer.print_P(web_START);
 WiServer.print_P(web_orange);
 WiServer.print_P(web_Awidth);
 WiServer.print_P(web_Learn1);
 //WiServer.print("- LEARN 1 - ");
 //WiServer.print_P(webBTN_EXIT);
 WiServer.print_P(webBTN_EXIT1); //VER 33//
 WiServer.print(local_ip_str); //VER 33//
 WiServer.print_P(webBTN_EXIT2); //VER 33//
 WiServer.print_P(web_END);
 return true;
 }
 // LEARN button 2
 if (strcmp(URL, "/L2") == 0)
 {
 WiServer.print_P(web_START);
 WiServer.print_P(web_orange);
 WiServer.print_P(web_Awidth);
 WiServer.print_P(web_Learn2);
 //WiServer.print_P(webBTN_EXIT);
 WiServer.print_P(webBTN_EXIT1); //VER 33//
 WiServer.print(local_ip_str); //VER 33//
 WiServer.print_P(webBTN_EXIT2); //VER 33//
 WiServer.print_P(web_END);
 return true;
 }
 // LEARN button 3
 if (strcmp(URL, "/L3") == 0)
 {
 WiServer.print_P(web_START);
 WiServer.print_P(web_orange);
 WiServer.print_P(web_Awidth);
 WiServer.print_P(web_Learn3);
 //WiServer.print_P(webBTN_EXIT);
 WiServer.print_P(webBTN_EXIT1); //VER 33//
 WiServer.print(local_ip_str); //VER 33//
 WiServer.print_P(webBTN_EXIT2); //VER 33//
 WiServer.print_P(web_END);
 return true;
 }
 // LEARN button 4
 if (strcmp(URL, "/L4") == 0)

107

 {
 WiServer.print_P(web_START);
 WiServer.print_P(web_orange);
 WiServer.print_P(web_Awidth);
 WiServer.print_P(web_Learn4);
 //WiServer.print_P(webBTN_EXIT);
 WiServer.print_P(webBTN_EXIT1); //VER 33//
 WiServer.print(local_ip_str); //VER 33//
 WiServer.print_P(webBTN_EXIT2); //VER 33//
 WiServer.print_P(web_END);
 return true;
 }
 // LEARN button 5
 if (strcmp(URL, "/L5") == 0)
 {
 WiServer.print_P(web_START);
 WiServer.print_P(web_orange);
 WiServer.print_P(web_Awidth);
 WiServer.print_P(web_Learn5);
 //WiServer.print_P(webBTN_EXIT);
 WiServer.print_P(webBTN_EXIT1); //VER 33//
 WiServer.print(local_ip_str); //VER 33//
 WiServer.print_P(webBTN_EXIT2); //VER 33//
 WiServer.print_P(web_END);
 return true;
 }
 // LEARN button 6
 if (strcmp(URL, "/L6") == 0)
 {
 WiServer.print_P(web_START);
 WiServer.print_P(web_orange);
 WiServer.print_P(web_Awidth);
 WiServer.print_P(web_Learn6);
 //WiServer.print_P(webBTN_EXIT);
 WiServer.print_P(webBTN_EXIT1); //VER 33//
 WiServer.print(local_ip_str); //VER 33//
 WiServer.print_P(webBTN_EXIT2); //VER 33//
 WiServer.print_P(web_END);
 return true;
 }
 // LEARN button 7
 if (strcmp(URL, "/L7") == 0)
 {
 WiServer.print_P(web_START);
 WiServer.print_P(web_orange);
 WiServer.print_P(web_Awidth);
 WiServer.print_P(web_Learn7);
 //WiServer.print_P(webBTN_EXIT);
 WiServer.print_P(webBTN_EXIT1); //VER 33//
 WiServer.print(local_ip_str); //VER 33//
 WiServer.print_P(webBTN_EXIT2); //VER 33//

108

 WiServer.print_P(web_END);
 return true;
 }

 // else ------------------------
 // URL not found
 WiServer.print_P(web_START);
 WiServer.print_P(web_orange);
 WiServer.print_P(web_Awidth);
 //WiServer.print_P(web_ERROR);
 WiServer.print_P(web_ERRORa); //VER 33//
 WiServer.print(local_ip_str); //VER 33//
 WiServer.print_P(web_ERRORb); //VER 33//
 WiServer.print_P(web_END);

 return true;
}

void writeDefault()
{
 //local_ip[] = {192,168,1,2};
 EEPROM.write(0, 192);
 EEPROM.write(1, 168);
 EEPROM.write(2, 1);
 EEPROM.write(3, 2);
 //gateway_ip[] = {192,168,1,1};
 EEPROM.write(4, 192);
 EEPROM.write(5, 168);
 EEPROM.write(6, 1);
 EEPROM.write(7, 1);
 //subnet_mask[] = {255,255,255,0};
 EEPROM.write(8, 255);
 EEPROM.write(9, 255);
 EEPROM.write(10, 255);
 EEPROM.write(11, 0);
 //ssid[] PROGMEM = {"IRMCU"}; // max 32 bytes
/* EEPROM.write(12, char(I));
 EEPROM.write(13, char(R));
 EEPROM.write(14, char(M));
 EEPROM.write(15, char(C));
 EEPROM.write(16, char(U));
 //security_type = 0; // 0 - open; 1 - WEP; 2 - WPA; 3 - WPA2
 EEPROM.write(12+32, 0);
 //security_passphrase[] PROGMEM = {"12345678"}; // max 64 characters
 EEPROM.write(12+32+1, char(1));
 EEPROM.write(12+32+2, char(2));
 EEPROM.write(12+32+3, char(3));
 EEPROM.write(12+32+4, char(4));

109

 EEPROM.write(12+32+5, char(5));
 EEPROM.write(12+32+6, char(6));
 EEPROM.write(12+32+7, char(7));
 EEPROM.write(12+32+8, char(8));
*/
}

void writeSettings()
{
 //---TODO
 //---write SRAM variables to EEPROM
 //---local_ip[] = {192,168,1,2};
 //---EEPROM.write(0, 192);

//write local_ip[] = {xxx,xxx,xxx,xxx};

 byte local_ip_E[4] = {192,168,1,2};
 //local_ip_12 = '9';
 //local_ip_13 = '8';
 //char a = 'a';
 //byte b = B10010; // "B" is the binary formatter (B10010 = 18 decimal)
}

void readSettings()
{
//--- The 8 bit byte 0-255 is compatiable to the unsigned char ip[]
//--- variables for ASYNCLABS WiServer.h Library
 //----local_ip[] = {198,168,1,2};
 local_ip[0] = EEPROM.read(0);
 local_ip[1] = EEPROM.read(1);
 local_ip[2] = EEPROM.read(2);
 local_ip[3] = EEPROM.read(3);

