
Worked Examples in Computer Science

Ben Skudder Andrew Luxton-Reilly

Department of Computer Science
The University of Auckland,

PO Box 92019, Auckland, New Zealand
Email: bsku002@aucklanduni.ac.nz, andrew@cs.auckland.ac.nz

Abstract

Most instructors teaching Computer Science use examples
to help students learn, and many instructors use worked
examples (either in a static or a dynamic style) in their
courses. However, the research on worked examples is
not well known in the Computer Science Education com-
munity. This paper provides an overview of how worked
examples have been studied, and the major findings from
the literature, particularly as they relate to Computer Sci-
ence.

Keywords: cognition, learning, cognitive load theory,
worked examples

1 Introduction

Shulman (2005) uses the term signature pedagogies to de-
scribe pedagogical practice that is characteristic of a given
discipline. These are the ways of teaching that spring
to mind when we think of a particular discipline — for
Medicine, it is the bedside teaching that occurs during
clinical rounds where groups of students are involved in
discussions with a resident; for Law, it is the case dialogue
method in which a complex case is dissected through dis-
cussion and argument. We believe that the use of worked
examples to demonstrate problem solving and software
development is a signature pedagogy for Computer Sci-
ence. Yet this key pedagogical practice, characteristic of
education in Computer Science, has not been widely stud-
ied in the very context of Computer Science.

According to Atkinson et al. (2003) “Worked-out ex-
amples typically consist of a problem formulation, solu-
tion steps, and the final answer itself”. A problem is pre-
sented, accompanied with step-by-step instructions which
lead to the solution. These are usually textual but may in-
clude pictures, diagrams or animations. We consider that
this definition of worked examples would include dynamic
demonstrations of problem solving (such as live demon-
strations of writing programs that solve simple problems).
Students are expected to study the worked example and
from it learn how they might apply it to similar problems.
Figure 1 illustrates a typical worked example in Computer
Science.

According to Miller (1956), humans have a limited
working memory, where only a few chunks of informa-
tion can be processed at one time. Cognitive load (Sweller
1988, Chandler & Sweller 1991) describes the amount of
information that must be held in working memory during

Copyright c©2014, Australian Computer Society, Inc. This paper
appeared at the 16th Australasian Computing Education Conference
(ACE2014), Auckland, New Zealand, January 2014. Conferences in
Research and Practice in Information Technology (CRPIT), Vol. 148,
Jacqueline Whalley and Daryl D’Souza, Ed. Reproduction for academic,
not-for-profit purposes permitted provided this text is included.

Problem statement:
Write a function that calculates the area of a
rectangle.

Solution Design:
1. Determine what parameter(s) the function

needs to calculate an answer, as well as their
type(s):

• width (float), height (float)
2. Determine what result the function will return,

including the type:
• the area of the rectangle (float)

3. Determine the steps needed to calculate this re-
sult:

• To calculate the area of a rectangle we
will use the formula:
(area of rectangle = width * height)

Implementation:
1. Using the identified parameters, write the func-

tion header:

def rectangle_area(width, height):

2. Using the identified steps, calculate the result:

def rectangle_area(width, height):
area = width*height

3. Return the final result

def rectangle_area(width, height):
area = width*height
return area

Figure 1: An exemplar worked example

the process of problem solving. If the working memory is
overtaxed, for example, by trying to solve a problem with-
out enough scaffolding, learning performance will suffer.
It is for this reason that Kirschner et al. (2006) argue that
problem solving fails to be an effective learning strategy
when there is insufficient guidance in place.

Humans also have a long-term memory with a much
larger capacity (Baddeley & Hitch 1974). Long-term
memory consists of a set of schemas, and with practice,
information stored according to the schemas can auto-
matically be recalled and applied with minimal impact
on working memory. In this model of human cognition,
the aim of teaching is to help students form appropriate
schemas, which can in turn be used to solve both familiar
and novel problems.

