
University of Southern Queensland

Faculty of Engineering & Surveying

XML Based Online Traffic Information

A dissertation submitted by

Sim Lee Kheng Shirley

in fulfilment of the requirements of

ENG4112 Research Project

towards the degree of

Bachelor of Engineering (Computer System Engineering)

Submitted: October, 2004

Abstract

This project is to develop an online traffic information which provides drivers with

online traffic conditions like accidents, roadworks and traffic jams. It is believed that

XML is suitable since it is designed to describe and focus on data, especially structured

data.

The Extensible Markup Language (XML), which is derived from Standard General-

ized Markup Language (SGML), is a simple, flexible text format, Unicode-base meta-

language: a language for defining markup languages. XML is not limited by any

programming language, operating system or software vendor. By being platform in-

dependent, XML can provide means for achieving interoperability between different

programming platform and operating systems.

The following outcomes have been achieved:

1. A graphical display section consists of map of Singapore with incident icon like

traffic light spoilt, accident and road works. Each of these icons consist an XML

document.

2. A search engine which requires the end-user to input parameters like road name

and date. Results are then displayed from the search and the end-user clicks on

the required link to display the XML document.

University of Southern Queensland

Faculty of Engineering and Surveying

ENG4111/2 Research Project

Limitations of Use

The Council of the University of Southern Queensland, its Faculty of Engineering and

Surveying, and the staff of the University of Southern Queensland, do not accept any

responsibility for the truth, accuracy or completeness of material contained within or

associated with this dissertation.

Persons using all or any part of this material do so at their own risk, and not at the

risk of the Council of the University of Southern Queensland, its Faculty of Engineering

and Surveying or the staff of the University of Southern Queensland.

This dissertation reports an educational exercise and has no purpose or validity beyond

this exercise. The sole purpose of the course pair entitled “Research Project” is to

contribute to the overall education within the student’s chosen degree program. This

document, the associated hardware, software, drawings, and other material set out in

the associated appendices should not be used for any other purpose: if they are so used,

it is entirely at the risk of the user.

Prof G Baker

Dean

Faculty of Engineering and Surveying

Certification of Dissertation

I certify that the ideas, designs and experimental work, results, analyses and conclusions

set out in this dissertation are entirely my own effort, except where otherwise indicated

and acknowledged.

I further certify that the work is original and has not been previously submitted for

assessment in any other course or institution, except where specifically stated.

Sim Lee Kheng Shirley

00310333100

Signature

Date

Acknowledgments

I would like to take this opportunity to thank the following people for helping out in

this project:

1. DR. ZHOU, Hong (Project Supervisor)- For giving her guidance in the area

of Software Engineering techniques.

2. DR. LEIS, John (Project Supervisor) - For giving his guidance throughout the

project itself.

Sim Lee Kheng Shirley

University of Southern Queensland

October 2004

Contents

Abstract i

Acknowledgments iv

List of Figures x

List of Tables xii

Chapter 1 Introduction 1

1.1 Chapter Overview . 1

1.2 Rationale . 1

1.3 Project Aims . 2

1.4 XML vs HTML . 2

1.5 Software Selection . 5

1.6 Specific Objectives . 6

1.7 Overview . 6

Chapter 2 Web Languages 8

CONTENTS vi

2.1 Chapter Overview . 8

2.2 History of Languages . 8

2.2.1 Early Markup Languages . 8

2.2.2 Hypertext Markup Language . 9

2.2.3 Standard Organization . 10

2.3 Extensible Markup Language . 10

2.3.1 Features . 11

2.3.2 Processing XML . 12

2.4 Components of XML . 13

2.4.1 Document Type Definition (DTD) 13

2.4.2 Extensible Stylesheet Language (XSL) 13

2.5 Other Web Languages . 14

2.5.1 Active Server Page . 14

2.5.2 JavaScript . 15

2.5.3 Web Server: Internet Information Service (IIS) 16

2.6 Chapter Summary . 17

Chapter 3 System Requirements & Installation 18

3.1 Chapter Overview . 18

3.2 System Requirement . 18

3.3 Installation Procedure . 19

CONTENTS vii

3.3.1 Setting Up Database . 19

3.3.2 Setting Up Internet Information Service 20

3.4 Chapter Summary . 21

Chapter 4 Development of the Web Site 22

4.1 Chapter Overview . 22

4.2 Extensible Markup Language (XML) . 22

4.3 Document Type Definition (DTD) . 23

4.3.1 The <!DOCTYPE> Declaration 23

4.3.2 The <!ENTITY> Declaration 24

4.3.3 The <!ELEMENT> Declaration 25

4.3.4 The <!ATTLIST> Declaration 25

4.4 Extensible Style Language (XSL) . 25

4.5 Microsoft Access Database . 29

4.6 Javascript . 30

4.6.1 The <script> Tag . 31

4.6.2 Including Javascript files . 33

4.6.3 Event Handlers . 34

4.7 Chapter Summary . 35

Chapter 5 Software Development Life Cycle 36

CONTENTS viii

5.1 Chapter Overview . 36

5.2 Software Life Cycle Model . 36

5.3 Waterfall Life Cycle Model . 37

5.3.1 Development . 37

5.3.2 The Phases . 39

5.3.3 Advantages & Disadvantages . 40

5.4 Chapter Summary . 41

Chapter 6 Conclusions and Further Work 42

6.1 Future Work . 42

6.1.1 Additional Features . 42

6.1.2 WAP Site . 43

6.1.3 Taxi Drivers Communicator . 43

6.2 Shortcomings . 43

6.3 Achievement of Project Objectives . 44

References 45

Appendix A Project Specification 46

Appendix B User View of the XML-Based Online Traffic Information 48

B.1 XML-Based Online Traffic Information 49

CONTENTS ix

Appendix C Source Code 53

List of Figures

1.1 A Basic HTML Page . 3

3.1 Setting up Microsoft access database. 20

3.2 Setting up Internet Information Service(IIS). 21

4.1 This show how a database is created. 30

5.1 Pure Waterfall Life Cycle Model . 38

5.2 Waterfall Life Cycle Model with feedback (Rucker 2002). 38

B.1 This is the main page. 49

B.2 When the “map” on the side menu is click, this page is shown. 50

B.3 When a town/suburban is click, the map of that town/suburban appear

next. For this example, Aljunied/Braddell/Macpherson is used. 51

B.4 This is the XML document after the incident icon is click. 51

B.5 This page appear when “search” is click from the main page. After filling

up the parameter, click the “search” icon. If the parameter is found, a

result link is shown. 52

LIST OF FIGURES xi

B.6 This show the result of the search. It is an XML document. 52

List of Tables

3.1 System Requirement . 19

3.2 Availability of System . 19

Chapter 1

Introduction

1.1 Chapter Overview

This chapter will look at how the idea of this project is develop and the aims of

this project. It will also compare Extensible Markup Language(XML) and Hypertext

Markup Language(HTML). It will show how the decision to use XML came about.

Next it will show the software product available and the decision to use which software

product to implement this project.

1.2 Rationale

Internet has been an information ground for many people. Information about weather,

currency exchange, maps, technologies and many more can be found on the web. Cur-

rently, there are web sites containing traffic information in United States and Canada.

All this web site is using HTML and Active Server Page (ASP). But currently there is

no such web site in Singapore. Real-Time Online Traffic Information will help drivers

to know the current status on the road. If these drivers avoid those roads that have

accident, it will prevent traffic jams and can also prevent another accident. These are

the reasons why this project is develop.

1.3 Project Aims 2

1.3 Project Aims

The “XML-Based Online Traffic Information” system develop in this project aims to

render traffic information through a website to the end-user. The web site will even-

tually produce two types of applications for the rendering of traffic information. The

first application, which is a very simple one, was done using a graphical display. The

graphical display which will show a Singapore map, which has icon put on certain areas

to signify the activity going on in that area. The end-user just has to click on the icon

he wants and a small dialog box containing the XML document will appear showing

the activity happening in that area. This XML document will have a style sheet link

to it.

The second application uses a search-engine which requires the end-user to input certain

parameters like road name and date. Results are then displayed from the search and

the end-user clicks on the required link to display the XML document. This XML

document will also have a stylesheet link to it.

Even if it is displayed using the browser’s default stylesheet, which actually shows raw

XML data, the end-user will definitely still be able to interpret the document, as XML

is actually a content markup language.

1.4 XML vs HTML

The only particular difference about this project is that the markup of the document

is to be done in XML rather than HTML. The term “XML” stands for eXtensible

Markup Language. This is a new and upcoming language that has the capability of

having customised tags and content to its markup. Customizing of tag is not allow for

HTML, as it is merely a markup language for display. Customizing its tags will require

much more complex programming.

The best way to compare and contrast how XML and HTML represent data is to take

a look at data represented using each of this language. Listing 1.1 shows some data

representation in HTML.

1.4 XML vs HTML 3

Listing 1.1: A Basic HTML Code
<!−− The o r i g i n a l html r e c i p e −−>
<html>
<head>
<t i t le >Example</t i t l e >
</head>
<body>
<h3>Example</h3>
<h4>Authors</h4>
<table border=”1”>
<TR BGCOLOR=”#308030”><TH>Name</TH><TH>Nat i ona l i t y</TH></TR>
<TR><TD>Victor Hugo</TD><TD>French</TD></TR>
<TR><TD>Sophoc les</TD><TD>Greek</TD></TR>
<TR><TD>Leo Tolstoy</TD><TD>Russian</TD></TR>
<TR><TD>Alexander Pushkin</TD><TD>Russian</TD></TR>
<TR><TD>Plato</TD><TD>Greek</TD></TR>
</table>
</body>
</html>

Figure 1.1 shows how it looks in a browser.

Figure 1.1: A Basic HTML Page

There are some positive aspects on how HTML represent its data. It is readable in the

browser form, it can be displayed in any browser and a cascading sheet can be used for

further control on the formatting. However, there is one big negative aspect that cover

all the positive aspects. There is nothing in the codes to indicate meaning of any of

1.4 XML vs HTML 4

its elements. The data contain has no context. A program may scan and pick up data

but it would not know what kind of data it represent (Coleman 2001).

For this example, assumption was made that the first column is name and second

column is nationality. If the formatting is change, the whole application will fall apart.

The problem can be seen more in depth by attempting to extract the data and store

it in a database. Since semantic information was taken out when it was translated

into HTML, this information has to be resupply in order to store it meaningfully in a

database. In other words, data has to be translated back to HTML when data needs

to be extract out of the database. This is because HTML is not a suitable storage

medium for semantic information (Tamura 2000).

What happen if the data is represented in XML? This is show in Listing 1.2.