 //----gateway_ip[] = {192,168,1,1};
 gateway_ip[0] = EEPROM.read(4);
 gateway_ip[1] = EEPROM.read(5);
 gateway_ip[2] = EEPROM.read(6);
 gateway_ip[3] = EEPROM.read(7);

 //----subnet_mask[] = {255,255,255,0};
 subnet_mask[0] = EEPROM.read(8);
 subnet_mask[1] = EEPROM.read(9);
 subnet_mask[2] = EEPROM.read(10);
 subnet_mask[3] = EEPROM.read(11);
}

void printStuff()
{

110

 Serial.println("----program variables-----");

 //byte a1 = local_ip[0]; //type byte will fail
 //String a1 = local_ip[0]; //type String will fail
 int a1 = local_ip[0];
 int a2 = local_ip[1];
 int a3 = local_ip[2];
 int a4 = local_ip[3];

 //char local_ip_str[] = {192.168.001.002}; //used for HTML webpage links
 //using the overload + method for string concat will convert int to str
 local_ip_str = "";
 local_ip_str = local_ip_str + a1;
 local_ip_str = local_ip_str + ".";
 local_ip_str = local_ip_str + a2;
 local_ip_str = local_ip_str + ".";
 local_ip_str = local_ip_str + a3;
 local_ip_str = local_ip_str + ".";
 local_ip_str = local_ip_str + a4;
 // local_ip_str is now build and can be used in web page HTML
Serial.print("local_ip +=");
Serial.println(local_ip_str);

 int b1 = gateway_ip[0];
 int b2 = gateway_ip[1];
 int b3 = gateway_ip[2];
 int b4 = gateway_ip[3];
 Serial.print("gateway_ip=");
 Serial.print(b1);
 Serial.print(".");
 Serial.print(b2);
 Serial.print(".");
 Serial.print(b3);
 Serial.print(".");
 Serial.println(b4);

 int c1 = subnet_mask[0];
 int c2 = subnet_mask[1];
 int c3 = subnet_mask[2];
 int c4 = subnet_mask[3];
 Serial.print("subnet_mask=");
 Serial.print(c1);
 Serial.print(".");
 Serial.print(c2);
 Serial.print(".");
 Serial.print(c3);
 Serial.print(".");
 Serial.println(c4);
 Serial.println("--------------------------");
}

111

void VOLUME_DOWN()
{
 //----sound feedback, automatic volume down, tested OK----------
 //---Serial.println(analogRead(pin_MIC_SPL), DEC);
 int v_MIC_SPL = analogRead(pin_MIC_SPL);
 if (100 < v_MIC_SPL) //same as (v_MIC_SPL > 0) //VER33T, increase to 100
 {
 Serial.println(v_MIC_SPL); //debug, comment out later

 if (0==IR_SEND_called)//---dont do request if already doing it
 {
 IR_SEND_called = 1;
 Serial.println("***MIC VOLUME DOWN***");
 IR_CSEL(2); //SEND VOLUME DOWN
 IR_SEND();
 delay(20); // pause, trial 20 mS, tested OK
 IR_SEND(); //SEND VOLUME DOWN AGAIN, needs this
 IR_SEND_called = 0;
 }
 }
}
void VOLUME_UP()
{
 //----sound feedback, automatic volume down -----------------
 //---Serial.println(analogRead(pin_MIC_SPL), DEC);
 int v_MIC_SPL = analogRead(pin_MIC_SPL);
 if (100 > v_MIC_SPL) //same as (v_MIC_SPL < 100)
 {
 //Serial.println(v_MIC_SPL); //debug, comment out later

 if (0==IR_SEND_called)//---dont do request if already doing it
 {
 IR_SEND_called = 1;
 Serial.println("***MIC VOLUME UP***");
 IR_CSEL(1); //SEND VOLUME UP
 IR_SEND();
 delay(20); // pause,
 IR_SEND(); //SEND VOLUME UP AGAIN, needs this
 IR_SEND_called = 0;
 }
 }
}

void VOLUME_DOWN2()
{
//---Serial.println(analogRead(pin_MIC_SPL), DEC);
 int v_MIC_SPL = analogRead(pin_MIC_SPL);
 if (100 < v_MIC_SPL) //same as (v_MIC_SPL > 0) //VER33T, increase to 100

112

 {
 if (0 < vol_position)//(vol_position > 0)
 {
 Serial.println(v_MIC_SPL);
 vol_position = vol_position - 1;
 //--- call VOLUME_DOWN();--- with some smarts or toggle state variables
 if (0==IR_SEND_called)
 {
 IR_SEND_called = 1;
 Serial.println("***MIC VOLUME DOWN***");
 IR_CSEL(2); //SEND VOLUME DOWN
 IR_SEND();
 delay(20); // pause, trial 20 mS
 IR_SEND(); //SEND VOLUME DOWN AGAIN
 IR_SEND_called = 0;
 }
 }
 }

}

void VOLUME_UP2()
{
 //---RESTORE VOLUME
 int v_MIC_SPL = analogRead(pin_MIC_SPL);
 if (100 > v_MIC_SPL) //same as (v_MIC_SPL < 0) //VER35, increase to 100
 {
 if (vol_max >= vol_position)//(vol_position <= vol_max)
 {
 vol_position = vol_position + 1;
 //Serial.println(v_MIC_SPL);
 //--- call VOLUME_DOWN();--- with some smarts or toggle state variables
 if (0==IR_SEND_called)
 {
 IR_SEND_called = 1;
 Serial.println("***MIC VOLUME UP***");
 IR_CSEL(1); //SEND VOLUME UP
 IR_SEND();
 delay(20); // pause, trial 20 mS
 IR_SEND(); //SEND VOLUME UP AGAIN
 IR_SEND_called = 0;
 }
 }
 }

}

//***
//***

113

//***
//***
void setup()
{
 pinMode(pin_button1, INPUT); // useded to reset to factory defaults
 pinMode(pin_MIC_SPL, INPUT);