Recent literature distinguishes between different types

Proceedings of the Sixteenth Australasian Computing Education Conference (ACE2014), Auckland, New Zealand

59



of cognitive loads — intrinsic cognitive load, extraneous
cognitive load and germane cognitive load (Paas et al.
2004).

Intrinsic cognitive load is imposed by the degree of in-
teractivity between elements in the problem domain.
It may not be reduced unless the content is in turn
reduced, and is therefore unaffected by altering the
presentation of material by an instructor.

Extraneous cognitive load is caused by activities which
do not assist with the formation of schemas. These
activities interfere with learning because they require
the use of working memory for processes that are not
related to the focus of learning.

Germane cognitive load relates to the higher level pro-
cesses (scaffolding) that supports the formation of
schemas, and therefore improve the effectiveness of
the activity for learning.

For further information, work by Caspersen & Bennedsen
(2007), and Caspersen (2007) provide excellent overviews
of the theory of cognitive load theory as it applies in the
practice of instructional design for Computer Science.

Although examples, and in particular, worked exam-
ples are widely used to teach Computer Science, there are
few studies that have investigated their effectiveness in the
Computer Science context. In this paper we present the
theoretical basis and research findings for worked exam-
ples, which may encourage practitioners to be more delib-
erate about the organization of their own examples. We
also show how worked examples have been studied in re-
lated fields like engineering and statistics, and examine the
literature to identify potential avenues for further research
in Computer Science.

2 Ways of presenting worked examples

We first consider the different ways that worked examples
can be integrated into the overall instructional design for a
given topic.

Examples only: In this approach, students are simply
provided with a set of worked examples. There are no ac-
tivities, such as exercises or problems to solve, associated
with the examples.

Example-problem blocks This approach provides stu-
dents with a block of worked examples of various types
to study, then a set of related problems are given which
students are expected to solve.

Example-problem pairs These are one of the most
common ways of presenting worked examples, where
each example is paired with a problem similar to the exam-
ple for students to complete. Students alternate between
studying a worked example and solving a related problem.

Faded worked examples In this approach, a complete
worked example is presented, then another worked exam-
ple with one step missing is presented, and students are
expected to fill in the missing step. They are presented
with a series of worked examples, with an extra step re-
moved each time, until a student is presented with just a
problem to solve.

The most common orders for fading steps are known
as forward fading - where steps are removed starting from
the beginning, and backwards fading - where steps are re-
moved from the end first.

2.1 Other techniques that support worked examples

These basic forms of presenting worked examples are of-
ten augmented with other techniques, such as:

Subgoal labeling A technique where groups of steps are
given a label, to help organize the information into a mean-
ingful structure. According to Margulieux et al. (2012)
subgoal labels allow students to focus on groups of steps
rather than individual steps, giving them fewer problem-
solving steps to consider and, reducing cognitive load.
The highlighted structure given by subgoals is also sup-
posed to assist with schema formation, or provide “men-
tal model frameworks” to internally explain how problems
are solved.

Self explanation prompts Self-explanation is a process
some learners undergo when provided with a worked ex-
amples. Students who try to explain to themselves the rea-
sons for a step or set of steps in an example were found to
learn more than those who don’t (Atkinson et al. 2003), so
self-explanation prompts are designed to elicit such self-
explanations. Self-explanation prompts can be in the form
of asking students to justify a step or choosing what prin-
ciple a particular step is invoking. When employed cor-
rectly, these prompts are considered to be a source of ger-
mane cognitive load.

3 What is the effectiveness of Worked Examples?

The benchmark for evaluating worked examples is usually
some form of problem solving task. The task typically
requires a student to solve a problem, and the student is
told when their solution is correct. Usually a set of ques-
tions is given, and some of these questions are swapped
for worked examples — people in the problem solving
condition solve all the questions, and people in the ex-
amples condition study several examples and solve some
problems.

They are also often evaluated for their ability to pro-
mote near transfer and far transfer. Near transfer is the
ability of students to solve questions which are isomor-
phic to the ones they saw in their training phase, whereas
far transfer is the ability for students to solve novel prob-
lems which use many of the same skills from the train-
ing phase, but in a different sequence or with some of the
learned techniques requiring minor modifications.