Listing 1.2: Simple XML Code
<?xml ve r s i on = ’1.0 ’?>
<authors>

<author>
<name>Victor Hugo</name>
<na t i ona l i t y >French</na t i ona l i t y >

</author>
<author per iod=” c l a s s i c a l ”>

<name>Sophoc les</name>
<na t i ona l i t y >Greek</na t i ona l i t y >

</author>
<author>

<name>Leo Tolstoy</name>
<na t i ona l i t y >Russian</na t i ona l i t y >

</author>
<author>

<name>Alexander Pushkin</name>
<na t i ona l i t y >Russian</na t i ona l i t y >

</author>
<author per iod=” c l a s s i c a l ”>

<name>Plato</name>
<na t i ona l i t y >Greek</na t i ona l i t y >

</author>
</authors>

The tags in Listing 1.2 relate to authors, not using formatting like HTML. The file

still remains readable, so it retains the simplicity of the HTML format, but the data

1.5 Software Selection 5

now has context. A program that parses this file will know exactly who Victor Hugo

is.

Most users who had use XML finds that XML is actually more human readable than

HTML. And XML accomplishes the goal of being at least as simple to use as HTML,

yet it is orders of magnitude more powerful. It explains the information in an author in

terms of authors, not in terms of how to display authors. Formatting of XML document

will be discuss in the later chapter.

1.5 Software Selection

Microsoft has made XML an important initiative and has even mentioned it in a tele-

vision commercial. Lotus is placing heavy emphasis on XML and is devoting major

development resources to this technology. Other companies including IBM, Oracle, and

Sun are likewise placing special emphasis on XML (Tamura 2000).

For SUN Microsystem, it is known as Java Technology XML. It contain the subcate-

gories (SUN 2004):

→ Java Architecture for XML Binding (JAXB)

→ Java API for XML Processing (JAXP)

→ Java API for XML Registries (JAXR)

→ Java API for XML-Based RPC (JAX-RPC)

→ SOAP with Attachments API for Java (SAAJ)

As for Apache, it is known as Apache XML Project. Currently it consists of a number

of sub-projects, each of it focused on a different aspects of XML (Apache 2004):

→ Xerces - XML parsers in Java, C++ (with Perl and COM bindings)

→ Xalan - XSLT stylesheet processors, in Java and C++

→ FOP - XSL formatting objects, in Java

→ Forrest - XML/XSLT project community websites

→ Xang - Rapid development of dynamic server pages, in JavaScript

1.6 Specific Objectives 6

→ SOAP - Simple Object Access Protocol

→ Batik - A Java based toolkit for Scalable Vector Graohics (SVG)

→ Axis - A Java based implementation of SOAP

→ Commons - A meta-project of common XML-oriented code

→ Security - Java and C++ libraries for encryption and signature functions

Microsoft has setup an XML Developer Center to aid programmer. The center consist

of information on XML Technology, XML downloads, code samples and how to build

XML application. These application are created using Microsoft product.

Therefore after much research on XML, it was decided that the project use Microsoft’s

products. This is due to Microsoft’s speed in the development of XML and also due to

product compatibility. This can be seen from Microsoft XML Developer Center.

The only limitation in adopting this approach is that since the application was done

using Microsoft’s Active Server Page Technology and Frontpage, it might not be able to

work compliantly if a Netscape browser were to be used. As such the client must have

Microsoft’s Internet Explorer 5.0 and above if he/she wants to view the document.

More information on the design and details of this project can be referenced in the later

parts of this report.

1.6 Specific Objectives

This project seeks to develop online traffic information. This system provides the

drivers with online traffic conditions like accident, roadwork and traffic jam. Therefore

it is believed XML is suitable since it is design to describe and focus on data, especially

structured data.

1.7 Overview

This dissertation is organized as follows:

1.7 Overview 7

Chapter 2 Web Languages: This chapter will look into the history of web languages

and the various languages used for this project.

Chapter 3 System Requirement & Installation: This chapter will show the system

required and show how the various software components are installed.

Chapter 4 Development of the Web Site: This chapter will look more in depth the

development of the project.

Chapter 5 Software Development Life Cycle: This chapter shows in detail the soft-

ware development methodology used.

Chapter 6 Conclusion & Further Work: The project will be concluded in this section,

future work would be discuss and also states the shortcomings of this project.

Chapter 2

Web Languages

2.1 Chapter Overview

This chapter examine the various languages for creating web pages. The history of web

languages and how XML came about. It will also look into the components needed

for XML document, and languages like Active Server Page(ASP) and Javascript, and

the web server used. All the above is necessary to build the XML-Based Online Traffic

Information.

2.2 History of Languages

2.2.1 Early Markup Languages

Early markup languages started with IBM, who pursued the idea of a standard method

for structuring document with the goal of facilitating the exchange and manipulation

of data, about 40 years ago. The first generation of markup language was Generalized

Markup Language (GML) and it was used only internally in IBM to create various

kinds of documents. Although there were similar technologies developed at other orga-

nizations but these were all proprietary and incompatible with each other. Furthermore

there was no worldwide standardization (Rose 2000).

2.2 History of Languages 9

Generalized Markup Language was developed further and become the first standard-

ized markup language, Standard Generalized Markup Language (SGML). SGML was

expanded to be suitable as an all-purpose markup standard, and it was soon being used

in a wide range of settings. In 1996, SGML was released as an official standard by the

International Organization for Standardization (ISO).

The official SGML specification is over 150 very technical pages. It covers many spe-

cial cases and unlikely scenarios. It is so complex that almost no software has ever

implemented it fully. Programs that implement or rely on different subsets of SGML

are often incompatible. The special feature that one program considers essential is all

too often considered extraneous fluff and omitted by the next program. Nonetheless,

experience with SGML taught developers a lot about the proper design, implemen-

tation, and use of markup languages for a wide variety of documents. Much of that

general knowledge applies equally well to XML. SGML is an extremely powerful and

flexible technology, which unavoidably entails a great deal of complexity and processing

overhead (Rose 2000).

One thing which is very clear is that XML documents are not just used on the Web.

XML can easily handle the needs of publishing in a variety of media, including books,

magazines, journals, newspapers, and pamphlets. XML is particularly useful when you

need to publish the same information in several of these formats. By applying different

stylesheets to the same source document, you can produce web pages, speaker’s notes,

camera-ready copy for printing, and more.

2.2.2 Hypertext Markup Language

Further development of the markup language was motivated by the Internet. Many

documents of various types like text, graphics were available on the Internet. Tim

Berners-Lee, who was a software engineer at the European Laboratory for Particle

Physics in Switzerland at that time, realized that access to these documents would be

vastly improved if they could be linked to one another in a meaningful way that would

enable user to move easily between related documents. A method had to be developed

for marking up these documents in order to specify the links between documents and

2.3 Extensible Markup Language 10

also to specify how a document was to be display in the browser. The resulting language

was a subset of SGML called Hypertext Markup Language (HTML). The birth of World

Wide Web, which came with HTML, consists of the entire web of linked documents.

HTML became the standard language of the Web and almost any Web page on the

Internet uses HTML (Coleman 2001).

Although HTML has been a great success but as the Web grew, developers wanted to

include more and more things on the Web pages such as animations and databases.

HTML, which was originally designed as a hyperlink and to display documents, was

not up to the task. It was clear that HTML was not enough to meet the needs of

Web developers. They need something more powerful and flexible. The most serious

limitation of HTML is its fixed tag set. Web developers can only use the tags defined

in HTML therefore there is no extensibility. On the other hand, SGML fully support

custom tags. But the complexity and processing overhead of SGML made it unsuitable

for general Web use (Coleman 2001).

2.2.3 Standard Organization

The XML standard, which was created by the World Wide Web Consortium (W3C),

is an open public organization. Its task is to develop technologies and standards for

the Internet. In addition to XML, W3C is the force behind standards for Hypertext

Markup Language (HTML), Portable Network Graphics (PNG, a graphics file format

for Web use), and HyperText Transfer Protocol (HTTP, the standard for information

transmission on the Internet), to name a few. Although XML standard is public, it is

not owned or dominated by any single commercial interest (Quin 2004).

2.3 Extensible Markup Language

In 1996, World Wide Web Consortium (W3C) set the goal to develop a standard that

would provide the power and flexibility of SGML in a form that was suitable for use

on the Web. XML actually is a subset of the Standardized General Markup Language

(SGML). SGML is an internationally accepted standard for describing just about any

2.3 Extensible Markup Language 11

type of information. However, as mention in the earlier section, it’s way too complex for

the relatively simple world of the web. Therefore, the W3C created a modified version

of SGML specifically for the web, named it XML, and released it on an unsuspecting

public sometime in 1998 (Vaswani 2002). Among the requirement for the new standard,

it includes three of SGML’s most significant benefits:

Extensibility The developer can define own custom tags

Structure The language syntax follows a well-defined structure

Validation Documents can be validated against a data model

The W3C committee worked on its task for almost 2 years. In February 1998, it was

ready for the first version of the standard for the new language. It is known as Exten-

sible Markup Language version 1.0, it remains as one of this writing the current XML

specification, or in W3C terms, the XML Recommendation. XML is a markup lan-

guage that is designed to describe data. It matches the meaning to data in a document

by using a meaningful tag name (Quin 2004).

One of the greatest misunderstandings of the Extensible Markup Language will replace

HTML in web design. In actual fact, XML is an extension of HTML. While XML

and HTML share similar characteristics, such as the use of tag to markup data, it

is important to know that XML has a broader purpose than just for the Web. The

difference is that HTML was designed specifically to format data for web browsers and,

as such, is limited to a predefined set of tags and functions. By itself, XML does not

do anything. It simply uses tags to describe the data in a document and allows the

document author to use meaningful tags to describe the data that is stored. In addition,

the document author has the freedom to use whatever tag name he deems fit, hence

the name extensible. The only time where XML really get useful is when it is used in

conjunction with applications that can understand XML.

2.3.1 Features

XML was designed to have the following features (Vaswani 2002):

2.3 Extensible Markup Language 12

Ease of use ⇒ Since it can contain descriptive tags, XML documents are easy to read

and understand, even for users with little or no computer knowledge. It is also

simple to create: a non-technical user is typically able to create an XML document

in far less time than it takes to create a corresponding HTML document. This

simplicity is perhaps XML’s greatest selling point.

Formal structure ⇒ Although XML allow authors to name and used its own tags,

it still does impose some formal structure on a document. But the tags must be

named and nested correctly; opening tags must have corresponding closing tags;

and namespaces must be defined wherever they are required. These rules ensure

that every XML document meets some minimum expectations of structure and

syntax, and make it easier for applications and processors to deal with XML data.

Internet-friendly ⇒ XML was designed to be used on the Internet, where it plays

two very important roles.

Firstly, XML provides a toolkit that enables users to describe the huge amount of

data floating around on the Internet. This immediately opens the door to better

organization and classification of information on the web, more intelligent search

engines, and new types of links between data.

Secondly, XML provides a standard mechanism for information exchange, encod-

ing data in a format that is easily transmittable from one computer to another

using existing Internet Protocols and transport mechanisms.

Wide application support ⇒ Since XML is easy to use and easy to move around,

it is not hard to write an application that uses XML-encoded data. A number of

XML parsers are available online, XML editors, validators, and similar tools are

gaining market share, and most popular web browsers now support XML.