 //---int IRMimic2 pins
 pinMode(pin_IRMimic2_RDY,INPUT);
 pinMode(pin_IRMimic2_LRNERR,INPUT);
 pinMode(pin_IRMimic2_LRNRQ,OUTPUT);
 pinMode(pin_IRMimic2_SNDRQ,OUTPUT);

 pinMode(pin_IRMimic2_CSEL_0,OUTPUT);
 pinMode(pin_IRMimic2_CSEL_1,OUTPUT);
 pinMode(pin_IRMimic2_CSEL_2,OUTPUT);
 pinMode(pin_IRMimic2_CSEL_3,OUTPUT);
 pinMode(pin_IRMimic2_CSEL_4,OUTPUT);
 pinMode(pin_IRMimic2_CSEL_5,OUTPUT);

 //delay(200);//rest

 digitalWrite(pin_IRMimic2_LRNRQ,LOW);
 digitalWrite(pin_IRMimic2_SNDRQ,LOW);
 // delay(200); try to stop IRMimic2 from being in LEARN mode on startup???
 digitalWrite(pin_IRMimic2_CSEL_0,LOW);
 digitalWrite(pin_IRMimic2_CSEL_1,LOW);
 digitalWrite(pin_IRMimic2_CSEL_2,LOW);
 digitalWrite(pin_IRMimic2_CSEL_3,LOW);
 digitalWrite(pin_IRMimic2_CSEL_4,LOW);
 digitalWrite(pin_IRMimic2_CSEL_5,LOW);

 // delay(5);//rest
 //---enable serial
 Serial.begin(57600);
 Serial.println(" ");
 Serial.println("IR MCU - VER 37");//JMP//

 // beep(50);

 //######
 //--- settings are default to start with
 //--- check if reset button has been pressed
 button1 = digitalRead(pin_button1);
 if (HIGH == button1) //--- 1,HIGH = reset button pressed on startup, write to
EEPROM
 {
 Serial.println("button pressed");
 //--- write default settings to EEPROM
 Serial.println("write to EEPROM");
 writeDefault();

114

 readSettings(); // from EEPROM, now ready to go!
 //--- will call writeSettings() from settings web page
 }
 else // LOW
 {
 Serial.println("read from EEPROM");
 //CAUTION all data will read 255 on first run and will need a factory reset
 readSettings(); // from EEPROM, now ready to go!
 }
 printStuff(); //debug
 Serial.println("settings LOADED");
 //######

 //--- Enable Serial output and ask WiServer to generate log messages (optional)
 WiServer.enableVerboseMode(true);

 //--- Initialize WiServer and have it use the sendMyPage function to serve pages
 WiServer.init(sendMyPage); //WiServer.init(NULL);

 // STOP IRMimic2 starting up in wrong mode
 delay(200);
 digitalWrite(pin_IRMimic2_LRNRQ,LOW);
 digitalWrite(pin_IRMimic2_SNDRQ,LOW);
 delay(200);

}

void loop(){

 //--- Run WiServer
 WiServer.server_task();

//***

//--- testing object states and variables
 //Serial.println(WiServer.connection_up()); //NO
 //Serial.println(WiServer.isActive()); //NO
 //Serial.println(WiServer.isActive(sendMyPage)); //NO
 //Serial.println(sendMyPage.isActive()); //NO
 //Serial.println(WiServer.zg_get_conn_state()); //NO

 //Serial.println(WiServer.printTime); //NO
 //int z = WiServer.sendInProgress();
 // int z = WiServer.getConnectionStatus();
 //if (sendMyPage.sendInProgress){ //NO
 // Serial.print("CS= ");
 // Serial.println(z);
 //Serial.print("sendMyPage_START=");
 //Serial.println(sendMyPage_START);
 //Serial.print("sendMyPage_END=");

115

 //Serial.println(sendMyPage_END);

//---gURL---------------------------------
 //---jmp_WPS = 1; // no URL decoding
 //---jmp_WPS = 0; //yes decode gURL now
 //---if((0==(int)uip_conn->appstate.ackedCount) && (0==(int)uip_conn-
>appstate.sentCount))
 // if((0==(int)uip_conn->appstate.ackedCount) && (0==(int)uip_conn-
>appstate.sentCount))
 // {
 // Serial.print("....jmp_WPS=");
 // Serial.println(jmp_WPS);
 //$$ if (1==jmp_WPS_E)
 //$$ {
 //---Serial.print("...decode URL:");
 //Serial.print("....jmp_WPS=");
 //Serial.println((int)jmp_WPS); //1 = START, 0 = STOP
 //Serial.print("....ackedCount=");
 //Serial.println((int)uip_conn->appstate.ackedCount);
 //Serial.print("....sentCount=");
 //Serial.println((int)uip_conn->appstate.sentCount);
 //Serial.print("....gURL=");
 //---Serial.println(gURL);
 //---CALL gURLdecode(); , in gURLdecode set jmp_WPS = 1; in the first line
 //$$ gURLdecode();
 //Serial.print("....sendMyPage=");
 //Serial.println((int)sendMyPage);
 //---Serial.println("....");
 //$$ }
 // }

//***
//----sound feedback, automatic volume-----------------
 //int vol_timeout = 20;//wait time before adjusting the volume
 //int vol_timeout_c = 0;//counter

//VOLUME_DOWN();
//VOLUME_UP();

//---or using vol_position counter

VOLUME_DOWN2();//check and turn volume down now

 if (vol_timeout_c >= vol_timeout)//only check to turn volume up every few
seconds//VER37//
 {
 VOLUME_UP2();
 vol_timeout_c = 0; //reset
 }
 vol_timeout_c = vol_timeout_c + 1;

116

 //Serial.println(vol_position);//debug
 delay(100); //50 is good
}

117

F.3) Apple iPhone/iPad

F.3.1) Main Storyboard

118

F.3.2) AppDelegate.h

//
// AppDelegate.h
// IRMCU
//
// Created by John on 14/07/12.
// Copyright (c) 2012 __MyCompanyName__. All rights reserved.
//

#import <UIKit/UIKit.h>

@interface AppDelegate : UIResponder <UIApplicationDelegate>

@property (strong, nonatomic) UIWindow *window;

@end

F.3.3) AppDelegate.m

//
// AppDelegate.m
// IRMCU
//
// Created by John on 14/07/12.
// Copyright (c) 2012 __MyCompanyName__. All rights reserved.
//

#import "AppDelegate.h"

@implementation AppDelegate

@synthesize window = _window;