3.1 Examples only

The provision of examples over giving problems to solve
reduces extrinsic cognitive load and directs student’s at-
tention to the relationships between different problem
steps, thereby encouraging students to construct relevant
problem-solving schemas around it. Problem-solving with
no guidance, however, requires a large cognitive load for
novices, but all the effort goes to finding an answer rather
than schema formation.

Studies have investigated the use of isolated worked
examples to illustrate how to solve a given problem in
fields such as Accounting (Stark et al. 2002), Electrical
Engineering (van Gog et al. 2006), and CNC Program-
ming (Paas et al. 2004).

In the domain of CNC programming, Paas et al. (2004)
found that presenting multiple worked examples with high
variability resulted in improved learning compared with
multiple worked examples with low variability. They also
compared worked examples only with a problem-example
pair condition, and found that attempting to solve a prob-
lem prior to the worked example actually impeded learn-
ing.

CRPIT Volume 148 - Computing Education 2014

60



A later study by van Gog et al. (2011) compared
worked examples on their own, example problem pairs,
problem example pairs and problem solving on its own for
teaching high school students to diagnose a faulty electri-
cal circuit.

The use of worked examples resulted in improved
learning and transfer compared with traditional problem-
solving techniques. This improvement in learning was
also observed in the condition where students were pre-
sented with example-problem pairs. Students reported
lower mental effort and scored better results upon test-
ing than those in the problem solving condition, or the
problem-example paired condition. No difference was
found between example-only and example-problem pairs
van Gog et al. (2011).

Although it might seem that presenting a problem first
would motivate a student to engage more deeply with the
worked example, the results of these studies suggest that
greatest learning occurs if the worked examples are pre-
sented prior to the problem.

3.2 Example-problem blocks

The use of example-problem blocks is uncommon, but has
been studied in a programming context. In one notable
study, Gregory et al. (1993) compared using example-
problem blocks, example problem pairs, alternating sim-
ilar problem-solving task, and blocks of problem-solving
tasks.

The tasks were 6 pairs of LISP programming ques-
tions, to solve after having gained some familiarity with
LISP before the experiment proper started. Each pair
tested the same skills, with one being the source prob-
lem and the other being the target. The idea was that
the source provided a chance to initially learn to solve the
problem, and the target allowed them to practice the tech-
niques learned from the source.

For the example-problem pairs and block conditions
source problems were swapped for a worked example. In
the block conditions, sources were separated from tar-
gets whereas in the pair conditions targets immediately
followed sources. In other words, the example-problem
paired condition involved a sequence of problems where
each problem was preceded with a worked example. The
block condition involved a sequence of worked examples,
followed by a sequence of problems to solve.

Example-problem blocks were the worst preforming
group in post-tests. Students in this condition spent as
much time studying source examples as the example-pair
group, but spent more time on the target problems. Gre-
gory et al. (1993) suggest that difficulty in remembering
the examples once they met the equivalent problem would
hinder later problem solving, and that if students are un-
able to recall the appropriate example, the benefit of study-
ing them over problem solving disappears.

Indeed, both of the problem-solving groups performed
better than the example-problem blocks group, suggesting
the extra practice afforded to the problem-solving block
group outweighed the benefits of having worked exam-
ples. The example-problem pairs were the best perform-
ing group on post-tests.

3.3 Example-problem pairs

Extensive work by Sweller and his colleagues has estab-
lished that worked examples, when paired with problems,
are superior to problem-solving without worked examples
in a variety of subject areas (Sweller & Cooper 1985,
Mwangi & Sweller 1998). Fewer studies have compared
the use of example-problem pairs with other configura-
tions of example and problem presentation.

The use of example-problem pairs is thought to foster
learning better than example-problem blocks, as students
can better select and recall the most relevant example (i.e.
the one just studied) to relate the problem to when they are
given one directly after the other. Separating them may
make it harder to recall the relevant example to relate to
the current problem.