2.3.2 Processing XML

There are two aspects to processing XML. One aspect is the generation of XML from a

data source. The original data can be from a Domino database, a relational database,

text file, spreadsheet, or any other type of object. The resulting XML file can contain

as much or as little data as the author like and depends on the application. If all the

2.4 Components of XML 13

original information in the XML file is not included, the author will not be able to

perform a round trip export and import (Tamura 2000).

The second aspect of processing an XML file involves reading an XML file and then

doing something with it. For example, reading an XML file and create documents in a

relational database, read an XML file and create transactions in a financial accounting

system, or even to read an XML file and display a multimedia presentation. And the

list will go on (Tamura 2000).

2.4 Components of XML

2.4.1 Document Type Definition (DTD)

Document Type Definition (DTD) files provide the XML parser with information about

the structure of your document. DTDs specify the name of the root node of your

document tree, which is the name of your document type. It is used to specify the

type of data that can be included in an element, the relative order and position of the

elements and which elements can be nested into other elements. In addition to the root

node or document type, DTDs also describe the other elements of the document and

their attributes. Below shows the definition of the location of the external DTD using

a relative URL address.

The External DTD:

External DTDs are useful for creating a common DTD that can be shared between

multiple documents. Any changes that are made to the external DTD automatically

updates all the documents that reference it (Coleman 2001).

2.4.2 Extensible Stylesheet Language (XSL)

The Extensible Stylesheet Language is a language that uses XML syntax. It pro-

vides a powerful mechanism to process XML files. There are two primary purposes

2.5 Other Web Languages 14

for XSL. The first is similar to the purpose for stylesheets in HTML. That is, to for-

mat documents for display to users by specifying font faces, font sizes, styles, and so

forth (Griffith 2002).

The process of using XSL to change the format of data is known as transformation.

This is the second purpose. XSL perform a function, which is supplying human-readable

data, is as important as XML itself. Nothing is ever stored in a database without the

expectation that it will be extracted and presented in some human-readable format one

day. In fact, presenting readable data is the entire purpose of Internet (Griffith 2002).

Without XSL or any stylesheet, XML document will only be display as a raw data

with its tags. XML provides these capabilities with XML documents for data and XSL

stylesheets for formatting.

2.5 Other Web Languages

2.5.1 Active Server Page

The active server page which is also known as ASP, provide request object, response

object and session. The request object will read request, the response object will write

data to the client and as for the session object, ASP will provide an application object

to hold data that persist through all session, throughout the lifetime of the application.

ASP can hold both the template of HTML and some of the programming codes. In

fact, any HTML page is an Active Server Page, simply just change the extension to

.asp. The only different is that it is process through an ASP processor where the server

sends all the URL request that has a .asp extension (Floyd 2002).

Generally, Active Server Pages (ASP) allow programmer to access middle-tier and

backend applications and to generate content dynamically. In this regard, ASPs are

similar to CGI (Common Gateway Interface) scripts, which can be found typically on

most Web servers including Apache and IIS. More importantly, ASPs allow programmer

to quickly create Web applications using Microsoft’s Internet Information Server (IIS).

ASP allows programmer to easily access powerful server-side components and large

2.5 Other Web Languages 15

databases through ODBC connections.

Individual server pages typically include scripting code. Virtually any scripting lan-

guage can be used, provided a scripting engine has been installed on the server. The

two languages most commonly associated with ASP are VBScript and JavaScript, Mi-

crosoft’s version of ECMAScript. Both scripting languages come with the standard

ASP installation. The scripting engines are installed when IIS is installed (Floyd 2002).

This is one of the reason why IIS is chosen for this project.

Features (Floyd 2002):

1. An ActiveX component

2. Allows scripting code to be embedded into HTML pages

3. Comes with built-in scripting support for JavaScript or VBScript

4. Allows developers to generate HTML pages dynamically from the server

5. Can be coupled with other components that that allow programmer to connect

to ODBC databases

2.5.2 JavaScript

JavaScript is a general-purpose programming language; its use is not restricted to

web browsers. JavaScript was designed to be embedded within, and provide script-

ing capabilities for, any application. From the earliest days, in fact, Netscape’s web

servers included a JavaScript interpreter, so that server-side scripts could be written

in JavaScript. Similarly, Microsoft uses its JScript interpreter in its IIS web server

and in its Windows Scripting Host product, in addition to using it in Internet Ex-

plorer (Flanagan 2001).

It is a lightweight, interpreted programming language with object-oriented capabilities.

The general-purpose core of the language has been embedded in Netscape, Internet

Explorer, and other web browsers and embellished for web programming with the

2.5 Other Web Languages 16

addition of objects that represent the web browser window and its contents (Flanagan

2001).

This client-side version of JavaScript allows executable content to be included in web

pages which means that a web page need not be static HTML, but can include programs

that will interact with the user, control the browser, and dynamically create HTML

content. Syntactically, the core JavaScript language resembles C, C++, and Java, with

programming constructs such as the if statement, the while loop, and the && operator.

The similarity ends with this syntactic resemblance, however. JavaScript is an untyped

language, which means that variables do not need to have a type specified. The object-

oriented inheritance mechanism of JavaScript is like those of the little-known languages.

Like Perl, JavaScript is an interpreted language, and it draws inspiration from Perl in a

number of places, such as its regular expression and array-handling features (Flanagan

2001).

2.5.3 Web Server: Internet Information Service (IIS)

Microsoft’s Internet Information Services (IIS) is the second most popular web server

on the Net today. Although it is second most but there is not many high-quality options

for adding XSLT support as there are for Apache (Harold 2003).

Microsoft publishes an unsupported XSL ISAPI Filter. Like other ISAPI filters, it sits

between the requests and the file system, making changes as documents are requested.

In particular, it transforms documents according to an XSLT stylesheet before for-

warding them to the client that made the request. It can cache stylesheets and apply

different stylesheets to match the browser or XML document type. This filter also sup-

ports pipelining of stylesheets so that the output of one transformation can be become

input to the next. It can also transform ASP-generated content, as well as static XML

files. It’s based on the MSXML parser/XSLT engine and thus shares that engine’s

bugs (Harold 2003).

No matter which server or what language is needed in that project, there will definitely

have a server-side XSLT plug-in for you. It is far more reliable to use this plug-in to

2.6 Chapter Summary 17

transform the documents on the server where the environment can be controlled by the

programmer than to send the XML document and stylesheet to the client and hope

it has the necessary software to transform the document itself. Since XSLT is a fairly

processor- and memory-intensive process, this can place a significant load on the server.

But this should not be preventing the programmer to use XML and separating content

from presentation or taking advantage of the full power of XSLT (Harold 2003).

2.6 Chapter Summary

This chapter, by describing the history, syntax and components of XML, helps to lay

a foundation for the rest of this project dissertation. It can be seen that the purpose

of XML is to store data in a form that can be easily read and analyzed. It is quite

common to use XML to store data and use the descriptive XML tags to specify how it

should be displayed, but this is not inherent part of XML. And it is also very common

to write applications that convert XML data into HTML for display.

Chapter 3

System Requirements &

Installation

3.1 Chapter Overview

This chapter will show the system required and steps to install these various software.

Installation is a very important step of a software project. Once the installation part is

wrong, then the project will not work. Some of this codings need to be run in a editor

program to see that it works before putting inside the web. So it is important to have

these editor program install.

3.2 System Requirement

3.3 Installation Procedure 19

System Requirement Usage
Microsoft 98 and above Operating System
Microsoft Access Used to setup the database.
Internet Explorer 5.0 or above used as the browser and the validating

parser which is embedded in it, was
used to check the validity of the XML
documents.

XML Writer It is an editor that was
used to write the XML documents, DTDs
and the stylesheets using eXtensible
Style Language (XSL).

Microsoft’s Web Server, Internet It was used to publish
Information Services (IIS) all the files for
Or Personal Web Server the application.

Table 3.1: System Requirement

System Requirement Availability
Microsoft Access and Internet They are included
Explorer 5.0 inside the Microsoft Office CD
XML Writer It is a freeware and can be

download at http://www.xmlwriter.com
/download/download.shtml

Internet Information Services (IIS) It is included in the Windows 2000
Or Professional components
Personal Web Server It is included in the

Windows 98 component

Table 3.2: Availability of System

3.3 Installation Procedure

3.3.1 Setting Up Database

The Steps are:

1. Select Administrative Tools from Control Panel

2. The Data Sources (ODBC) was double-clicked and the ODBC Data Source Ad-

minstrator was accessed.

3. System DSN was chosen on the menu list and the Add button was clicked.

4. Select the driver for the data source.

5. At this step, the database was selected by clicking on the Select button. The

Data Source Name was named TrafficInfo. This will set the database.

3.3 Installation Procedure 20

Figure 3.1: Setting up Microsoft access database.

3.3.2 Setting Up Internet Information Service

For the web server, only Internet Information Service will be demonstrate since it is

used here.

The steps for installing are as follows:

1. Select Add/Remove Programs from Control Panel

2. Select Add/Remove Windows Components

3.4 Chapter Summary 21

Figure 3.2: Setting up Internet Information Service(IIS).

3. In the Windows Components Wizard, check the Internet Information Service(IIS),

then click next

4. And the IIS will be installed

After installing, the working directory would be in c:\Inetpub\wwwroot.

3.4 Chapter Summary

This chapter has describe the system requirement and gave the installation instruction

for this project. Figure 3.1 and Figure 3.2 show how these installation take place.

Chapter 4

Development of the Web Site

4.1 Chapter Overview

This chapter will show how the following is created and develop in detail:

↪→ Extensible Markup Language(XML) Document

↪→ Document Type Definition (DTD)

↪→ Extensible Stylesheet Language(XSL)

↪→ Microsoft Access Database

↪→ Javascript

4.2 Extensible Markup Language (XML)

XML files must begin with an XML declaration. Currently, the only version is 1.0,

but the declaration must specify the version number so that documents using future

versions can be distinguished from version 1.0. Below show the declaration of an XML

document.

<?xml version=“1.0” standalone=“no”?>

4.3 Document Type Definition (DTD) 23

Specifies the version of the XML standard that the XML document is conforms to. For

standalone, use ‘yes’ if the XML document has an internal document type definition

(DTD). Use ‘no’ if the XML document is linked to an external DTD, or any external

entity references. In this project, an external DTD was used. Therefore, ‘no’ was

chosen (Tamura 2000).

Rules for XML Declaration:

1. XML declaration must be in the first line of the document.

2. If there is any external entities, standalone must be ‘no’.

3. Declaration of XML must be in lower case except for encoding declaration

4. XML declaration does not has an end tag like </?xml?>.

Example of XML syntax:

<age>12 years old </age>

Rules for XML Syntax:

1. The document must have a start tag followed by an end tag.

2. The start tag and end tag must have the same name.

3. The end tags contain a forward slash character in front of the tag name, to

distinguish them from the start tags.

4. The markup in the xml document must conform to the requirements in the DTD.

4.3 Document Type Definition (DTD)

4.3.1 The <!DOCTYPE> Declaration

The <!DOCTYPE> Declaration The <!DOCTYPE> declaration describes the XML

document type. It defines the root element, which is the parent element of all the other

elements of the document. At most only one <!DOCTYPE> can be declaration within

an XML file and therefore there is at most one root element. The declaration specified

can be either inline or it can be in an external file (or both).