- (BOOL)application:(UIApplication *)application
didFinishLaunchingWithOptions:(NSDictionary *)launchOptions
{
 // Override point for customization after application launch.
 return YES;
}

119

- (void)applicationWillResignActive:(UIApplication *)application
{
 /*
 Sent when the application is about to move from active to inactive state. This can
occur for certain types of temporary interruptions (such as an incoming phone call or
SMS message) or when the user quits the application and it begins the transition to
the background state.
 Use this method to pause ongoing tasks, disable timers, and throttle down
OpenGL ES frame rates. Games should use this method to pause the game.
 */
}

- (void)applicationDidEnterBackground:(UIApplication *)application
{
 /*
 Use this method to release shared resources, save user data, invalidate timers,
and store enough application state information to restore your application to its
current state in case it is terminated later.
 If your application supports background execution, this method is called instead
of applicationWillTerminate: when the user quits.
 */
}

- (void)applicationWillEnterForeground:(UIApplication *)application
{
 /*
 Called as part of the transition from the background to the inactive state; here you
can undo many of the changes made on entering the background.
 */
}

- (void)applicationDidBecomeActive:(UIApplication *)application
{
 /*
 Restart any tasks that were paused (or not yet started) while the application was
inactive. If the application was previously in the background, optionally refresh the
user interface.
 */
}

- (void)applicationWillTerminate:(UIApplication *)application
{
 /*
 Called when the application is about to terminate.
 Save data if appropriate.
 See also applicationDidEnterBackground:.
 */
}

@end

120

F.3.4) ViewController.h

//
// ViewController.h
// IRMCU
//
// Created by John on 14/07/12.
// Copyright (c) 2012 __MyCompanyName__. All rights reserved.
//

#import <UIKit/UIKit.h>

//---@interface PostController : UIViewController

@interface ViewController : UIViewController {
 IBOutlet UILabel * label; //---JMP
 NSString * response; //---JMP
}

@property (nonatomic, retain) IBOutlet UILabel * label;
@property (nonatomic, retain) NSString *response;

-(IBAction)BTN_IRMCU;
-(IBAction)BTN_S1;
-(IBAction)BTN_S2;
-(IBAction)BTN_S3;
-(IBAction)BTN_S4;
-(IBAction)BTN_S5;
-(IBAction)BTN_S6;

@end

121

F.3.5) ViewController.m

//
// ViewController.m
// IRMCU
//
// Created by John on 14/07/12.
// Copyright (c) 2012 __MyCompanyName__. All rights reserved.
//

#import "ViewController.h"

@implementation ViewController

@synthesize label;//JMP---
@synthesize response;//JMP---

//@implementation NetworkConnector //JMP---
//---SimpleURLConnections
//---
http://developer.apple.com/library/ios/#samplecode/SimpleURLConnections/Introduc
tion/Intro.html

-(IBAction)BTN_IRMCU{
//--JMP added this---**
//---http://www.youtube.com/watch?v=YY0iJ2MspYs&feature=related
//--- add code "-(IBAction)Link_S1;" to "ViewController.h"
//--- add IRMCU URL with action "S1" to IBAction here
//--- add single URL to button 'UP'

 [[UIApplication sharedApplication]
 openURL:[NSURL URLWithString:@"http://192.168.1.2/"]];
//***
}
-(IBAction)BTN_S1{
 //--JMP added this---**
// NSString *post = @"S1";
// NSData *postData = [post dataUsingEncoding:NSASCIIStringEncoding
allowLossyConversion:YES];
// NSString *postLength = [NSString stringWithFormat:@"%d", [postData length]];

 //NSMutableURLRequest *request = [[[NSMutableURLRequest alloc] init]
autorelease];

 //---http://www.youtube.com/watch?v=FXQiEfjiYns
 NSURLRequest *request = [NSURLRequest requestWithURL:[NSURL
URLWithString:@"http://192.168.1.2/S1"]

122

cachePolicy:NSURLRequestUseProtocolCachePolicy timeoutInterval:10.0];

 NSURLConnection *connection = [[NSURLConnection alloc]
initWithRequest:request delegate:self];
 if (connection){
 // Connect
 label.text = @"Connecting..." ;
 } else {
 // Error
 }

// [request setURL:[NSURL URLWithString:@"http://192.168.1.2/"]];
// [request setHTTPMethod:@"POST"];
// [request setValue:postLength forHTTPHeaderField:@"Content-Length"];
// [request setValue:@"application/x-www-form-urlencoded"
forHTTPHeaderField:@"Content-Type"];
// [request setHTTPBody:postData];
 //***
}

-(IBAction)BTN_S2{
 //--JMP added this---**
 NSURLRequest *request = [NSURLRequest requestWithURL:[NSURL
URLWithString:@"http://192.168.1.2/S2"]
cachePolicy:NSURLRequestUseProtocolCachePolicy timeoutInterval:10.0];

 NSURLConnection *connection = [[NSURLConnection alloc]
initWithRequest:request delegate:self];
 if (connection){
 // Connect
 label.text = @"Connecting..." ;
 } else {
 // Error
 }
 //***
}
-(IBAction)BTN_S3{
 //--JMP added this---**
 NSURLRequest *request = [NSURLRequest requestWithURL:[NSURL
URLWithString:@"http://192.168.1.2/S3"]
cachePolicy:NSURLRequestUseProtocolCachePolicy timeoutInterval:10.0];

 NSURLConnection *connection = [[NSURLConnection alloc]
initWithRequest:request delegate:self];
 if (connection){
 // Connect
 label.text = @"Connecting..." ;
 } else {
 // Error
 }
 //***
}
-(IBAction)BTN_S4{
 //--JMP added this---**
 NSURLRequest *request = [NSURLRequest requestWithURL:[NSURL
URLWithString:@"http://192.168.1.2/S4"]

123

cachePolicy:NSURLRequestUseProtocolCachePolicy timeoutInterval:10.0];

 NSURLConnection *connection = [[NSURLConnection alloc]
initWithRequest:request delegate:self];
 if (connection){
 // Connect
 label.text = @"Connecting..." ;
 } else {
 // Error
 }
 //***
}
-(IBAction)BTN_S5{
 //--JMP added this---**
 NSURLRequest *request = [NSURLRequest requestWithURL:[NSURL
URLWithString:@"http://192.168.1.2/S5"]
cachePolicy:NSURLRequestUseProtocolCachePolicy timeoutInterval:10.0];