As described previously in section 3.1, van Gog et al.
(2011) compared worked examples on their own, exam-
ple problem pairs, problem example pairs and problem
solving, and found example-only and example-problem
pairs to work more effectively than the other conditions.
Example-only and example pairs performed similarly.

When example-problem pairs are compared with ex-
ample problem blocks, results suggest that the example-
problems pairs are effective for learning Gregory et al.
(1993). Students studying examples in both paired and
block conditions spent equal time, but those who were
given problems to solve immediately following the exam-
ples appeared to be able to solve later problems more effi-
ciently than those students who studied a block of exam-
ples prior to practicing the problem solving skills.

Renkl et al. (2002) conducted three experiments
comparing backward and forward fading with example-
problem pairs. The first experiment compared the effec-
tiveness of backwards fading with example problem pairs
for solving Statistics problems. The second experiment
compared forward fading with example-problem pairs in
the context of Physics. The third experiment compared
both forward and backward fading with example-problem
pairs. In all three cases, students in the fading conditions
outperformed those using example-problem pairs for near
transfer problems. Students also produced fewer errors
during learning. This suggests fading may offer better
learning outcomes in a shorter amount of time for near-
transfer tasks than example-problem pairs.

Atkinson et al. (2003) explores the use of backwards
fading compared to example-problem pairs for solving
statistics problems. Under a variety of conditions, back-
wards fading resulted in higher post-test results than
example-problem pairs on both near and far transfer prob-
lems.

3.4 Faded worked examples

Although worked examples appear to be more effective
than simple problem solving under a variety of conditions,
as a student gains expertise from studying worked exam-
ples, the benefits of studying them over problem solving
disappears (Renkl et al. 2002, Atkinson et al. 2003). It is
thought that partial schema formation means that the ele-
ments that were once a source of germane cognitive load
become a source of extrinsic cognitive load. At this point
problem-solving without worked examples becomes more
effective (Renkl et al. 2004, Kalyuga et al. 2003).

To ease this transition, faded worked examples begin
with a fully worked example, but as they study it and gain
expertise steps are removed to encourage a manageable
amount of problem solving, fostering germane cognitive
load. By the end of the fading sequence, students will
have studied many of the worked example steps and will
be able to problem solve on their own.

Studies investigating the sequence of fading have not
produced reliable findings. Renkl et al. (2002) suggested
that backwards fading worked would produce better re-
sults than forward fading on near transfer items. However,
later work was unable to confirm these findings. Renkl
et al. (2004) investigated whether the sequence of fad-
ing affected near and far transfer more than the types of
steps removed. In their two experiments no difference was
found in learning outcomes or errors during learning.

Their results also suggested that students learn most

Proceedings of the Sixteenth Australasian Computing Education Conference (ACE2014), Auckland, New Zealand

61



about those steps which are faded. The implication is that
the learning activities elicited by removing steps focuses
students on those area. For this reason, they suggest the
earlier results must be attributed to the learning material
they used and the type of the steps removed. The back-
ward procedure removed those steps that may be ’pre-
requisites’ or otherwise helped students learn principles
which were helpful for earlier steps. Doing it the other
way means they would not learn the important principles
first, which would hinder subsequent learning.

Moreno et al. (2006) also compares forward fading and
backward fading. Those who used forward fading were
found to outperform those using backwards fading. They
suggest this has to do with the ease of the material they
were learning. Having studied the first example, students
may have gained all the initial knowledge they needed.

According to the expertise reversal effect, if a stu-
dent already has some expertise in the area, further learn-
ing is better gained by problem-solving, and techniques
like worked examples may hinder or decrease subsequent
performance. This is because for an expert, studying a
worked example is a source of extraneous cognitive load
rather than germane cognitive load, and problem-solving
promotes germane cognitive load for those with some ex-
pertise in the targeted domain. Because forward-fading
gets students to start problem-solving as the first, rather
than the last step, the early problem-solving may have ben-
efited students as opposed to those who had to wait until
the final step to problem-solve.