4.3 Document Type Definition (DTD) 24

<!DOCTYPE Traffic SYSTEM “traffic.dtd”>

A <!DOCTYPE> declaration is optional and is required only if the document need to

be validate by the XML processor. An XML document is consider well-formed if it

confined to all the rules of XML. It is valid if there is a <!DOCTYPE> declaration

associated with the XML document and the document confines to the declaration. All

the DTD declarations are required only if the XML documents need to be validate.

There is need to validate document from an unknown source. Validating the document

will enable the XML processor to check the types of elements, their attributes, and the

element nesting to ensure that they conform to a DTD. But if the document is taken

from a known source, it is best to skip this validation part since validation takes time

within process receiving the XML.

The only way to validate the document would be to provide own DTD, as shown in

Listing C.12 and add the <!DOCTYPE> declaration to the XML document before

processing (Tamura 2000).

4.3.2 The <!ENTITY> Declaration

The <!ENTITY> Declaration defines entities. There two types of entities: general

entities and parameter entities. The use of these two types of entities depends on

where and when the substitution of the entity occurs. General entities are defined in

the DTD and can be used in the XML file. To declare a general entity, you use the

following syntax:

<ENTITY entityname “entityvalue”>

In the syntax description, entityname refers to the entity name and entityvalue refers

to the entity’s value. Here are some general entity declaration examples:

<ENTITY copw “Copyright (c) 2000”>

To refer to a general entity, simply use an ampersand (&) before the entity name and a

semicolon (;) following the name. When the XML file is parsed, the general entity will

be replaced with its specified value. One common use for general entities is to specify

special characters that are otherwise part of the XML syntax (Tamura 2000).

4.4 Extensible Style Language (XSL) 25

4.3.3 The <!ELEMENT> Declaration

<age> 22 </age>

This is an example of a single element with a start tag of <age>, an end tag of </age>,

and content of 22! In general, an element consist of all the content from the start tag

through the end tag. A tag can be just a part of an element.

The <!ELEMENT> type declaration is used to specify the name of the element and

its valid content. Here is the syntax:

<!ELEMENT Name contentspec>

The element Name is case sensitive. The contentspec can be one of the two keywords

EMPTY or ANY or a list of character data and/or children. This is shown in Listing

C.12.

4.3.4 The <!ATTLIST> Declaration

The <!ATTLIST> declaration is used to specify an element’s attribute list. Look at

the syntax for <!ATTLIST> declaration below:

<!ATTLIST viewentries %root.attrs; toplevelentries %integer;#IMPLIED>

The first token after the keyword ATTLIST is the name of the element associated with

the attribute list. This is the specification for the <viewentries> element’s attributes.

In this case notice that root.attrs is a parameter entity, which means that it will be

substituted when the DTD is parsed. This entity is used so that any XML element that

is a root element can contain a set of common attributes. The definition of the integer

parameter entity is defined as CDATA (Tamura 2000). Therefore, after substitution,

the attribute declaration is equivalent to line 5 of Listing C.12.

4.4 Extensible Style Language (XSL)

Refering to Listing C.11 for this section.

4.4 Extensible Style Language (XSL) 26

The XSL stylesheet begins with the XML declaration, just like any XML file. Following

the header is the first XSL element,

<xsl:stylesheet>

Notice that a colon follows a prefix of xsl. This convention is called a namespace,

and XSL uses a separate namespace so that its commands can be separated from any

output that might be generated. Namespaces are described in detail on the Web at

http://www.w3.org/TR/REC-xml-names/ (Rucker 2002).

The “xmlns:xsl” attribute is used to specify the version of the XSL transform spec-

ification that should be used. For this case, version 1.0 is used. The definitions for

two template rules are next defined in the XSL file. Template rules are the key to the

transformation of XML documents because they specify how the transformation should

take place (Rucker 2002).

Template Rules

Several template rules can exist within a stylesheet, each template rule normally con-

tains a match attribute. The match attribute is used to define the context in which

the template rule applies. That is, template rules apply only in certain contexts, and

the match attribute informs the XSL process when the particular template rule is ap-

propriate (Tamura 2000).

Conceptually, when processing an XML document, it is first read and parsed into

memory. The resulting parsed document is specified as a tree. The XSL stylesheet

instructions are then processed, with the XML tree as input. The result of processing

the XML input and the XSL instructions is another tree, which can then be output in

a variety of formats. Because user control the output format, in addition to XML or

HTML, he/she can write the output in any format he/she desire. The match attribute

of a template rule specifies which nodes of the input XML tree apply to the template

rule.

If the template rule applies to a particular node, the instructions within the template

rule are used to construct the output. The parsed XML tree contains both a root

node and a root element. The root node is considered the top of the tree. The only

4.4 Extensible Style Language (XSL) 27

content of the root node is a single child, which is the root element of the XML tree

(Tamura 2000).

This is the first template in the XSL stylesheet:

<xsl:template match=“/”><xsl:apply-templates/></xsl:template>

The match attribute with a single slash matches the root node (not root element) of

the XML tree. Because it matches this root node, the XSL processor automatically

processes it. It is analogous to the main program in Java. At any point in the process-

ing, one node of the input tree is considered to be the current node. When processing

starts, the current node is the root node.

The template that best matches the current node is selected and processed. Processing

typically involves recursively matching and processing subsidiary nodes of the current

node. Because the single slash matches the root node, the template is selected and

processed.

The <xsl:apply-templates/> element is then processed. This instruction tells the XSL

processor to recursively process any of the children of the current node. The root node

has just one child, which in this is the <Record> element node. The XSL processor

will look for any templates that match the <Record> element.

Listing 4.1: XSL Sample Template
.
.
.

<x s l : template match= ‘ ‘Record”>
<html>
<head></head>
<x s l : fo r−each s e l e c t = ‘ ‘ Tra f f i cRecord ”>
<tr>
<td>

<x s l : fo r−each select =‘ ‘RoadName”>
<x s l : apply−templates />
</x s l : fo r−each>

</td>
</tr>
</html>
</x s l : template>
.

4.4 Extensible Style Language (XSL) 28

.

In the template above, the match attribute indicates that the template rule applies when

the node is a <Record> element. Following the beginning tag in Listing C.11, there’s

a set of HTML tags. These tags are sent directly to the output without modification.

<xsl:value-of select=“RoadName”/>

The <xsl:value-of> element is used to obtain the value of the expression specified in

the select attribute. If there is a “@” symbol, it is used to indicate that the name refers

to an attribute name, not a tag name (Tamura 2000).

Note that because of the parsing of the original input and the processing of trees, the

output nodes and line breaks can appear differently from the input.

Pattern Matching

Patterns are very important to transformations because patterns are used to search for

a particular context. They are used to select attributes and also to match attributes.

The use of the / pattern, which matches the root node (not the root element).

An example of pattern matching is shown below

<xsl:template match=“Traffic/Record”>

<tr><td>Document created</td><td>

<xsl:value-of select=“.”/></td></tr>

</xsl:template >

This code fragment will match the following fragment:

<Traffic><Record> 12345 </Record></Traffic>

The value of the <xsl:value-of> element will be the number that is found within the

<Record> element.

The <xsl:attribute> element creates an attribute on the most recent start tag element.

4.5 Microsoft Access Database 29

It will work only if no output has been generated for the tag yet (Tamura 2000).

4.5 Microsoft Access Database

Understanding Access Component

There are several types of objects that make up an Access database. The ones that

most nonprogrammer or nonprogrammer wants is the ability to create or modify include

tables, forms, queries, and reports (Bruck 2002).

Table ⇒ The matrix of rows and columns that contains the data in the database, as

well as the information about data properties, formatting, and validation rules

for fields.

Form ⇒ Used to enter and edit information in the Access database. Forms can be

extensively customized to facilitate the data entry process, and can also contain

data validation rules and formatting information for entry fields.

Query ⇒ Extracts selected data from one or more database tables, and presents it in

a table format. However, the query doesn’t actually contain data as what a table

does, it is dynamically generated each time it is run. Queries can also display

summary information or grouped information.

Report ⇒ Presents data from one or more tables or queries, and is generally used

for printed output. Access provides tools for formatting reports. Other database

objects include data access pages (used to publish Access data on Web pages),

macros (to automate database use), and modules (more sophisticated automated

procedures built with Visual Basic). In addition, a switchboard is a special type

of form used to present menus for using Access applications. Switchboards are

created automatically when you create an Access database using a wizard.

Creating Access Database

1. Open Access, and choose General Templates from the task pane.

4.6 Javascript 30

2. In the Databases tab of the Templates dialog box, choose the template that most

resembles the database you need to create and click OK.

3. As you go through the steps of the wizard, the tables (business or personal) of the

database are preset and cannot be changed during the database creation process.

After the sample fields in that particular table has been selected to be used in

the new table, the fields can be rename using the “rename” icon. This is shown

in Figure 4.1. Rename those fields to Incident, Information, Road and Acdate.

Figure 4.1: This show how a database is created.

4.6 Javascript

Client-side JavaScript code can be embedded within the HTML or ASP documents in

a number of ways:

1. Between a pair of <script> and </script> tags

2. From an external file specified by the ‘src’ attribute of a <script> tag

3. In an event handler, specified as the value of an HTML attribute such as onclick

or onsubmit

4. As the body of a URL that uses the special javascript: protocol

4.6 Javascript 31

The last technique will not be since it is not used in this project. The following section

will show the allowed structure of JavaScript programs on the client side.

4.6.1 The <script> Tag

Client-side JavaScript scripts are part of an ASP file and are coded within <script>

and </script> tags. Any number of JavaScript statements can be place between these

tags; these statements are executed in order of appearance, as part of the document

loading process. <script> tags may appear in either the <head> or <body> of an

HTML or ASP document. This is shown in Listing C.8.

A single HTML document may contain any number of non-overlapping pairs of <script>

and </script> tags. These multiple, separate scripts are executed in the order in which

they appear within the document. While separate scripts within a single file are exe-

cuted at different times during the loading and parsing of the HTML file, they constitute

part of the same JavaScript program: functions and variables defined in one script are

available to all scripts that follow in the same file (Flanagan 2001). Take for example:

<script> var x = 1; </script>

Later in the same HTML page, this ‘x’ can be referred to, even though it’s in a different

script block. The context that matters is the HTML page, not the script block:

<script>document.write(x);</script>

The document.write() method is an important and commonly used one. When it is

used as above, it inserts its output into the document at the location of the script.

When the script finishes executing, the HTML parser resumes parsing the document

and starts by parsing any text produced with document.write().

Although JavaScript is by far the most commonly used client-side scripting language,

it is not the only one. In order to tell a web browser what language a script is written

in, the <script> tag has an optional language attribute. Browsers that understand the

specified scripting language run the script; browsers that do not know the language

4.6 Javascript 32

ignore it (Flanagan 2001).