 NSURLConnection *connection = [[NSURLConnection alloc]
initWithRequest:request delegate:self];
 if (connection){
 // Connect
 label.text = @"Connecting..." ;
 } else {
 // Error
 }
 //***
}
-(IBAction)BTN_S6{
 //--JMP added this---**
 NSURLRequest *request = [NSURLRequest requestWithURL:[NSURL
URLWithString:@"http://192.168.1.2/S6"]
cachePolicy:NSURLRequestUseProtocolCachePolicy timeoutInterval:10.0];

 NSURLConnection *connection = [[NSURLConnection alloc]
initWithRequest:request delegate:self];
 if (connection){
 // Connect
 label.text = @"Connecting..." ;
 } else {
 // Error
 }
 //***
}

//---http://www.youtube.com/watch?v=FXQiEfjiYns
- (void)connection:(NSURLConnection *)connection didReceiveData:(NSData *)data{
 response = [[NSString alloc] initWithData:data encoding:NSUTF8StringEncoding];
}

124

//---http://www.youtube.com/watch?v=FXQiEfjiYns
- (void)connectionDidFinishLoading:(NSURLConnection *)connection{
 if ([response isEqualToString:@"1"]) {
 label.text = @"1- on web page";
 }else {
 label.text = @"other web text";
 }
 connection = nil;//---JMP
}

 //***

- (void)didReceiveMemoryWarning
{
 [super didReceiveMemoryWarning];
 // Release any cached data, images, etc that aren't in use.
}

#pragma mark - View lifecycle

- (void)viewDidLoad
{
 [super viewDidLoad];
 // Do any additional setup after loading the view, typically from a nib.
}

- (void)viewDidUnload
{
 [super viewDidUnload];
 // Release any retained subviews of the main view.
 // e.g. self.myOutlet = nil;
}

- (void)viewWillAppear:(BOOL)animated
{
 [super viewWillAppear:animated];

 //JMP---connect to IRMCU---
 //NSURLRequest * request = [NSURLRequest............

}

- (void)viewDidAppear:(BOOL)animated
{
 [super viewDidAppear:animated];
}

- (void)viewWillDisappear:(BOOL)animated
{
 [super viewWillDisappear:animated];
}

- (void)viewDidDisappear:(BOOL)animated
{
 [super viewDidDisappear:animated];

125

}

-
(BOOL)shouldAutorotateToInterfaceOrientation:(UIInterfaceOrientation)interfaceOrie
ntation
{
 // Return YES for supported orientations
 return (interfaceOrientation != UIInterfaceOrientationPortraitUpsideDown);
}

@end

126

APPENDIX G - Data Sheets

127

G.1) IRMimic2
 www.tauntek.com

128

129

130

131

132

133

134

135

G.2 Microphone Sound Input Module

136

137

(www.freetronics.com/mic)

138

G.3) Wi-Fi CuHead Shield V2

www.cutedigi.com/wireless/wifi/linksprite-cuhead-wifi-shield-v2-0-for-arduino.html
then schematic link

139

G.4) Arduino compatible Uno - Freetronics Eleven

Used for Prototype-1, www.freetronics.com

140

G.5) Arduino compatible Uno - Freetronics EtherTen

141

G.6) Arduino Uno

142

143

144

145

146

G.7) Arduino MEGA 2560

147

148

149

150

151

APPENDIX H - Test Results

152

H.1) Apple IDE

TEST SHEET
Test number Apple IDE - 1
System Component iPhone / iPad Application
Requirement 5
Date 29-1-2012
Tester John Palmer
Task Write simple test programme to test Apple IDE on iMAC
Notes The Apple IDE took a lot of time to figure out how to use it.
Results Hello World displayed on iPhone
Pass / Fail Pass
Follow up Action None

TEST SHEET
Test number Apple IDE - 2
System Component iPhone / iPad Application
Requirement 5
Date 2-7-2012
Tester John Palmer
Task Update Xcode Application version

Create 5 button control Application
Notes Update iDevices Operating System
Results Successful
Pass / Fail Pass
Follow up Action None

H.2) MCU IDE

TEST SHEET
Test number MCU IDE - 1
System Component MCU Arduino IDE
Requirement R5-2
Date Various 2012
Tester John Palmer
Task Arduino IDE notes
Notes

Originally IDE 1.0 was installed and tested ok.

Then older example code would not compile

Used IDE 0023.

Results Version compatibility problems

153

Pass / Fail Pass
Follow up Action Always check IDE and code versions

H.3) Web Server

TEST SHEET
Test number TCP/IP - 1
System Component Web Server
Requirement R4-1.5
Date 2012
Tester John Palmer
EtherTen Using Freetronics EtherTen board, load test TCP/IP program

that uses HTML web address commands to toggle a LED
ON/OFF from a web page address string.

 compile error
o cannot find string functions
o search internet for string libraries, including

AVR studio
o import and test other string functions, limited

improvement
o read through library header code

 use Arduino IDE 0019
 Success
 difference between Arduino 1.0 (latest) and older

versions to 0023 (not documented on Arduino web
site)

 change in file extensions naming (not documented on
Arduino web site)

 need to change include <Arduino.h> for string
functions

DFRobot Could not figure it out
WiShield V2 After having a lot of trouble with AsyncLabs files they were

configured and the Web Server worked
Pass / Fail Pass
Follow up Action Extend WiShield AsyncLabs Web Server processing

154

H.4) IR Controlling Devices

TEST SHEET
Test number Control - 1
System Component IR Tx Rx subsystem
Requirement R6
Date Various 2012
Tester John Palmer
Task Test basic IR Tx Rx
Notes Install IR library. Print receive codes in Serial Terminal ok.

Re-transmit codes fail. check circuit, IR LED currents ok.
Use IR camera LED is ok. Test HP,NEC,SONY, all failing.
Use 2nd Arduino to Rx, works but wrong Tx signal. This
confirms that the Arduino library is not always decoding
correctly, but the author notes that.

Build and used IR detector to look at IR waveforms.

Testing on HP Notebook computer failed. Maybe the IR port
is set to IR Data, or as later found out the number of pulses
may be too many.

Mainly Testing Play/Stop and volume Command

Received and decoded signals from,
NEC, ok
Panasonic, ok
SONY, ok
Xbox360, fail

Using Raw Mode in the MCU code was better at sending the
captured IR signals.

26-6-2012
Tested the IRMimic2 Chip successfully on
SONY amp, ok
SONY TV, ok
Portable DVD player, ok
Air conditioner, ok
Xbox360, fail

Note: The portable DVD player’s battery expanded while
charging breaking its case and then failed.