3.5 Self-explanation prompts

Atkinson et al. (2003) cites research with mixed results
on the effects of activities designed to elicit self expla-
nations. It has been suggested that self-explanations are a
source of germane cognitive load, helping students to from
schemas around the materials they’re learning, rather than
e.g. just memorizing a set of steps to a solution. Experi-
ments where students were prompted by an online tool to
fill in templates for self-explanations , or where students
were encouraged to write their own self-explanations as
comments, failed to increase learning gains consistently.
Another study found self-explanation prompts during the
problem solving phase rather than during example study
received positive results on learning.

In their own study into solving statistics problems,
Atkinson et al. (2003) prompted students with a set of
principles a given step in the worked examples may be
drawing from. Students were expected to choose one
of the principles, and this was expected to foster self-
explanations. Students in the self-explanation groups
performed better on post-tests for near and far transfer
problem than those not prompted in the equivalent fad-
ing or example-pair groups not prompter. No extra time
was required to achieve this result. The results for self-
explanation prompts with backwards fading were repli-
cated for university and high school students.

3.6 Subgoal labeling

Margulieux et al. (2012) studied the use of subgoal la-
belling in video demonstrations and instructional material
for creating mobile applications. In the subgoal condi-
tions, the steps in the demonstration video and instruc-
tional material were labelled with subgoals grouping sev-
eral steps into a cohesive group.

In post-tests participants in the subgoal group bet-
ter identified subgoals necessary to complete a solution
whether or not they complete it correctly or not. They also
were more likely to correctly complete the subgoals nec-
essary for the assessments. Overall the subgoal condition

outperformed their counterpart on both assessments im-
mediately after training and assessments one week later.
They did so spending less time on the assessments, and
were less likely to drag out blocks in the assessments.

3.7 The expertise reversal effect

Although studies of worked examples generally shows
positive benefits for learners, Kalyuga et al. (2003)
demonstrate instances where providing worked examples
can hinder learning.

For novices, worked examples direct their attention to
important features of the problem and help in forming rel-
evant problem-solving schemas. This is a better use of
their cognitive resources than problem solving, which re-
quires extensive search of the problems space (Sweller
1988). Unguided problem solving imposes a heavy cogni-
tive load unrelated to schema formation. In other words, it
is a source of extraneous cognitive load, but not germane
cognitive load.

However someone with some expertise already has
partial or full schemas in long-term memory. For experts,
worked examples are redundant. The effort required to
analyse worked examples becomes a source of extrinsic
cognitive load rather than germane cognitive load. Ka-
lyuga et al. (2003) identify studies involving trades ap-
prentices, students working with databases and other ex-
periments where people with more experience fail to gain
any benefit from worked examples. In these studies, as
novices’ expertise increases, they learn more from prob-
lem solving rather than studying examples.

4 Examples in Computer Science

There is little research into worked examples in Computer
Science. Early research into cognitive load theory drew
upon work in teaching LISP (e.g. Anderson et al. (1984)),
where it was observed that students would rely heavily
on provided examples as opposed to instructional texts.
Much of the worked example literature rely on the results
of these studies, but nonetheless worked examples have
not been well studied in Computer Science education, as
Merrinboer & Paas (1990) and Mason & Cooper (2012)
observed.

A few reports in the CS Education literature focusing
on the instructional design of introductory programming
courses have advocated the use of worked examples dur-
ing the course (Hsiao et al. 2013, Caspersen & Bennedsen
2007, Lui et al. 2008, Gray et al. 2007). However, formal
studies of worked examples in the context of Computer
Science, such as that of Gregory et al. (1993) and Mar-
gulieux et al. (2012) are the exception rather than the rule.