For Javascript, it is written in:

<script language=“JavaScript”> // JavaScript code goes here </script>

This is also shown in Listing C.8. VBScript can also be used as the scripting language.

The only browser that supports VBScript is Internet Explorer, so scripts written in this

language are not portable. VBScript interfaces with HTML objects in the same way

that JavaScript does, but the core language itself has a different syntax than JavaScript

(Flanagan 2001). VBScript is not discuss in detail here.

JavaScript is the default scripting language for the Web, and if the language attribute

is omitted, both Netscape and Internet Explorer will assume that the scripts used are

written in JavaScript.

The HTML 4 specification standardizes the <script> tag, but it deprecates the lan-

guage attribute because there is no standard set of names for scripting languages.

Instead, the specification prefers the use of a type attribute that specifies the scripting

language as a MIME type. Thus, in theory, the preferred way to embed a JavaScript

script is with a tag that looks like this:

<script type=“text/javascript”>

In practice, the language attribute is still better supported than this new type attribute.

The HTML 4 specification also defines a standard and useful way to specify the default

scripting language for an entire HTML file. If JavaScript is the only scripting language

used in a file, simply include the following line in the <head> of the document:

<meta http-equiv=“Content-Script-Type” content=“text/javascript”>

In this way, JavaScript scripts can be used without specifying the language or type

attributes.

Since JavaScript is the default scripting language, there is really not a need to use the

4.6 Javascript 33

language attribute to specify the language in which a script is written. However, there

is an important secondary purpose for this attribute: it can also be used to specify

what version of JavaScript is required to interpret a script. When you specify the

language=“JavaScript” attribute for a script, any JavaScript-enabled browser will run

the script. However, if a script that uses the exception-handling features of JavaScript

1.5, used the following tag to avoid syntax errors in browsers that do not support this

version of the language (Flanagan 2001):

<script language=“JavaScript1.5”>

4.6.2 Including Javascript files

As of JavaScript 1.1, the <script> tag supports a src attribute. The value of this

attribute specifies the URL of a file containing JavaScript code. It is used like this:

<script src=“../../javascript/util.js”></script>

A JavaScript file typically has a .js extension and contains pure JavaScript, without

<script> tags or any other HTML.

A <script> tag with the src attribute specified behaves exactly as if the contents of the

specified JavaScript file appeared directly between the <script> and </script> tags.

Any code that does appear between these tags is ignored by browsers that support

the src attribute Note that the closing </script> tag is required even when the src

attribute is specified and there is no JavaScript between the <script> and </script>

tags (Tamura 2000).

The followings are the advantages of using the src tag (Tamura 2000):

1. It simplifies HTML files by allowing the blocks of JavaScript to be remove.

2. When a function or other JavaScript code is used by several different HTML files,

simply keep it in a single file and read it into each HTML file that needs it. This

reduces disk usage and makes code maintenance much easier.

3. When JavaScript functions are used by more than one page, placing them in a

4.6 Javascript 34

separate JavaScript file allows them to be cached by the browser, making them

load more quickly.

4. When JavaScript code is shared by multiple pages, the time savings of caching

more than outweigh the small delay required for the browser to open a separate

network connection to download the JavaScript file the first time it is requested.

5. Because the src attribute takes an arbitrary URL as its value, a JavaScript pro-

gram or web page from one web server can employ code such as subroutine li-

braries to be exported by other web servers.

4.6.3 Event Handlers

JavaScript code in a script is executed once, when the HTML file that contains it is

read into the web browser. A program that uses only this sort of static script cannot

dynamically respond to the user. More dynamic programs define event handlers that

are automatically invoked by the web browser when certain events occur (Tamura 2000).

For example, when the user clicks on a button within a form. Because events in client-

side JavaScript originate from HTML objects (such as buttons), event handlers are

defined as attributes of those objects.

Another example, to define an event handler that is invoked when the user clicks on a

checkbox in a form, simply specify the handler code as an attribute of the HTML tag

that defines the checkbox:

<input type=“checkbox” name=“opts” value=“ignore-case” onclick=“ignore-

case = this.checked;”>

It is more important to know the function of the onclick attribute in the code above.

The string value of the onclick attribute may contain one or more JavaScript statements.

If there is more than one statement, the statements must be separated from each other

with semicolons. When the specified event occurs on the checkbox, the JavaScript code

within the string is executed. In the code above, the event is the click (Rucker 2002).

4.7 Chapter Summary 35

While any number of JavaScript statements are included within an event handler defini-

tion, a common technique, when more than one or two simple statements are required,

is to define the body of an event handler as a function between <script> and </script>

tags. Then this function can simply be invoked from the event handler. This keeps most

of the actual JavaScript code within scripts and reduces the need to mingle JavaScript

and HTML.

Some of the common used event handlers (Tamura 2000):

onclick ↪→ This handler is supported by all button-like form elements, as well as

<a> and <area> tags. It is triggered when the user clicks on the element. If

an onclick handler returns false, the browser does not perform any default action

associated with the button or link.

onchange ↪→ This event handler is supported by the <input> , <select>, and

<textarea> elements. It is triggered when the user changes the value displayed

by the element and then tabs or otherwise moves focus out of the element.

onsubmit , onreset ↪→ These event handlers are supported by the <form> tag and

are triggered when the form is about to be submitted or reset. They can return

false to cancel the submission or reset. The onsubmit handler is commonly used

to perform client-side form validation.

4.7 Chapter Summary

This chapter shows how the codes are develop for each language used. There are

examples given to aid the understanding of these codes. The outlook of the web page

and the source codes can be found in Appendix B and C respectively.

Chapter 5

Software Development Life Cycle

5.1 Chapter Overview

This chapter will look into the software life cycle model used in this project. It will

show that it is important to use the model in developing project, be it small or larger

scale project. Software Life Cycle is actually a map that guides those involve in a

project to move forward and helps them to understand whether they have reached

their destination. Software Life Cycle will develop the project in a few phases, each

with a sequence of activities. These sequence may not be linearly sequential because

they may flow from one another, repeat themselves or run concurrent.

5.2 Software Life Cycle Model

A software process framework or skeleton, describe what is to be perform in each phase

of a project development via the activities of each phase. The phase used here refers

to the distinguishable stage in the development process. Life Cycle phases represent

distinct and successive periods with entry and exit criteria (Futrell 2002).

In the olden days of software development, codes were mostly and then debug without

any detail planning. Without any formal design and analysis , it is impossible to know

5.3 Waterfall Life Cycle Model 37

which direction you are going or even know where is the destination. There is no way

to access requirement or whether the quality criteria has been satisfy.

Therefore, during the early phase, a framework for development phase need to be

formalize, placing emphasis on up-front requirements and design activities, and on

producing documentation (Futrell 2002).

5.3 Waterfall Life Cycle Model

The application of the Waterfall Model should only be limited to situations in which

the requirement and the implementation of those requirements are well-understood.

Waterfall Model performs well for product cycles with a stable definition and well

understood technical methodologies. The critics of the model in Figure 5.2 must admit

that the modified version of the waterfall is far less rigid than the original, Figure 5.1.

This includes the iteration of phases, concurrent phases and change of environment.

The reverse arrows in Figure 5.1 allow for iterations of activities within phases. To

reflect concurrency among phases, the rectangles are often stacked or activities within

the phases are often listed beneath the rectangle showing concurrence. Although the

modified Waterfall Model is much more flexible than the classic, it is still not the best

choice for rapid development project (Rucker 2002).

5.3.1 Development

The execution of Waterfall Model starts at the upper left of Figure 5.2 and progress

through the orderly sequence of steps. For pure Waterfall Model, it is assumed that

each of the subsequent phase will only begin when the activities of the current phase

have been completed. But for Waterfall Model with feedback like Figure 5.2, it allows

the possibility of revisiting the earlier stages. This is better because it is impossible to

completely specific and plan the whole project in advance of writing codes.

There is a define entry (input) and exit (output) criteria for each phase. Internal

5.3 Waterfall Life Cycle Model 38

Figure 5.1: Pure Waterfall Life Cycle Model

Figure 5.2: Waterfall Life Cycle Model with feedback (Rucker 2002).

5.3 Waterfall Life Cycle Model 39

or external deliverables are the output from each phase including documentation and

software. The transition from one phase to another is by passing formal review. It is a

way to provide customers an insight into the development process and to check on the

product stability. Therefore, the passing of formal reviews indicates an agreement that

the phase has ended and the next phase can begin (Futrell 2002).

5.3.2 The Phases

The description of the phase activities below is based on Figure 5.2 and show how these

phases is related in the development of this project.

Concept Exploration Examine the requirements at the system level and to deter-

mine feasibility. ⇒ Refer to Chapter 1 under Section: Rationale.

System Allocation This maybe skipped for software only system. For system that

require the development of both the software and hardware, the required functions

are mapped to the software or hardware based on the overall system architecture.

⇒ Refer to Chapter 3 under Table 3.1.

Requirement This defines the software requirements for the system’s information

domain, function, behaviour, performance and interfaces. ⇒ Refer to Chapter 3

under Table 3.2.

Design Develop and represents a coherent, technical specification of the software sys-

tem, this includes the data structure, software software architecture, interface

representation and procedural (algorithm) detail. ⇒ Refer to Chapter 4.

Implementation This phase results in the transformation of the software design de-

scription to a software product. This produce the source codes, database, and

documentation constituting the physical transformation of the design. For prod-

uct which is a purchased application package, the major implementation activities

are the installation and testing of the software package. For software product,

the major activities are programming and testing codes. ⇒ Software design de-

scription refer to Chapter 1 under Section: Project Aims and Software Selection.

Source Code refer to Appendix C.

5.3 Waterfall Life Cycle Model 40

Installation This involved the installation of software, check out and product to be

formally accepted by the customer. ⇒ Refer to Chapter 3 under Section: Instal-

lation

Operation & Support This involve the user operation of the system and the ongo-

ing support which includes providing technical assistance, consulting with the

user, recording user requests for enhancements and changes, and also to handle

corrections or errors.

Maintenance This phase is concerned with the resolution of the software errors,

faults, failure, enhancements, and changes generated by the support phase. It

consist of the iterations of development and support feedback of anomaly infor-

mation.

Retirement This phase is to remove an existing system from its active use, by either

terminating its operation or replacing it with a new system or an upgrade version

of the existing system. ⇒ This phase is not used in this project because it not

removing an existing system from its active use.

Integral This involve project initiation, project monitoring and control, quality man-

agement, verification and validation, configure management, documentation de-

velopment and training throughout the entire life cycle.

5.3.3 Advantages & Disadvantages

The advantages are as follows:

This refers to project that is well-suited for Waterfall Model. Waterfall Life Cycle

Model is well-known by non-software customers and end-users. It tackle complexity in

an orderly way and works well with project that are well-understood but still complex.

It is easy to understand with simple goal to complete the required activities. It pro-

vides requirement stability and also provides template into which methods for analysis,

design, code, test and support can be placed. Waterfall Model defines quality control

procedures. Each deliverable is reviewed as it is completed. The quality of the system

is determine by procedures. The milestones are well understood. It is easy to track the

5.4 Chapter Summary 41

progress of the project using a timeline or Gantt chart. The completion of each phase

is used as a milestone (Futrell 2002).