Results Was able to Receive store and Send a IR signal
Pass / Fail Pass
Follow up Action On going to store longer IR signals

155

H.5) Wi-Fi Shield

TEST SHEET
Test number Wi-Fi-1
System Component Wi-Fi

Shield type = DFRobot
 Little Bird Electronics (retailer)
 DFRobot (manufacture)
 WIZnet (onboard Wi-Fi module)
 (Arduino code library ?)

Arduino board = Eleven, Uno compatible
 Jaycar (retailer)
 Freetronics (manufacture)

Requirement R4-4
Date 20-2-2012
Tester John Palmer
Task Make a WLAN connection to the MCU
Notes

 use Arduino IDE 1.0
 install on Arduino board test program ‘blink’, OK,

serial terminal OK,
 install WIZnet software, version 1?
 WIZnet software not fully functional, some features

freeze or time out. as if intermittent terminal
connection, drops out

 manufactures documentation poor, not current.
 power - tried USB and 2.1 mm jack
 Wi-Fi Shield indicator LEDs OK
 Wi-Fi Shield connected after about 30 attempts, but

limited

Results Very poor Wi-Fi connection
Pass / Fail Fail
Follow up Action More testing required

156

TEST SHEET
Test number Wi-Fi-2
System Component Wi-Fi

Shield type = Wi-Fi Shield V2.1 (name)
 Little Bird Electronics (retailer)
 DFRobot (manufacture)
 WIZnet (onboard Wi-Fi module)
 (Arduino code library ?)

Arduino board = Eleven, Uno compatible
 Jaycar (retailer)
 Freetronics (manufacture)

Requirement R4-4
Date 29-3-2012
Tester John Palmer
Task Make a WLAN connection to the MCU
Notes Continue from Wi-Fi test 1

 find faults
o trace circuit schematic
o measure power rails
o percussion test

 fix
o replace jumper pins
o replace USB cable
o flash firmware (WIZnet program)

 use WIZnet configuration terminal
 Use AT modem commands to configure

o set IP address = 10.0.0.61
o set subnet mask = 255.255.255.0
o set gateway = 10.0.0.138
o set SSID = WLANname
o set WPA = WLANpassword
o set security type = 2 (for WPA mode), Note

WPA takes 30 seconds to start up where WEP
takes 1 second

o wireless mode = (infrastructure)
 look at WLAN connectivity
 Ping OK

Results Not useful Web page connection
Pass / Fail Works but Fails requirements
Follow up Action Try to buy a Wi-Fi shield from a different Wi-Fi module

manufacturer who has support for a different library.

157

TEST SHEET
Test number Wi-Fi-3
System Component Shield type = CuHead Ver 2 (copper-Head)(product name)

 CuteDigi (retailer)
 LinkSprite (manufacture)
 Microchip (onboard Wi-Fi module)
 AsyncLabs (Arduino code library, pre IDE 1.0,
pde examples)

Arduino board = Uno compatible
 Jaycar (retailer)
 Freetronics (manufacture)

Requirement R4-4
Date 11-5-2012
Tester John Palmer
Task Google ‘asynclabs wishield wiki’

 goto Asynclabs Wishield Wiki
 within page click link to Wishield 2.0 download at

GitHub
 Download (may need Firefox) WiShield.zip version

1.3 2012 and extract (may need Zipeg for W7)
 Rename extracted folder to ‘WiShield’
 add it (copy and paste) to IDE, example ‘Arduino-

1.0\libraries\WiShield’
 IDE menu ‘File/example/WiShield/server’
 log into WLAN and check for a free IP addresses to

use
 in IDE sketch

o set IP address = 10.0.0.61
o set subnet mask = 255.255.255.0
o set gateway = 10.0.0.138
o set SSID = WLANname
o set WPA = WLANpassword
o set security type = 2 (for WPA mode), Note

WPA takes 30 seconds to start up where WEP
takes 1 second

o wireless mode = (infrastructure)
o Set IDE board type = Uno
o set COM port = 8

 verify / compile
o Failed, compile errors

 is it wrong library version, YES-NO,
2012

 has the library been linked into IDE
correctly, YES

 should it be in IDE 0023, YES, clue
example file extension is pde (note,
Asynclabs states this has been updated
to work in IDE 1.0)

 move library to IDE 0023, compile OK

158

 enter IP address in web browser = 192.168.2.61

Notes Self Reflection discussion: (date 28-May-2012)

After much reading of updated documentation for WiShield
from Asynclabs Wiki and GitHub repository the clues of the
puzzle came together. That is what to do and what to expect.
For example, for the CuHead Wi-Fi shield I was expecting to
see the connection on the WLAN and a green LED on the
shield to indicate status OK, there was only a red LED and the
WLAN could not see the shield. On the Asynclabs Wiki it
does say a red LED will turn on after it makes the WLAN
connection. (The DFRobot Wi-Fi Shield did have
green/red/yellow LED indicators and the WLAN could see it.)
However I was not able to find this information until I went
searching again and again. This is because of all the
inconsistent broken and outdated URL links from the retailers
and manufactures. Since the DFRobot Wi-Fi shield was
purchased a lot of information has been updated making
things easier. The final truth was found by doing a Google
search on ‘Asynclabs WiShield’

Results Success, web page displays Hello World response

Pass / Fail Pass
Follow up Action Keep going

TEST SHEET
Test number Wi-Fi-4
System Component

Shield type = CuHead (Version 2)
 CuteDigi (retailer)
 LinkSprite (manufacture)
 Microchip (onboard Wi-Fi module)
 AsyncLabs (Arduino code library, pre IDE 1.0,
pde examples)

Arduino board = Uno compatible
 Jaycar (retailer)
 Freetronics (manufacture)

Requirement R4-4
Date 6-2012
Tester John Palmer
Task now write sketch HTML/CSS to use HTTP to toggle

LED ON/OFF (DO 13)

159

Notes Used example MCU code
Results It works
Pass / Fail Pass
Follow up Action Can now start using for main design

H.6) Sound Pressure Level SPL Sensor

TEST SHEET
Test number SPL - 1
System Component Automatic Volume Gain Control
Requirement R4 Extended Functionality
Date 7-2012
Tester John Palmer
Task Power up microphone module and sample output using

Arduino A/D converter displaying readings to serial terminal
Notes Used manufactures example MCU code.
Results Module works but seems too sensitive as green SPL LED

blinks randomly and frequently with no sound in the room.
Result not as expected.