4.1 Faded Worked Examples in Computer Science

Gray et al. (2007) provides a detailed discussion of how
faded worked examples might be applied in an introduc-
tory programming course in Computer Science. We ex-
amine their approach in this section. The task of pro-
gramming is decomposed into components whose cogni-
tive load they claim can be adequately managed. The de-
composition is based on two parts: the abstract algorith-
mic dimensions and the associated concrete programming
constructs. The algorithmic dimensions identified are de-
sign, implementation and semantics (the meaning of sup-
plied code). The semantic dimension is divided in three,
into assertion (students should be able to state true state-
ments about the code at various point of execution), exe-
cution (given an input, provide the output) and verification
(be able to test the code). The programming constructs
chosen were selection, iteration and subroutine calls. Each
of these would be taught in pairs (design of a selection

CRPIT Volume 148 - Computing Education 2014

62



algorithm, implementation of an iterative algorithm etc.),
with the learning of each pair supported by sets of faded
worked examples.

Concrete, fully worked examples are provided for
all of the design-construct and implementation-construct
pairs, and provide an example of semantic-assert and se-
mantic for selection algorithm. Although it is useful for
instructors considering adopting this pedagogy to have
such examples, they have not been used in any formal
studies or actual courses.

Although Gray et al. (2007) suggest the use of back-
wards fading, Renkl et al. (2004) suggests that the suc-
cess of backwards fading compared to forward fading is
an artefact of the teaching materials people use rather than
something inherent in the backwards sequencing. The
sequencing of fading should be examined to see which
steps may be prerequisites for understanding other steps
— Renkl et al. (2004) suggests these kinds of steps should
be removed first.

The use of ‘ASSERT’ during the semantic part of train-
ing is designed to get students to state what is known about
certain parts of code in the form of code comment. This
is motivated by the same principals motivating the use of
self-explanation prompts in Atkinson et al. (2003). How-
ever, it is not clear how students will learn how to develop
their own assertions without scaffolding. An explicit pro-
cess to help students develop assertions is provided for the
selection statements, but no such process is provided for
other syntax constructs.

As mentioned earlier, the research on self-explanation
prompts is not unanimous. Atkinson et al. (2003) sug-
gests the interface allowing students to write down self-
explanations may have an effect on whether it will be
effective, and the prompts they provide in their own ex-
periment require students to make choices from a list,
rather than generating them on their own. This requires
a low amount of activity from students. The scaffold-
ing provided means they won’t have to come up with as-
sertions from scratch like in some previous studies, but
the suggested ‘ASSERTS’ require a little more than pick-
ing options from a list. Further study on the use of self-
explanation prompts, or assertions during code develop-
ment, is required, both theoretical and empirical.

However, all in all, Gray et al. (2007) provide a clear
framework for using and testing faded worked examples
in Computer Science. Such techniques could straightfor-
wardly be extended to other C derived languages like C,
Java or C], or any kind of imperative or procedural lan-
guage. Other constructs or dimension of programming
could be considered too.

5 Implications for Computer Science

The use of examples is extremely common in the disci-
pline of Computer Science, particularly in courses that in-
troduce programming concepts. It is fairly typical in lec-
tures, and in most textbooks, for numerous examples of
code to be shown to students. These examples frequently
take the form of code traces, where the instructor presents
some code and proceeds to demonstrate how it would be
executed by tracing the execution one step at a time; and
problem solution pairs, in which a problem is posed by the
instructor (e.g. “Write a method that determines whether a
given number is a prime number or not”), and a solution is
subsequently presented and the code is explained in detail.
Less commonly, instructors may demonstrate the develop-
ment of software by programming in real time during the
lecture.

However, it is far less common for students to engage
in problem solving activities during lecture time. Cer-
tainly, reports of active learning in the Computer Science
classroom illustrate how such activities are possible, but

these are not widespread in practice. In most courses, it
is only much later, during homework or in laboratory ses-
sions, that students solve problems similar to those cov-
ered during lectures. In other words, most courses use
the instructional design of example-problem blocks. Al-
though the use of example-problem blocks has not been
extensively studied, there is some indication that it is one
of the least effective approaches Gregory et al. (1993).