The disadvantages are as follows:

This refers to project that is not well-suited for Waterfall Model. The inherently linearly

sequential nature does not allow any attempted to go back 2 or more phases to correct

a problem or deficiency which would result in major increases in cost and schedule. It

does not reflect the problem solving nature of the software development. The phases are

tight rigidly to activities, and is not how the people or teams really work (Futrell 2002).

5.4 Chapter Summary

The concept of Software Development Life Cycle is important in software design. The

phases in the life cycle is for software designer to follow in order to ensure that their

software is design according to the client request and that the dateline is meet. This

project follows this life cycle as shown in the development

Chapter 6

Conclusions and Further Work

As shown in the previous chapter, the basis aims of the XML-Based Online Traffic

Information has been achieved. However, several enhancements are possible. These

will be briefly discuss in this final chapter.

6.1 Future Work

6.1.1 Additional Features

Other than just an interactive map and a search engine, real-time images on the road

condition can be used. This is similar to the one shown in the news in Singapore, where

traffic condition on major roads are shown when news reporter are reporting the traffic

condition on the road.

This can be liaised with the local Land Transport Authority as they will have a set of

camera to monitor the traffic conditions on the road. In this way, the drivers will have

a few more choices to know the traffic condition on the road.

6.2 Shortcomings 43

6.1.2 WAP Site

As mode of communication changes with time, many people nowadays carry mobile

phone around. And the technology of mobile phone are still ongoing. Users can log

onto the WAP site to got information just like on a web site. They can even check

email and information like weather, news and many more. Therefore, mobile phone

would be a better choice to have an online traffic information. The followings are the

reason why this is suggested:

↪→ Mobile Phone is smaller and easier to carry around than a laptop. This would lead

to a real-time online traffic information service for drivers.

↪→ Almost everyone has one mobile phone

6.1.3 Taxi Drivers Communicator

Currently, the taxis in Singapore have a communicator installed inside. This replace the

radio communication device which they used to communicate with the control center.

Online-based traffic information can also be develop to view in the communicator. This

will enable taxi drivers to know the road condition better since the communicator follow

wherever they go.

6.2 Shortcomings

There are two main shortcomings for this project:

1. This Online-Based Traffic Information web page can only be view in Internet

Explorer 5.0 or later. Other web browser like Mozilla, Netscape and Opera might

not present this web page in the way that it should be.

2. This web page can only be viewed on the Internet, drivers might not bring a laptop

or desktop with them all the time, therefore it is only useful if the drivers are

leaving from home or office. This is the reason why the future work is suggested.

6.3 Achievement of Project Objectives 44

6.3 Achievement of Project Objectives

The following objectives have been addressed:

The Use of Latest Web Technology Chapter 1 show how XML, the latest web

technology, is used in this project.

Comparison of XML & HTML Chapter 1 has compare and contrast these two web

languages. Examples are given.

Understanding of Web Languages Chapter 2 shows the birth of web languages

and how XML came about.

Uses of various languages Chapter 4 present how XML, XSL, DTD, ASP and JavaScript

are combine to develop this project.

Search Engine & Interactive Map Chapter 4 show how this is achieved.

Importance of System Requirements Chapter 3 show the system requirements

and how some of the requirement affect this project.

Importance of Software Development Life Cycle Chapter 5 show how software

development life cycle does to software design.

Phases of Waterfall Life Cycle Chapter 5 shows the life cycle that is used for the

development of this project. The phases of Waterfall Life Cycle are follow in this

project.

Further Enhancement Chapter 6 present a number of enhancement of this project

which can be undertaken if this project is to be develop further.

References

Apache, X. P. (2004), Apache XML Project.

http://xml.apache.org/.

Bruck, B. (2002), Taming the Information Tsunami, Microsoft Press.

Coleman, P. (2001), XML Complete, Sybex, California.

Flanagan, D. (2001), JavaScript: The Definitive Guide, 4th Edition, O’Reilly.

Floyd, M. (2002), Special Edition Using XSLT, Que.

Futrell, R. T. (2002), Quality Software Project Management, Prentice Hall PTR.

Griffith, A. (2002), Java, XML and JAXP, John Wiley & Sons Inc, Canada.

Harold, E. R. (2003), Effective XML: 50 Specific Ways to Improve Your XML, Addison

Wesley.

Quin, L. (2004), Extensible Markup Language (XML).

http://www.w3.org/XML

current April 2004.

Rose, G. (2000), XML: A Primer, M & T Books, United Kingdom.

Rucker, R. (2002), Software Engineering & Computer Games, Addison Wesley.

SUN, M. (2004), Java Technology XML. http://java.sun.com/xml/.

Tamura, R. A. (2000), Domino 5 Web Programming with XML, Java, and JavaScript,

Que.

Vaswani, V. (2002), XML and PHP, New Riders Publishing.

Appendix A

Project Specification

47

Appendix B

User View of the XML-Based

Online Traffic Information

B.1 XML-Based Online Traffic Information 49

B.1 XML-Based Online Traffic Information

The following screen shots show how the XML-based online traffic information works.

Figure B.1: This is the main page.

B.1 XML-Based Online Traffic Information 50

Figure B.2: When the “map” on the side menu is click, this page is shown.

B.1 XML-Based Online Traffic Information 51

Figure B.3: When a town/suburban is click, the map of that town/suburban appear
next. For this example, Aljunied/Braddell/Macpherson is used.

Figure B.4: This is the XML document after the incident icon is click.

B.1 XML-Based Online Traffic Information 52

Figure B.5: This page appear when “search” is click from the main page. After filling
up the parameter, click the “search” icon. If the parameter is found, a result link is
shown.

Figure B.6: This show the result of the search. It is an XML document.

Appendix C

Source Code

54

Listing C.1: Default Page for Traffic Information
<html>

<head>
<meta http−equiv=”Content−Type” content=” text /html ;

cha r s e t=windows−1252”>
<meta name=”GENERATOR” content=” Microso f t FrontPage 5 . 0 ”>
<meta name=”ProgId” content=”FrontPage . Editor . Document”>
<t i t le >Online T r a f f i c In format ion</t i t l e >
</head>

<f rameset f ramespac ing=”0” border=”0” rows=”120 ,∗ ”
frameborder=”0”>

<frame name=”banner” s c r o l l i n g=”no”
no r e s i z e t a r g e t=” contents ” src=”header . htm”>

<f rameset cols=”193 ,∗ ”>
<frame name=” contents ” t a r g e t=”main” src=”sidemenu . htm”>
<frame name=”main” src=”main . htm” ta rg e t=” s e l f ”>

</frameset>
<noframes>
<body>

<p>This page uses frames , but your browser doesn ’ t
support them .</p>

</body>
</noframes>

</frameset>

</html>

55

Listing C.2: Side Menu for Main Page
<html>

<head>
<meta http−equiv=”Content−Language” content=”en−us”>
<meta http−equiv=”Content−Type” content=” text /html ;

cha r s e t=windows−1252”>
<meta name=”GENERATOR” content=” Microso f t FrontPage 5 . 0 ”>
<meta name=”ProgId” content=”FrontPage . Editor . Document”>
<t i t le >Contents</t i t le >
<base t a r g e t=”main”>
<style>
body { font−f ami ly : verdana , h e l v e t i c a , sans−s e r i f ;

font−s i z e : 12 pt ;
background−image : u r l (’ ur l ’) ;
background−attach : s c r o l l ;
background−po s i t i o n : l e f t top ;
background−repeat : no−repeat
}

p{ font−f ami ly : verdana , h e l v e t i c a , sans−s e r i f ;
font−s i z e : 1 0 pt ;
c o l o r : # f f f f f f ;
}

dt{ font−f ami ly : verdana , h e l v e t i c a , sans−s e r i f ;
font−s i z e : 9 pt ;
c o l o r : #663300;
}

td{ font−f ami ly : verdana , h e l v e t i c a , sans−s e r i f ;
font−s i z e : 8 pt ;
}

a{ text−decora t i on :
none ;}

a : hover{ text−decora t i on : r e gu l a r ;
c o l o r : # f f 0 000 ;
}

</style>
</head>
<body bgcolor=”#000000” l ink=”#f f f f f f ” vlink=”#f f f f f f ”

alink=”#f f 0000 ”>
<p align=” l e f t ”><u>Contents</u></p>
<p align=” l e f t ”>Main</p>
<p align=” l e f t ”><a href=”main map . htm”

ta rg e t=” blank ”>Map</p>

<p align=” l e f t ”><a href=” t r a f f i c . htm”
ta rg e t=”main”>Search</p>

56

<p align=” l e f t ”>Pro j ec t By :</p>
<dl>

Sim Lee Kheng Sh i r l e y

0010333100
<p>

Bachelor o f Engineer ing

</p>

Major in Computer

System Engineer ing
</p>
</dl>
</body>
</html>

57

Listing C.3: Main.htm of Default Page
<html>
<head>
<meta http−equiv=”Content−Type” content=” text /html ;
cha r s e t=windows−1252”>
<meta name=”GENERATOR” content=” Microso f t FrontPage 5 . 0 ”>
<meta name=”ProgId” content=”FrontPage . Editor . Document”>
<t i t le >Main</t i t le >
<base t a r g e t=” s e l f ”>
<style>
body { font−f ami ly : verdana , h e l v e t i c a , sans−s e r i f ;

font−s i z e : 12 pt ;
background−image : u r l (’ ur l ’) ;
background−attach : s c r o l l ;
background−po s i t i o n : l e f t top ;
background−repeat : no−repeat
}

p{ font−f ami ly : verdana , h e l v e t i c a , sans−s e r i f ;
font−s i z e : 1 0 pt ;
c o l o r : # f f f f f f ;
}

dt{ font−f ami ly : verdana , h e l v e t i c a , sans−s e r i f ;
font−s i z e : 9 pt ;
c o l o r : #663300;
}

td{ font−f ami ly : verdana , h e l v e t i c a , sans−s e r i f ;
font−s i z e : 8 pt ;
}

a{ text−decora t i on :
none ;}

a : hover{ text−decora t i on : r e gu l a r ;
c o l o r : # f f 0 000 ;
}

</style>
</head>
<body bgcolor=”#9DA2A8”>
<p align=” cente r ”>
 ;</p>
<p align=” cente r ”>
 ;</p>
<p align=” cente r ”>
<img border=”0” src=” images /welcome . jpg ” width=”459”

height=”249”></p>
<p align=” cente r ”> ;</p>
</body>
</html>

58

Listing C.4: Header.htm of Default Page
<html>

<head>
<meta http−equiv=”Content−Type” content=” text /html ;
cha r s e t=windows−1252”>
<meta name=”GENERATOR” content=” Microso f t FrontPage 5 . 0 ”>
<meta name=”ProgId” content=”FrontPage . Editor . Document”>
<t i t le >Tra f f i c In format ion</t i t le >
<base t a r g e t=” contents ”>
</head>