Pass / Fail Fail
Follow up Action Investigate sensitivity

TEST SHEET
Test number SPL - 2
System Component Automatic Volume Gain Control
Requirement R4 Extended Functionality
Date 7-2012
Tester John Palmer
Task After adding a DC power filter, Power up module and check

voltage levels and voltage referencing.

Check microphone sampled output using Arduino A/D
converter displaying readings to serial terminal

Notes A better result. The SPL LED was not as active, but still
seemed to be wrong. Increased resistance to DC power low
pass filter and added a ferrite bead. rechecked power rail
voltages and result is excellent

Results SPI LED output stable with no sound input
Pass / Fail Pass
Follow up Action Reduce the gain to decrease sensitivity

160

TEST SHEET
Test number SPL - 3
System Component Automatic Volume Gain Control
Requirement R4 Extended Functionality
Date 7-2012
Tester John Palmer
Task Identify and find surface mount feedback resistor, de-solder it

and measure its value. Do some gain calculations, then solder
in a new resistance value.

Check microphone sampled output using Arduino A/D
converter displaying readings to serial terminal

Notes Resistor identified correctly. Photos in design section.
Results Resistor ranges tried from 470k ohm to 150 k ohm, Module is

working well.
Pass / Fail Pass
Follow up Action Investigate changing gain in MCU software.

TEST SHEET
Test number SPL - 4
System Component Automatic Volume Gain Control
Requirement R4 Extended Functionality
Date 5-8-2012
Tester John Palmer
Task Test software controlled microphone gain.
Notes Fixed a wiring mistake.

Input, with no connection to SPL amplifier. Just resistance
measurement only.

C B A Resistance

(k Ohms)
0 0 0 0
0 0 1 41
0 1 0 73
0 1 1 100
1 0 0 125
1 0 1 145
1 1 0 163
1 1 1 180

Connected to SPL amplifier and works well.
Added a default gain resistor

Results It worked.
Pass / Fail Pass

161

Follow up Action Some slight adjustment of feedback resisters might provide a

better range of gain.

H.7) Power Consumption

TEST SHEET
Test number MCU Power - 1
System Component Batter and Power
Requirement R4-3
Date 13-9-2012
Tester John Palmer
Task Measure Prototype-1 power usage
Notes Note: Voltage and Current meter was not NATA calibrated.

Alkaline battery = 6 V, after regulator = 5.0 V
NiMH battery = 5.1 V, after regulator = 4.6 V

Startup / idle = 143 mA at 5V to 135 mA at 4.6V

Microphone triggered = 3 mA

Wi-Fi Tx = 160 mA - 170 mA at 5V
Wi-Fi Tx = 150 mA at 4.6V

No Wi-Fi (sleep) = 45 mA at 5V to 38 mA at 4.6V

Battery capacity = 2450 mAH
Battery life = 2450 mAH/150 mA = 16.3 hours
Battery life = 2450 mAH/135 mA = 18 hours

Results See Notes
Pass / Fail Pass
Follow up Action Future work to reduce power consumption.

162

APPENDIX I - Design Evaluations

163

I.1) Sub System Components and Tools

Through the research it has been found that up to date manufactures instruction
material and specifications has been difficult to find. This has been problematic and
as such initial testing for the selection of components has been necessary to start the
embedded design.

I.2) Project Challenges and Delays

 Numerous Windows 7 PC crashes
 Portable DVD battery expansion and failure
 The file downloads from GitHub repository need for the Wi-Fi Shields would

not download through Microsoft Internet explorer, but will using Firefox web
browser. This was found to be a Microsoft Internet explorer setting which
was changed by a Microsoft Update

 Legacy Arduino C code and Libraries were not forward compatible to IDE 1.0
This made handling of Strings a major problem with compile errors. At the
time these incompatibilities were not documented on the Arduino Web Site.
They are now documented.

I.3) MCU and IDE Testing

 Futurlec AVR board
 PC USB to Parallel and RS232
 PCMCIA express card to Parallel and RS232
 AVR Studio 5 IDE, tool chain problems
 AVR studio 4 IDE, tool chain ok
 PIC MPLAB IDE, tool chain problems
 Futurlec PIC board
 AVRdude
 Putty Serial terminal
 Arduino IDE 1.0
 Arduino IDE 0019 to 0023, compile and download to target MCU
 Attempts to migrate MCU code that is dependent on the Wi-Fi Server library

from IDE 0023 to IDE 1.0 have not been successful.

The Arduino Hardware, Software and IDE has had successful results and is being
used, however a move to a more professional IDE would help refine the design.

I.4) IR Communications Testing

164

There were problems with receiving IR codes. Results were not as expected using the
example Arduino IR library and example code. Different brand and device IR remote
control signals were analysed. Results were inconsistent. The Rx and Tx circuit was
checked and component values recalculated and LED currents re-checked.

The IR beam from the LED was not able to be viewed by the camera in the iPhone.
More checking of the circuit followed. After some more research a different camera
was used and the Tx LED was viewed as working by an electronic digital SONY
camera.

A test system using two Arduino MCUs was setup and the learnt IR codes could not
be resent as same. This needed further analysis. The IR signals were measured
directly using a Trans-impedance amplifier with a Photodiode. The Photodiode is a
current device and has capacitance, so it needs to be part of a Trans-impedance
amplifier or a Current to Voltage Converter (Neamen, 2007 p. 641). The output was
viewed using the PC sound card provides a cheap low bandwidth way to inspect
received Infrared signals. ZelScope is a PC sound card scope (Zeldovich, K 2012).
See Figure I.1 - Measured IR wave forms using PC sound card.

165

Figure I.1 - Measured IR wave forms using PC sound card

The Arduino infrared library does not work perfectly and was unable to decode and
send the same codes. Only Raw signal recording and play back seemed to work.
Raw mode tests using a simpler protocol from a portable DVD player worked.

Time ran out and this part of the project was handled by a dedicated universal
learning IR MCU called IRMimic2.

Testing of the IRMimic2 chip found the length of IR codes for an Xbox is longer than
the Sony Amplifier and TV. The IRMimic2 chip cannot store the longer IR codes
and this part of the project will need further work.