It is possible that some of the difficulties observed in
the novice programming literature may be due to intrin-
sic cognitive load imposed by the complexity of program-
ming tasks. If, as claimed by Sweller & Chandler (1994),
programming is an intrinsically difficult area, then it is ex-
tremely important to minimize the extraneous cognitive
load if students are to be successful. Although the stud-
ies presented here suggest that some ways of organising
worked examples are more effective than others, more re-
search on the cognitive load imposed by programming is
required to better understand how to organise and present
content in the most effective way.

Additionally, it may be beneficial for practitioners to
reflect on the organisation of their course material in the
light of the studies discussed here. Some simple changes
in the way examples and exercises are structured could im-
prove learning for students in most programming courses.

6 Conclusions

The evidence suggests certain worked example techniques
(primarily example-problem pairs and faded worked ex-
amples) are an improvement over standard problem solv-
ing techniques, in terms of learning time and performance
on near transfer tests in novices.

In situations where the student is not a novice, faded
worked examples appear to improve performance and de-
screase learning time on near transfer tasks. In addition,
techniques such as self-explanation prompts may promote
far transfer as well if applied appropriately.

Since much of the research involves well structured do-
mains like Statistics, Physics and Engineering, it is likely
that findings would transfer readily to the domain of Com-
puter Science. However, further studies are required to
confirm the effectiveness of pedagogies based on worked
examples in the context of Computer Science. The use of
faded worked examples with self-explanations has the po-
tential to help students to learn more effectively, but the
best order of fading problems is currently unknown Renkl
et al. (2004). Future research into what steps should be
faded first for a given problem in Computer Science would
also help us understand how faded worked examples could
most effectively be employed.

References

Anderson, J. R., Farrell, R. & Sauers, R. (1984), ‘Learning
to program in lisp’, Cognitive Science 8(2), 87 – 129.

Atkinson, R. K., Renkl, A. & Merrill, M. M. (2003),
‘Transitioning from studying examples to solving prob-
lems: Effects of self-explanation prompts and fading
worked-out steps’, Journal of Educational Psychology
95(4), 774–783.

Baddeley, A. & Hitch, G. (1974), Working memory, in
G. Bower, ed., ‘Recent advances in learning and moti-
vation’, Vol. 8, Academic Press, New York, pp. 47–90.

Caspersen, M. (2007), Educating Novices in the Skills of
Programming, PhD thesis, University of Aarhus, Den-
mark.

Caspersen, M. E. & Bennedsen, J. (2007), Instructional
design of a programming course: a learning theoretic

Proceedings of the Sixteenth Australasian Computing Education Conference (ACE2014), Auckland, New Zealand

63



approach, in ‘Proceedings of the third international
workshop on Computing education research’, ICER
’07, ACM, New York, NY, USA, pp. 111–122.

Chandler, P. & Sweller, J. (1991), ‘Cognitive load theory
and the format of instruction’, Cognition and Instruc-
tion pp. 293–332.

Gray, S., St. Clair, C., James, R. & Mead, J. (2007), Sug-
gestions for graduated exposure to programming con-
cepts using fading worked examples, in ‘Proceedings of
the third international workshop on Computing educa-
tion research’, ICER ’07, ACM, New York, NY, USA,
pp. 99–110.

Gregory, J., Trafton, G. & Reiser, J. (1993), ‘The contri-
butions of studying examples and solving problems to
skill acquisition’.

Hsiao, J.-Y., Hung, C.-L., Lan, Y.-F. & Jeng, Y.-C. (2013),
‘Integrating worked examples into problem posing in a
web-based learning environment’, The Turkish Online
Journal of Educational Technology 12(2), 166–176.

Kalyuga, S., Ayres, P., Chandler, P. & Sweller, J. (2003),
‘The expertise reversal effect.’, Educational Psycholo-
gist 38(1), 23 – 31.