<body bgcolor=”#10029A”>

<p><img border=”0” src=” images /header . jpg ”
width=”858” height=”99”></p>

</body>

</html>

59

Listing C.5: Interactive Map
<html xmlns : v=”urn : schemas−microso f t−com : vml”

xmlns : o=”urn : schemas−microso f t−com : o f f i c e : o f f i c e ”
xmlns=”http ://www.w3 . org /TR/REC−html40”>

<head>
<meta name=”GENERATOR” content=” Microso f t FrontPage 5 . 0 ”>
<meta name=”ProgId” content=”FrontPage . Editor . Document”>
<meta http−equiv=”Content−Type” content=” text /html ;

cha r s e t=windows−1252”>

<t i t le >Map o f Singapore</t i t le >
</head>
<body bgcolor=”#A7DEEC”>
<p align=” cente r ”>
<img border=”0” src=” images /map o f Singapore . jpg ”

width=”534” height=”163”></p>
<p align=” cente r ”>
<img border=”0” src=” images /singmap . g i f ” align=” ba s e l i n e ”

width=”588” height=”344”></p>
<p align=” cente r ”>
TOWNS IN SINGAPORE
</p>
<p align=” cente r ”>
<a href=” a l j un i e d b radde l l macpherson . htm”

ta rg e t=”map o f s ingapore ” style=” text−decora t i on :
none”>Aljun ied / Braddel / Macpherson

<a href=”amk bishan thomson . htm” ta rg e t=”map o f s ingapore ”
style=” text−decora t i on : none”>

Ang Mo Kio / Bishan / Thomson
<a href=”bedok upper ea s t coas t . htm”

ta r g e t=”map o f s ingapore ” style=” text−decora t i on :
none”>Bedok / Upper East Coast</p>

<p align=” cente r ”>
<a href=”bt batok cck bt panjang . htm”

ta rg e t=”map o f s ingapore ” style=” text−decora t i on :
none”>
Bukit Batok / Chua Chu Kang / Bukit Panjang

<a href=” bugis beach rd . htm” ta rg e t=”map o f s ingapore ”
style=” text−decora t i on : none”>Bugis / Beach Road

<a href=” c i t y h a l l c larkquay . htm” ta rg e t=”map o f s ingapore ”
style=” text−decora t i on : none”>City Hal l / Clark Quay

</p>
<p align=” cente r ”>
<a href=” c lement i west coas t . htm” ta r g e t=”map o f s ingapore ”

style=” text−decora t i on : none”>Clementi / West Coast

60

<a href=”dunearn newton . htm” ta rg e t=”map o f s ingapore ”

style=” text−decora t i on : none”>Dunearn / Newton
<a href=” hol land bt timah . htm” ta rg e t=”map o f s ingapore ”

style=” text−decora t i on : none”>
 ; Holland / Bukit Timah

<a href=”hougang seng kang . htm” ta rg e t=”map o f s ingapore ”
style=” text−decora t i on : none”>Hougang / Seng

Kan<a href=”hougang seng kang . htm”
ta rg e t=”map o f s ingapore ”>g</p>

<p align=” cente r ”>
<a href=” jurong tuas . htm” ta rg e t=”map o f s ingapore ”

style=” text−decora t i on : none”>Jurong / Tuas
<a href=”kaki bt eunos geylang . htm” ta rg e t=”map o f s ingapore ”

style=” text−decora t i on : none”>
Kaki Bukit / Eunos / Geylang

<a href=” lim chu kang . htm” ta rg e t=”map o f s ingapore ”
style=” text−decora t i on : none”>Lim Chu Kang

<a href=” loyang changi . htm” ta r g e t=”map o f s ingapore ”
style=” text−decora t i on : none”>Loyang / Changi

</p>
<p align=” cente r ”>
<a href=”mandai l e n t o r . htm” ta rg e t=”map o f s ingapore ”

style=” text−decora t i on : none”>Mandai / Lentor
<a href=”merah commonwealth . htm” ta rg e t=”map o f s ingapore ”

style=” text−decora t i on : none”>
Bukit Merah / Commonwealth

<a href=”orchard r i v e r v a l l e y . htm” ta rg e t=”map o f s ingapore ”
style=” text−decora t i on : none”>

Orchard / River Val ley
<a href=” pa s i r r i s tampines . htm” ta r g e t=”map o f s ingapore ”

style=” text−decora t i on : none”>
Pas i r Ris / Tampines</p>

<p align=” cente r ”>
<a href=” serangoon j l n besar . htm” ta r g e t=”map o f s ingapore ”

style=” text−decora t i on : none”>
Serangoon / Jalan Besar

<a href=” te l ok blangah . htm” ta rg e t=”map o f s ingapore ”
style=” text−decora t i on : none”>Telok Blangah

<a href=”tpy ka l l ang whampao . htm” ta rg e t=”map o f s ingapore ”
style=” text−decora t i on : none”>

Toa Payoh / Kallang / Whampoa
<a href=”upper bt timah . htm” ta rg e t=”map o f s ingapore ”

style=” text−decora t i on : none”>Upper Bukit Timah
</p>

<p align=” cente r ”>
<a href=”woodlands k r an j i . htm” ta rg e t=”map o f s ingapore ”

style=” text−decora t i on : none”>Woodlands / Kranj i
<a href=”yck j l n kayu . htm” ta rg e t=”map o f s ingapore ”

61

style=” text−decora t i on : none”>
Yio Chu Kang / Jalan Kayu

<a href=”yishun sembawang . htm” ta rg e t=”map o f s ingapore ”
style=” text−decora t i on : none”>Yishun / Sembawang

</p>
<p align=” cente r ”> ;</p>
<p align=” cente r ”>

 [CLOSE WINDOW]
</p>

</body>

</html>

62

Listing C.6: Map of Town
<t i t le >Map o f Singapore</t i t le >
<base t a r g e t=” s e l f ”>
<body bgcolor=”#A7DEEC”>

<p align=” cente r ”>
<img border=”0” src=” images /singmap . g i f ”

width=”588” height=”344”></p>

63

Listing C.7: XML Document for Town of Aljunied
<?xml ve r s i on=” 1 .0 ” standa lone=”no”?>
<!DOCTYPE Tra f f i c SYSTEM ” t r a f f i c . dtd”>
<?xml−s t y l e s h e e t type=” text / x s l ” href=” t r a f f i c 1 . x s l ” ?>
<Tra f f i c >

<Record id=”111”>
<Traf f i cRecord>

<Inc ident>Accident</Inc ident>
<Date>13/05/04</Date>
<Time>1036am</Time>
<Info>A motor i s t and d r i v e r i n ju r ed</Info>

</Traf f i cRecord>
</Record>

</Tra f f i c >

64

Listing C.8: ASP for Traffic Information
<%@ LANGUAGE = JavaScr ipt %>

<%

var dbConn , dbRecordSet ;

var par s e r = Server . CreateObject (”MSXML.DOMDocument”) ;

pa r s e r . loadXML(Request . S e rve rVar i ab l e s (”QUERY STRING”)) ;

i f (pa r s e r . readyState == 4 && par se r . parseError == 0)
{

var docroot = par s e r . documentElement ;

i f (docroot . nodeName==”PaperQuery”)
{

dbConn = Server . CreateObject (”ADODB. Connection”) ;
dbConn . Open(” T r a f f i c I n f o .mdb” , ”” , ””) ;
dbRecordSet = Server . CreateObject (”ADODB. RecordSet ”) ;

AssembleQueries (docroot) ;

dbConn . Close () ;
dbConn = nu l l ;
dbRecordSet = nu l l ;

}
e l s e

Response . Write (”<Inval idQuery></Inval idQuery>”) ;
}
e l s e

Response . Write (”<Error></Error>”) ;

f unc t i on AssembleQueries (oRoot)
{

var chi ldNode ;
var sQueryStem = ”SELECT Tra f f i c . Inc ident ,

T r a f f i c . AcdDate , T r a f f i c .RoadName ,
T r a f f i c . In format ion FROM Tra f f i c ” ;

Response . Write (”<PaperResponse>”) ;

f o r (var nChild = 0 ; nChild < oRoot . chi ldNodes . l ength ;
nChild++)

{
chi ldNode = oRoot . chi ldNodes . item (nChild) ;
i f (chi ldNode . nodeType == 1)
{

i f (chi ldNode . nodeName == ”BYROAD”)

65

AssembleRoad (sQueryStem ,
chi ldNode) ;

i f (chi ldNode . nodeName == ”BYTIME”)
AssemblePubDate (sQueryStem ,

chi ldNode) ;
}

}
Response . Write (”</PaperResponse>”) ;

}

f unc t i on AssembleRoad (sStem , oChild)
{

var paramNode ;
var sQuery = ”” ;
var regExp , s t r F i l t e r e d

i f (oChild . chi ldNodes . l ength > 0)
{

paramNode = oChild . chi ldNodes . item (0) ;
i f (paramNode . nodeType == 1 &&

paramNode . nodeName == ”RNAME”)
{

regExp = /%20/g ;
s t r F i l t e r e d =
paramNode . chi ldNodes (0) .
nodeValue . r ep l a c e (regExp , ” ”) ;
sQuery =
sStem + ”WHERE RoadName LIKE ’ ”
+s t r F i l t e r e d + ” ’ ; ” ;
MakeResponse (1 , sQuery) ;

}
}

}

f unc t i on AssemblePubDate (sStem , oChild)
{

var paramNode ;
var sQuery = ”” , sConst ra intClause = ”” ;

var paramNode ;
var sBe fo re = ”” , sA f t e r = ”” ;
var sConst ra intClause = ”” , sQuery = ”” ;
var nParam = 0;

f o r (nParam = 0 ; nParam <
oChild . chi ldNodes . l ength ; nParam++)

{

66

paramNode = oChild . chi ldNodes . item (nParam) ;

i f (paramNode . nodeType == 1)
{

i f (paramNode . nodeName == ”BEFORE”)
sBe fore = ”AcdDate <= #” +
paramNode . chi ldNodes (0) .

nodeValue+”#” ;

i f (paramNode . nodeName == ”AFTER”)
sAf t e r = ”AcdDate >= #” +
paramNode . chi ldNodes (0) .

nodeValue + ”#” ;
}

}

sConst ra intClause = sAf t e r ;

i f (sConst ra intClause != ”” && sBefore != ””)
sConst ra intClause = sConst ra intClause + ” AND ” ;

sConst ra intClause = sConst ra intClause + sBe fore ;

i f (sConst ra intClause != ””)
sConst ra intClause = ”WHERE ” + sConst ra intClause ;

sQuery = sStem + sConst ra intClause + ’ ; ’ ;
MakeResponse (2 , sQuery) ;

}

f unc t i on MakeResponse (nQueryType , sQuery)
{

var sTypeEndTag ;

dbRecordSet = dbConn . Execute (sQuery) ;

i f (dbRecordSet .EOF && dbRecordSet .BOF)
Response . Write (”<NoResults></NoResults>”) ;

switch (nQueryType)
{

case 1 :
Response . Write (”<BYROAD>”) ;
sTypeEndTag = ”</BYROAD>” ;
break ;

case 2 :
Response . Write (”<BYTIME>”) ;
sTypeEndTag = ”</BYTIME>” ;