I.5) DFRobot Wi-Fi Shield

Shield - DFRobot Arduino WIZnet Wi-Fi Shield and specifications (DFRobot, 2012)
Wi-Fi module -WIZnet module on the DFRobot Shield (WIZnet, 2012)

Figure I.2 - DFRobot Arduino WIZnet Wi-Fi Shield (DFRobot)

Originally this Shield had Wi-Fi connection and configuration problems, see Figure
I.2 - DFRobot Arduino WIZnet Wi-Fi Shield (DFRobot). The problems were found
to be intermittent. The fault was located as the Wi-Fi /USB header jumper had a
physical defect of moulded plastic on what should have been a conductor. The
jumpers were replaced from an old scrap computer board and the Shield worked

166

successfully. One of the simplest components to fix took weeks of testing to rectify.
The Shield had to have its firmware re-flashed. Only serial RS232 URL:PORT
connectivity mode was working. The manufactures documentation was outdated and
had photos of different hardware in it.
After having extended problems with this Wi-Fi Shield it was discarded and a
different Shield and manufacturer was sourced for a fresh start.

I.6) Web Server software library testing

Two Web Servers were evaluated. Before the WLAN Web Server the LAN Web
Server was tested on the Freetronics EtherTen board. Initially it would not work on
the Arduino IDE 1.0 and was rolled back to IDE 0023. This was ok because
knowledge gained here with decoding URL text strings was helpful in producing
Prototype-1.

I.7) User Interface design and testing

Overall the user interface was scaled back to fix performance problems.

 had to simplify the HTML/CSS code
 had to put HTML text strings into program memory
 had to read and set pixel width of iPhone web page
 had to simplify menu structure
 had to rollback settings functionality as MCU was overloaded.
 had to rollback full functionality of factory reset as MCU was overloaded
 had to reduce serial print usage to stabilise performance

I.8) Apple Xcode and iPhone Application

 The Xcode IDE needed to be up to date and all versions of the iDevice OS had
to be current to do software development work, this added delays.

I.9) USB to RS232 Serial communications link

This is needed for the MCU IDE to download compiled code into the MCU. This can
be a problem as newer computers especially Notebook PCs as many do not have a
Serial RS232 Port. This can be overcome by using a USB to Serial RS232 converter.

Arduino development boards contain a built in converter, however during use
connectivity problems were frequent as the development PC operating system kept
changing virtual port COM allocations.

167

After some investigation it was discovered that the Prolific chip set and driver worked
correctly, see Figure I.3 - Prolific USB to Serial RS232 converter.

Figure I.3 - Prolific USB to Serial RS232 converter

Figure I.4 - PCMCIA Express Serial RS232 and Parallel card

The PCMCIA card was found to be plug and play in Microsoft Windows XP.
However it required a driver for Microsoft Windows 7 and crashed the Notebook PC
if inserted or removed while the PC was powered up but not in Windows XP, see
Figure I.4 - PCMCIA Express Serial RS232 and Parallel card.

The AVR MCU can use In System Programming ISP. There are a number of
programmers available but after problems during testing it may be better to use the
IDE manufactures programmer and debugger. See Figure I.5 - AVR ISP Serial
RS232 programmer.

168

Figure I.5 - AVR ISP Serial RS232 programmer

I.10) Other MCU boards

Futurlec AVR and PIC Boards were looked at but not used. The professional IDEs
MPLAB and AVR Studio were installed and investigated but not used. The newer
versions of the professional IDEs seemed to require their proprietary programmers
and associated branded development kits. Tool chain setup was problematic.

The Arduino Freetronics EtherTen board needs a special USB driver that is a bit
hard to locate on the internet and instructions were vague. Once the USB driver is
installed the board worked with the LED Blink test file. The Web Server functions
worked ok. See Figure I.6 - Arduino Freetronics EtherTen LAN board with 2 G SD
card

169

Figure I.6 - Arduino Freetronics EtherTen LAN board with 2 G SD card

I.11) Basic IR hardware setup

The EtherTen board was first use to do IR testing.

The Arduino Library ‘IRremote.h’ by Shirriff (2009) is well documented and the
example code was used. The author specifies limitations to the brands the library has
been tested on. The Linux community is referenced by the Arduino IR Library
‘IRremote.h’ by (Shirriff, 2009) for extra IR codes.

An IR hardware design circuit was designed as per Figure I.7 - IR circuit design and
calculations.

The components were soldered onto a stackable prototyping shield, see Figure I.8 -
IR Tx Rx hardware.

The control lines were connected to the MCU as per Figure I.19 - Freetronics
EtherTen IR Pin assignments.

170

Figure I.7 - IR circuit design and calculations

Each component will be tested before being soldered into circuit prototype shield.

171

Figure I.8 - IR Tx Rx hardware

Figure I.9 - Freetronics EtherTen IR Pin assignments

172

In initial testing of the ‘IRremote.h’ library not all bits in the signal were correctly
decoded and transmitted. This was verified using the PC audio card scope Zelscope
software and a Photodiode Trans-impedance amplifier. The common circuit
schematic is from (Neamen, 2007) page 641 and was constructed on prototyping
board, see Figure I.20 - Photodiode Trans-impedance amplifier.

Figure I.10 - Photodiode Trans-impedance amplifier

As there were a lot of problems decoding the IR signals correctly and time was
running out for this phase of the project Raw mode was used where the whole bit
stream was recorded and then played back. Raw mode was successful. It was tested
on a portable DVD player and could correctly reproduce IR signals.

173

APPENDIX J - Self Reflection

174

J.1) Self Reflection

In the beginning I did not know anything of the Apple Hardware and Software
systems. I had only programmed microcontrollers with basic tasks in assembly
language and done some high level Microsoft DotNet coding. I had no idea how I
was I going to fill the gap in putting a Web Server into a microcontroller and handling
Wi-Fi WLAN communications. At the end of the day I just did not know or could not
find information so I had to make some educated guesses, buy some stuff and do
some testing.

The previous USQ Engineering problem solving courses helped me to plan and brake
down the task into requirements. Although it would seem that most tasks were
straight forward, things went wrong that were unexpected and just should not have
happened. However I was able to take a step back and reassess what I was trying to
do and when I had used too much time on one element of the project I did a redesign
and moved on.

Ordering parts early and evaluation testing was a big win. My daily log was also a
reflection exercise that helped me keep the project on track. Documentation was
equally as important as doing the design work and I personally found it hard going.
And sometimes the documentation slipped as I tried to manage the project.

This was a huge learning activity researching, planning and putting it all together.
The project has changed me and I am thankful for it.

END