Kirschner, P. A., Sweller, J. & Clark, R. (2006), ‘Why
minimal guidance during instruction does not work:
An analysis of the failure of constructivist, discovery,
problem-based, experiential, and inquiry-based teach-
ing’, Educational Psychologist 41(2), 75–86.

Lui, A. K., Cheung, Y. H. Y. & Li, S. C. (2008), ‘Leverag-
ing students’ programming laboratory work as worked
examples’, SIGCSE Bull. 40(2), 69–73.
URL: http://doi.acm.org/10.1145/1383602.1383638

Margulieux, L. E., Guzdial, M. & Catrambone, R. (2012),
Subgoal-labeled instructional material improves perfor-
mance and transfer in learning to develop mobile ap-
plications, in ‘Proceedings of the ninth annual inter-
national conference on International computing educa-
tion research’, ICER ’12, ACM, New York, NY, USA,
pp. 71–78.

Mason, R. & Cooper, G. (2012), Why the bottom 10%
just can’t do it – mental effort measures and implication
for introductory programming courses, in M. de Raadt
& A. Carbone, eds, ‘Australasian Computing Educa-
tion Conference (ACE2012)’, Vol. 123 of CRPIT, ACS,
Melbourne, Australia, pp. 187–196.

Merrinboer, J. J. V. & Paas, F. G. (1990), ‘Automation
and schema acquisition in learning elementary com-
puter programming: Implications for the design of prac-
tice’, Computers in Human Behavior 6(3), 273 – 289.

Miller, G. (1956), ‘The magical number seven, plus or mi-
nus two: Some limits on our capacity for processing
information.’, Psychological Review 63, 81–97.

Moreno, R., Reisslein, M. & Delgoda, G. (2006), ‘To-
ward a fundamental understanding of worked example
instruction: Impact of means-ends practice, backward/-
forward fading, and adaptivity’, Frontiers in Education,
Annual 0, 5–10.

Mwangi, W. & Sweller, J. (1998), ‘Learning to solve com-
pare word problems: The effect of example format and
generating self-explanations’, Cognition and Instruc-
tion 16(2), pp. 173–199.

Paas, F., Renkl, A. & Sweller, J. (2004), ‘Cognitive load
theory: Instructional implications of the interaction be-
tween information structures and cognitive architec-
ture’, Instructional Science 32, 1–8.

Renkl, A., Atkinson, R. K. & Grosse, C. S. (2004), ‘How
fading worked solution steps works - a cognitive load
perspective’, Instructional Science 32(1-2), 59–82.

Renkl, A., Atkinson, R. K., Maier, U. H. & Staley,
R. (2002), ‘From example study to problem solving:
Smooth transitions help learning’, The Journal of Ex-
perimental Education 70(4), pp. 293–315.

Shulman, L. S. (2005), ‘Signature pedagogies in the pro-
fessions’, Daedalus 134(3), pp. 52–59.

Stark, R., Mandl, H., Gruber, H. & Renkl, A. (2002),
‘Conditions and effects of example elaboration’, Learn-
ing and Instruction 12(1), 39 – 60.

Sweller, J. (1988), ‘Cognitive load during problem solv-
ing: effects on learning’, Cognitive Science pp. 257–
285.

Sweller, J. & Chandler, P. (1994), ‘Why some mate-
rial is difficult to learn’, Cognition and Instruction
12(3), 185–233.

Sweller, J. & Cooper, G. A. (1985), ‘The use of worked
examples as a substitute for problem solving in learning
algebra’, Cognition and Instruction 2(1), pp. 59–89.
URL: http://www.jstor.org/stable/3233555

van Gog, T., Kester, L. & Paas, F. (2011), ‘Effects
of worked examples, example-problem, and problem-
example pairs on novices learning’, Contemporary Ed-
ucational Psychology 36(3), 212 – 218.

van Gog, T., Paas, F. & van Merrinboer, J. J. (2006),
‘Effects of process-oriented worked examples on trou-
bleshooting transfer performance’, Learning and In-
struction 16(2), 154 – 164.

CRPIT Volume 148 - Computing Education 2014

64