67

break ;
}

whi le (! dbRecordSet .EOF)
{

Response . Write (”<Paper>”) ;
i f (dbRecordSet (” Inc iden t ”) != ””)

Response . Write (”<i n c ident >”
+dbRecordSet (” Inc iden t ”)+”</inc ident >”) ;

i f (dbRecordSet (” In format ion ”) != ””)
Response . Write (”<in format ion>” +

dbRecordSet (” In format ion ”) +
”</informat ion>”) ;

i f (dbRecordSet (”RoadName”) != ””)
Response . Write (”<road>” +

dbRecordSet (”RoadName”) + ”</road>”) ;

i f (dbRecordSet (”AcdDate”) != ””)
Response . Write (”<AcdDate>” +

dbRecordSet (”AcdDate”) + ”</AcdDate>”) ;

Response . Write (”</Paper>”) ;
dbRecordSet . MoveNext () ;

}
Response . Write (sTypeEndTag) ;

}

%>

68

Listing C.9: Search Engine for Traffic Information
<html>

<head>

<script LANGUAGE=” JavaScr ipt ”>

var par s e r = new ActiveXObject (”MSXML.DOMDocument”) ;

f unc t i on OnSearch ()
{

var sQueryXML = ”” ;
i f (RNAME. value != ””)

sQueryXML += makeByName(RNAME. value) ;

i f (AFTER. value != ”” | | BEFORE. value != ””)
sQueryXML += makeByAcdDate (AFTER. value ,
BEFORE. value) ;

i f (sQueryXML != ””)
{

sQueryXML = ”<PaperQuery>” + sQueryXML +
”</PaperQuery>” ;
par s e r . async = ” f a l s e ” ;
pa r s e r . load (” t r a f f i c i n f o . asp” + sQueryXML) ;
HandleResponse (document . a l l (” r e s u l t s ”)) ;

}
}

f unc t i on makeByName(sRoad)
{

var sQueryStr ing = ”<BYROAD>” ;

i f (sRoad != ””)
sQueryStr ing += ”<RNAME>”+sRoad+”</RNAME>” ;

sQueryStr ing += ”</BYROAD>” ;

re turn sQueryStr ing ;
}

f unc t i on makeByAcdDate (sStar t , sEnd)
{

var sQueryStr ing = ”<BYDATE>” ;

i f (s S t a r t != ””)
sQueryStr ing += ”<AFTER>”+sS ta r t+”</AFTER>” ;

69

i f (sEnd != ””)
sQueryStr ing += ”<BEFORE>”+sEnd+”</BEFORE>” ;

sQueryStr ing += ”</BYDATE>” ;

re turn sQueryStr ing ;
}

f unc t i on HandleResponse (oDIV)
{

var docroot ;
var nChildCount ;
var sTable = ”” ;

oDIV . innerHTML = ”” ;

i f (pa r s e r . readyState == 4 &&
par se r . parseError . reason == ””)

{
docroot = par s e r . documentElement ;

i f (docroot . nodeName == ”PaperResponse”)
{

f o r (nChild = 0 ; nChild <
docroot . chi ldNodes . l ength ; nChild++)

{
sTable = HandleResults

(docroot . chi ldNodes . item (nChild)) ;
i f (sTable != ””)

oDIV . insertAdjacentHTML
(”beforeEnd” , sTable) ;

}
}

e l s e
window . a l e r t (” Improper re sponse type ;

check with s e r v e r admin i s t ra to r . ”) ;
}

e l s e
window . a l e r t (”Parser not ready or response not

wel l−formed . ” + ”Ensure you are contac t ing an
appropr ia t e s e r v e r . ”) ;

}

f unc t i on HandleResults (node)
{

var i ;
var sReply = ”” ;

70

var ch i l d ;

i f (node . nodeType == 1) // an XML ELEMENT
{

i f (node . nodeName == ”BYROAD”)
sReply = ’<h2>Resu l t s by Road Name</h2> ’ ;

i f (node . nodeName == ”BYTIME”)
sReply = ’<h2>Resu l t s by Date</h2> ’ ;

i f (sReply != ””)
{

sReply += ’<table border=”1” width=”100%”> ’ ;
f o r (i = 0 ; i < node . chi ldNodes . l ength ; i++)
{

ch i l d = node . chi ldNodes . item (i) ;
i f (c h i l d . nodeType == 1)
{

i f (c h i l d . nodeName == ”Paper”)
sReply += MakeHTMLFromPaper(ch i l d) ;

i f (c h i l d . nodeName == ”NoResults ”)
sReply += ’< tr><td width=”100%”>

No papers found</td></tr> ’ ;
}

}
sReply += ’</table> ’ ;

}

re turn sReply ;
}

f unc t i on MakeHTMLFromPaper(paperNode)
{

var i ;
var chi ldNode ;
var sRow = ”” ;
var s I n c i d en t = ”” , sPubLink =”” , sRoad , sAcdDate ;

f o r (i = 0 ; i < paperNode . chi ldNodes . l ength ; i++)
{

chi ldNode = paperNode . chi ldNodes . item (i) ;

i f (chi ldNode . nodeType == 1)
{

i f (chi ldNode . nodeName == ” in c i d en t ”)
s I n c i d en t =
chi ldNode . chi ldNodes (0) . nodeValue ;

i f (chi ldNode . nodeName == ” in format ion ”)
sPubLink =
chi ldNode . chi ldNodes (0) . nodeValue ;

71

i f (chi ldNode . nodeName == ”road”)
sRoad =
childNode . chi ldNodes (0) . nodeValue ;

i f (chi ldNode . nodeName == ”AcdDate”)
sAcdDate =
chi ldNode . chi ldNodes (0) . nodeValue ;

}
}

sRow += ’< tr><td width=”34%”> ’ ;
i f (sPubLink != ””)
{

sRow += ’ ’ ;
i f (s I n c i d en t != ””)

sRow += s Inc i d en t + ’ ’ ;
e l s e

sRow += ’ Unt i t l ed paper ’ + ’ ’ ;
}
e l s e
{

i f (s I n c i d en t != ””)
sRow += s Inc i d en t ;

}

sRow += ’</td><td width=”33%”> ’ ;
i f (sRoad != ””)

sRow += sRoad ;
sRow += ’</td> ’ ;

sRow += ’<td width=”33%”> ’ ;
i f (sAcdDate != ””)

sRow += sAcdDate ;
sRow += ’</td></tr> ’ ;

r e turn sRow ;
}

</script>

<meta name=”GENERATOR” content=” Microso f t FrontPage 5 . 0 ”>
<t i t le >TRAFFIC INFORMATION</t i t le >
<meta name=” Microso f t Theme” content=”none , d e f au l t ”>
<meta name=” Microso f t Border” content=”none , d e f au l t ”>
</head>

<body>
<H1>TRAFFIC INFORMATION</H1>

72

<h3>By Road Name :</h3>

<table border=”0” width=”41%”>
<tr>

<td width=”41%” align=” r i gh t ”>
Road Name</td>

<td width=”59%”>
<INPUT name=RNAME style=”HEIGHT: 22 px ;

WIDTH: 177 px” s ize=”20”></td>
</tr>

</table>
<H3>By Date :</H3>

<table border=”0” width=”40%”>
<tr>

<td width=”39%”><p align=” r i gh t ”>
On or After</p></td>

<td width=”61%”><input NAME=”AFTER” s ize=”20” ></td>
</tr>
<tr>

<td width=”39%”><p align=” r i gh t ”>
On or Before</p></td>

<td width=”61%”><input NAME=”BEFORE” s ize=”20” ></td>
</tr>

</table>

<p align=” l e f t ”>
<input TYPE=”button” VALUE=”Search ” ONCLICK=”OnSearch () ”

NAME=”SearchBtn”>
</p>

<p align=” l e f t ”>
</p>
<DIV ID=” r e s u l t s ”> ;
</DIV>
</body>
</html>

73

Listing C.10: XML Document for Traffic Information
<?xml ve r s i on=” 1 .0 ” standa lone=”no”?>
<!DOCTYPE Tra f f i c SYSTEM ” t r a f f i c . dtd”>
<?xml−s t y l e s h e e t type=” text / x s l ” href=” t r a f f i c . x s l t ”?>
<Tra f f i c >

<Record id=”111”>
<Traf f i cRecord>

<RoadName>Hougang S t r e e t 11</RoadName>
<Date>2/1/2004</Date>
<Time>1202</Time>
<Info>2 g i r l s and 2 boys k i l l e d</Info>

</Traf f i cRecord>
</Record>
<Record id=”222”>

<Traf f i cRecord>
<RoadName>Ang Mo Kio Ave 3</RoadName>
<Date>29/3/2004</Date>
<Time>1202</Time>
<Info>1 e l d e r l y and 1 motor i s t i n ju r ed
</Info>

</Traf f i cRecord>
</Record>
<Record id=”333”>

<Traf f i cRecord>
<RoadName>Havelock Road</RoadName>
<Date>4/5/2004</Date>
<Time>1850</Time>
<Info>2 women and 1 man in ju r ed</Info>

</Traf f i cRecord>
</Record>

</Tra f f i c >

74

Listing C.11: XSL for Traffic Information
<?xml ve r s i on=” 1 .0 ”?>
<x s l : s t y l e s h e e t xmlns : x s l=”http ://www.w3 . org /TR/WD−x s l ”>
<x s l : template match=”/”>
<html>
<head></head>
<body background=” ”>
<p align=” cente r ”><img

src=” images / i n c i d en t in s ingapore . jpg ”/></p>
<x s l : fo r−each select=”/ T r a f f i c /Record/ Tra f f i cRecord ”>

<x s l : value−o f select=”RoadName”/>

<p align=” l e f t ” style=”margin− l e f t : 1 8 ”>

Date :

<x s l : value−o f select=”Date”/>
</p>

<p align=” l e f t ” style=”margin− l e f t : 1 8 ”>

Time :

<x s l : value−o f select=”Time”/>
</p>

<p align=” l e f t ” style=”margin− l e f t : 1 8 ”>

In format ion :

<x s l : value−o f select=” In fo ”/>
</p>

</x s l : fo r−each>
<p align=” cente r ”>
 [CLOSE WINDOW]
</p></body></html>
</x s l : template>
</x s l : s t y l e s h e e t >

75

Listing C.12: Document Type Definition for Traffic Information
<?xml ve r s i on=” 1 .0 ” encoding=”UTF−8”?>
<!ELEMENT Date (#PCDATA)>
<!ELEMENT In fo (#PCDATA)>
<!ELEMENT Record (Traf f i cRecord , Date?)>
<!ATTLIST Record id CDATA #IMPLIED>
<!ELEMENT Inc iden t (#PCDATA)>
<!ELEMENT Time (#PCDATA)>
<!ELEMENT Tra f f i c (Record+)>
<!ELEMENT Tra f f i cRecord (Inc ident , Date , Time , In f o)>

